JP2005259912A - 発光素子の製造方法 - Google Patents

発光素子の製造方法 Download PDF

Info

Publication number
JP2005259912A
JP2005259912A JP2004068042A JP2004068042A JP2005259912A JP 2005259912 A JP2005259912 A JP 2005259912A JP 2004068042 A JP2004068042 A JP 2004068042A JP 2004068042 A JP2004068042 A JP 2004068042A JP 2005259912 A JP2005259912 A JP 2005259912A
Authority
JP
Japan
Prior art keywords
layer
temporary support
substrate
compound semiconductor
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068042A
Other languages
English (en)
Inventor
Kazunori Hagimoto
和徳 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004068042A priority Critical patent/JP2005259912A/ja
Publication of JP2005259912A publication Critical patent/JP2005259912A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract


【課題】 発光層部を有した化合物半導体層から成長用基板を除去しても、そのハンドリングを容易に行なうことができる発光素子の製造方法を提供する。
【解決手段】 成長用基板の第一主表面上に化合物半導体層50をエピタキシャル成長した後、化合物半導体層50の第一主表面に仮支持基板110を、金属仮支持結合層25を介して貼り合わせ、さらに、成長用基板を化学エッチング等により除去する。次いで化合物半導体層50の第二主表面に透明導電性半導体基板70を貼り合わせる。
【選択図】 図3

Description

この発明は発光素子の製造方法に関する。
特開2001−68731号公報 特開2002−203987号公報
(AlGa1−xIn1−yP混晶(ただし、0≦x≦1,0≦y≦1;以下、AlGaInP混晶、あるいは単にAlGaInPとも記載する)により発光層部が形成された発光素子は、薄いAlGaInP活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。
AlGaInP発光素子の場合、発光層部の成長基板としてGaAs基板が使用されるが、GaAsはAlGaInP発光層部の発光波長域において光吸収が大きい。そこで、特許文献1及び特許文献2には、一旦GaAs基板を剥離し、GaP基板を新たに貼り合わせる方法が開示されている。
ところで、上記のような発光素子を製造する場合、発光層部のGaP基板を貼り合わせるのと反対側の主表面にも、面内方向に電流を十分に拡げるための電流拡散層が必要である。発光層部が通常、発光効率向上のため非常に薄く形成される(例えば全厚で10μm未満)ことを考慮すると、成長用のGaAs基板を除去した後の発光層部のハンドリング性改善のため、電流拡散層は少なくとも50μm程度までは厚膜に成長させる必要がある。
しかし、しかも十分な厚さの電流拡散層を成長させるには非常な長時間を要するので、発光層部は該電流拡散層成長時の高温の熱履歴に長時間曝されることになり、p−n接合を形成するためのp型ドーパントやn型ドーパントの層厚方向の濃度プロファイルが熱拡散によって崩れ、発光層部の内部量子効率低下につながる問題を生ずる。特に、ダブルへテロ構造を採用した発光層部の場合、ノンドープにて形成した活性層に両側のクラッド層からのドーパントが拡散により浸透すると、電子/正孔の発光再結合の確率が減少し、発光強度の劣化が著しくなる。すなわち、発光層部に金属反射層を形成しても、発光層部自体の内部量子効率が劣化したのでは、素子全体の発光性能向上は望むべくもない。
当然、こうした問題が生じないよう、電流拡散層の厚みを減じた場合、該電流拡散層と発光層部とを含む化合物半導体層の全厚が小さくなり、成長用基板を除去した後では、素子基板貼り合わせのためのハンドリングが困難になる。化合物半導体層の厚さが特に小さい場合(例えば10μm以上30μm以下)は、エッチング液中で成長用基板を除去するに伴い、支えを失った化合物半導体層の機械的強度が極度に小さいために、エッチング反応で発生した泡のアタックを受けて、液中で浮きながら藻屑のごとく粉々に破壊されてしまう問題がある。
本発明の課題は、発光層部を有した化合物半導体層から成長用基板を除去しても、そのハンドリングを容易に行なうことができる発光素子の製造方法を提供することにある。
課題を解決するための手段及び発明の効果
本発明の発光素子の製造方法は、発光層部を有したIII−V族化合物半導体よりなる化合物半導体層の一方の主表面に、透明導電性半導体基板が貼り合わされた発光素子を製造するために、
成長用基板の第一主表面上に化合物半導体層をエピタキシャル成長する化合物半導体層成長工程と、
化合物半導体層の第二主表面側に成長用基板が付随した状態で、化合物半導体層の第一主表面側に、金属仮支持結合層を介して仮支持基板を貼り合わせ、その後、成長用基板を除去することにより、化合物半導体層と仮支持基板とが貼り合わされた仮支持貼り合わせ体を形成する仮支持貼り合わせ体形成工程と、
仮支持貼り合わせ体の状態で化合物半導体層をハンドリングしつつ、成長用基板の除去により露出した化合物半導体層の第二主表面に透明導電性半導体基板を貼り合わせた素子基板貼り合わせ体を作製する透明導電性半導体基板貼り合わせ工程と、
素子基板貼り合わせ体から仮支持基板及び金属仮支持結合層を除去する仮支持基板/結合層除去工程と、
がこの順序で実施されることを特徴とする。
上記本発明によると、成長用基板(例えばGaAs基板)の第一主表面上に化合物半導体層をエピタキシャル成長した後、該化合物半導体層の第一主表面に、仮支持基板を金属仮支持結合層を介して貼り合わせ、さらに、成長用基板を化学エッチング等により除去する。仮支持基板が貼り合わされていることにより、成長用基板が除去されても化合物半導体層には仮支持基板が補強体として随伴しているので、エッチング中の泡アタック等により化合物半導体層が破損する不具合を効果的に防止できる。また、本発明の仮支持貼り合わせ体を用いると、成長用基板を除去した後において、化合物半導体層を以降の貼り合わせ工程等に供する際にも、仮支持基板が貼り合わされていることで化合物半導体層のハンドリングが極めて容易になり、ハンドリング失敗による化合物半導体層の破損確率が減じられ、ひいては発光素子の製造歩留まり向上に寄与する。仮支持貼り合わせ体に組み込む化合物半導体層の全厚が7μm以上30μm以下と薄い場合は、上記仮支持基板を用いる効果が特に顕著に発揮される。
例えばAlGaInPからなるダブルへテロ構造の発光層部を形成する場合、これに貼り合わせるべき透明導電性半導体基板としては、GaP基板が光吸収性が小さいので好適に使用できる。この場合、透明導電性半導体基板貼り合わせ工程を、400℃以上700℃以下の貼り合わせ熱処理にて行なうのがよい。貼り合わせ熱処理温度が400℃未満では貼り合わせ強度が不足して、素子チップにダイシングする際に透明導電性半導体基板の剥離などが生じやすくなる。他方、貼り合わせ熱処理温度が700℃を超えると、発光層部のドーパントプロファイルが熱拡散によって崩れ、内部量子効率の低下等につながる。
本発明においては、金属仮支持結合層を用いるので、該仮支持結合層をワックス等の高分子材料で形成する場合と比較して、貼り合わせ熱処理時に仮支持結合層から蒸気等が発生しにくく、ひいては該蒸気による化合物半導体層の汚染や、仮支持基板からの層の浮き上がりあるいは割れ等の不具合を効果的に抑制することができる。この場合、透明導電性半導体基板の貼り合わせ熱処理は、金属仮支持結合層の沸点未満の温度で行なうことが必要である。換言すれば、設定される貼り合わせ熱処理温度に対し、それよりも沸点の高い金属を、金属仮支持結合層の材質として用いなければならない。
上記本発明の発光素子の製造方法においては、化合物半導体層の第一主表面上に、該化合物半導体層の第一主表面をなす化合物半導体とは異なる化合物半導体からなる仮支持補助層を形成し、金属仮支持結合層により該仮支持補助層と仮支持基板とを結合することが、最終的に発光素子に残す化合物半導体層を保護する観点において望ましい。この場合、仮支持基板/結合層除去工程の後、該仮支持補助層を除去する仮支持補助層除去工程を実施する必要がある。
仮支持補助層は、金属仮支持結合層からの金属成分が化合物半導体層側へ拡散することを防止する仮支持金属拡散防止層に兼用されていれば、該金属成分の拡散による化合物半導体層の汚染ひいては発光層部の性能劣化等を効果的に抑制できる。
仮支持基板/結合層除去工程は、金属仮支持結合層を加熱溶融させて、素子基板貼り合わせ体から仮支持基板を分離する仮支持基板分離工程を有するものとして実施できる。金属仮支持結合層を溶融させることにより、仮支持基板を化合物半導体層から容易に分離できる。ただし、金属仮支持結合層をなす金属は、液相線温度(固相と液相とが共存する温度域(合金組成によっては温度定点となる場合もある)の上限温度のことであり、純金属の場合は融点と一致する)が過度に高いものを使用すると、発光層部のドーパントプロファイルが熱拡散によって崩れ、内部量子効率の低下等につながる。
具体的には、金属仮支持結合層は、液相線温度が40℃以上の合金で構成することが望ましい。液相線温度が40℃未満では、ハンドリング中に少し温度が上昇しただけで金属仮支持結合層が溶融し、仮支持基板から化合物半導体層が脱落する惧れがあるためである。他方、金属仮支持結合層をなす合金の液相線温度の上限は、透明導電性半導体基板の貼り合わせ熱処理の温度に応じて適宜設定する必要があるが、GaP基板等のIII−V族化合物半導体基板の貼り合わせを行なう場合は、金属仮支持結合層は液相線温度が500℃以下の合金にて形成することが望ましい。
液相線温度が低く、かつ、III−V族化合物半導体との接着力を確保しやすい金属仮支持結合層用の合金としては、III族元素のうちでも特に低融点であるGa及びInのいずれかを主成分としたIII族金属同士の合金を使用することが望ましい。Gaは融点が29.8℃、Inは融点が156℃といずれも低く、液相線温度が40℃以上156℃以下のIII族元素同士の合金を容易に得ることができる。
上記のようなIII族金属同士の合金の具体例としては、Alを4質量%以上45質量%以下の範囲で含有するGaAl合金又はGaを0質量%以上65質量%以下の範囲で含有するInGa合金を例示できる。上記合金は、液相線温度が40℃以上500℃以下と低く、多少の加熱により容易に液状化できる。そこで、上記液相線温度以上に昇温することにより液状となした該合金の塗布により金属仮支持結合層を簡単に形成することができる。
他方、III族金属同士の合金として、Alを0質量%以上4質量%以下の範囲で含有するInAl合金を使用することもできる。該合金の液相線温度は155℃以上500℃以下と幾分高いが、Gaを主成分とする合金と比較すれば気化が容易であり、蒸着による金属仮支持結合層の形成が可能である。
なお、塗付ないし蒸着による金属仮支持結合層の形成は、化合物半導体層側で行なうようにしても、仮支持基板側で行なうようにしても、さらには両方で行なうようにしてもいずれでもよい。
Ga及びInのいずれかを主成分としたIII族金属同士の合金にて金属仮支持結合層を形成する場合、仮支持補助層は、化合物半導体層の第一主表面に、該第一主表面をなすIII−V族化合物半導体とは異なる組成のIII−V族化合物半導体をエピタキシャル成長することにより形成するとよい。これにより、上記の金属仮支持結合層との接着力が良好な仮支持補助層を容易に形成でき、また、化合物半導体層側と異なる化合物により仮支持補助層を形成することで、仮支持基板分離後には選択エッチング等により容易に除去することができる。
具体的には、化合物半導体層成長工程において、化合物半導体層の第一主表面がGaP電流拡散層にて形成され、仮支持補助層を、該GaP電流拡散層の第一主表面上にエピタキシャル成長したAlInP層又はGaInP層とすることができる。AlInP層又はGaInP層は、Ga及びInのいずれかを主成分としたIII族金属同士の合金からなる金属仮支持結合層の接着力が良好であり、しかも該層からの金属成分が、化合物半導体層側へ拡散することを防止する仮支持金属拡散防止層としても有効に寄与する利点がある。
なお、GaP電流拡散層の第一主表面上にGaAs層をエピタキシャル成長し、仮支持補助層形成工程にてGaAs層の第一主表面にAlInP又はGaInPからなる仮支持補助層をエピタキシャル成長し、仮支持補助層除去工程において、AlInPに対するエッチング活性がGaAsに対するエッチング活性よりも高いエッチング液を用いて、素子基板貼り合わせ体から仮支持補助層を選択エッチングにより除去する工程を採用することもできる。化合物半導体層の第一主表面を含む表層部をGaAs層とすることで、該層上にAlInP又はGaInPからなる仮支持補助層をより容易にエピタキシャル成長することができる。また、AlInP又はGaInPからなる仮支持補助層は、GaAs層に対する選択エッチングが容易であり、仮支持基板分離後において仮支持補助層の除去を確実に行なうことができる。なお、GaAs層はバンドギャップエネルギーが小さいので、吸収による光取出し効率低下を抑制するために、その厚みをなるべく小さくすること、具体的には5nm以上10nm以下に設定することが望ましい。
仮支持補助層を除去するためのエッチング液は、仮支持基板を分離後の仮支持補助層の第一主表面上に残留した金属仮支持結合層を仮支持補助層とともにエッチング除去できるものとしておくことが、エッチング工程の簡略化を図る上で望ましい。そのようなエッチング液としては、塩酸を好適に使用できる。この場合、GaAs層をAlInP又はGaInPからなる仮支持補助層の下地として形成しておけば、塩酸のような汎用のエッチング液により仮支持補助層を容易に選択エッチングでき、GaAs層は、そのさらに下地をなすIII−V族化合物半導体層をエッチングから保護するエッチストップ層として機能させることができる。
以下、本発明に係る発光素子の製造方法の実施形態を、図面を参照して説明する。図1は、本発明の適用対象となる発光素子の概念図である。該発光素子100は、透明導電性半導体基板としてのGaP基板70(本実施形態ではp型であるがn型でもよい)の第一主表面上に、発光層部24が直接貼り合わされた構造を有してなる。本実施形態において各層及び基板の主表面は、図1のごとく、発光素子100の光取出面PFを上側にした状態を正置状態として、該正置状態における図面上側に表れる面を第一主表面、下側に表れる面を第二主表面として統一的に記載する。従って、工程説明の都合上、上記正置状態に対し上下を反転した転置状態にて図示を行なう場合は、該図示における第一主表面と第二主表面の上下関係も反転する。
発光層部24は、ノンドープの(AlGa1−xIn1−yP(ただし、0≦x≦0.55、0.45≦y≦0.55)混晶からなる活性層5を、第一導電型クラッド層、本実施形態ではp型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、第一導電型クラッド層とは異なる第二導電型クラッド層、本実施形態ではn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。
発光層部24の第一主表面上には、GaP電流拡散層20が形成され、発光層部24とともに化合物半導体層50を構成している。電流拡散層20の第一主表面の略中央には、発光層部24に発光駆動電圧を印加するための光取出面側電極9(例えばAu電極)が形成されている。該光取出面側電極9とGaP電流拡散層20との間には、光取出側接合合金化層としてのAuBe接合合金化層9a(例えばBe:2質量%)が配置されている。そして、電流拡散層20の第一主表面における光取出面側電極9の周囲の領域が、発光層部24からの光取出領域PFを形成している。なお、光取出面側電極9の全体をAuBe合金にて構成することも可能である。また、本実施形態では、p型クラッド層6が光取出面側に位置する積層形態としているが、n型クラッド層4が光取出面側に位置する積層形態としてもよい(この場合、電流拡散層20はn型にする必要があり、また、接合合金化層9aはAuGeNi等で構成する)。
n型クラッド層4及びpクラッド層6の厚さは、例えばそれぞれ0.8μm以上4μm
以下(望ましくは0.8μm以上2μm以下)であり、活性層5の厚さは例えば0.4μm以上2μm以下(望ましくは0.4μm以上1μm以下)である。発光層部24全体の厚さは、例えば2μm以上10μm以下(望ましくは2μm以上5μm以下)である。さらに、GaP電流拡散層20の厚さは、例えば5μm以上28μm以下(望ましくは8μm以上15μm以下)である。従って、化合物半導体層50の厚さは、例えば7μm以上30μm以下(望ましくは5μm以上15μm以下)である。GaP電流拡散層20の厚さが5μm未満では面内の電流拡散効果が低下して光取出し効率の低下を招く場合がある。他方、電流拡散層20の厚さが28μmを超えると、該GaP電流拡散層20をエピタキシャル成長する際の熱履歴により発光層部24の活性層5へのドーパント拡散が進み、発光効率の低下につながる場合がある。
GaP基板70は、GaP単結晶インゴットをスライス・研磨して製造されたものであり、その厚みは例えば50μm以上500μm以下である。該GaP基板70の裏面には、基板側接合合金化層として、AuGeNi接合合金化層16(例えばGe:15質量%、Ni:10質量%)が分散形成されている。接合合金化層16は例えばAgペースト層などにより図示しない金属ステージに接着される。このとき、Agペースト層は反射層として機能する。さらに、分散形成された接合合金化層16を覆うように、反射用のAuないしAgを主成分とした金属層で覆うこともできる。
以下、上記発光素子100の製造方法の具体例について説明する。
まず、図2の工程1に示すように、GaAs基板をなすGaAs単結晶基板1の主表面に、n型GaAsバッファ層2を例えば0.5μm、AlAsからなる剥離層3を例えば0.5μm、この順序にてエピタキシャル成長させる。その後、発光層部24として、n型クラッド層4(厚さ:例えば1μm)、AlGaInP活性層(ノンドープ)5(厚さ:例えば0.6μm)、及びp型クラッド層6(厚さ:例えば1μm)を、この順序にエピタキシャル成長させる。発光層部24の全厚は2.6μmである。また、さらにp型GaPよりなる電流拡散層20を例えば17μmエピタキシャル成長させる。そして、その電流拡散層20の第一主表面の全面を覆うように、AlInP又はGaInPのいずれか(本実施形態では、AlInP)よりなる仮支持補助層23をエピタキシャル成長する。なお、図1に示すように、発光層部24とGaP電流拡散層20及びGaP基板70との間には、Vf電気特性改善のために、AlGaAs,AlInPあるいはGaInPからなる補助層7,17を介挿することもできる。
上記各層のエピタキシャル成長は、公知のMOVPE法により行なうことができる。Al、Ga、In、P及びAsの各成分源となる原料ガスとしては以下のようなものを使用できる;
・Al源ガス;トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など;
・Ga源ガス;トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など;
・In源ガス;トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス;ターシャルブチルホスフィン(TBP)、ホスフィン(PH)など。
・As源ガス;ターシャルブチルアルシン(TBA)、アルシン(AsH)など。
また、ドーパントガスとしては、以下のようなものを使用できる;
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
これによって、GaAs単結晶基板1上に発光層部24及びGaP電流拡散層20からなる化合物半導体層50と、仮支持補助層23とが形成される。該化合物半導体層50の厚さは19.6μmであり、GaAs単結晶基板1を除去した場合、これを単独で無傷にハンドリングすることは事実上不可能である。
次に、工程2に示すように、仮支持補助層23の第一主表面に金属仮支持結合層25を形成する。金属仮支持結合層25は、本実施形態では液相線温度が40℃以上500℃以下の、Ga及びInのいずれかを主成分としたIII族金属同士の合金にて形成される。具体例としては、Alを4質量%以上45質量%以下の範囲で含有するGaAl合金(例えば、Ga−91質量%Al合金、液相線温度:180℃)、又はGaを0質量%以上65質量%以下の範囲で含有するInGa合金(例えば、In−48質量%Ga合金、液相線温度:60℃)を採用できる。これらGaAl合金又はInGa合金は液相線温度以上に加熱して液状とし、印刷等により仮支持補助層23の第一主表面にこれを塗布することにより形成できる。他方、Alを0質量%以上4質量%以下の範囲で含有するInAl(例えば、In−99質量%Al合金、液相線温度:400℃)合金を使用することもできる。この合金は液相線温度がやや高く、溶融塗布により仮支持補助層23を形成することも可能ではあるが、InはGaよりも低沸点であり、蒸着により仮支持補助層23を形成するほうが工程的には簡便である。
上記の仮支持補助層23をなす合金は液相線温度が40℃以上なので、層形成後に室温まで冷却すれば凝固する。そこで、工程3に示すように、再び仮支持補助層23を液相線温度以上に加熱して溶融させ、その状態で、別途用意した仮支持基板110を重ね合わせて密着させ、その後冷却して該仮支持補助層23を凝固させることにより、化合物半導体層50と仮支持基板110とを仮支持補助層23を介して貼り合わせた仮支持貼り合わせ体120を作製する。この時点では、化合物半導体層50の第二主表面側には、GaAs基板であるGaAs単結晶基板1が付随した状態となっている。
AlInP又はGaInPからなる仮支持補助層23は、金属仮支持結合層25をなす上記の各合金とのぬれ性(親和性)が良好であり、接着強度を十分に確保できる。また、仮支持基板110の材質は、後述の貼り合わせ熱処理時においても剛性を保ち、かつ、ガス発生等が少ない材料で構成するのがよく、具体的には、シリコン基板や金属板等で構成することができる。その厚さは、例えば50μm以上500μm以下であるが、もっと厚くてもよい。特にシリコン基板や、金属板としてのAl板などは、金属仮支持結合層25をなす上記の各合金とのぬれ性が良好であり、接着強度を確保する観点において有効である。なお、金属仮支持結合層25は仮支持基板110側に形成することもできる。
次に、図3の工程4に示すように、仮支持貼り合わせ体120に付随しているGaAs基板としてのGaAs単結晶基板1を除去する。該除去は、例えば仮支持貼り合わせ体120(工程3参照)をGaAs単結晶基板1とともにエッチング液(例えば10%フッ酸水溶液)に浸漬し、バッファ層2と発光層部24との間に形成したAlAs剥離層3を選択エッチングすることにより、該GaAs単結晶基板1を仮支持貼り合わせ体120から剥離する形で実施することができる。なお、AlAs剥離層3に代えてAlInPよりなるエッチストップ層を形成しておき、GaAsに対して選択エッチング性を有する第一エッチング液(例えばアンモニア/過酸化水素混合液)を用いてGaAs単結晶基板1をGaAsバッファ層2とともにエッチング除去し、次いでAlInPに対して選択エッチング性を有する第二エッチング液(例えば塩酸:Al酸化層除去用にフッ酸を添加してもよい)を用いてエッチストップ層をエッチング除去する工程を採用することもできる。
このようにして、GaAs単結晶基板1が除去された化合物半導体層50は、金属仮支持結合層25を介して仮支持基板110と貼り合わされ、仮支持貼り合わせ体120を形成している。従って、化合物半導体層50がごく薄いにもかかわらず、GaAs単結晶基板1のエッチング除去時に泡等の衝撃で破壊される不具合を生じにくく、かつ、GaAs単結晶基板1の除去後も仮支持貼り合わせ体120の形で補強されているために、以降の工程に供する際のハンドリングを容易に行なうことが可能となる。
次に、工程5に示すように、上記仮支持貼り合わせ体120の状態で、GaAs単結晶基板1の除去により露出した化合物半導体層50の第二主表面に別途用意したp型GaP基板70の第一主表面を重ね合わせて圧迫し、さらに400℃以上700℃以下に昇温して貼り合わせ熱処理を行なう。ここで、仮支持基板110を貼り合わせている金属仮支持結合層25は、上記温度範囲では溶融はするものの蒸気圧は十分に低いので、金属仮支持結合層25の急激な気化により化合物半導体層50が破損する不具合を効果的に防止できる。また、化合物半導体層50との間には、AlInP又はGaInPからなる仮支持補助層23が形成されているが、該仮支持補助層23は、金属仮支持結合層25からの金属成分が化合物半導体層50側へ拡散することを防止する仮支持金属拡散防止層の役割も果たしている。なお、合金化熱処理中においては滑り防止のため、仮支持貼り合わせ体120を、化合物半導体層50側を上側、仮支持基板110側を下側となるように(つまり、図3の工程5とは上下反対の状態)水平配置し、さらに、セラミック基板やシリコン基板などの荷重付与体を載置することが望ましい。
貼り合わせ熱処理が完了したら仮支持基板分離工程を行なう。仮支持基板分離工程は、図4の工程6に示すように、金属仮支持結合層25を加熱・溶融させ、仮支持基板110を分離・除去する。なお、この分離は、貼り合わせ熱処理の際に同時に行なうことも可能である。その後、化合物半導体層50の第一主表面上に残存している金属仮支持結合層25を仮支持補助層23をなすAlInPあるいはGaInPとともに、塩酸からなるエッチング液によりエッチング除去する。
次いで、工程7に示すように、仮支持補助層23の除去により露出した化合物半導体層50の第一主表面、すなわち、GaP電流拡散層20の第一主表面には、その一部を覆う形でAuBe光取出側接合金属層を形成し、さらに、300℃以上500℃以下の温度で合金化熱処理を行なうことにより、AuBe接合合金化層(光取出側接合合金化層)9aとする。そして、そのAuBe接合合金化層9aを覆うようにAu等からなる光取出側電極9を形成する。また、GaP基板70の第二主表面にはAuGeNi接合金属層を蒸着により分散形成し、さらに、300℃以上500℃以下の温度で合金化熱処理を行なうことにより、AuGeNi接合合金化層(光取出側接合合金化層)16とする。なお、AuBe接合合金化層9aとAuGeNi接合合金化層16との合金化熱処理は同時に行なうこともできる。
以上においては、理解を容易にする便宜上、工程を素子単体の積層形態にて図示しつつ説明していたが、実際は、複数の素子チップがマトリックス状に配列した形で一括形成された貼り合わせウェーハが作製される。そして、この貼り合わせウェーハを通常の方法によりダイシングして素子チップとし、これを支持体に固着してリード線のワイヤボンディング等を行った後、樹脂封止をすることにより最終的な発光素子が得られる。
なお、図1〜図3に一点鎖線で示すように、GaP電流拡散層20の第一主表面を5nm以上10nm以下の薄いGaAs層22にて覆うこともできる(GaAs層22は化合物半導体層50に属するものとする)。この場合、図3の工程6においてGaAs層22は、仮支持補助層23をエッチングにより除去する際のエッチストップ層として機能するほか、光取出側接合合金化層9aとの接触抵抗低減機能も有し、素子の順方向電圧を低減できる効果も発揮する。なお、光取出側接合合金化層9aを形成後、その周囲に露出しているGaAs層22をエッチングにより除去すれば、GaAs層22での光吸収が全く生じなくなるので、光取出し効率を高めることができる。GaAs層22の選択エッチングはアンモニア−過酸化水素水溶液からなるエッチング液を用いて行なうことができる。このとき、光取出側接合合金化層9aをエッチングマスクとして活用することができる。他方、GaAs層22を厚膜化して仮支持補助層23を省略し、該GaAs層22に仮支持補助層の役割を担わせることも可能である。この場合、GaAs層22は光取出側接合合金化層9aの直下領域に残してもよいし、他方、光取出側接合合金化層9aの形成前にGaAs層22を全て除去することも可能である。
本発明の適用対象となる発光素子の一例を示す模式図。 本発明の発光素子の製造方法の一例を示す工程説明図。 図2に続く工程説明図。
符号の説明
1 GaAs単結晶基板(GaAs基板)
9 光取出側電極
9a AuBe接合合金化層(光取出側接合合金化層)
20 電流拡散層
23 仮支持補助層
24 発光層部
25 金属仮支持結合層
50 化合物半導体層
70 GaP基板(透明導電性半導体基板)
100 発光素子
110 仮支持基板
120 仮支持貼り合わせ体

Claims (12)

  1. 発光層部を有したIII−V族化合物半導体よりなる化合物半導体層の一方の主表面に、透明導電性半導体基板が貼り合わされた発光素子を製造するために、
    成長用基板の第一主表面上に前記化合物半導体層をエピタキシャル成長する化合物半導体層成長工程と、
    前記化合物半導体層の第二主表面側に前記成長用基板が付随した状態で、前記化合物半導体層の第一主表面側に、金属仮支持結合層を介して仮支持基板を貼り合わせ、その後、前記成長用基板を除去することにより、前記化合物半導体層と前記仮支持基板とが貼り合わされた仮支持貼り合わせ体を形成する仮支持貼り合わせ体形成工程と、
    前記仮支持貼り合わせ体の状態で前記化合物半導体層をハンドリングしつつ、前記成長用基板の除去により露出した前記化合物半導体層の第二主表面に透明導電性半導体基板を貼り合わせた素子基板貼り合わせ体を作製する透明導電性半導体基板貼り合わせ工程と、
    前記素子基板貼り合わせ体から前記仮支持基板及び前記金属仮支持結合層を除去する仮支持基板/結合層除去工程と、
    がこの順序で実施されることを特徴とする発光素子の製造方法。
  2. 前記仮支持貼り合わせ体に組み込む前記化合物半導体層の全厚が7μm以上30μm以下であることを特徴とする請求項1に記載の発光素子の製造方法。
  3. 前記透明導電性半導体基板の貼り合わせ熱処理を、金属仮支持結合層の沸点未満の温度で行なうことを特徴とする請求項1又は請求項2に記載の発光素子の製造方法。
  4. 前記化合物半導体層はAlGaInPからなるダブルへテロ構造の発光層部を有し、前記透明導電性半導体基板がGaP基板であり、前記透明導電性半導体基板貼り合わせ工程を、400℃以上700℃以下の貼り合わせ熱処理にて行なうことを特徴とする請求項3に記載の発光素子の製造方法。
  5. 前記化合物半導体層の第一主表面上に、該化合物半導体層の第一主表面をなす化合物半導体とは異なる化合物半導体からなる仮支持補助層を形成し、前記金属仮支持結合層により該仮支持補助層と前記仮支持基板とを結合するとともに、前記仮支持基板/結合層除去工程の後、該仮支持補助層を除去する仮支持補助層除去工程を実施することを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光素子の製造方法。
  6. 前記仮支持補助層は、前記金属仮支持結合層からの金属成分が前記化合物半導体層側へ拡散することを防止する仮支持金属拡散防止層に兼用されていることを特徴とする請求項5記載の発光素子の製造方法。
  7. 前記仮支持基板/結合層除去工程は、前記金属仮支持結合層を加熱溶融させて、前記素子基板貼り合わせ体から前記仮支持基板を分離する仮支持基板分離工程を有することを特徴とする請求項5又は請求項6に記載の発光素子の製造方法。
  8. 前記金属仮支持結合層を、Ga及びInのいずれかを主成分とする液相線温度が40℃以上500℃以下のIII族金属同士の合金にて形成することを特徴とする請求項7記載の発光素子の製造方法。
  9. 前記III族金属同士の合金として、Alを4質量%以上45質量%以下の範囲で含有するGaAl合金又はGaを0質量%以上65質量%以下の範囲で含有するInGa合金を使用し、液相線温度に昇温することにより液状となした該合金の塗布により前記金属仮支持結合層を形成することを特徴とする請求項8記載の発光素子の製造方法。
  10. 前記III族金属同士の合金として、Alを0質量%以上4質量%以下の範囲で含有するInAl合金を使用し、該合金の蒸着により前記金属仮支持結合層を形成することを特徴とする請求項8記載の発光素子の製造方法。
  11. 前記仮支持補助層を、前記化合物半導体層の第一主表面に、該第一主表面をなすIII−V族化合物半導体とは異なる組成のIII−V族化合物半導体をエピタキシャル成長することにより形成することを特徴とする請求項1ないし請求項10のいずれか1項に記載の発光素子の製造方法。
  12. 前記化合物半導体層の第一主表面がGaP電流拡散層にて形成され、前記仮支持補助層を、該GaP電流拡散層の第一主表面上にエピタキシャル成長したAlInP層又はGaInP層としたことを特徴とする請求項11記載の発光素子の製造方法。
JP2004068042A 2004-03-10 2004-03-10 発光素子の製造方法 Pending JP2005259912A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068042A JP2005259912A (ja) 2004-03-10 2004-03-10 発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068042A JP2005259912A (ja) 2004-03-10 2004-03-10 発光素子の製造方法

Publications (1)

Publication Number Publication Date
JP2005259912A true JP2005259912A (ja) 2005-09-22

Family

ID=35085356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068042A Pending JP2005259912A (ja) 2004-03-10 2004-03-10 発光素子の製造方法

Country Status (1)

Country Link
JP (1) JP2005259912A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142071A1 (ja) * 2006-06-05 2007-12-13 Shin-Etsu Handotai Co., Ltd. 発光素子及びその製造方法
WO2008091010A1 (ja) * 2007-01-26 2008-07-31 Shin-Etsu Handotai Co., Ltd. 発光素子及びその製造方法
JP2012142626A (ja) * 2012-04-25 2012-07-26 Toshiba Corp 発光素子及び発光素子の製造方法
JP2013539211A (ja) * 2010-08-06 2013-10-17 セムプリウス インコーポレイテッド 印刷可能な化合物半導体デバイスをリリースするための材料及びプロセス
JP2014525674A (ja) * 2011-08-26 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ 半導体構造の加工方法
US10297502B2 (en) 2016-12-19 2019-05-21 X-Celeprint Limited Isolation structure for micro-transfer-printable devices
US10347535B2 (en) 2014-06-18 2019-07-09 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US10832934B2 (en) 2018-06-14 2020-11-10 X Display Company Technology Limited Multi-layer tethers for micro-transfer printing
US10832935B2 (en) 2017-08-14 2020-11-10 X Display Company Technology Limited Multi-level micro-device tethers
WO2022070699A1 (ja) * 2020-09-30 2022-04-07 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハ、紫外線発光素子用金属貼り合わせ基板の製造方法、紫外線発光素子の製造方法、及び紫外線発光素子アレイの製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142071A1 (ja) * 2006-06-05 2007-12-13 Shin-Etsu Handotai Co., Ltd. 発光素子及びその製造方法
JP2007324551A (ja) * 2006-06-05 2007-12-13 Shin Etsu Handotai Co Ltd 発光素子及びその製造方法
TWI414077B (zh) * 2006-06-05 2013-11-01 Shinetsu Handotai Kk Light emitting element and manufacturing method thereof
KR101321985B1 (ko) 2006-06-05 2013-10-25 신에츠 한도타이 가부시키가이샤 발광소자 및 그 제조방법
US7960745B2 (en) 2006-06-05 2011-06-14 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating the same
US8008671B2 (en) 2007-01-26 2011-08-30 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method for fabricating the same
TWI394294B (zh) * 2007-01-26 2013-04-21 Shinetsu Handotai Kk Light emitting element and manufacturing method thereof
JPWO2008091010A1 (ja) * 2007-01-26 2010-05-20 信越半導体株式会社 発光素子及びその製造方法
WO2008091010A1 (ja) * 2007-01-26 2008-07-31 Shin-Etsu Handotai Co., Ltd. 発光素子及びその製造方法
JP2013539211A (ja) * 2010-08-06 2013-10-17 セムプリウス インコーポレイテッド 印刷可能な化合物半導体デバイスをリリースするための材料及びプロセス
US9355854B2 (en) 2010-08-06 2016-05-31 Semprius, Inc. Methods of fabricating printable compound semiconductor devices on release layers
JP2014525674A (ja) * 2011-08-26 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ 半導体構造の加工方法
US10056531B2 (en) 2011-08-26 2018-08-21 Lumileds Llc Method of processing a semiconductor structure
JP2012142626A (ja) * 2012-04-25 2012-07-26 Toshiba Corp 発光素子及び発光素子の製造方法
US10347535B2 (en) 2014-06-18 2019-07-09 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US10297502B2 (en) 2016-12-19 2019-05-21 X-Celeprint Limited Isolation structure for micro-transfer-printable devices
US10832935B2 (en) 2017-08-14 2020-11-10 X Display Company Technology Limited Multi-level micro-device tethers
US11670533B2 (en) 2017-08-14 2023-06-06 X Display Company Technology Limited Multi-level micro-device tethers
US10832934B2 (en) 2018-06-14 2020-11-10 X Display Company Technology Limited Multi-layer tethers for micro-transfer printing
US11367648B2 (en) 2018-06-14 2022-06-21 X Display Company Technology Limited Multi-layer tethers for micro-transfer printing
WO2022070699A1 (ja) * 2020-09-30 2022-04-07 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハ、紫外線発光素子用金属貼り合わせ基板の製造方法、紫外線発光素子の製造方法、及び紫外線発光素子アレイの製造方法
JP2022056492A (ja) * 2020-09-30 2022-04-11 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハ、紫外線発光素子用金属貼り合わせ基板の製造方法、紫外線発光素子の製造方法、及び紫外線発光素子アレイの製造方法
JP7368336B2 (ja) 2020-09-30 2023-10-24 信越半導体株式会社 紫外線発光素子用金属貼り合わせ基板の製造方法、及び紫外線発光素子の製造方法

Similar Documents

Publication Publication Date Title
JP4715370B2 (ja) 発光素子及びその製造方法
JP4004378B2 (ja) 半導体発光素子
US7642543B2 (en) Semiconductor light emitting device having metal reflective layer
JP4985067B2 (ja) 半導体発光素子
JP2010186829A (ja) 発光素子の製造方法
JP3917223B2 (ja) 半導体発光素子の製法
JP2023014201A (ja) 半導体発光素子およびその製造方法
JP5205114B2 (ja) 半導体素子の製造方法
JP2010067890A (ja) 発光素子
JP2005259912A (ja) 発光素子の製造方法
JP4140007B2 (ja) 発光素子及び発光素子の製造方法
JP4110524B2 (ja) 発光素子及び発光素子の製造方法
JP4062111B2 (ja) 発光素子の製造方法
JP2005277218A (ja) 発光素子及びその製造方法
JP4341623B2 (ja) 発光素子及びその製造方法
JP2010062355A (ja) 発光素子
JP2005347714A (ja) 発光素子及びその製造方法
JP4918245B2 (ja) 発光ダイオード及びその製造方法
JP5196288B2 (ja) 発光素子の製造方法及び発光素子
JP2005056956A (ja) 発光素子の製造方法
JP4108439B2 (ja) 発光素子の製造方法及び発光素子
JP2005259911A (ja) 発光素子の製造方法
JP4120796B2 (ja) 発光素子及び発光素子の製造方法
JP2005056957A (ja) 発光素子の製造方法および仮支持貼り合わせ体
JP2005191476A (ja) 発光素子の製造方法