JP2005277218A - 発光素子及びその製造方法 - Google Patents

発光素子及びその製造方法 Download PDF

Info

Publication number
JP2005277218A
JP2005277218A JP2004090346A JP2004090346A JP2005277218A JP 2005277218 A JP2005277218 A JP 2005277218A JP 2004090346 A JP2004090346 A JP 2004090346A JP 2004090346 A JP2004090346 A JP 2004090346A JP 2005277218 A JP2005277218 A JP 2005277218A
Authority
JP
Japan
Prior art keywords
layer
bonded
light emitting
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090346A
Other languages
English (en)
Inventor
Kazunori Hagimoto
和徳 萩本
Atsushi Ikeda
淳 池田
Hiroshi Uchikawa
啓 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004090346A priority Critical patent/JP2005277218A/ja
Publication of JP2005277218A publication Critical patent/JP2005277218A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract


【課題】 発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層に、半導体又は金属からなる第二被貼り合わせ層を均一かつ高強度に貼り合わされた発光素子を提供する。
【解決手段】 発光素子100は、発光層部24を有するIII−V族化合物半導体からなる第一被貼り合わせ層40の第二主表面に、半導体又は金属からなる第二被貼り合わせ層90の第一主表面が、In又はGaのいずれかを主成分とする貼り合わせ金属層11を介して貼り合わされた貼り合わせ構造部を有してなる。
【選択図】 図1

Description

この発明は発光素子及びその製造方法に関する。
特開2001−68731号公報 特開2002−203987号公報
(AlGa1−xIn1−yP混晶(ただし、0≦x≦1,0≦y≦1;以下、AlGaInP混晶、あるいは単にAlGaInPとも記載する)により発光層部が形成された発光素子は、薄いAlGaInP活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。
AlGaInP発光素子の場合、発光層部の成長基板としてGaAs基板が使用されるが、GaAsはAlGaInP発光層部の発光波長域において光吸収が大きい。そこで、特許文献1及び特許文献2には、一旦GaAs基板を剥離し、GaP基板を新たに貼り合わせる方法が開示されている。特許文献1においては、ITO(Indium Tin Oxide)等の導電性酸化物層を介してGaP基板を発光層部に貼り合わせている。また、特許文献2においては、発光層部の貼り合わせ面側にInGaPからなる中間層を成長し、その中間層をGaP基板に貼り合わせるようにしている。
しかし、導電性酸化物層を接着層として用いる特許文献1の構造では、接着力や接着の均一性に難がある。また、特許文献2の方法では、接着に使用する発光層部側のInGaP層とGaP基板との格子定数差が大きく、結晶不一致に起因した貼り合わせムラ等が生じやすい問題がある。いずれも、素子チップにダイシングしたとき、貼り合わせムラに起因した素子の直列抵抗ひいては順方向電圧のばらつきを生じやすい欠点がある。
本発明の課題は、発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層に、半導体又は金属からなる第二被貼り合わせ層を均一かつ高強度に貼り合わされた発光素子及びその製造方法を提供することにある。
課題を解決するための手段及び作用・効果
上記の課題を解決するために、本発明の発光素子は、
発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層の第二主表面に、半導体又は金属からなる第二被貼り合わせ層の第一主表面が、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して貼り合わされた貼り合わせ構造部を有してなることを特徴とする。
また、本発明の発光素子の製造方法は、発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層の第二主表面と、半導体又は金属からなる第二被貼り合わせ層の第一主表面とを、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して貼り合わせることを特徴とする。
In又はGaのいずれかを主成分とする金属は融点が低く、しかもIII−V族化合物半導体との親和性が非常に高いので、該金属を用いた貼り合わせ金属層を用いれば、発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層に、半導体又は金属からなる第二被貼り合わせ層を均一かつ高強度に貼り合わることができ、貼り合わせ温度も低くて済むので、貼り合わせ工程の簡略化を図ることができる。この場合、第一被貼り合わせ層の第二主表面にIn又はGaのいずれかを主成分とする第一貼り合わせ金属層を形成し、第二被貼り合わせ層の第一主表面にIn又はGaのいずれかを主成分とする第二貼り合わせ金属層を形成し、それら第一貼り合わせ金属層と第二貼り合わせ金属層とを貼り合わせるようにすれば、低温での貼り合わせをより確実に行なうことができ、貼り合わせの強度や均一性をより高めることができる。
In又はGaを主成分とする金属としては、具体的には、InあるいはGaの単体金属を用いることができるが、融点調整用にAlを配合することもできるし、Inを主成分として定め、Gaを副成分として添加したInGa合金を使用することもできる。なお、本発明において、主成分とは50質量%以上を占める成分のことをいう。
第二被貼り合わせ層は、具体的には、発光層部からの発光光束に対し透光性を有するIII−V族化合物半導体からなる透明導電性半導体基板にて構成することができる。発光層部を有する第一被貼り合わせ層に透明導電性半導体基板を、上記貼り合わせ金属層を用いて均一かつ高強度に貼り合わせることができ、かつ、透明導電性半導体基板はその側面も光取出面として利用できるので、発光素子の光取出し効率を高めることができる。なお、貼り合わせ金属層は、発光光束からの光取出しの妨げにならないよう、発光光束の波長よりは少なくとも薄く形成する必要があり、望ましくはその厚さを1nm以上20nm以下の範囲で設定するのがよい。貼り合わせ金属層の厚さが1nm未満では貼り合わせの強度や均一性を確保することが困難となり、20nmを超えると光吸収を生じやすくなって発光素子の光取出し効率の低下につながる。
第一被貼り合わせ層は、全体をGaAsと格子整合するIII−V族化合物半導体にて構成でき、発光層部は、組成式(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物のうち、GaAs基板と格子整合する組成を有する化合物にて各々構成されたn型クラッド層、活性層及びp型クラッド層がこの順序で積層されたダブルへテロ構造を有するものとして構成できる。この場合、透明導電性半導体基板はGaP基板又はGaAsP基板にて構成できる。
本発明において、「GaAsと格子整合する化合物半導体」とは、応力による格子変位を生じていないバルク結晶状態にて見込まれる、当該の化合物半導体の格子定数をa1、同じくGaAsの格子定数をa0として、{|a1−a0|/a0}×100(%)にて表される格子不整合率が、1%以内に収まっている化合物半導体のことをいう。また、「組成式(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物のうち、GaAsと格子整合する化合物」のことを、「GaAsと格子整合するAlGaInP」などと記載する。また、活性層は、AlGaInPの単一層として構成してもよいし、互いに組成の異なるAlGaInPからなる障壁層と井戸層とを交互に積層した量子井戸層として構成してもよい(量子井戸層全体を、一層の活性層とみなす)。
第二被貼り合わせ層たる透明導電性半導体基板は、AlGaInPからなる発光層部の上記GaAs基板が除去された側の主表面に貼り合わせてもよいし、これと反対側の主表面に貼り合わせてもよい。光吸収性のGaAs基板が発光層部から除去され、他方、透明導電性半導体基板が発光層部に貼り合わされるので、素子の光取出し効率が大幅に高められ、また、透明導電性半導体基板が薄い発光層部を補強するので、製造時のハンドリング等も容易となる。また、透明導電性半導体基板は側面の面積も大きく、素子側面からの取出光束も増大できる利点がある。この効果は、透明導電性半導体基板の厚さが10μm以上(望ましくは40μm以上:上限値に制限はないが、例えば200μm以下である)に確保されているときに特に顕著である。
透明導電性半導体基板は、例えばGaP基板の場合、GaAsひいてはこれと格子整合する発光層部よりも数パーセント格子定数が小さい。このような透明導電性半導体基板を発光層部に直接貼り合わせようとすると(あるいは、特許文献2のように、発光層部に対し、これに格子整合するInGaPなどの中間層を形成し、該中間層に貼り合わせる場合も同じ)、結晶不一致に起因した貼り合わせムラ等が生じやすく貼り合わせ強度も低くなりがちであり、素子の直列抵抗ひいては順方向電圧のばらつきを生じたり、素子チップにダイシングする際に発光層部から透明導電性半導体基板が剥がれたりする不具合を生じやすい。しかし、本発明では、第二被貼り合わせ層である透明導電性半導体基板を、発光層部を含む第一被貼り合わせ層に、In又はGaのいずれかを主成分とする柔らかい貼り合わせ金属層を介して貼り合わせるので、貼り合わされる層同士の格子定数不一致を吸収する吸収層として機能でき、貼り合わせムラを効果的に抑制することができる。
また、発光層部の貼り合わせ面側はp型もしくはn型のいずれかのクラッド層となるが、クラッド層は活性層よりもバンドギャップエネルギーの大きいAlGaInPで構成され、活性層へのキャリア閉じ込め効果を高めるためのバンド端不連続を形成する。そして、該クラッド層のバンドギャップエネルギーの拡張はAlの添加により実現されるので、クラッド層は相当量のAlを必ず含有したものとなる。Alを含有したクラッド層は表面が酸化されやすいため、GaP基板を直接貼り合わせようとした場合は、Al酸化被膜による貼り合わせ強度の低下や貼り合わせムラが著しくなる。しかし、In又はGaを主成分とする貼り合わせ金属層を介して貼り合わせを行なうことで、Al酸化被膜が形成されてもその影響を軽減でき、強固で均一な貼り合わせ状態を得ることができる。特に、発光層部側の貼り合わせ面が、該発光層部をエピタキシャル成長するための成長用基板(GaAs基板)をエッチングにより除去した除去面とされている場合、該除去面にはエッチャントとの反応等によりAl酸化被膜がより厚く形成される傾向にあるが、In又はGaを主成分とする貼り合わせ金属層を介した貼り合わせにより、このような基板除去面に対しても透明導電性半導体基板を強固で均一に貼り合わせることができる。この効果は、貼り合わせ金属層がInを主成分として形成される場合に特に著しい。
次に、本発明の発光素子は、III−V族化合物半導体からなる第一被貼り合わせ層に第一発光層部が形成され、第二被貼り合わせ層はIII−V族化合物半導体により第一発光層部と発光波長の異なる第二発光層部を有するものとして形成することもできる。該構成によると、第一発光層部と第二発光層部との発光を混合して取り出すことができ、多彩な発光色を自由に作ることができるようになる。また、AlGaInPダブルへテロ構造の発光層部(活性層のバンドギャップエネルギーにより、赤色、橙色、黄色、黄緑あるいは緑色の発光が可能)と、InAlGaNダブルへテロ構造の発光層部(活性層のバンドギャップエネルギーにより、青緑色、青色あるいは紫色の発光が可能)など、同一基板上へのエピタキシャル成長が不可能な2種ないしそれ以上の発光層部も、貼り合わせにより単一の発光素子として容易に一体化できる利点がある。
なお、上記の構成では、1つの発光素子内に、第一発光層部を有する第一被貼り合わせ層と、第二発光層部を有する第二被貼り合わせ層との貼り合わせ構造が含まれていればよいのであって、さらに第三の発光層部を有する第三被貼り合わせ層が第二被貼り合わせ層に貼り合わされていてもよいし、発光層部を含む被貼り合わせ層がさらに多く貼り合わされたものとなっていてもよい。すなわち、各々発光波長の異なる発光層部を有したIII−V族化合物半導体からなる被貼り合わせ層が3以上、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して互いに貼り合わされている構造となっていてもよいのである。これにより、発光色の混合の自由度が一層増し、より多彩な発光色の実現が可能となる。特に、赤色系の第一発光層部を有する赤色系被貼り合わせ層と、緑色系の第二発光層部を有する緑色系被貼り合わせ層と、青色系の第三の発光層部を有する青色系被貼り合わせ層とが貼り合わせ金属層を介して互いに貼り合わせた構造にすると、白色発光も容易に実現できる。
各々発光層部を有した上記のごとき被貼り合わせ層の貼り合わせ積層体の両主表面には、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して、各発光層部からの発光光束に対し透光性を有するIII−V族化合物半導体からなる透明導電性半導体基板をそれぞれ貼り合わせることができる。これにより、貼り合わせ積層体の積層方向、すなわち主表面からの光を、透明導電性半導体基板を介してより効率的に外部に取り出すことができる。ただし、該積層方向への発光光束は、複数介在する貼り合わせ金属層により多かれ少なかれ遮られるので、層側面からの光取出しを有効活用するほうが、素子全体としての光取出し効率と複数種類の発光光束の混合効果をより高めることができる。具体的には、貼り合わせ積層体と透明導電性半導体基板との貼り合わせ体の側面から、各発光層部からの発光光束を混合して取り出すようにすることが、該効果を高める上で有利である。
次に、本発明の発光素子においては、第二被貼り合わせ層を半導体又は金属からなる素子基板とし、第一被貼り合わせ層の第二主表面に反射面を形成する主金属層を形成し、該主金属層の第二主表面と素子基板の第一主表面とを貼り合わせ金属層にて貼り合わせることができる。この構成によると、主金属層による反射により、素子の光取出し効率を大幅に高めることができる。また、化合物半導体層と素子基板とを融点の低いIn又はGaを主成分とする貼り合わせ金属層を介して貼り合わせるため、貼り合わせ温度の低温化を図ることができ、ひいては素子基板あるいは貼り合わせ金属層から主金属層への成分拡散が生じにくく、反射面の品質を良好に保つことができる。本明細書において「主金属層」とは、第一被貼り合わせ層と貼り合わせ金属層との間に位置する金属層であって、反射面を形成するととともに、第一被貼り合わせ層と第一バリア層とを結合する役割を担う金属層のことをいう。従って、第一被貼り合わせ層の第二主表面に形成される後述の接合金属層は主金属層には属さないものとする。
第一被貼り合わせ層(化合物半導体層)の第二主表面には、該第一被貼り合わせ層と主金属層との接触抵抗を低減するための接合合金化層を形成することができ、該接合合金化層を覆うように主金属層を形成することができる。この場合、前述の第一貼り合わせ金属層と第二貼り合わせ金属層との貼り合わせ工程を、接合合金化層を形成するための合金化熱処理温度よりも低温にて行なうようにすれば、接合合金化層の成分が、主金属層が作る反射面内に拡散することが抑制され、反射率の低下を防止することができる。
III−V族化合物半導体からなる第一被貼り合わせ層(化合物半導体層)の場合、接合合金化層は、例えばAu、AgあるいはAlを主成分(50質量%以上)とし、Ge、Sb、Sn、Be及びZnの1種又は2種以上を含有した金属を用いて形成することができる。AuGe、AuGeNi、AuSn、AuSbはn型半導体層との接触抵抗低減効果に優れ、AuZn及びAuBeはp型半導体層との接触抵抗低減効果に優れる。具体的には、このような金属を第一被貼り合わせ層の第二主表面に蒸着等により形成し、300℃以上450℃以下の温度で合金化熱処理を施す。合金化熱処理温度が300℃未満では化合物半導体層と接合金属層との合金化が十分に進まず、接触抵抗増大につながる。他方、450℃より高温では合金化の効果は飽和し、むしろ、発光層部への合金成分拡散や発光層部内のドーパント濃度プロファイルの拡散劣化などを防止する観点からは、温度を不必要に高く設定することは得策でないので、合金化熱処理の温度の上限は450℃に設定するのがよい。
上記構成の効果は、主金属層がAuを主成分とするAu系層とされてなり、素子基板がSi基板である場合に特に効果が大きい。すなわち、Si基板はドーピングにより発光素子基板として十分な導電性を容易に確保することができ、しかも安価である。しかし、SiとAuとは比較的低温で共晶反応を起しやすく(Au−Si二元系の共晶温度は363℃であるが、それ以外の合金成分が介在するとさらに共晶温度が低下することもありえる)、貼り合わせ熱処理時における基板側のSiのAu系層側への拡散も進みやすい。その結果、主金属層中のAu系層は素子基板をなすSiと共晶反応して主金属層の反射面が乱れ、反射率の低下を極めて招きやすい。しかしながら、Au系層とSi基板との間にIn又はGaを主成分とする金属からなる貼り合わせ金属層が介在していれば、該貼り合わせ金属層が拡散のバリア層として機能するのでAu系層へのSiの拡散が抑制され、主金属層の反射面の反射率低下を効果的に防止することができる。
以下、本発明の実施の形態を添付の図面を参照して説明する。
(実施の形態1)
図1は、本発明の一実施形態である発光素子100を示す概念図である。発光素子100は、III−V族化合物半導体からなる発光層部24と、該発光層部24の第二主表面側に貼り合わされた透明導電性半導体基板としてのGaP基板(単結晶)90と、発光層部24の第一主表面側に形成され、発光層部24からの発光光束のピーク波長に相当する光量子エネルギーよりも大きなバンドギャップエネルギーを有するIII−V族化合物半導体からなる電流拡散層91とを有する。
発光層部24は、組成式(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物のうち、GaAsと格子整合する組成を有する化合物にて各々構成されたn型クラッド層4、活性層5及びp型クラッド層6がこの順序で積層されたダブルへテロ構造を有する。具体的には、ノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、p型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6とn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有する。図1の発光素子100では、第一主表面側(図面上側)にp型クラッド層6が配置されており、第二主表面側(図面下側)にn型クラッド層4が配置されている。なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行なわない」との意味であり、通常の製造工程上、不可避的に混入するドーパント成分の含有(例えば1×1013〜1×1016/cm程度を上限とする)をも排除するものではない。この発光層部24はMOVPE法により成長されたものである。
n型クラッド層4及びpクラッド層6の厚さは、例えばそれぞれ0.8μm以上4μm以下(望ましくは0.8μm以上2μm以下)であり、活性層5の厚さは例えば0.4μm以上2μm以下(望ましくは0.4μm以上1μm以下)である。発光層部24全体の厚さは、例えば2μm以上10μm以下(望ましくは2μm以上5μm以下)である。さらに、電流拡散層91の厚さは10μm以上100μm以下(望ましくは40μm以上100μm以下)である。
電流拡散層91はHVPE法により発光層部24の第一主表面にエピタキシャル成長されたGaP(GaAsP又はAlGaAsでもよい)層であり、そのC及びH濃度は、MOVPE法による発光層部24(通常、15×1017/cm程度)よりも小さい。電流拡散層91と発光層部24との間には、GaP(GaAsP又はAlGaAsでもよい)層からなる接続層57が、発光層部24に続く形でMOVPE法により形成されてなる。なお、電流拡散層91がGaP層ないしGaAsP層として形成される場合、接続層57は、AlGaInPからなる発光層部24と電流拡散層91との間で、格子定数差(ひいては混晶比)を漸次変化させるAlGaInP層としてもよい。
GaP基板90は、薄い発光層部24の支持基板の役割を果たすとともに、発光層部24からの発光光束の取出層としても機能し、10μm以上200μm以下(望ましくは40μm以上100μm以下)の厚膜に形成されることで、層側面からの取出光束を増加させ、発光素子全体の輝度(積分球輝度)を高める役割を担う。また、発光層部24からの発光光束のピーク波長に相当する光量子エネルギーよりも大きなバンドギャップエネルギーを有することで、該GaP基板90での光吸収も抑制されている。本実施形態において、GaP基板90はn型である。
発光層部24、接続層57及び電流拡散層91は、発光層部を含むIII−V族化合物半導体からなる第一被貼り合わせ層40を構成する。また、透明導電性半導体基板であるGaP基板90は第二被貼り合わせ層を構成する。第一被貼り合わせ層40の第二主表面とGaP基板90の第一主表面とは、In又はGaを主成分とする金属、本実施形態ではInからなる貼り合わせ金属層11を介して貼り合わされている。貼り合わせ金属層11は1nm以上20nm以下の厚さを有する。
電流拡散層91は、発光層部24の第一主表面側において主光取出面を形成する層として機能する。電流拡散層91は、有効キャリア濃度(つまり、p型ドーパント濃度)がクラッド層6よりも高く調整されていることが望ましく、厚さは、例えば0.5μm以上200μm以下(望ましくは1μm以上100μm以下)である。電流拡散層91の第一主表面は、その一部領域を覆う形で光取出側電極9が形成され、その周囲に主光取出面EAが形成されている。光取出側電極9はAu薄膜により形成され、電極ワイヤ9wの一端が接合されている。また、電流拡散層91と光取出側電極9との間には、両者の接触抵抗を減ずるための接合合金化層9aが形成されている。接合合金化層9aは、Au又はAgを主成分として(50質量%以上)、これに、コンタクト先となる半導体の種別及び導電型に応じ、オーミックコンタクトを取るための合金成分を適量配合したコンタクト用金属を半導体表面上に膜形成した後、合金化熱処理(いわゆるシンター処理)を施すことにより形成されたものである。p型層とのコンタクトを取るために、ここでは接合合金化層9aを、AuBe合金を用いて形成している。
GaP基板90の第二主表面側は、金属ステージ52上にAgペースト等からなる金属ペースト層17を介して接着され、該金属ペースト層17が反射部を形成している。また、GaP基板90の第二主表面には、光取出側電極9側と同様に接合合金化層21が分散形成され、該接合合金化層21が金属ペースト層17より覆われている。これにより、発光層部24は、金属ペースト層17を介して金属ステージ52に電気的に接続される。一方、光取出側電極9は、導体金具51にAuワイヤ等で構成された通電用ワイヤ9wを介して電気的に接続される。発光層部24には、金属ステージ52及び導体金具51に一体化された図示しない駆動端子部を介して発光駆動電圧が印加される。
本実施形態において接合合金化層21は、n型層とのコンタクトを取るためにAuGeNi合金(例えばGe:15質量%、Ni:10質量%、残部Au)を用いて形成されている。接合合金化層21は反射率が比較的低いため、該領域での反射光束を増加させる効果と、接合合金化層21との接触抵抗を低減する効果とのバランスを考慮し、GaP基板90の第二主表面の全面積に対する接合合金化層21の形成面積の比率を1%以上25%以下に調整することが望ましい。なお、接合合金化層21をAu層、Ag層あるいはAl層などの高反射率の金属反射層32で覆い、該金属反射層32を、金属ペースト層17を介して金属ステージ52に接着してもよい。
以下、図1の発光素子100の製造方法について説明する。
まず、図2の工程1に示すように、成長用基板としてGaAs単結晶基板1を用意し、その基板1の第一主表面に、n型GaAsバッファ層2を例えば0.5μmエピタキシャル成長し、さらにAlInPなどからなるエッチストップ層3をエピタキシャル成長する。次いで、発光層部24として、n型クラッド層4、活性層5、p型クラッド層6及び接続層57をエピタキシャル成長する。
上記各層のエピタキシャル成長は、公知のMOVPE法により行なわれる。Al、Ga、In(インジウム)、P(リン)の各成分源となる原料ガスとしては以下のようなものを使用できる;
・Al源ガス;トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など;
・Ga源ガス;トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など;
・In源ガス;トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス:トリメチルリン(TMP)、トリエチルリン(TEP)、ホスフィン(PH)など。
また、ドーパントガスとしては、以下のようなものを使用できる;
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
次に、工程2に進み、GaPからなる電流拡散層91を、発光層部24(接続層57)の第一主表面にHVPE法により成長させる。HVPE法は、具体的には、容器内にてIII族元素である金属Gaを所定の温度に加熱保持しながら、その金属Ga上に塩化水素を導入することにより、下記(1)式の反応によりGaClを生成させ、キャリアガスであるH2ガスとともに基板上に供給する。
Ga(液体)+HCl(気体) → GaCl(気体)+1/2H‥‥(1)
成長温度は例えば640℃以上860℃以下に設定する。また、V族元素であるPは、PHをキャリアガスであるH2とともに基板上に供給する。さらに、p型ドーパントであるZnは、DMZn(ジメチルZn)の形で供給する。
GaCl(気体)+PH(気体)
→GaP(固体)+HCl(気体)+H2(気体)‥‥(2)
電流拡散層91の成長が終了したら、図3の工程3に進み、GaAs単結晶基板1をバッファ層2とともに、アンモニア/過酸化水素混合液などのエッチング液を用いて化学エッチングすることにより除去し、その後、エッチストップ層3を塩酸などのエッチング液を用いて除去することにより、発光層部24(n型クラッド層4)の第二主表面が露出した第一被貼り合わせ層40をなすウェーハを得る。このウェーハの第二主表面に、In又はGaのいずれかを主成分とする金属からなる第一貼り合わせ金属層11aを厚さ1nm以上20nm以下にて形成する。一方、別途用意したGaP基板90の第一主表面に同様の金属からなる第二貼り合わせ金属層11bを厚さ1nm以上20nm以下にて形成する(工程4)。本実施形態では両貼り合わせ金属層11a,11bをIn金属の蒸着により形成している。
そして、図4の工程5に示すように、第一被貼り合わせ層40に形成された第一貼り合わせ金属層11aを、GaP基板90側に形成された第二貼り合わせ金属層11bに重ね合わせて圧迫し、300℃以上500℃以下(本実施形態では450℃としている)にて貼り合わせ熱処理する。これにより、第一貼り合わせ金属層11aと第二貼り合わせ金属層11bとが十分な強度にて貼り合わされ、一体の貼り合わせ金属層11(図1)となる。また、本実施形態では、貼り合わせ金属層11がInを主体とする金属で構成されていることで、GaAs単結晶基板1を除去した際に、発光層部24側の貼り合わせ面(n型クラッド層4の第二主表面)にAl酸化物被膜が形成されていても、貼り合わせ金属層11との間に強固で均一な貼り合わせ状態を形成できる。
以上の工程が終了すれば、スパッタリングや真空蒸着法により、電流拡散層91の第一主表面及びGaP基板90の第二主表面に、接合合金化層形成用の金属層をそれぞれ形成し、さらに合金化の熱処理(いわゆるシンター処理)を行なうことにより、接合合金化層9a,21とする。そして、接合合金化層9aをそれぞれ覆うように光取出面側電極9を形成し、その後、個々の素子チップにダイシングにより分離する。接合用半導体層92を上記のように形成して貼り合わせ処理を行なうことで、個々の素子チップの直列抵抗ひいては順方向電圧の上昇やばらつきが生じにくく、また、貼り合わせ強度も高いのでダイシングのGaP基板90が剥がれたりする不具合も生じにくく、高歩留まりにて発光素子を製造できる。
なお、以上説明した実施形態では、図2の工程2に示すごとく、発光層部24の第一主表面側に電流拡散層91を、HVPE法によりエピタキシャル成長する形で形成していたが、第二主表面側と同様の貼り合わせ金属層によりp型GaP基板を貼り合わせてもよい。
(実施の形態2)
図5の発光素子300は、第二被貼り合わせ層が素子基板としてのSi基板7であり、図1の発光素子100と同様の発光層部24を有したIII−V族化合物半導体からなる第一被貼り合わせ層50の第二主表面上に、主金属層としてのAu系金属層10が形成され、該Au系金属層10の第二主表面とSi基板7の第一主表面とが、In又はGaを主成分とする貼り合わせ金属層11を介して貼り合わされている。
発光層部24の第一主表面上には、AlGaAs(AlInPあるいはGaInPでもよい)からなる電流拡散層20が形成され、発光層部24とともに化合物半導体層50を構成している。電流拡散層20の第一主表面の中央には、発光層部24に発光駆動電圧を印加するための光取出面側電極9(例えばAu電極)が形成されている。該光取出面側電極9と電流拡散層20との間には、光取出側接合合金化層としてのAuBe接合合金化層9a(例えばBe:2質量%)が配置されている。そして、電流拡散層20の第一主表面における光取出面側電極9の周囲の領域が、発光層部24からの光取出領域PFを形成している。なお、光取出面側電極9の全体をAuBe合金にて構成することも可能である。また、本実施形態では、p型クラッド層6が光取出面側に位置する積層形態としているが、n型クラッド層4が光取出面側に位置する積層形態としてもよい(この場合、電流拡散層20はn型にする必要があり、また、接合合金化層9aはAuGeNi等で構成する)。
n型クラッド層4及びpクラッド層6の厚さは、例えばそれぞれ0.8μm以上4μm
以下(望ましくは0.8μm以上2μm以下)であり、活性層5の厚さは例えば0.4μm以上2μm以下(望ましくは0.4μm以上1μm以下)である。発光層部24全体の厚さは、例えば2μm以上10μm以下(望ましくは2μm以上5μm以下)である。さらに、電流拡散層20の厚さは、例えば5μm以上28μm以下(望ましくは8μm以上15μm以下)である。従って、化合物半導体層50の厚さは、例えば7μm以上30μm以下(望ましくは5μm以上15μm以下)である。他方、Si基板7の裏面には、その全体を覆うように裏面電極(例えばAu電極である)15が形成されている。該裏面電極15とSi基板7との間には基板側接合合金化層として、AuSb接合合金化層16が介挿されている。なお、AuSb接合合金化層16に代えてAuSn接合合金化層を基板側接合合金化層として用いてもよい。
Si基板7は、Si単結晶インゴットをスライス・研磨して製造されたものであり、その厚みは例えば100μm以上500μm以下である。そして、発光層部24の第二主表面には、反射面を形成する主金属層としてのAu系金属層10が配置されている。Au系金属層10は純AuもしくはAu含有率が95質量%以上のAu合金よりなる。発光層部24とAu系金属層10との間には、貼り合わせ側接合合金化層としてAuGeNi接合合金化層31(例えばGe:15質量%、Ni:10質量%)が形成されており、素子の直列抵抗低減に貢献している。AuGeNi接合合金化層31は、第一貼り合わせ金属層12aの第一主表面上に分散形成されている。また、Si基板7と貼り合わせ金属層11との間には、基板側接合合金化層としてAuSb接合合金化層32(例えばSb:5質量%)が介挿されている。なお、AuSb接合合金化層32に代えてAuSn接合合金化層を用いてもよい。
金属層をなすAu系金属層10は反射層も兼ねており、発光層部24からの光は、光取出面側に直接放射される光に、Au系金属層10による反射光が重畳される形で取り出される。Au系金属層10の厚さは、反射効果を十分に確保するため、80nm以上とすることが望ましい。また、厚さの上限には制限は特にないが、反射効果が飽和するため、コストとの兼ね合いにより適当に定める(例えば1μm以下)。なお、Au系金属層10に代え、純AgもしくはAg含有率が95質量%以上のAg合金からなるAg系金属層を用いてもよい。この場合、貼り合わせ側接合合金化層は、AgGeNiなどのAg系材料にて構成することもできる。
以下、上記発光素子100の製造方法の具体例について説明する。
まず、図6の工程1に示すように、成長用基板をなすGaAs単結晶基板1の主表面に、n型GaAsバッファ層2を例えば0.5μm、AlInPなどからなるエッチストップ層3を例えば0.5μm、この順序にてエピタキシャル成長させる。その後、発光層部24として、n型クラッド層4(厚さ:例えば1μm)、AlGaInP活性層(ノンドープ)5(厚さ:例えば0.6μm)、及びp型クラッド層6(厚さ:例えば1μm)を、この順序にエピタキシャル成長させる。発光層部24の全厚は2.6μmである。また、さらにp型AlGaAsよりなる電流拡散層20を例えば5μmエピタキシャル成長させる。これら各層のエピタキシャル成長は、前述のMOVPE法により行なうことができる。これによって、GaAs単結晶基板1上に発光層部24及び電流拡散層20からなる化合物半導体層50’が形成される。該化合物半導体層50’の厚さは7.6μmであり、GaAs単結晶基板1を除去した場合、これを単独で無傷にハンドリングすることは事実上不可能である。なお、化合物半導体層50’の第一主表面には、この段階でAuBe接合金属層9a’(光取出面側接合合金化層)とこれを覆う光取出面側電極9をパターニング形成する。このあと引き続き光取出側合金化熱処理を行ってAuBe接合金属層9a’を接合合金化層9aとしてもよいが、本実施形態では該光取出側合金化熱処理を、後述の第一貼り合わせ金属層12a側のAuGeNi接合合金化層31を形成する際の、貼り合わせ側合金化熱処理に兼用させている。
次に、工程2に示すように、化合物半導体層50’の第一主表面に高分子材料結合層111を、光取出面側電極9を覆う形態で塗付形成し、工程3に示すように、高分子材料結合層111を加熱軟化させた状態で、別途用意した仮支持基板110を重ね合わせて密着させ、その後冷却して該高分子材料結合層111を硬化させることにより、化合物半導体層50’と仮支持基板110とを高分子材料結合層111を介して貼り合わせた仮支持貼り合わせ体120を作成する(工程3)。この時点では、化合物半導体層50’の第二主表面側には、成長用基板であるGaAs単結晶基板1が付随した状態となっている。
仮支持基板110の材質は、後述の合金化熱処理時においても剛性を保ち、かつ、ガス発生等が少ない材料で構成する。具体的には、Si基板やセラミック板(例えばアルミナ板)、あるいは金属板等で構成することができる。その厚さは、例えば100μm以上500μm以下であるが、もっと厚くてもよい。他方、高分子材料結合層111としては、ホットメルト型接着剤やワックス類を用いることができる。
次に、図7の工程4に示すように、仮支持貼り合わせ体120に付随している成長用基板としてのGaAs単結晶基板1を除去する。該除去は実施の形態1と同様のエッチングにて行なうことができる。
このようにして、GaAs単結晶基板1が除去されることで、前述の化合物半導体層50’は第一被貼り合わせ層50となり、高分子材料結合層111を介して仮支持基板110と貼り合わされ、仮支持貼り合わせ体120を形成する。従って、第一被貼り合わせ層50がごく薄いにもかかわらず、GaAs単結晶基板1のエッチング除去時に泡等の衝撃で破壊される不具合を生じにくく、かつ、GaAs単結晶基板1の除去後も仮支持貼り合わせ体120の形で補強されているために、以降の工程に供する際のハンドリングを容易に行なうことが可能となる。
次に、工程5に示すように、上記仮支持貼り合わせ体120の状態で、GaAs単結晶基板1の除去により露出した第一被貼り合わせ層50の第二主表面にAuGeNi接合金属層を分散形成し、さらに該AuGeNi接合金属層をAuGeNi接合合金化層31とするための貼り合わせ側合金化熱処理を行なう。このとき、光取出面側電極9に対するAuBe接合金属層9a’の合金化も同時に行なうことができる(つまり、光取出側合金化熱処理にも兼用されている)。
AuGeNi接合金属層の成膜は、真空雰囲気にてスパッタリングあるいは真空蒸着等により行なわれる。また、合金化熱処理は、300℃以上450℃以下の温度の不活性ガス雰囲気下で実施され、具体的には、大気圧と同程度のN等の不活性ガス雰囲気下で行なうことができる。なお、合金化熱処理中に高分子材料結合層111は軟化する。そこで、合金化熱処理中においては滑り防止のため、仮支持貼り合わせ体120を、第一被貼り合わせ層50側を上側、仮支持基板110側を下側となるように(つまり、図4の工程5とは上下反対の状態)水平配置し、さらに、セラミック基板やSi基板などの荷重付与体を載置することが望ましい。
次に、工程6に進み、仮支持貼り合わせ体120の状態で、第一被貼り合わせ層50の第二主表面にAu系金属層10を蒸着により形成する。一方、Si基板7を別途用意し、その両主表面にAuSb接合金属層を形成して、さらに250℃以上360℃以下の温度域で合金化熱処理を行なうことにより、それぞれAuSb接合合金化層32,16とする。そして、Au系金属層10の第二主表面にIn又はGaのいずれかを主成分とする金属からなる第一貼り合わせ金属層11aを形成する。また、Si基板7(AuSb接合合金化層32)の第一主表面には同様の金属からなる第二貼り合わせ金属層11bを形成する。本実施形態では両貼り合わせ金属層11a,11bをIn金属の蒸着により形成している。
そして、図8の工程7に示すように、第一被貼り合わせ層50側に形成された第一貼り合わせ金属層11aを、Si基板7側に形成された第二貼り合わせ金属層11bに重ね合わせて圧迫し、150℃以上450℃以下(但し、前述の合金化熱処理よりも低温とする:本実施形態では200℃としている)にて貼り合わせ熱処理する。これにより、第一貼り合わせ金属層11aと第二貼り合わせ金属層11bとが十分な強度にて貼り合わされ、一体の貼り合わせ金属層11となる。また、化合物半導体層50とSi基板7とは、Au系金属層10を介して貼り合わされ、貼り合わせ結合体130となる。
なお、第一貼り合わせ金属層11aと第二貼り合わせ金属層11bとは、貼り合わせ強度が確保できる範囲でなるべく薄く形成することが望ましく、具体的にはそれぞれ0.01μm以上10μm以下(本実施形態では0.1μm)とするのがよい。
第一貼り合わせ金属層11aと第二貼り合わせ金属層11bとを貼り合わせる段階においては、既に光取出側及び貼り合わせ側の各合金化熱処理が既に終わっており、貼り合わせ熱処理がそれよりも低温で実施されることにより、接合合金化層からの合金成分がAu系金属層10からなる反射面の面内に拡散することが効果的に抑制され、ひいてはより反射率の高い反射面を得ることができる。また、In又はGaのいずれかを主成分とする金属からなる貼り合わせ金属層11は、Si基板からAu系金属層10へのSi成分の拡散による沸き上がりを防止するので、同様に反射率向上に寄与する。さらに、非特許文献1に開示されているように、従来は貼り合わせ熱処理を低温化するために、Si基板側と化合物半導体層側との双方にAu系層を形成し、それらAu系層同士を貼り合わせるようにしていたが、高価なAu系層を2層も形成しなければならず、コストアップを招いていた。しかし、本発明では主金属層をAu系層で構成する場合においても、該Au系層は貼り合わせには関与しないから1層のみの形成でよく、経済的である。
貼り合わせ熱処理が完了したら仮支持基板分離工程を行なう。仮支持基板分離工程は、図8の工程8に示すように、高分子材料結合層111を加熱・軟化させ、仮支持基板110を分離・除去する。なお、この分離は、工程7の貼り合わせ熱処理の際に同時に行なうことも可能である。その後、工程9に示すように、化合物半導体層50の第一主表面上に残存している高分子材料結合層111を、トルエンやメチルエチルケトン(MEK)等の有機溶剤を用いて溶解・除去する。
以上においては、理解を容易にする便宜上、貼り合わせ結合体130を作る工程を素子単体の積層形態にて図示しつつ説明していたが、実際は、複数の素子チップがマトリックス状に配列した形で一括形成された貼り合わせウェーハが作成される。そして、この貼り合わせウェーハを通常の方法によりダイシングして素子チップとし、これを支持体に固着してリード線のワイヤボンディング等を行った後、樹脂封止をすることにより最終的な発光素子が得られる。
本発明の発光素子の第一例を積層構造にて示す模式図。 図1の発光素子の製造工程を示す説明図。 図2に続く説明図。 図3に続く説明図。 本発明の発光素子の第二例を積層構造にて示す模式図。 図5の発光素子の製造工程を示す説明図。 図6に続く説明図。 図7に続く説明図。
符号の説明
1 GaAs単結晶基板
4 n型クラッド層(第二導電型クラッド層)
5 活性層
6 p型クラッド層(第一導電型クラッド層)
9 光取出面側電極
11 貼り合わせ金属層
24,24R,24G,24B 発光層部
24L 貼り合わせ積層体
40,50 第一被貼り合わせ層
90,90P,90N GaP基板(透明導電性半導体基板、第二被貼り合わせ層)
100,200,300 発光素子

Claims (12)

  1. 発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層の第二主表面に、半導体又は金属からなる第二被貼り合わせ層の第一主表面が、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して貼り合わされた貼り合わせ構造部を有してなることを特徴とする発光素子。
  2. 前記第二被貼り合わせ層が、前記発光層部からの発光光束に対し透光性を有するIII−V族化合物半導体からなる透明導電性半導体基板にて構成されていることを特徴とする請求項1記載の発光素子。
  3. 前記第一被貼り合わせ層の全体がGaAsと格子整合するIII−V族化合物半導体からなり、前記発光層部は、組成式(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物のうち、GaAs基板と格子整合する組成を有する化合物にて各々構成されたn型クラッド層、活性層及びp型クラッド層がこの順序で積層されたダブルへテロ構造を有するものであり、
    前記透明導電性半導体基板がGaP基板又はGaAsP基板にて構成されていることを特徴とする請求項2記載の発光素子。
  4. III−V族化合物半導体からなる前記第一被貼り合わせ層に第一発光層部が形成され、前記第二被貼り合わせ層はIII−V族化合物半導体により前記第一発光層部と発光波長の異なる第二発光層部を有するものとして形成されていることを特徴とする請求項1記載の発光素子。
  5. 各々発光波長の異なる発光層部を有したIII−V族化合物半導体からなる被貼り合わせ層が3以上、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して互いに貼り合わされてなることを特徴とする請求項4記載の発光素子。
  6. 赤色系の第一発光層部を有する赤色系被貼り合わせ層と、緑色系の第二発光層部を有する緑色系被貼り合わせ層と、青色系の第三の発光層部を有する青色系被貼り合わせ層とが前記貼り合わせ金属層を介して互いに貼り合わされてなることを特徴とする請求項5記載の発光素子。
  7. 各々発光層部を有した被貼り合わせ層の貼り合わせ積層体の両主表面に、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して、各発光層部からの発光光束に対し透光性を有するIII−V族化合物半導体からなる前記透明導電性半導体基板がそれぞれ貼り合わされてなることを特徴とする請求項4ないし請求項6のいずれか1項に記載の発光素子。
  8. 前記貼り合わせ積層体と前記透明導電性半導体基板との貼り合わせ体の側面から、前記各発光層部からの発光光束を混合して取り出すようにしたことを特徴とする請求項7記載の発光素子。
  9. 第二被貼り合わせ層は半導体又は金属からなる素子基板であり、前記第一被貼り合わせ層の第二主表面には反射面を形成する主金属層が形成され、該主金属層の第二主表面と前記素子基板の第一主表面とが前記貼り合わせ金属層にて貼り合わされてなることを特徴とする請求項1記載の発光素子。
  10. 前記素子基板はSi基板であり、前記金属層はAuを主成分とするAu系金属層であることを特徴とする請求項9記載の発光素子。
  11. 発光層部を有するIII−V族化合物半導体からなる第一被貼り合わせ層の第二主表面と、半導体又は金属からなる第二被貼り合わせ層の第一主表面とを、In又はGaのいずれかを主成分とする貼り合わせ金属層を介して貼り合わせることを特徴とする発光素子の製造方法。
  12. 前記第一被貼り合わせ層の第二主表面にIn又はGaのいずれかを主成分とする第一貼り合わせ金属層を形成し、前記第二被貼り合わせ層の第一主表面にIn又はGaのいずれかを主成分とする第二貼り合わせ金属層を形成し、それら第一貼り合わせ金属層と第二貼り合わせ金属層とを貼り合わせることを特徴とする請求項11記載の発光素子の製造方法。
JP2004090346A 2004-03-25 2004-03-25 発光素子及びその製造方法 Pending JP2005277218A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090346A JP2005277218A (ja) 2004-03-25 2004-03-25 発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090346A JP2005277218A (ja) 2004-03-25 2004-03-25 発光素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2005277218A true JP2005277218A (ja) 2005-10-06

Family

ID=35176522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090346A Pending JP2005277218A (ja) 2004-03-25 2004-03-25 発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2005277218A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059873A (ja) * 2005-07-26 2007-03-08 Sharp Corp 半導体発光素子及びその製造方法
JP2007227895A (ja) * 2006-02-23 2007-09-06 Arima Optoelectronics Corp 金属拡散接合による発光ダイオード及びその製造法
JP2008004587A (ja) * 2006-06-20 2008-01-10 Sharp Corp 半導体発光素子及びその製造方法並びに化合物半導体発光ダイオード
JP2008166678A (ja) * 2006-12-29 2008-07-17 Shogen Koden Kofun Yugenkoshi 発光ダイオード及びその製造方法
JP2009038132A (ja) * 2007-07-31 2009-02-19 Shin Etsu Handotai Co Ltd 高輝度発光ダイオ−ド及びその製造方法
WO2009028145A1 (ja) * 2007-08-30 2009-03-05 Shin-Etsu Handotai Co., Ltd. 高輝度発光ダイオードの製造方法および発光素子基板並びに高輝度発光ダイオード
WO2009093418A1 (ja) * 2008-01-25 2009-07-30 Shin-Etsu Handotai Co., Ltd. 化合物半導体基板の製造方法および化合物半導体基板並びに発光素子
WO2010125792A1 (ja) * 2009-05-01 2010-11-04 昭和電工株式会社 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2011233861A (ja) * 2010-04-09 2011-11-17 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法、エピ成長用積層支持基板およびデバイス用積層支持基板
JP2018056586A (ja) * 2010-02-09 2018-04-05 晶元光電股▲ふん▼有限公司Epistar Corporation 光電素子及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059873A (ja) * 2005-07-26 2007-03-08 Sharp Corp 半導体発光素子及びその製造方法
JP2007227895A (ja) * 2006-02-23 2007-09-06 Arima Optoelectronics Corp 金属拡散接合による発光ダイオード及びその製造法
JP2008004587A (ja) * 2006-06-20 2008-01-10 Sharp Corp 半導体発光素子及びその製造方法並びに化合物半導体発光ダイオード
JP2008166678A (ja) * 2006-12-29 2008-07-17 Shogen Koden Kofun Yugenkoshi 発光ダイオード及びその製造方法
JP2009038132A (ja) * 2007-07-31 2009-02-19 Shin Etsu Handotai Co Ltd 高輝度発光ダイオ−ド及びその製造方法
JP5278323B2 (ja) * 2007-08-30 2013-09-04 信越半導体株式会社 高輝度発光ダイオードの製造方法
WO2009028145A1 (ja) * 2007-08-30 2009-03-05 Shin-Etsu Handotai Co., Ltd. 高輝度発光ダイオードの製造方法および発光素子基板並びに高輝度発光ダイオード
WO2009093418A1 (ja) * 2008-01-25 2009-07-30 Shin-Etsu Handotai Co., Ltd. 化合物半導体基板の製造方法および化合物半導体基板並びに発光素子
US8003421B2 (en) 2008-01-25 2011-08-23 Shin-Etsu Handotai Co., Ltd. Method for manufacturing compound semiconductor substrate, compound semiconductor substrate and light emitting device
JP2009177027A (ja) * 2008-01-25 2009-08-06 Shin Etsu Handotai Co Ltd 化合物半導体基板の製造方法および化合物半導体基板並びに発光素子
WO2010125792A1 (ja) * 2009-05-01 2010-11-04 昭和電工株式会社 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2010263050A (ja) * 2009-05-01 2010-11-18 Showa Denko Kk 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2018056586A (ja) * 2010-02-09 2018-04-05 晶元光電股▲ふん▼有限公司Epistar Corporation 光電素子及びその製造方法
JP2011233861A (ja) * 2010-04-09 2011-11-17 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法、エピ成長用積層支持基板およびデバイス用積層支持基板

Similar Documents

Publication Publication Date Title
JP4091261B2 (ja) 半導体発光素子及びその製造方法
JP4715370B2 (ja) 発光素子及びその製造方法
JP4974867B2 (ja) 発光ダイオード及びその製造方法
WO2005083806A1 (ja) 発光素子及びその製造方法
WO2014167773A1 (ja) 半導体発光素子及びその製造方法
JP2011142231A (ja) 半導体発光素子及びledランプ、並びに半導体発光素子の製造方法
JP4121551B2 (ja) 発光素子の製造方法及び発光素子
JP2005277218A (ja) 発光素子及びその製造方法
JP4140007B2 (ja) 発光素子及び発光素子の製造方法
JP4569859B2 (ja) 発光素子の製造方法
JP2002185044A (ja) 窒化物半導体多色発光素子
JP4569858B2 (ja) 発光素子の製造方法
JP2005259912A (ja) 発光素子の製造方法
JP4341623B2 (ja) 発光素子及びその製造方法
JP2010062355A (ja) 発光素子
JP4123360B2 (ja) 半導体発光素子及びその製造方法
JP4918245B2 (ja) 発光ダイオード及びその製造方法
JP2005347714A (ja) 発光素子及びその製造方法
JP2004235505A (ja) 発光素子及び半導体素子用オーミック電極構造
JP2011165800A (ja) 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP2006013381A (ja) 発光素子
WO2010092741A1 (ja) 発光ダイオード及び発光ダイオードランプ
JP4286983B2 (ja) AlGaInP発光ダイオード
JP2005079263A (ja) 発光素子及び発光素子の製造方法
JP2005079152A (ja) 半導体発光素子及びその製造方法