JP2005347714A - 発光素子及びその製造方法 - Google Patents

発光素子及びその製造方法 Download PDF

Info

Publication number
JP2005347714A
JP2005347714A JP2004168956A JP2004168956A JP2005347714A JP 2005347714 A JP2005347714 A JP 2005347714A JP 2004168956 A JP2004168956 A JP 2004168956A JP 2004168956 A JP2004168956 A JP 2004168956A JP 2005347714 A JP2005347714 A JP 2005347714A
Authority
JP
Japan
Prior art keywords
layer
main
metal layer
light
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168956A
Other languages
English (en)
Inventor
Kazunori Hagimoto
和徳 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004168956A priority Critical patent/JP2005347714A/ja
Publication of JP2005347714A publication Critical patent/JP2005347714A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract


【課題】 金属層を介して発光層部と素子基板とを貼り合わせた構造を有する発光素子において、貼り合わせ熱処理時における素子基板と金属層との冶金的な反応を効果的に防止でき、ひいては、該反応による貼り合わせ強度や反射率の低下などによる不良を生じにくい構造の発光素子を提供する。
【解決手段】 発光素子100は、発光層部24を有する化合物半導体層50の、光取出面となる第一主表面の一部を覆う形で光取出面側電極9が形成される一方、該化合物半導体層50の第二主表面に、発光層部24からの光を光取出面側に反射させる反射面を有した主金属層10を介して素子基板が結合された構造を有する。主金属層10の第二主表面側と、素子基板7の第一主表面側に、各々素子基板7から主金属層10への成分拡散を抑制するセラミックからなる第一のバリア層11aと第二のバリア層11bとが配置され、それら第一のバリア層11aと第二のバリア層11bとが、主金属層10をなす金属よりも低融点の金属からなる貼り合わせ金属層12を介して貼り合わされている。
【選択図】 図1

Description

この発明は発光素子及びその製造方法に関する。
特開平7−66455号公報 特開2001−339100号公報 日経エレクトロニクス2002年10月21日号124頁〜132頁
発光ダイオードや半導体レーザー等の発光素子に使用される材料及び素子構造は、長年にわたる進歩の結果、素子内部における光電変換効率が理論上の限界に次第に近づきつつある。従って、一層高輝度の素子を得ようとした場合、素子からの光取出し効率が極めて重要となる。例えば、AlGaInP混晶により発光層部が形成された発光素子は、薄いAlGaInP(あるいはGaInP)活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。このようなAlGaInPダブルへテロ構造は、AlGaInP混晶がGaAsと格子整合することを利用して、GaAs単結晶基板上にAlGaInP混晶からなる各層をエピタキシャル成長させることにより形成できる。そして、これを発光素子として利用する際には、通常、GaAs単結晶基板をそのまま素子基板として利用することも多い。しかしながら、発光層部を構成するAlGaInP混晶はGaAsよりもバンドギャップが大きいため、発光した光がGaAs基板に吸収されて十分な光取出し効率が得られにくい難点がある。この問題を解決するために、半導体多層膜からなる反射層を基板と発光素子との間に挿入する方法(例えば特許文献1)も提案されているが、積層された半導体層の屈折率の違いを利用するため、限られた角度で入射した光しか反射されず、光取出し効率の大幅な向上は原理的に期待できない。
そこで、特許文献2をはじめとする種々の公報には、成長用のGaAs基板を剥離する一方、補強用の素子基板(導電性を有するもの)を、反射用のAu層を介して剥離面に貼り合わせる技術が開示されている。このAu層は反射率が高く、また、反射率の入射角依存性が小さい利点がある。
しかしながら、上記の方法では、反射層をなすAu層を発光層部に貼り合わせる際に、剥離等や反射率の低下等が生じやすかった。特に、貼り合わせ熱処理の際に、素子基板(特にSi基板)とAu層との冶金的な反応が生じやすい場合、上記の問題は一層顕著となる。
本発明の課題は、金属層を介して発光層部と素子基板とを貼り合わせた構造を有する発光素子において、貼り合わせ熱処理時における素子基板と金属層との冶金的な反応を効果的に防止でき、ひいては、該反応による貼り合わせ強度や反射率の低下などによる不良を生じにくい構造の発光素子と、その製造方法とを提供することにある。
課題を解決するための手段及び発明の効果
上記の課題を解決するために、本発明の発光素子は、
発光層部を有する化合物半導体層の、光取出面となる第一主表面の一部を覆う形で光取出面側電極が形成される一方、該化合物半導体層の第二主表面に、発光層部からの光を光取出面側に反射させる反射面を有した主金属層を介して素子基板が結合された構造を有し、
主金属層の第二主表面側と、素子基板の第一主表面側に、各々素子基板から主金属層への成分拡散を抑制するセラミックからなる第一のバリア層と第二のバリア層とが配置され、それら第一のバリア層と第二のバリア層とが、主金属層をなす金属よりも低融点の金属からなる貼り合わせ金属層を介して貼り合わされていることを特徴とする。
また、本発明の発光素子の製造方法は、
発光層部を有する化合物半導体層の、光取出面となる第一主表面の一部を覆う形で光取出面側電極が形成される一方、該化合物半導体層の第二主表面に、発光層部からの光を光取出面側に反射させる反射面を有した主金属層を介して素子基板が結合された構造を有する発光素子の製造方法であって、
主金属層の第二主表面側と、素子基板の第一主表面側に、各々素子基板から主金属層への成分拡散を抑制するセラミックからなる第一のバリア層と第二のバリア層とが第二の酸化物層をそれぞれ形成し、それら第一のバリア層と第二のバリア層とを、主金属層をなす金属よりも低融点の金属からなる貼り合わせ金属層を介して貼り合わせることを特徴とする。
なお、本明細書において「主金属層」とは、化合物半導体層と第一のバリア層との間に位置する金属層であって、反射面を形成するととともに、化合物半導体層と第一のバリア層とを結合する役割を担う金属層のことをいう。従って、化合物半導体層の第二主表面に形成される後述の接合金属層は主金属層には属さないものとする。また、主成分とは50質量%以上を占める成分のことをいう。
上記本発明の発光素子の構造によると、主金属層を介して素子基板と化合物半導体層とを貼り合わせる際に、素子基板から主金属層へ向かおうとする成分拡散がセラミックからなるバリア層によりブロックされ、ひいては素子基板成分との反応(例えば、共晶などの冶金的な反応)による主金属層の変質を効果的に抑制することができる。その結果、主金属層が形成する反射面の反射率低下や、主金属層と化合物半導体層との密着強度低下などといった不具合が効果的に抑制され、また、これら不具合による発光素子の製品歩留まりの低下も生じにくい。また、化合物半導体層側と素子基板側とにそれぞれ第一のバリア層と第二のバリア層とを形成し、主金属層をなす金属よりも低融点の金属からなる貼り合わせ金属層を介して両バリア層を貼り合わせるようにしたから、貼り合わせ温度の低温化を図ることができ、ひいては素子基板と主金属層との反応を一層生じにくくなり、反射面の品質がより向上する。
この場合、第一のバリア層と第二のバリア層とにそれぞれ主金属層をなす金属よりも低融点の金属からなる第一の貼り合わせ金属層と第二の貼り合わせ金属層とを形成し、それら第一の貼り合わせ金属層と第二の貼り合わせ金属層とを貼り合わせるようにすれば、低温での貼り合わせをより確実に行なうことができ、貼り合わせの強度や均一性をより高めることができる。
また、化合物半導体層の第二主表面には、該化合物半導体層と主金属層との接触抵抗を低減するための接合合金化層を形成することができ、該接合合金化層を覆うように主金属層を形成することができる。この場合、第一の貼り合わせ金属層と第二の貼り合わせ金属層との貼り合わせを、接合合金化層を形成するための合金化熱処理温度よりも低温にて行うようにすれば、接合合金化層の成分が主金属層が作る反射面内に拡散することが抑制され、反射率の低下を防止することができる。
III−V族化合物半導体からなる化合物半導体層の場合、接合合金化層は、例えばAu、AgあるいはAlを主成分(50質量%以上)とし、Ge、Sb、Sn、Be及びZnの1種又は2種以上を含有した金属を用いて形成することができる。AuGe、AuGeNi、AuSn、AuSbはn型半導体層との接触抵抗低減効果に優れ、AuZn及びAuBeはp型半導体層との接触抵抗低減効果に優れる。具体的には、このような金属を化合物半導体層の第二主表面に蒸着等により形成し、300℃以上450℃以下の温度で合金化熱処理を施す。合金化熱処理温度が300℃未満では化合物半導体層と接合金属層との合金化が十分に進まず、接触抵抗増大につながる。他方、450℃より高温では合金化の効果は飽和し、むしろ、発光層部への合金成分拡散や発光層部内のドーパント濃度プロファイルの拡散劣化などを防止する観点からは、温度を不必要に高く設定することは得策でないので、合金化熱処理の温度の上限は450℃に設定するのがよい。
素子基板が導電性基板にて構成される場合、第一のバリア層と第二のバリア層とを導電性セラミックにて構成すれば、素子基板の第二主表面に電極形成することで、該素子基板を発光駆動の導通路として利用でき、かつ、素子基板の第一主表面の全面に発光層部を配置できるから、発光面積の増大を図ることが可能となる。
上記本発明は、主金属層がAuを主成分とするAu系層とされてなり、素子基板がSi基板である場合に特に効果が大きい。すなわち、Si基板はドーピングにより発光素子として十分な導電性を容易に確保することができ、しかも安価である。しかし、SiとAuとは比較的低温で共晶反応を起しやすく(Au−Si二元系の共晶温度は363℃であるが、それ以外の合金成分が介在するとさらに共晶温度が低下することもありえる)、貼り合わせ熱処理時における基板側のSiのAu系層側への拡散も進みやすい。その結果、主金属層中のAu系層は素子基板をなすSiと共晶反応して主金属層の反射面が乱れ、反射率の低下を極めて招きやすい。しかしながら、本発明のごとく、Au系層とSi基板との間に上記バリア層を設けておくと、Au系層へのSiの拡散が抑制され、主金属層の反射面の反射率低下を効果的に防止することができる。なお、本明細書において「主成分」とは、最も質量含有率の高い成分のことをいう。
第一及び第二のバリア層は、具体的には導電性酸化物にて構成することが、高導電率が得やすく製造も比較的容易なので好適である。導電性酸化物層は、具体的には、ITO(Indium Tin Oxide)にて構成できる。ITOは、酸化スズをドープした酸化インジウム膜であり、酸化スズの含有量を1〜9質量%とすることで、電極層の抵抗率を5×10−4Ω・cm以下の十分低い値とすることができる。なお、ITO以外では、ZnOが高導電率であり、本発明に採用可能である。また、酸化アンチモンをドープした酸化スズ(いわゆるネサ)、CdSnO、ZnSnO、ZnSnO、MgIn、酸化イットリウム(Y)をドープしたCdSb、酸化スズをドープしたGaInOなども導電性酸化物層の材質として使用することができる。また、酸化物以外の導電性セラミックとしては、炭化珪素などの採用も可能である。
貼り合わせ金属層の材質は、主金属層よりも低融点の金属であれば特に制限はないが、室温よりも高いものであれば融点のなるべく低いものを使用することが望ましい。特に、In又はGaを主成分とする金属を採用した場合、貼り合わせ温度を低温化する効果をとりわけ顕著に達成できる。具体的には、InあるいはGaの単体金属を用いることができるが、融点調整用にAlを配合することもできるし、Inを主成分として定め、Gaを副成分として添加したInGa合金を使用することもできる。
なお、強固な貼り合わせ状態を得るには、貼り合わせ金属層を、貼り合わせの対象となるバリア層との親和性(ぬれ性)が良好な材質で構成する必要がある。バリア層をITOにて構成する場合、上記のIn又はGaを主成分とする金属は、ITOとの親和性も極めて良好であり、貼り合わせ温度の下限値を160℃まで低温化することが可能である。特に160℃以上400℃以下(例えば180℃)の温度でも十分に強固な貼り合わせ状態が得られるが、該温度での貼り合わせを行なう限り、前述の接合合金化層(Au、AgあるいはAlを主成分(50質量%以上)とし、Ge、Sb、Sn、Be及びZnの1種又は2種以上を含有した金属を用いて形成されるもの)からの反射面内への成分拡散はほとんど生じず、良好な反射率を確保することができる。
以下、本発明に係る発光素子の製造方法の実施形態を、図面を参照して説明する。図1は、本発明の適用対象となる発光素子の概念図である。該発光素子100は、素子基板としてのシリコン単結晶よりなるSi基板7(本実施形態ではn型であるがp型でもよい)の第一主表面上に、金属層としてのAu系金属層10を介して発光層部24が貼り合わされた構造を有してなる。本実施形態において各層及び基板の主表面は、図1のごとく、発光素子100の光取出面PFを上側にした状態を正置状態として、該正置状態における図面上側に表れる面を第一主表面、下側に表れる面を第二主表面として統一的に記載する。従って、工程説明の都合上、上記正置状態に対し上下を反転した転置状態にて図示を行なう場合は、該図示における第一主表面と第二主表面の上下関係も反転する。
発光層部24は、ノンドープの(AlGa1−xIn1−yP(ただし、0≦x≦0.55、0.45≦y≦0.55)混晶からなる活性層5を、第一導電型クラッド層、本実施形態ではp型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、第一導電型クラッド層とは異なる第二導電型クラッド層、本実施形態ではn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。
発光層部24の第一主表面上には、AlGaAs(AlInPあるいはGaInPでもよい)からなる電流拡散層20が形成され、発光層部24とともに化合物半導体層50を構成している。電流拡散層20の第一主表面の略中央には、発光層部24に発光駆動電圧を印加するための光取出面側電極9(例えばAu電極)が形成されている。該光取出面側電極9と電流拡散層20との間には、光取出側接合合金化層としてのAuBe接合合金化層9a(例えばBe:2質量%)が配置されている。そして、電流拡散層20の第一主表面における光取出面側電極9の周囲の領域が、発光層部24からの光取出領域PFを形成している。なお、光取出面側電極9の全体をAuBe合金にて構成することも可能である。また、本実施形態では、p型クラッド層6が光取出面側に位置する積層形態としているが、n型クラッド層4が光取出面側に位置する積層形態としてもよい(この場合、電流拡散層20はn型にする必要があり、また、接合合金化層9aはAuGeNi等で構成する)。
n型クラッド層4及びpクラッド層6の厚さは、例えばそれぞれ0.8μm以上4μm
以下(望ましくは0.8μm以上2μm以下)であり、活性層5の厚さは例えば0.4μm以上2μm以下(望ましくは0.4μm以上1μm以下)である。発光層部24全体の厚さは、例えば2μm以上10μm以下(望ましくは2μm以上5μm以下)である。さらに、電流拡散層20の厚さは、例えば5μm以上28μm以下(望ましくは8μm以上15μm以下)である。従って、化合物半導体層50の厚さは、例えば7μm以上30μm以下(望ましくは5μm以上15μm以下)である。電流拡散層20の厚さが5μm未満では面内の電流拡散効果が低下して光取出し効率の低下を招く場合がある。他方、電流拡散層20の厚さが28μmを超えると、該電流拡散層20をエピタキシャル成長する際の熱履歴により発光層部24の活性層5へのドーパント拡散が進み、発光効率の低下につながる場合がある。なお、本実施形態では、p型クラッド層6が光取出面側に位置する積層形態としているが、n型クラッド層4が光取出面側に位置する積層形態としてもよい(この場合、電流拡散層20はn型にする必要があり、また、接合合金化層9aはAuGeNi等で構成する)。
他方、Si基板7の裏面には、その全体を覆うように裏面電極(例えばAu電極である)15が形成されている。該裏面電極15とSi基板7との間には基板側接合合金化層として、AuSb接合合金化層16が介挿されている。なお、AuSb接合合金化層16に代えてAuSn接合合金化層を基板側接合合金化層として用いてもよい。
Si基板7は、Si単結晶インゴットをスライス・研磨して製造されたものであり、その厚みは例えば50μm以上500μm以下である。そして、発光層部24の第二主表面には、反射面を形成する主金属層としてのAu系金属層10が配置されている。Au系金属層10は純AuもしくはAu含有率が95質量%以上のAu合金よりなり、その第二主表面にはITOよりなる第一のバリア層11aが配置されている。他方、素子基板であるSi基板7の第二主表面にはITOよりなる第二のバリア層11bが配置されている。そして、これら第一のバリア層11a及び第二のバリア層11bは、In又はGaを主成分とする金属、本実施形態ではInからなる貼り合わせ金属層12を介して貼り合わされている。
発光層部24とAu系金属層10との間には、貼り合わせ側接合合金化層としてAuGeNi接合合金化層31(例えばGe:15質量%、Ni:10質量%)が形成されており、素子の直列抵抗低減に貢献している。AuGeNi接合合金化層31は、第一のAu系金属層10の第一主表面上に分散形成され、その形成面積率(Au系金属層10の第一主表面全面積に対するAuGeNi接合合金化層31の合計面積の比率で表す)は1%以上25%以下である。また、Si基板7と第二のバリア層11bとの間には、基板側接合合金化層としてAuSb接合合金化層32(例えばSb:5質量%)が介挿されている。なお、AuSb接合合金化層32に代えてAuSn接合合金化層を用いてもよい。
金属層をなすAu系金属層10は、本実施形態では反射層も兼ねるものとなっている。発光層部24からの光は、光取出面PF側に直接放射される光に、Au系金属層10による反射光が重畳される形で取り出される。Au系金属層10の厚さは、反射効果を十分に確保するため、80nm以上とすることが望ましい。また、厚さの上限には制限は特にないが、反射効果が飽和するため、コストとの兼ね合いにより適当に定める(例えば1μm以下)。なお、Au系金属層10に代え、純AgもしくはAg含有率が95質量%以上のAg合金からなるAg系金属層を用いてもよい。この場合、貼り合わせ側接合合金化層は、AgGeNiなどのAg系材料にて構成することもできる。
以下、上記発光素子100の製造方法の具体例について説明する。
まず、図2の工程1に示すように、成長用基板をなすGaAs単結晶基板1の主表面に、n型GaAsバッファ層2を例えば0.5μm、AlAsからなる剥離層3を例えば0.5μm、この順序にてエピタキシャル成長させる。その後、発光層部24として、n型クラッド層4(厚さ:例えば1μm)、AlGaInP活性層(ノンドープ)5(厚さ:例えば0.6μm)、及びp型クラッド層6(厚さ:例えば1μm)を、この順序にエピタキシャル成長させる。発光層部24の全厚は2.6μmである。また、さらにp型AlGaAsよりなる電流拡散層20を例えば5μmエピタキシャル成長させる。これら各層のエピタキシャル成長は、公知のMOVPE法により行なうことができる。Al、Ga、In、P及びAsの各成分源となる原料ガスとしては以下のようなものを使用できる;
・Al源ガス;トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など;
・Ga源ガス;トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など;
・In源ガス;トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス;ターシャルブチルホスフィン(TBP)、ホスフィン(PH)など。
・As源ガス;ターシャルブチルアルシン(TBA)、アルシン(AsH)など。
また、ドーパントガスとしては、以下のようなものを使用できる;
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
これによって、GaAs単結晶基板1上に発光層部24及び電流拡散層20からなる化合物半導体層50が形成される。該化合物半導体層50の厚さは7.6μmであり、GaAs単結晶基板1を除去した場合、これを単独で無傷にハンドリングすることは事実上不可能である。なお、化合物半導体層50の第一主表面には、この段階でAuBe接合金属層9a’(光取出面側接合合金化層)とこれを覆う光取出面側電極9をパターニング形成する。このあと引き続き光取出側合金化熱処理を行ってAuBe接合金属層9a’を接合合金化層9aとしてもよいが、本実施形態では該光取出側合金化熱処理を、後述の第一の貼り合わせ金属層12a側のAuGeNi接合合金化層31を形成する際の、貼り合わせ側合金化熱処理に兼用させている。
次に、工程2に示すように、化合物半導体層50の第一主表面に高分子材料結合層111を、光取出面側電極9を覆う形態で塗付形成し、工程3に示すように、高分子材料結合層111を加熱軟化させた状態で、別途用意した仮支持基板110を重ね合わせて密着させ、その後冷却して該高分子材料結合層111を硬化させることにより、化合物半導体層50と仮支持基板110とを高分子材料結合層111を介して貼り合わせた仮支持貼り合わせ体120を作成する(工程3)。この時点では、化合物半導体層50の第二主表面側には、成長用基板であるGaAs単結晶基板1が付随した状態となっている。
仮支持基板110の材質は、後述の合金化熱処理時においても剛性を保ち、かつ、ガス発生等が少ない材料で構成する。具体的には、Si基板やセラミック板(例えばアルミナ板)、あるいは金属板等で構成することができる。その厚さは、例えば100μm以上500μm以下であるが、もっと厚くてもよい。他方、高分子材料結合層111としては、ホットメルト型接着剤やワックス類を用いることができる。
次に、図3の工程4に示すように、仮支持貼り合わせ体120に付随している成長用基板としてのGaAs単結晶基板1を除去する。該除去は、例えば仮支持貼り合わせ体120(工程3参照)をGaAs単結晶基板1とともにエッチング液(例えば10%フッ酸水溶液)に浸漬し、バッファ層2と発光層部24との間に形成したAlAs剥離層3を選択エッチングすることにより、該GaAs単結晶基板1を仮支持貼り合わせ体120から剥離する形で実施することができる。なお、AlAs剥離層3に代えてAlInPよりなるエッチストップ層を形成しておき、GaAsに対して選択エッチング性を有する第一エッチング液(例えばアンモニア/過酸化水素混合液)を用いてGaAs単結晶基板1をGaAsバッファ層2とともにエッチング除去し、次いでAlInPに対して選択エッチング性を有する第二エッチング液(例えば塩酸:Al酸化層除去用にフッ酸を添加してもよい)を用いてエッチストップ層をエッチング除去する工程を採用することもできる。なお、高分子材料結合層111は、上記のエッチング液に対し耐腐食性を有したものを用いることが望ましく、前述の市販品は該耐腐食性の観点でも本発明に好適に採用可能である。
このようにして、GaAs単結晶基板1が除去された化合物半導体層50は、高分子材料結合層111を介して仮支持基板110と貼り合わされ、仮支持貼り合わせ体120を形成している。従って、化合物半導体層50がごく薄いにもかかわらず、GaAs単結晶基板1のエッチング除去時に泡等の衝撃で破壊される不具合を生じにくく、かつ、GaAs単結晶基板1の除去後も仮支持貼り合わせ体120の形で補強されているために、以降の工程に供する際のハンドリングを容易に行なうことが可能となる。
次に、工程5に示すように、上記仮支持貼り合わせ体120の状態で、GaAs単結晶基板1の除去により露出した化合物半導体層50の第二主表面にAuGeNi接合金属層を分散形成し、さらに該AuGeNi接合金属層をAuGeNi接合合金化層31とするための貼り合わせ側合金化熱処理を行なう。このとき、光取出面側電極9に対するAuBe接合金属層9a’の合金化も同時に行なうことができる(つまり、光取出側合金化熱処理にも兼用されている)。
AuGeNi接合金属層の成膜は、真空雰囲気にてスパッタリングあるいは真空蒸着等により行なわれる。また、合金化熱処理は、300℃以上450℃以下の温度の不活性ガス雰囲気下で実施され、具体的には、大気圧と同程度のN等の不活性ガス雰囲気下で行なうことができる。なお、合金化熱処理の上記温度は、高分子材料結合層111のガラス転移温度(80〜90℃程度)よりも高いので、処理中に高分子材料結合層111は軟化する。そこで、合金化熱処理中においては滑り防止のため、仮支持貼り合わせ体120を、化合物半導体層50側を上側、仮支持基板110側を下側となるように(つまり、図3の工程5とは上下反対の状態)水平配置し、さらに、セラミック基板やSi基板などの荷重付与体を載置することが望ましい。
次に、工程6に進み、仮支持貼り合わせ体120の状態で、化合物半導体層50の第二主表面にAu系金属層10を蒸着により形成し、さらにIn等からなる接合層を形成した後、ITOからなる第一のバリア層11aをスパッタリングにより形成する。他方、Si基板7を別途用意し、その両主表面にAuSb接合金属層を形成して、さらに250℃以上360℃以下の温度域で合金化熱処理を行なうことにより、それぞれAuSb接合合金化層32,16とする。そして、接合合金化層32を覆うようにITOからなる第二のバリア層11bをスパッタリングにより形成する。
そして、第一のバリア層11aの第二主表面にIn又はGaのいずれかを主成分とする金属からなる第一の貼り合わせ金属層12aを形成する。また、第二のバリア層11bの第一主表面には同様の金属からなる第二の貼り合わせ金属層12bを形成する。本実施形態では両貼り合わせ金属層12a,12bをIn金属の蒸着により形成している。
そして、図4の工程7に示すように、化合物半導体層50側に形成された第一の貼り合わせ金属層12aを、Si基板7側に形成された第二の貼り合わせ金属層12bに重ね合わせて圧迫し、160℃以上400℃以下(前述の合金化熱処理よりも低温とする:本実施形態では350℃としている)にて貼り合わせ熱処理する。これにより、第一の貼り合わせ金属層12aと第二の貼り合わせ金属層12bとが十分な強度にて貼り合わされ、一体の貼り合わせ金属層12となる。また、化合物半導体層50とSi基板7とは、Au系金属層10を介して貼り合わされ、貼り合わせ結合体130となる。
なお、第一の貼り合わせ金属層12aと第二の貼り合わせ金属層12bとは、貼り合わせ強度が確保できる範囲でなるべく薄く形成することが望ましく、具体的にはそれぞれ0.01μm以上5μm以下(本実施形態では0.1μm)とするのがよい。また、第一の貼り合わせ金属層12aと第二の貼り合わせ金属層12bとは、第一のバリア層11aと第二のバリア層11bとのそれぞれ全面に形成してもよいし、散点状に分散形成するようにしてもよい。また、貼り合わせを多少高く設定することにより、第一の貼り合わせ金属層12aと第二の貼り合わせ金属層12bとの一方を省略して貼り合わせを行なうことも可能である。
第一の貼り合わせ金属層12aと第二の貼り合わせ金属層12bとを貼り合わせる段階においては、既に光取出側及び貼り合わせ側の各合金化熱処理が既に終わっており、貼り合わせ熱処理がそれよりも低温で実施されることにより、接合合金化層からの合金成分がAu系金属層10からなる反射面の面内に拡散することが効果的に抑制され、ひいてはより反射率の高い反射面を得ることができる。また、非特許文献1に開示されているように、従来は貼り合わせ熱処理を低温化するために、Si基板側と化合物半導体層側との双方にAu系層を形成し、それらAu系層同士を貼り合わせるようにしていたが、高価なAu系層を2層も形成しなければならず、コストアップを招いていた。しかし、本発明では主金属層をAu系層で構成する場合においても、該Au系層は貼り合わせには関与しないから1層のみの形成でよく、経済的である。
貼り合わせ熱処理が完了したら仮支持基板分離工程を行なう。仮支持基板分離工程は、図4の工程8に示すように、高分子材料結合層111を加熱・軟化させ、仮支持基板110を分離・除去する。なお、この分離は、工程7の貼り合わせ熱処理の際に同時に行なうことも可能である。その後、工程9に示すように、化合物半導体層50の第一主表面上に残存している高分子材料結合層111を、トルエンやメチルエチルケトン(MEK)等の有機溶剤を用いて溶解・除去する。
以上においては、理解を容易にする便宜上、貼り合わせ結合体130を作る工程を素子単体の積層形態にて図示しつつ説明していたが、実際は、複数の素子チップがマトリックス状に配列した形で一括形成された貼り合わせウェーハが作成される。そして、この貼り合わせウェーハを通常の方法によりダイシングして素子チップとし、これを支持体に固着してリード線のワイヤボンディング等を行った後、樹脂封止をすることにより最終的な発光素子が得られる。
なお、素子基板(Si基板)7の第一主表面上の化合物半導体層50の一部を切り欠いて主金属層(Au系層)10を露出させ、これを電極として用いることもできる。この場合は、第一のバリア層11aと第二のバリア層11bとの材質は導電性セラミックに限られるものではなくなり、例えば窒化珪素、窒化チタン、窒化アルミニウム、二酸化珪素、酸化アルミニウムなどの絶縁性酸化物にて構成することも可能である。
また、発光層部24は、活性層及びクラッド層が、InAlGaNあるいはMgZnOにて構成されたダブルへテロ構造を有するものとして構成することもできる。
本発明の適用対象となる発光素子の一例を示す模式図。 本発明の発光素子の製造方法の一例を示す工程説明図。 図2に続く工程説明図。 図3に続く工程説明図。
符号の説明
1 GaAs単結晶基板(成長用基板)
7 Si基板(素子基板)
9 光取出側電極
10 Au系金属層(主金属層)
11a 第一のバリア層
11b 第二のバリア層
12 貼り合わせ金属層
12a 第一貼り合わせ金属層
12b 第二貼り合わせ金属層
24 発光層部
32 接合合金化層
50 化合物半導体層
100 発光素子

Claims (11)

  1. 発光層部を有する化合物半導体層の、光取出面となる第一主表面の一部を覆う形で光取出面側電極が形成される一方、該化合物半導体層の第二主表面に、発光層部からの光を前記光取出面側に反射させる反射面を有した主金属層を介して素子基板が結合された構造を有し、
    前記主金属層の第二主表面側と、前記素子基板の第一主表面側に、各々前記素子基板から前記主金属層への成分拡散を抑制するセラミックからなる第一のバリア層と第二のバリア層とが配置され、それら第一のバリア層と第二のバリア層とが、前記主金属層をなす金属よりも低融点の金属からなる貼り合わせ金属層を介して貼り合わされていることを特徴とする発光素子。
  2. 前記素子基板は導電性基板にて構成されていることを特徴とする請求項1に記載の発光素子。
  3. 前記導電性基板は、シリコン基板であることを特徴とする請求項2に記載の発光素子。
  4. 前記第一のバリア層と前記第二のバリア層は、導電性セラミックからなることを特徴とする請求項1乃至請求項3のいずれか1項に記載の発光素子。
  5. 前記導電性セラミックは、ITOであることを特徴とする請求項4に記載の発光素子。
  6. 前記主金属は、Auを主成分とするAu系金属層であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の発光素子。
  7. 前記低融点の金属は、In又はGaのいずれかを主成分とすることを特徴とする請求項1乃至請求項6のいずれか1項に記載の発光素子。
  8. 発光層部を有する化合物半導体層の、光取出面となる第一主表面の一部を覆う形で光取出面側電極が形成される一方、該化合物半導体層の第二主表面に、発光層部からの光を前記光取出面側に反射させる反射面を有した主金属層を介して素子基板が結合された構造を有する発光素子の製造方法であって、
    前記主金属層の第二主表面側と、前記素子基板の第一主表面側に、各々前記素子基板から前記主金属層への成分拡散を抑制するセラミックからなる第一のバリア層と第二のバリア層とが第二の酸化物層とをそれぞれ形成し、それら第一のバリア層と第二のバリア層とを、前記主金属層をなす金属よりも低融点の金属からなる貼り合わせ金属層を介して貼り合わせることを特徴とする発光素子の製造方法。
  9. 前記第一のバリア層と前記第二のバリア層とにそれぞれ前記主金属層をなす金属よりも低融点の金属からなる第一の貼り合わせ金属層と第二の貼り合わせ金属層とを形成し、それら第一の貼り合わせ金属層と第二の貼り合わせ金属層とを貼り合わせることを特徴とする請求項8に記載の発光素子の製造方法。
  10. 前記第一の貼り合わせ金属層と前記第二の貼り合わせ金属層とを、In又はGaのいずれかを主成分とする金属にて形成することを特徴とする請求項9に記載の発光素子の製造方法。
  11. 前記化合物半導体層の第二主表面に、該化合物半導体層と前記主金属層との接触抵抗を低減するための接合合金化層を形成し、該接合合金化層を覆うように前記主金属層を形成するとともに、前記第一の貼り合わせ金属層と前記第二の貼り合わせ金属層との貼り合わせを前記接合合金化層を形成するための合金化熱処理温度よりも低温にて行う請求項9又は請求項10に記載の発光素子の製造方法。
JP2004168956A 2004-06-07 2004-06-07 発光素子及びその製造方法 Pending JP2005347714A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168956A JP2005347714A (ja) 2004-06-07 2004-06-07 発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168956A JP2005347714A (ja) 2004-06-07 2004-06-07 発光素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2005347714A true JP2005347714A (ja) 2005-12-15

Family

ID=35499762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168956A Pending JP2005347714A (ja) 2004-06-07 2004-06-07 発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2005347714A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114411A (ja) * 2008-11-06 2010-05-20 Samsung Electro-Mechanics Co Ltd 化合物半導体発光素子及びその製造方法
US8188496B2 (en) 2008-11-06 2012-05-29 Samsung Led Co., Ltd. Semiconductor light emitting device including substrate having protection layers and method for manufacturing the same
US8222663B2 (en) 2008-11-18 2012-07-17 Samsung Electronics Co., Ltd. Light emitting device and method of manufacturing the same
JP2013070111A (ja) * 2008-06-02 2013-04-18 Lg Innotek Co Ltd 半導体発光素子
JP2016129189A (ja) * 2015-01-09 2016-07-14 信越半導体株式会社 赤外発光素子
CN109659412A (zh) * 2013-11-22 2019-04-19 晶元光电股份有限公司 半导体发光元件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070111A (ja) * 2008-06-02 2013-04-18 Lg Innotek Co Ltd 半導体発光素子
US8877530B2 (en) 2008-06-02 2014-11-04 Lg Innotek Co., Ltd. Supporting substrate for preparing semiconductor light-emitting device and semiconductor light-emitting device using supporting substrates
US9224910B2 (en) 2008-06-02 2015-12-29 Lg Innotek Co., Ltd. Supporting substrate for preparing semiconductor light-emitting device and semiconductor light-emitting device using supporting substrates
JP2010114411A (ja) * 2008-11-06 2010-05-20 Samsung Electro-Mechanics Co Ltd 化合物半導体発光素子及びその製造方法
US8188496B2 (en) 2008-11-06 2012-05-29 Samsung Led Co., Ltd. Semiconductor light emitting device including substrate having protection layers and method for manufacturing the same
US8916402B2 (en) 2008-11-06 2014-12-23 Samsung Electronics Co., Ltd. Semiconductor light emitting device including substrate having protection layers providing protection against chemicals and method for manufacturing the same
US8222663B2 (en) 2008-11-18 2012-07-17 Samsung Electronics Co., Ltd. Light emitting device and method of manufacturing the same
CN109659412A (zh) * 2013-11-22 2019-04-19 晶元光电股份有限公司 半导体发光元件
JP2016129189A (ja) * 2015-01-09 2016-07-14 信越半導体株式会社 赤外発光素子
WO2016110916A1 (ja) * 2015-01-09 2016-07-14 信越半導体株式会社 赤外発光素子

Similar Documents

Publication Publication Date Title
US20230197906A1 (en) Semiconductor light emitting device
JP4091261B2 (ja) 半導体発光素子及びその製造方法
US8039864B2 (en) Semiconductor light emitting device and fabrication method for the same
JP4715370B2 (ja) 発光素子及びその製造方法
JP4985067B2 (ja) 半導体発光素子
JP2010219502A (ja) 発光素子
JP2010098068A (ja) 発光ダイオード及びその製造方法、並びにランプ
JP2004207508A (ja) 発光素子及びその製造方法
JP2010067890A (ja) 発光素子
JP4121551B2 (ja) 発光素子の製造方法及び発光素子
JP4140007B2 (ja) 発光素子及び発光素子の製造方法
JP4110524B2 (ja) 発光素子及び発光素子の製造方法
JP2009277898A (ja) 半導体発光素子及び半導体発光素子の製造方法
JP3997523B2 (ja) 発光素子
JP2005259912A (ja) 発光素子の製造方法
JP4062111B2 (ja) 発光素子の製造方法
JP2005277218A (ja) 発光素子及びその製造方法
JP3950801B2 (ja) 発光素子及び発光素子の製造方法
JP2005109208A (ja) 発光素子の製造方法
JP2005347714A (ja) 発光素子及びその製造方法
JP4341623B2 (ja) 発光素子及びその製造方法
JP2010062355A (ja) 発光素子
JP5196288B2 (ja) 発光素子の製造方法及び発光素子
JP4918245B2 (ja) 発光ダイオード及びその製造方法
JP2005109207A (ja) 発光素子の製造方法及び発光素子