JP2005173607A - 時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置 - Google Patents

時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置 Download PDF

Info

Publication number
JP2005173607A
JP2005173607A JP2004355011A JP2004355011A JP2005173607A JP 2005173607 A JP2005173607 A JP 2005173607A JP 2004355011 A JP2004355011 A JP 2004355011A JP 2004355011 A JP2004355011 A JP 2004355011A JP 2005173607 A JP2005173607 A JP 2005173607A
Authority
JP
Japan
Prior art keywords
signal
audio signal
channel
band
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004355011A
Other languages
English (en)
Other versions
JP4220461B2 (ja
Inventor
Lars Gustaf Liljeryd
リルイエリド,ラルス,グスタフ
Per Rune Albin Ekstrand
エクストランド,ペル,ルネ,アルビン
Lars Fredrik Henn
ヘン,ラルス,フレドリック
Hans Magnus Kristofer Kjoerling
クヨルリング,ハンス,マグヌス,クリストフエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coding Technologies Sweden AB
Original Assignee
Coding Technologies Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9702213A external-priority patent/SE9702213D0/xx
Priority claimed from SE9704634A external-priority patent/SE9704634D0/xx
Application filed by Coding Technologies Sweden AB filed Critical Coding Technologies Sweden AB
Publication of JP2005173607A publication Critical patent/JP2005173607A/ja
Application granted granted Critical
Publication of JP4220461B2 publication Critical patent/JP4220461B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/667Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a division in frequency subbands

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Luminescent Compositions (AREA)
  • Pyridine Compounds (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Cosmetics (AREA)

Abstract

【課題】時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置とを提供する。
【解決手段】該音声信号が第1のサンプリングレートによりサンプリングされ、音声信号の分析された信号を与えられ(2001,2003)る。該分析された信号は、L個のチャネル分析フィルタバンクにより得られたL個の分析サブバンド信号を含み、L個の低域チャネルとL(Q−1)個の高域チャネルとを有するQL個のチャネル合成フィルタバンクを使用して音声信号の分析された信号をフィルタリング(2005,2007)して、該時間的に離散した音声信号のアップサンプリングした信号を形成する。音声信号のアップサンプリングされた信号は該音声信号と同一の帯域幅を持つようにし、L個の低域チャネルのサブバンド信号の数を高域チャネルの数にパッチングして、音声信号のアップサンプリングした信号の帯域を拡大する。
【選択図】図20

Description

原始コーディング装置では、必要なビットレートや記憶容量を減らすためにディジタルデータを圧縮して伝送または記憶する。本発明は、スペクトル帯域複製(SBR)により原始コーディング(source coding)を改善する新規な方法と装置に関するものである。同じ知覚品質を保持してビットレートを実質的に下げ、逆に所定のビットレートで知覚品質を高める。これは、エンコーダ側でスペクトル帯域幅を縮小し、デコーダ側で後のスペクトル帯域を複製することにより行う。本発明はスペクトル領域での信号冗長度の新しい概念を活用する。
オーディオ原始コーディング技術は2種類ある。すなわち、自然オーディオコーディングと音声コーディングである。自然オーディオコーディングは中位のビットレートの音楽や任意の信号に共通に用いられており、オーディオ帯域幅は一般に広い。音声コーダは基本的に音声の再生に限られるが、他方では非常に低いビットレートで用いることができる。ただしオーディオ帯域幅は狭い。広帯域音声は狭帯域音声に比べて主な主観的品質が優れている。帯域幅を広くすると、音声の明瞭度と自然さが増すだけでなく、話す人を識別しやすくなる。このように広帯域音声コーディングは次世代電話システムにとって重要な課題である。更に、マルチメディア分野が非常に成長したので、音楽や非音声信号を電話システムにより高品質で伝送することが望ましい。
高忠実度の線形PCM信号は、ビットレート対知覚エントロピーに関して非常に効率が悪い。CDの標準は44.1kHzのサンプリング周波数と、サンプル当たり16ビットの分解能と、ステレオである。これは1411キロビット/sのビットレートに等しい。ビットレートを大幅に下げるため、分割帯域知覚オーディオコーデックを用いて原始コーディングを行うことができる。これらの自然オーディオコーデックは信号内の知覚無関係性と統計的冗長度を用いる。最高のコーデック技術を用いると、標準のCDフォーマット信号のデータを約90%縮小しても実際上は劣化したと感じない。このように、ステレオでは約96キロビット/s、すなわち約15:1の圧縮率で、非常に高い音質が得られる。或る知覚コーデックは更に高い圧縮率を用いる。このためには、サンプリングレート(したがってオーディオ帯域幅)を下げるのが普通である。また量子化レベルの数を減らし(量子化歪みが聞こえることがある)、また強化コーディングによるステレオフィールドの劣化を用いるのが普通である。このような方法を余り用いると、耳障りな知覚劣化を生じる。現在のコーデック技術は飽和点に近く、符号化利得が更に進むことは期待できない。符号化性能を高めるには、新しい方式が必要である。
人の声や殆どの楽器は、振動システムから発生する準定常信号を生成する。フーリエ理論によると、周期的信号は周波数f、2f、3f、4f、5fなどの正弦波の和で表される。ただし、fは基本周波数である。これらの周波数は調波系列を形成する。この信号の帯域幅を制限することは、調波系列を切り捨てることに相当する。切捨てを行うと楽器や音声の音色が変わり、オーディオ信号は「弱い」または「鈍い」音になり、明瞭度が下がる。音質の主観的印象にとって高周波はこのように重要である。
従来の方法は、音声コーデック性能を高めることが主体で、特に音声符号化における問題である高周波再生(HFR)を目的としている。従来の方法は広帯域直線周波数シフトや、非線形性や、エイリアシングを用いて[特許文献1]相互変調やその他の非調波周波数成分を生成するので、これを音楽信号に適用するとひどい不協和音を生じた。この不協和音を音声符号化関係の文献では「耳障り」または「調子はずれ」の音と呼ぶ。他の合成音声HFR法は基本ピッチ推定に基づく正弦高調波を生成するので、定常音に限られる[特許文献2]。これらの従来の方法は低品質の音声応用には有用であるが、高品質音声または音楽信号には使えない。高品質のオーディオ原始コーデックの性能を高める方法がいくつかある。その1つは、デコーダで生成された合成雑音信号を用いて、以前はエンコーダで捨てられていた音声または音楽内の雑音的信号に代える(非特許文献1)。これは雑音信号があるときに、本来正常に伝送される高帯域内で断続的に行われる。別の方法は、符号化の過程で失われた或る高帯域の高調波を再現する(非特許文献2)。これも音信号とピッチ検出に依存する。この2つの方法は低いデューティサイクルで動作し、比較的限定された符号化または性能の利得が得られる。
米国特許第5,127,054号 米国特許第4,771,465号 米国特許第5,040,217号 米国特許第5,684,920号 米国特許第5,687,191号 「雑音代替によるオーディオコーデックの改善(Improving Audio Codecs by Noise Substitution)」、D. Schulz, JAES, Vol. 44, No. 7/8, 1996 「オーディオスペクトルコーダ (Audio Spectral Coder)」、A. J. S. Ferreira, AES Preprint 4201, 100th Convention, May 11-14, 1996, Copenhagen 「音の協和と臨界帯域幅 (Tonal Consonance and Critical Bandwidth)」、R. Plomp, W. J. M. Levelt JASA, Vol. 38, 1965 「音声のパターン探索予測(Pattern Search Prediction of Speech)」、R. Bogner, T. Li, Proc. ICASS, '89, Vol. 1, May 1989 「非線形発振器モデルに基づく音声のタイムスケール修正(Time-Scale Modification of Speech based on a nonlinear Oscillator Model)」、G. Kubin, W. B. Kleijin, IEEE, 1994 「高速フーリエ変換を用いた位相ボコーダの実現 (Implementaion of the Phase Vocoder using the Fast Fourier Transform)」、M. R. Portnoff, IEEE ASSP, Vol. 24, No. 3, 1976 「知覚コーディング入門 (Introduction to Perceptual Coding)、K. Brandenburg, AES, ディジタルオーディオのビットレート減少に関する論文集 (Collected Papers on Digital Audio Bitrate Reduction), 1996 「マルチレートシステムとフィルタバンク(Multirate Systems and Filter Banks)」、P. P. Vaidyanathan, Prentice Hall, Englewood Cliffs, New Jersey, 1993, ISBN 0-13-605718-7 「効率的変換/サブバンド符号化のための重ね合わせ変換 (Lapped Transform for Efficient Transform/Subband Coding)」、H. S. Malvar, IEEE Trans ASSP, vol. 38, no. 6, 1990 Stockham「自動利得制御への一般化された線形性の適用 (Application of Generalized Linearity to Automatic Gain Control)」、T. G. Stockham, Jr, IEEE Trans. on Audio and Electroacoustics, Vol. AU-16, No. 2, June 1968 「ベクトル量子化と信号圧縮 (Vector Qantization and Signal Compression)」、A. Gersho, R. M. Gray, Kluwer Academic Publishers, USA 1992, ISBN 0-7923-9181-0
本発明はディジタル原始コーディング装置を実質的に改善する、より特定するとオーディオコーデックを改善する、新しい方法と装置を提供する。目的は、ビットレートの低下、または知覚品質の向上、またはその両方を含む。本発明は調波冗長度を活用した新しい方法により、伝送または記憶を行う前に信号の通過帯域を廃棄する可能性を提供する。本発明によりデコーダが高品質のスペクトル複製を行う場合は、知覚劣化は起こらない。廃棄ビットは一定の知覚品質における符号化利得を表す。または、一定のビットレートにおいて低帯域情報の符号化に更に多くのビットを割り当てて、より高い知覚品質を得ることができる。
本発明は、廃棄された調波系列は低帯域スペクトル成分と高帯域スペクトル成分の間の直接の関係に基づいて伸張することができると仮定する。この伸張された系列は、次の規則に従っていれば初めの系列と似ていると知覚される。第1に、不協和音に関係する人工音が出ないようにするために、外挿されるスペクトル成分は廃棄された調波系列と調波的に関係していなければならない。本発明はスペクトル複製プロセスの手段として置換を用いる。これは確かにこの判定基準を満たす。しかし優れた動作をするためには低帯域スペクトル成分が調波系列を形成する必要はない。その理由は、低帯域成分と調波的に関係する新しい複製成分は信号の雑音的または過渡的な性質を変えないからである。置換とは、部分音の周波数比を保ちながら部分音を音階上の1つの位置から別の位置に移すことである。第2に、複製された高帯域のスペクトル包絡線(すなわち、粗いスペクトル分布)は初めの信号と十分似ていなければならない。本発明は2つの動作モードSBR−1とSBR−2を提供する。この2つは、スペクトル包絡線を調整する方法が異なる。
SBR−1は中間品質コーデック応用を改善するシングルエンド形のプロセスであって、デコーダが受ける低帯域信号すなわち低域信号に含まれる情報に完全に依存する。この信号のスペクトル包絡線は、例えば多項式と規則の集合すなわちコードブックを用いて決定され、外挿される。この情報を用いて、複製された高帯域を絶えず調整し等化する。このSBR−1法は後処理の利点を持つ。すなわちエンコーダ側では修正する必要がない。放送業者はチャンネルの利用度を高め、または知覚品質を高め、またはその両者が得られる。既存のビットストリーム構文と標準を修正せずに用いることができる。
SBR−2は高品質コーデック応用を改善するダブルエンド形のプロセスであって、SBR−1により伝送される低帯域信号の他に、高帯域のスペクトル包絡線を符号化して伝送する。スペクトル包絡線の変動速度は高帯域信号成分よりかなり低いので、限られた量の情報だけを伝送すればスペクトル包絡線を十分表すことができる。SBR−2を用いれば、既存の構文やプロトコルを全くまたは殆ど修正せずに現在のコーデック技術の性能を高めることができるので、今後のコーデックの開発の貴重なツールである。
SBR−1もSBR−2も、音響心理学モデルにより規定されたエンコーダがビット欠乏状態の下で低帯域の小さな通過帯域を停止したとき、これらを複製するのに用いられる。低帯域内のスペクトル複製と低帯域外のスペクトル複製により、知覚品質が高まる。更に、SBR−1とSBR−2はビットレートスケーラビリティを用いるコーデックにも用いることができる。この場合、受信器での信号の知覚品質は伝送チャンネルの状態によって変わる。通常は、これは受信器でのオーディオ帯域幅の厄介な変動を意味する。この状態でSBR法を用いると常に高い帯域幅を保持するので、やはり知覚品質を高めることができる。
本発明は連続的に動作し、どんな種類の信号内容、すなわち音または非音(雑音的信号や過渡信号)も複製する。更に、本発明のスペクトル複製法はデコーダで利用できる周波数帯域から、廃棄された帯域を知覚的に正確に複製することができる。したがってSBR法を用いると、従来の方法に比べて実質的に高いレベルで符号化利得が得られ、または知覚品質を高めることができる。本発明を従来のコーデック改善法と組み合わせることはできるが、組み合わせても性能が高まることは期待できない。
SBR法は次のステップを含む。
・ 初めの信号から得た信号を符号化し、信号の周波数帯域を廃棄する。廃棄は符号化の前か途中に行い、第1信号を形成する。
・ 第1信号の復号中またはその後で、第1信号の周波数帯域を置換して第2信号を形成する。
・ スペクトル包絡線を調整する。
・ 復号された信号と第2信号を組み合わせて出力信号を形成する。
第2信号の通過帯域は第1信号の通過帯域と重ならないようにまたは部分的に重なるように設定してよく、初めの信号および/または第1信号の時間特性、または伝送チャンネルの状態に従って設定する。スペクトル包絡線の調整は、前記第1信号から初めのスペクトル包絡線を推定したもの、または初めの信号の伝送された包絡線情報に基づいて行う。
本発明は2つの基本型のトランスポーザ(置換装置)を含む。すなわち、多帯域トランスポーザと時変パターン探索予測トランスポーザであって、これらは異なる特性を有する。本発明では基本的な多帯域置換を次のように行う。
・ 置換される信号を、それぞれ周波数[f,...,f]を含む通過帯域を持つN(≧2)個の通過帯域フィルタの集合で濾波して、N個の帯域信号を形成する。
・ 帯域信号の周波数を周波数M[f,...,f]を含む領域にシフトする。ただし、M≠1は置換係数である。
・ シフトされた帯域信号を結合して置換信号を形成する。
または、本発明ではこの基本的多帯域置換を次のように行う。
・ 置換される信号を、低域型の実数値または複素値サブバンド信号を生成する性質の分析フィルタバンクまたは変換を用いて帯域濾波する。
・ 任意のチャンネル数kの前記分析フィルタバンクまたは変換を、合成フィルタバンクまたは変換内のMk(M≠1)チャンネルに接続する。
・ 合成フィルタバンクまたは変換を用いて、置換された信号を形成する。
本発明の1つの改善された多帯域置換は位相調整を含み、基本的な多帯域置換の性能を強化する。
本発明では時変パターン探索予測置換を次のように行う。
・ 第1信号の過渡検出を行う。
・ 過渡検出の結果に従って、第1信号の一部を複写/廃棄するときに、第1信号のどのセグメントを用いるかを決定する。
・ 過渡検出の結果に従って、状態ベクトルとコードブック特性を調整する。
・ 前の同期点探索で見出された同期点に基づいて、第1信号の選択されたセグメント内の同期点を探す。
本発明のSBR法は次の特徴を有する。
1. この方法と装置はスペクトル領域内の信号冗長性の新しい概念を活用する。
2. この方法と装置は任意の信号に適用することができる。
3. 各調波集合は個々に作成して制御することができる。
4. 全ての複製された高調波は既存の調波系列の延長を形成するようにして生成する。
5. スペクトル複製プロセスは置換に基づくもので、人工音は全くまたは殆ど知覚されない。
6. スペクトル複製は多数の小帯域および/または広い周波数範囲をカバーすることができる。
7. SBR−1法では、処理はデコーダ側だけで行う。すなわち、全ての標準およびプロトコルを修正せずに用いることができる。
8. SBR−2法は修正を全くまたは殆どせずに、殆どの標準やプロトコルに従って実現することができる。
9. SBR−2法はコーデック設計者に新しい強力な圧縮ツールを提供する。
10. 符号化利得は顕著である。
最も魅力的な応用は、各種の低ビットレートコーデック、例えば、MPEG1/2層I/II/III[特許文献3]や、MPEG2/4 AAC、Dolby AC−2/3、NTT TwinVQ[特許文献4]や、AT&T/Lucent PACなど、の改善に関する。またこの発明は知覚品質を高めるための、高帯域CELPやSB−ADPCM G.722などの、高品質音声コーデックにも有用である。上記のコーデックはマルチメディアや、電話産業や、インターネットや、専門的な応用に広く用いられている。T−DAB(地上ディジタルオーディオ放送)システムは低ビットレートプロトコルを用いており、本方法を用いるとチャンネル使用度が上がり、またはFMやAM DABの品質を高めることができる。衛星S−DABはシステムコストが非常に高いので、本方法を用いてDABマルチプレクスのプログラムチャンネル数を増やすことにより大きな利益を得る。更に、低ビットレート電話モデムを用いて、インターネットにより初めて全帯域幅オーディオ実時間ストリーミングを達成することができる。
以下に本発明について添付の図面を参照して例を用いて説明するが、これは本発明の範囲や精神を制限するものではない。
実施の形態の説明を通じて、自然オーディオ原始コーディング応用に重点を置いて述べる。しかし理解されるように、本発明はオーディオ信号の符号化や復号の応用の他に広範囲の原始コーディング応用に適用できるものである。
置換の基礎
本発明で述べる置換はスペクトル複製の理想的な方法であって、従来の方法に比べていくつかの大きな利点を持つ。すなわち、ピッチ検出は必要なく、単一ピッチで多音のプログラム材料において同じ高性能が得られ、置換は音信号にも非音信号にも同じように良く適用できる。他の方法とは異なり、本発明の置換は任意の信号の種類において任意のオーディオ原始コーディング装置に用いることができる。
時変振幅を持つコサインの和の形の離散時間信号x(n)の正確な置換係数Mは、次の関係で定義される。
Figure 2005173607
Figure 2005173607

ただしNは正弦波の数(以後は部分音と呼ぶ)、fとe(n)とαはそれぞれ個々の入力周波数と時間包絡線と位相定数、βは任意の出力位相定数、fsはサンプリング周波数、そして0≦Mf≦f/2である。
図2にM次高調波の生成を示す。ただし、Mは整数≧2である。M次高調波という語は簡単のために用いた。実際は、このプロセスは或る周波数領域で全ての信号にM次高調波を生成するが、多くの場合は次数の分からない高調波である。周波数領域の表現X(f)を持つ入力信号201の帯域は0からfmaxの範囲に限定される。fmax/MからQfmax/M(Qは望ましい帯域幅伸張係数で1<Q≦M)の範囲内の信号内容を帯域フィルタで取り出して、スペクトルXBP(f)を持つ帯域信号203を形成する。帯域信号を係数Mで置換して、fmaxからQfmaxの範囲をカバーするスペクトルX(f)を持つ第2帯域信号205を形成する。この信号のスペクトル包絡線をプログラム制御の等化器で調整して、スペクトルX(f)を持つ信号207を形成する。次にこの信号と遅延させた入力信号とを結合して、帯域フィルタとトランスポーザにより生じる遅れを補償して、0からQfmaxの範囲をカバーするスペクトルY(f)を持つ出力信号209を形成する。または帯域濾波は、遮断周波数fmaxとQfmaxを用いて置換Mの後で行う。多重トランスポーザを用いて、異なる調波次数を同時に生成することはもちろん可能である。図3に示すように入力信号がfからQfにわたる通過帯域301を有する場合、上記の方式を用いて入力信号内の通過帯域を「充填する」こともできる。この場合は通過帯域[f/M,Qf/M]を取り出し(303)、係数Mで[f,Qf]に置換し(305)、包絡線を調整し(307)、遅延入力信号と結合してスペクトルY(f)を持つ出力信号309を形成する。
正確な置換の近似を用いてもよい。本発明では、このような近似の質を不協和音理論を用いて決定する。不協和音の判定基準は Plomp により示されており[非特許文献3]、2つの部分音の周波数の差がそれらが存在する臨界帯域の帯域幅の約5乃至50%以内である場合は、2つの部分音は不協和と見なされる。例えば、所定の周波数の臨界(critical)帯域幅は次式で近似できる。
Figure 2005173607
ただしfとcbはHzで表す。更に Plomp は、2つの部分音の周波数の差がそれが存在する臨界帯域幅の約5%以下である場合は、人の聴覚システムはこの2つを識別することができないと述べている。式2の正確な置換を次式で近似することができる。
Figure 2005173607
ただし、Δfは正確な置換からの偏差である。入力部分音が調波系列を形成する場合は、本発明の仮説によると、置換された部分音の調波系列からの偏差はそれらが存在する臨界帯域幅の5%を超えてはならない。従来の方法が不快な「耳障り」や「調子はずれ」を生じるのは、広帯域直線周波数シフトにより許容できないほど大きな偏差を生じるからである。従来の方法が1入力部分音に対して2以上の部分音を生成するとき、1部分音として知覚されるためには部分音はやはり上述の偏差限界内になければならない。非線形性などを用いる従来の方法は偏差限界内にない相互変調部分音を作るので、良い結果が得られない。
本発明のスペクトル複製法に基づく上記の置換を用いると、次の重要な性質が得られる。
・ 通常は、複製された高調波と既存の部分音の間に周波数領域の重なりが起こらない。
・ 複製された部分音は入力信号の部分音と調波的に関係があり、耳障りな不協和音すなわち人工音を一切生じない。
・ 複製された高調波のスペクトル包絡線は入力信号スペクトル包絡線の滑らかな継続を形成し、初めの包絡線と知覚的に一致する。
時変パターン探索予測に基づく置換
必要なトランスポーザを設計するには種々の方法がある。一般的な時間領域実現では、ピッチ周期に基づいて信号セグメントを複製することにより信号を時間的に伸張する。次にこの信号を異なる速度で読み出す。残念ながらこの方法は、信号セグメントを正確に時間接続するのにピッチ検出に厳密に依存する。更に、ピッチ周期に基づく信号セグメントには制約があるので、過渡信号に敏感になる。検出されたピッチ周期は実際の過渡信号よりかなり長いことがあるので、全過渡信号を単に時間的に伸張するのではなく複写するという危険が大きいことは明らかである。別の種類の時間領域アルゴリズムでは、出力信号のパターン探索予測を用いて音声信号の時間伸張/圧縮を得る[非特許文献4や、非特許文献5]。これは粒状合成(granular synthesis) の1つの形であって、入力信号を小さな部分(細粒)に分割し、これを用いて出力信号を合成する。この合成には通常は信号セグメントの相関を取って、最良の接続点を決定する。これは、出力信号を形成するのに用いるセグメントがピッチ周期に依存しないのでピッチ検出という厄介なタスクを必要としないことを意味する。しかしこの方法にも信号振幅が急速に変わるときの問題がまだあり、高品質の置換のためには高速計算が必要になる。しかし改善された時間領域のピッチシフタ/トランスポーザをここに提示する。この方式は過渡検出と動的システムパラメータを用いることにより、定常音(音または非音)でも過渡音でも、高い置換係数の一層正確な置換を低い計算コストで行うことができる。
次に図面を参照する。各図面の同じ要素は同じ番号で示す。図4に9個の別個のモジュールを示す。すなわち、過渡検出器401と、窓位置調整器403と、コードブック発生器405と、同期信号選択器407と、同期位置メモリ409と、最小差推定器411と、出力セグメントメモリ413と、混合ユニット415と、ダウンサンプラ417である。入力信号はコードブック発生器405と過渡検出器401に入る。過渡信号を検出すると、その位置を窓位置モジュール403に送る。このモジュールは窓の大きさと位置を規定し、コードブックを作るとき入力信号と掛け算する。別のトランスポーザに接続している場合は、コードブック発生器405は同期選択モジュール407から同期位置を受ける。この同期位置がコードブック内にある場合は、これを用いて出力セグメントを生成する。ない場合は、コードブックを最小差推定器411に送り、最小差推定器411は新しい同期位置を返す。新しい出力セグメントと前の出力セグメントを共に混合モジュール415で窓に入れ、モジュール417でダウンサンプリングする。
説明を明確にするために状態空間表現を用いる。ここで状態ベクトルすなわち細粒は、入力信号と出力信号を表す。入力信号を次の状態ベクトルx(n)で表す。
Figure 2005173607
これは入力信号のN個の遅延サンプルから得られる。ただし、Nは状態ベクトルの次元、Dはベクトルを作るのに用いる入力サンプル間の遅れである。粒状マッピングにより各状態ベクトルx(n−1)の後のサンプルx(n)が得られる。これを式6で表す。ただし、a(*)はマッピングである。
Figure 2005173607
本方法では、状態遷移コードブックを用いて、粒状マッピングにより前の出力に基づいて次の出力を決定する。長さLのコードブックは絶えず再構築され、状態ベクトルと各状態ベクトルに続く次のサンプルを含む。各状態ベクトルはその隣接状態ベクトルからKサンプル離れている。これによりこの装置は、現在処理中の信号の特性に従って時間分解能を調整することができる。ただし、Kは最大分解能を表すものに等しい。コードブックを作成するのに用いる入力信号セグメントは、起こり得る過渡信号の位置と前のコードブック内の同期位置に基づいて選択する。
これは理論的には、マッピングa(*)はコードブックに含まれる全ての遷移について評価することを意味する。
Figure 2005173607
この遷移コードブックを用いて、現在の状態ベクトルy(n−1)に最も近いコードブック内の状態ベクトルを探して新しい出力y(n)を計算する。この最も近い隣接状態ベクトルの探索は最小差を計算することにより行い、新しい出力サンプルを得る。すなわち、
Figure 2005173607
しかしこの装置はサンプル毎に作用するよう制限されているわけではなく、好ましくはセグメント毎に作用する。新しい出力セグメントを窓に入れ、前の出力セグメントと加算し混合した後、ダウンサンプリングする。ピッチ置換係数は、コードブックで表される入力セグメントの長さと、コードブックから読み出される出力セグメントの長さの比で決まる。
図面に戻って、図5と図6はトランスポーザの動作のサイクルを示す流れ図である。501に入力データが入り、503で入力信号のセグメントの過渡検出を行う。過渡信号の探索は出力セグメントの長さに等しいセグメントの長さについて行う。505で過渡信号が見つかると、507で過渡信号の位置を記憶し、509でパラメータL(コードブックの長さを表す)と、K(サンプル内の各状態ベクトル間の距離を表す)と、D(各状態ベクトル内のサンプル間の遅れを表す)を調整する。511で過渡信号の位置と前の出力セグメントの位置を比較して、過渡信号の処理が済んだかどうか判定する。513で処理が済んだ場合は、515でコードブックの位置(窓L)と、パラメータKとLとDを調整する。必要なパラメータ調整が終わると、517で過渡検出の結果に基づいて新しい同期点すなわち接続点を探す。この手続きを図6に示す。601でまず前の同期点に基づいて、次式により新しい同期点を計算する。
Figure 2005173607
ただし、Sync_posとSync_pos_oldはそれぞれ新および旧の同期位置、Sは処理した入力セグメントの長さ、Mは置換係数である。603でこの同期点を用いて新しい接続点の精度と旧い接続点の精度を比較する。605でこれが前と同じまたは一層良く一致していて、しかもコードブック内にある場合は、607で新しい同期点を返す。一致が良くない場合は、609で新しい同期点をループで探す。これは類似性測度(この場合は611の最小差関数)を用いて行うが、時間領域または周波数領域の相関を用いることも可能である。613で前の位置より良く一致する位置がある場合は、615で同期位置を記憶する。617で全ての位置を調べる終わると、619でこのシステムは図5の流れ図に戻る。得られた新しい同期点を519で記憶し、521でコードブックから新しいセグメントを、所定の同期点から順番に読み出す。523でこのセグメントを窓に入れて前のセグメントと加算し、525で置換係数によりダウンサンプリングし、527で出力バッファに記憶する。
図7は、コードブックの位置に関して過渡状態にあるシステムの行動を示す。過渡信号の前には、入力セグメント1を表すコードブック1は、セグメント1の「左に」位置する。相関セグメント1は前の出力の一部を表し、これを用いてコードブック1内の同期点1を見つける。過渡信号を検出して過渡信号の点を処理すると、コードブックを図7aに従って動き、現在処理中の入力セグメントが再びコードブックの「右に」なるまで静止する。このシステムは過渡信号より前の同期点を探すことができないので、これにより過渡信号を複写することは不可能になる。
パターン探索予測に基づく多くのピッチトランスポーザまたは時間エキスパンダは音声および単一ピッチ材料に満足できる結果を与える。しかし音楽のような高度に複雑な信号では、特に置換係数が大きい場合は、その性能は急速に悪化する。本発明は性能を高めるいくつかの解決法を提案するので、どんな種類の信号でも優れた結果が得られる。他の設計とは異なって本システムは時変的であり、システムパラメータは入力信号の性質と前の動作サイクル中に用いられたパラメータに基づく。過渡検出器は、コードブックの大きさと位置だけでなく含まれる状態ベクトルの性質も制御する。したがってこれを用いることは、信号セグメントが急速に変化しているときに、聞こえるほどの劣化を起こさない非常に強くて計算が効率的になる方法である。更に、処理中の信号セグメントの長さを変えると非常に計算が多くなるが、本方法は長さを変える必要がない。また本発明は、前の探索の結果に基づく精密なコードブック探索を用いる。つまり、パターン探索予測に基づいて時間領域システムで通常行われているのは2つの信号セグメントの通常の相関を取る方法であるが、本方法はこれとは異なり、全ての位置を順次にチェックするのではなく、最も可能性のある同期位置をまずチェックするものである。コードブック探索を減らすこの新しい方法により、システムの計算の複雑さは大幅に減る。更に、いくつかのトランスポーザを用いるときは、同期位置情報をトランスポーザの間で共有して計算の複雑さを更に減らすことができる。これについては後の実施例で示す。
すでに述べた時間領域トランスポーザを用いて、以下の例のようにSBR−1とSBR−2を実現する。これは例示であって制限するものではない。図8では、3つの時間伸張モジュールを用いて2次、3次、4次の高調波を生成する。この例では各時間領域伸張/トランスポーザは広帯域信号に作用するので、置換の後では手段がないことを考慮して、別の等化器装置を追加せずに置換の前に原始周波数範囲のスペクトル包絡線を調整するとよい。スペクトル包絡線調整器801、803、805はそれぞれいくつかのフィルタバンクチャンネルに作用する。包絡線調整器内の各チャンネルの利得は、置換後に出力での和813、815、817が所望のスペクトル包絡線を生成するように設定しなければならない。トランスポーザ807、809、811は相互に接続され、同期位置情報を共有する。これは、或る条件下では、別個の置換ユニット内で相関中にコードブック内で見出される同期位置の間に高い相関が起こる、という事実に基づいている。やはり例であって本発明の範囲を制限するものではないが、4次の調波トランスポーザは2次の調波トランスポーザに比べて、時間フレームでは半分で動作するがデューティサイクルでは2倍で動作すると仮定する。更に、2つのエキスパンダに用いられるコードブックは同じと仮定し、2つの時間領域エキスパンダの同期位置をそれぞれsync_pos4とsync_pos2で表すと次の関係がある。
Figure 2005173607
ただし、
Figure 2005173607
またSはコードブックで表される入力セグメントの長さである。どちらの同期位置ポインタもコードブックの終わりに到達していなければこれは有効である。通常の動作中は、2次調波トランスポーザが処理する時間フレーム毎にnは1ずつ増加し、ポインタのどちらかが結局コードブックの終わりに到達すると、カウンタnをn=0に設定し、sync_pos2とsync_pos4を個別に計算する。4次の調波トランスポーザに接続すると、3次の調波トランスポーザについても同じ結果が得られる。
上に述べたようにいくつかの相互接続された時間領域トランスポーザを高次の高調波の生成に用いると、計算が大幅に減る。更に、ここに述べたように時間領域トランスポーザを適当なフィルタバンクと共に用いると、生成されたスペクトルの包絡線を調整することができて、しかも時間領域トランスポーザの簡単さと低い計算コストを保つことができる。それは、これらが多少でも固定点計算と加算/減算の演算だけを用いて実現できるからである。
例示であって制限的でないこの発明の他の例は、
・ サブバンドフィルタバンク内の各サブバンド内で時間領域トランスポーザを用いて、各トランスポーザの信号の複雑さを減らす。
・ 時間領域トランスポーザと周波数領域トランスポーザを共に用いて、処理中の入力信号の特性に従ってシステムが異なる置換法を用いることができるようにする。
・ 広帯域音声コーデック内で時間領域トランスポーザを用いて、例えば直線予測の後に得られる残留信号に作用する。
認識すべきことは、上に述べた方法は、サンプルレート変換を単に省略してタイムスケール修正に用いるときだけ優れているということである。更に理解すべきことは、上述の方法はより高いピッチへのピッチ置換(すなわち時間伸張)に焦点を当てているが、当業者に明らかなように、同じ原理はより低いピッチへの置換(すなわち時間圧縮)にも適用できることである。
フィルタバンクを用いた置換
種々の新しい革新的なフィルタバンクを用いた置換技術について以下に説明する。置換される信号を一連のBP信号またはサブバンド信号に分割する。次にサブバンド信号を正確にまたは近似的に置換する。これを行うには、分析サブバンドと合成サブバンドを再接続する(以後、「パッチ」と呼ぶ)とよい。この方法について、まず短時間フーリエ変換(STFT)を用いて説明する。
離散時間信号x(n)のN点STFTを次のように定義する。
Figure 2005173607
ただし、k=0,1,...,N−1、ω=2πk/N、h(n)は窓である。窓が次の条件、
Figure 2005173607

を満たす場合は逆変換が存在して次式で与えられる。
Figure 2005173607
正変換は分析器と見なしてよく(図9a参照)、インパルス応答h(n)exp(jωn)901を持つN個のBPフィルタのバンクの後に、キャリヤexp(−jωn)903を持つN個の乗算器のバンクがあり、BP信号を0Hz付近の領域にシフトダウンして、N個の分析信号X(n)を形成する。窓はプロトタイプLPフィルタとして動作する。X(n)は小さな帯域幅を持ち、通常は905でダウンサンプリングされる。したがって式12はn=rRのときだけ計算すればよい。ただしRは10進化係数、rは新しい時間変数である。X(n)はアップサンプリングによりX(rR)から回復することができる(図9b参照)。すなわち、907でゼロを挿入した後、909でLP濾波する。逆変換は合成器と見なされ、その構成は、信号X(n)を初めの周波数にまでシフトするキャリヤ(1/N)exp(jωn)911を持つN個の乗算器のバンクの後に、全てのチャンネルからの貢献y(n)を加算する段913(図9c参照)がある。STFTおよびISTFTを再配列してDFTおよびIDFTを用いてよく、これによりFFTアルゴリズムを用いることができる[非特許文献6]。
図9cはN=32を持つ2次高調波(M=2)を生成するパッチ915を示す。簡単のために、チャンネル0乃至16だけを示す。BP16の中心周波数はナイキスト周波数に等しく、チャンネル17乃至31は負の周波数に相当する。P917および利得ブロック919で示すブロックについては後で説明するので、とりあえずは除いて考える。この例の入力信号は帯域が制限されており、チャンネル0乃至7だけが信号を含む。分析チャンネル8乃至16は空であって、合成器にマッピングする必要はない。分析チャンネル0乃至7は、入力信号遅延路に相当する合成チャンネル0乃至7に接続する。また分析チャンネルk(4≦k≦7)は合成チャンネルMk(M=2)にも接続し、BPフィルタkの中心周波数の2倍の周波数領域に信号をシフトする。したがって、信号は初めの範囲にアップシフトされるだけでなく、1オクターブ上に置換される。調波生成を実数値フィルタ応答および変調器に関して調べるには、負の周波数も考慮しなければならない(図10aの下側の分岐を参照)。したがって、再マッピングk→Mk1001とN−k→N−Mk1003(4≦k≦7)の組合わせ出力を評価しなければならない。
これから次が得られる。
Figure 2005173607
ただし、M=2である。式15は、入力信号のBP濾波の後に、直線周波数シフトすなわち上側波帯(USB)変調、すなわち上側波帯を用いる単側波帯変調(図10b参照)が続くと考えてよい。ただし1005と1007はヒルベルト変成器を形成し、1009と1011はコサインおよびサインキャリヤを持つ乗算器であり、1013は上側波帯を選択する差分段である。明らかに、このような多帯域BPおよびSSB法は明示的に、すなわちフィルタバンクパッチングなしに、時間領域または周波数領域で実現され、個々の通過帯域と発振器周波数を任意に選択することができる。
式15では、分析チャンネルkの通過帯域内の周波数ωを持つ正弦波は周波数Mω+(ω−ω)で調波を生成する。したがって、基本的多帯域置換と呼ぶ方法だけが、周波数ω=ω(4≦k≦7)を持つ入力信号の正確な高調波を生成する。しかし、フィルタの数が十分大きい場合は、正確な置換からの偏差は無視できる(式4参照)。更に、各分析チャンネルが最大1部分音を含む場合は、P917(図9c)で示すブロックを挿入することにより任意の周波数の準定常音信号は正確に置換される。この場合、X(rR)は、部分音周波数ωiと分析フィルタの中心周波数ωの差に等しい周波数を持つ複素指数関数である。正確な置換Mを得るには、これらの周波数は上の周波数関係を係数Mだけ増加させて、ω→Mω+M(ω−ω)=Mωに修正しなければならない。X(rR)の周波数はそれぞれの重ならない位相角の時間微分に等しく、連続した位相角の1次差分を用いて推定してよい。周波数の推定にMを掛けて、これらの新しい周波数を用いて合成位相角を計算する。しかし、位相定数を除いて、分析引数にMを直接掛けるという簡易法で同じ結果が得られ、周波数を推定する必要がなくなる。これを、ブロック917を表す図11に示す。まず、X(rR)(この例では4≦k≦7)を直角座標から極座標に変換する。これをブロックR→P,1101で示す。1103で引数にM=2を掛け、絶対値は変えない。次に1105で信号を変換して直角座標に戻して(P→R)信号YMk(rR)を形成し、図9cの合成チャンネルに与える。この改善された多帯域置換法には2つの段がある。基本的方法と同様にパッチにより粗い置換を行い、位相乗算器により微細な周波数訂正を行う。上の多帯域置換法はSTFTを用いる従来のピッチシフト法とは異なる。STFTでは合成にルックアップテーブル発振器を用いる。またはISTFTを合成に用いる時は信号の時間を伸ばして10進化する、すなわちパッチを用いない。
図9cの調波パッチは、置換係数が2でない場合は容易に修正される。図12は3次高調波を生成するパッチ1203を示す。1201は分析チャンネル、1205は合成チャンネルである。異なる次数の高調波も図13に示すように同時に作ることができる(ここでは2次と3次の高調波を用いる)。図14は、2次と3次と4次の高調波が重ならない組合わせを示す。最低の可能な調波数をできるだけ高い周波数で用いる。調波Mの宛先範囲の上限を超えると、調波M+1を用いる。図15は、全ての合成チャンネル(N=64、チャンネル0−32を示す)にマッピングする方法を示す。非素数指数を持つ全ての高帯域チャンネルは、原始チャンネル番号と宛先チャンネル番号の関係 kdest=Mksourceに従ってマッピングする。ただし、Mはksourceが低帯域にありkdestが高帯域にあるという条件を満たす最小整数≧2である。したがって、どの合成チャンネルも2つ以上の分析チャンネルから信号を受けない。素数の高帯域チャンネルは
source=1または低帯域チャンネルksource>1にマッピングしてよく、これは上述の関係のよい近似を作る(図15にはM=2,3,4,5における非素数接続だけを示す)。
異なる分析チャンネルからの振幅情報と位相情報を組み合わせることも可能である。振幅信号 |X(rR)| は図16のように接続してよい。位相信号
arg{X (rR)}は図16の原理に従って接続する。このようにして、低帯域周波数を置換し、図2の置換から得られる伸張包絡線ではなく原始領域包絡線の周期的繰返しを生成する。「空の」原始チャンネルを増幅しないようにするため、ゲートや他の手段を用いてよい。図17は別の応用であって、高位のサブバンドから低位のサブバンドへの接続を用いて、高域濾波信号または低音限定信号に分数高調波を生成する。上記の置換を用いるとき、信号の特性に基づいてパッチの適応切替えを用いるとよい。
上の説明では、入力信号に含まれる最高周波数はナイキスト周波数よりかなり低いと仮定した。したがってサンプルレートを増やさずに帯域幅を伸張することができた。しかしこれはいつでもできるわけではなく、事前のアップサンプリングが必要な場合がある。置換にフィルタバンク法を用いるときは、アップサンプリングをプロセスに統合することが可能である。
多くの知覚コーデックは、時間から周波数へのマッピングに最大10進化フィルタバンクを用いる[非特許文献7]。
図18aは知覚エンコーダ装置の基本構造を示す。分析フィルタバンク1801は入力信号をいくつかのサブバンド信号に分割する。1803で、減らしたビット数を用いてサブバンドサンプルを個別に量子化する。量子化レベル数は、最小マスキングしきい値を推定する知覚モデル1807から決定する。サブバンドサンプルを基準化し、任意の冗長度符号化法で符号化し、1805で基準化係数やビット割当て情報やその他のコーデック特定データから成る脇情報と組み合わせて、直列ビットストリームを形成する。次にこのビットストリームを記憶しまたは伝送する。図18bのデコーダでは、1809で符号化ビットストリームのデマルチプレクシングを行い、復号して、1811でサブバンドサンプルを等しい数のビットに再量子化する。1813で、合成フィルタバンクはサブバンドサンプルを組み合わせて初めの信号を再生する。最大10進化フィルタバンクを用いて実現すると計算コストが大幅に減る。以下の説明では、コサイン変調フィルタバンクに焦点を当てる。しかし理解すべきことは、本発明は、ウェーブレット変換のフィルタバンク解釈や、他の不等帯域幅フィルタバンクまたは変換や、多次元フィルタバンクまたは変換などの他の種類のフィルタバンクまたは変換を用いて実現することができることである。
例であって制限するものではないが、以下の説明ではLチャンネルコサイン変調フィルタバンクは入力信号x(n)をL個のサブバンド信号に分割すると仮定する。最大10進化フィルタバンクの一般構造を図19に示す。分析フィルタをH(z)1901(k=0,1,...,L−1)で示す。1903でサブバンド信号v(n)を最大10進化する。各サンプル周波数はf/Lである。ただし、fはx(n)のサンプリング周波数である。合成部では1905で内挿し1907で濾波した後、サブバンド信号を再組立てして
Figure 2005173607

を生成する。合成フィルタをF(z)で示す。更に、本発明は
Figure 2005173607

にスペクトル複製を行い、強化信号y(n)を生じる。
サブバンド信号をQLチャンネルフィルタバンクで合成するときは、L個の低帯域チャンネルだけを用い、また帯域幅伸張係数QはQLが整数値になるように選択するが、この合成によりサンプリング周波数Qfを持つ出力ビットストリームが得られる。したがって、拡大フィルタバンクはLチャンネルフィルタバンクの後にアップサンプラがあるかのように動作する。この場合はL(Q−1)個の高帯域フィルタは用いない(ゼロを与える)ので、オーディオ帯域幅は変わらない。フィルタバンクは単に
Figure 2005173607

をアップサンプリングしたものを再構築するだけである。しかしL個のサブバンド信号を高帯域フィルタにパッチングした場合は、
Figure 2005173607

の帯域幅は係数Qだけ増えてy(n)を生成する。これは本発明の基本的多帯域トランスポーザの最大10進化フィルタバンク版である。この方式を用いると、アップサンプリングプロセスは前に説明した合成濾波に統合される。注意したいのは、どんな大きさのフィルタバンクを用いても、出力信号のサンプルレートは異なり、したがって帯域幅伸張係数は異なることである。整数置換係数Mを持つ本発明の基本的多帯域置換法を用いて
Figure 2005173607

にスペクトル複製を行うには、次式でサブバンド信号をパッチングする。
Figure 2005173607
ただし、k∈[0,L−1]であってMk∈[L,QL−1]になるように選択され、eMk(n)は包絡線訂正、(−1)(M−1)knはスペクトル反転サブバンドの訂正係数である。スペクトル反転はサブバンド信号の10進化の結果であり、反転信号はこれらのチャンネル内の1つ置きのサンプルの符号を変えることにより再反転する。図20は16チャンネルの合成フィルタバンクであって、2009で置換係数M=2、Q=2についてパッチングされている。ブロック2001と2003はそれぞれ図19の分析フィルタH(z)とデシメータである。同様に、2005と2007は補間回路と合成フィルタF(z)である。これにより式16は、受信データの4つの上位周波数サブバンド信号を、合成フィルタバンク内の8つの最上位チャンネルの1つ置きのチャンネルにパッチングすることに簡単化される。スペクトル反転を行ったので、1つ置きのパッチングされたサブバンド信号は合成する前に周波数を反転しなければならない。更に2011で、パッチングされた信号の振幅をSBR−1またはSBR−2の原理に従って調整しなければならない。
本発明の基本的多帯域置換法を用いると、生成される高調波は一般に基本波の正確な倍数にならない。各サブバンドの最低周波数を除く全ての周波数は正確な置換とは或る程度異なる。更に、ターゲット間隔は原始間隔より広い周波数範囲をカバーするので、複製スペクトルはゼロを含む。更に、サブバンド信号の周波数はターゲット間隔に分離されるので、コサイン変調フィルタバンクのエイリアス打消し特性はなくなる。すなわち、隣接サブバンド信号は高帯域領域で重ならない。しかし、当業者に知られているエイリアス削減法を用いればこの種の人工音を減らすことができる。この置換法の利点は、実現が容易なことと、計算コストが非常に低いことである。
正弦波を完全に置換するため、改善された多帯域置換法の効果的な最大10進化フィルタバンクを用いた解決法を以下に提示する。このシステムは追加の修正分析フィルタバンクを用い、合成フィルタバンクは Vaidyanathan により述べられている方法でコサイン変調する[非特許文献8]。最大10進化フィルタバンクに基づいて、本発明の改善された多帯域置換法を用いた操作のステップを図21の略図と、図22の流れ図で以下に示す。
1. L個の受信サブバンド信号をQLチャンネルのフィルタバンク2101、2201、2203で合成して信号x(n)を形成する(L(Q−1)上部チャンネルにはゼロを与える)。したがって、信号x(n)は帯域幅伸張係数Qでオーバーサンプリングされる。
2. 2103、2205でx(n)を係数Qでダウンサンプリングして信号x(n’)を形成する。すなわち、x(n’)=x(Qn’)である。
3. 2207、2209、2211で、T=KM/Qで整数になるように整数値Kを合成フィルタバンクの大きさとして選択する。ただし、Tは修正された分析フィルタバンクの大きさ、Mは置換係数である。好ましくは、Kは定常(音)信号では大きく、動的(過渡的)信号では小さくなるように選ぶ。
4. 2107、2213で、Tチャンネルの修正された分析フィルタバンクでx(n’)を濾波し(T分析フィルタは指数関数的に変調される)、複素値のサブバンド信号の集合を生成する。サブバンド信号を係数T/Mでダウンサンプリングし、サブバンド信号v (M)(n”)(k=0,1,...,T−1)を生成する。したがって、フィルタバンクは係数Mでオーバーサンプリングされる。
5. サンプルv (M)(n”)を極座標表現(振幅と位相角)に変換する。2109、2215で、位相角に係数Mを掛けて、サンプルを図11の方法で変換して直角座標表現に戻す。複素値サンプルの実数部を取り、信号s (M)(n”)を生成する。この操作の後、信号s (M)(n”)を厳密にサンプリングする。
6. 2111、2217で、SBR−1またはSBR−2の原理に従って信号s (M)(n”)の利得を調整する。
7. 2105、2221で、サブバンド信号s (M)(n”)(ただし、k∈[T/M,min(K,T)−1])を通常のコサイン変調Kチャンネルフィルタバンクで合成して、チャンネル0乃至T/M−1にゼロを与える。これにより、信号x (M)(n)を生成する。
8. 2223で、最終的にx (M)(n)とx(n)を加算してy(n)を得る。これが所望のスペクトル複製信号である。
置換係数Mの異なる値についてステップ3乃至6を繰り返して、x(n)に多重高調波を加える。この動作モードを図21の点線で示し、また図22の2211−2219のループの繰り返しで示す。この場合、Mの全ての選択値(Mは整数値)に対してTが整数値になるようにKを選ぶ。好ましくは、K/Qが正の整数になるようにKを選ぶ。全てのサブバンド信号s (Mi)(n”)(ただし、i=1,2,...,m、またmは置換係数の数)を、式
Figure 2005173607
を用いて全ての適用可能なkについて加算する。図22のループの第1繰返しでは、信号s(n”)(ただし、k=0,1,...,K−1)はゼロだけのサブバンドサンプルと考えてよい。全てのループにおいて、2219で次式により新しいサンプルをs(n”)に加える。
Figure 2005173607
ただし、k=K/Q,K/Q+1,...,min(K,T)−1。ステップ7に従って、サブバンド信号s(n”)をKチャンネルフィルタバンクで1度に合成する。
ステップ4の修正された分析フィルタバンクは、コサイン変調フィルタバンクの理論から得られる。ここで、変調重ね合わせ変換(MLT)[非特許文献9]は特殊なケースである。Tチャンネルのコサイン変調フィルタバンク内のフィルタのインパルス応答h(n)は次のように書かれる。
Figure 2005173607
ただし、k=0,1,...,T−1、Nは低域プロトタイプフィルタp(n)の長さ、Cは定数、Φは隣接チャンネル間のエイリアスを打ち消す位相角である。Φkの制約は次式で表され、
Figure 2005173607
これを簡単化すると次の閉じた形式表現になる。
Figure 2005173607
Φをこのように選ぶと、インパルス応答を持つ合成フィルタバンク
Figure 2005173607
を用いて、完全な再構成システムまたは近似的な再構成システム(疑似QMFシステム)が得られる。
次のフィルタを考える。
Figure 2005173607
ただし、h’(n)はプロトタイプフィルタp(n)をサイン変調したものである。フィルタH’(z)とH(z)は、同じ通過帯域支援を有するが位相応答が異なる。フィルタの通過帯域は実際は相互のヒルベルト変換である(これはω=0およびω=πに近い周波数では有効でない)。式19と式23を結合すると次式になり、
Figure 2005173607
正の周波数ではH(z)と同じ形の振幅応答を持ち負の周波数ではゼロであるフィルタを生成する。式24のインパルス応答を持つフィルタバンクを用いると、式19のインパルス応答を持つフィルタバンクから得られるサブバンド信号に対応する、分析(複素)信号と見なしてよいサブバンド信号の集合が得られる。複素値サンプルは極座標形式で z(n)=r(n)+ji(n)=|z(n)|exp{jarg(z(n))} と書くことができるので、分析信号は扱いやすい。しかし置換に複素フィルタバンクを用いると、エイリアス打消し特性を保つためにΦの制約を一般化しなければならない。エイリアス打消しと式22のインパルス応答を持つ合成フィルタバンクを保証するΦの新しい制約は
Figure 2005173607
であって、M=1のときは式21のように簡単になる。このように選択すると、置換された部分音はM=1(置換なし)のときと同じ相対位相を有する。
式24と式25を結合すると次式が得られる。
Figure 2005173607
これは本発明のステップ4の修正されたフィルタバンクに用いるフィルタである。
ステップ5について少し説明する。係数T/Mで複素値のサブバンド信号をダウンサンプリングするとMだけオーバーサンプリングされる。これは、後で位相角に置換係数Mを掛けるときの重要な判定基準である。オーバーサンプリングにより、ターゲット範囲に置換した後の帯域幅当たりのサブバンドサンプルの数は原始範囲の数に等しくなる。置換されたサブバンド信号の個々の帯域幅は、位相乗算器のために原始範囲内の帯域幅のM倍になる。このため、ステップ5の後でサブバンド信号は厳密にサンプリングされ、更に、音信号を置換するときスペクトル内にゼロがなくなる。
三角法計算を避けるために、すなわち新しいサブバンド信号を次式
Figure 2005173607
ただし、|v (M)(n”)|はv (M)(n”)の絶対値、で計算しなければならないので、次の三角法関係を用いる。
Figure 2005173607
ここで
Figure 2005173607
とし、また
Figure 2005173607
および
Figure 2005173607
であって、ステップ5の計算を三角法計算によらずに行うことができるので、計算は簡単になる。
Mが偶数のときに置換を用いると、低域プロトタイプフィルタp(n)の特性によっては位相乗算器に障害が起こることがある。全ての適用可能なプロトタイプフィルタは、z平面内の単位円上にゼロを有する。単位円上のゼロはフィルタの位相応答を180°シフトする。Mが偶数のとき、位相乗算器はこのシフトを360°シフト(すなわち位相シフトが消える)と解釈する。このように位相シフトが消える周波数に位置する部分音は合成信号にエイリアシングを起こす。最悪の場合は、部分音が分析フィルタの第1サイドローブの頂点に対応する周波数の点にあるときである。振幅応答でのこのローブの拒否に従って、エイリアシングの聞こえかたが変わる。一例として、ISO/MPEG層1および2標準に用いるプロトタイプフィルタの第1サイドローブは96dB拒否されるが、ISO/MPEG層3標準のMDCT方式に用いるサイン窓の第1サイドローブでは拒否は23dBに過ぎない。サイン窓を用いると、この種のエイリアシングが聞こえることは明らかである。この問題の解決を以下に示す。これを相対的位相同期と呼ぶ。
フィルタh (n)は全て直線位相応答を有する。位相角Φは隣接チャンネルの間に相対的位相差を生じさせ、単位円上のゼロはチャンネル間で異なる周波数の位置に180°位相シフトを起こす。位相乗算器を活動化する前に隣接サブバンド信号の間の位相差を監視すれば、位相反転情報を含むチャンネルを検出するのは容易である。音信号の場合は式25から、位相差は非反転信号では約π/2Mであり、したがってどちらかの信号が反転している信号では約π(1−1/2M)である。反転信号の検出は、隣接サブバンド内のサンプルの点乗積
Figure 2005173607
を計算することにより簡単に行うことができる。式32の積が負の場合は位相差は90°より大きく、位相反転条件が存在する。ステップ5に従って複素値サブバンド信号の位相角にMを掛けると、最後に反転と印した信号は打ち消される。このように相対位相同期法を用いると180°シフトしたサブバンド信号は位相掛け算を行った後このシフトを保持して、エイリアシング打消し特性を維持する。
スペクトル包絡線調整
非特許文献10および式1によると、音声や音楽など殆どの音は緩やかに変化する包絡線と急速に変化する一定振幅のキャリヤの積で特徴づけられる。
分割帯域知覚オーディオコーダでは、オーディオ信号をフレームに区切り、サブバンドフィルタすなわち時間周波数領域変換を用いて多数の周波数帯域に分割する。殆どの型のコーデックでは、伝送または記憶のために信号をその後2つの主な信号成分であるスペクトル包絡線表現と基準化サブバンドサンプルまたは係数に分離する。以下の説明を通して「サブバンドサンプル」または「係数」とは、サブバンドフィルタから得られるサンプル値と、時間周波数変換から得られる係数を言う。「スペクトル包絡線」または「換算係数」は時間フレームにおけるサブバンドの値(各サブバンド内の平均または最大振幅など)を表し、サブバンドサンプルの基準化に用いる。しかし、スペクトル包絡線は直線予測LPCを用いて得ることもできる(特許文献4)。一般的なコーデックでは、基準化されたサブバンドサンプルは、緩やかに変化する時間包絡線、したがって非常に低いビットレート(利用可能なビットレートの約10%を用いる)で符号化されるスペクトル包絡線、に比べて高いビットレート(利用可能なビットレートの約90%を用いる)で符号化する必要がある。
初めの信号の音色の質を保存する場合は、複製された帯域幅の正確なスペクトル包絡線が重要である。楽器または音声の知覚される音色は主に聴覚の最高オクターブにある周波数flimより低いスペクトル分布で決まる。したがってflimより高いスペクトルの詳細は余り重要でないので、上記の置換法により得られる高帯域の微細構造は調整する必要がない。しかし粗構造は一般に調整する必要がある。この調整を行うには、信号のスペクトル表現を濾波して包絡線の粗構造と微細構造を分離するとよい。
本発明のSBR−1実現では、高帯域の粗いスペクトル包絡線はデコーダで利用可能な低帯域情報から推定する。この推定は、低帯域の包絡線を絶えず監視して、特定の規則に従って高帯域スペクトル包絡線を調整することにより行う。包絡線推定を行う新規な方法は、対数の周波数振幅空間内で漸近線を用いる。これは線形空間内で種々の次数の多項式により曲線の当てはめを行うことに相当する。低帯域スペクトルの上部のレベルと傾斜を推定し、この推定を用いて新しい高帯域包絡線を表す1つまたはいくつかのセグメントのレベルと傾斜を定義する。漸近線の交差点は周波数で固定され、ピボット点の役目をする。しかし必ずしも必要ではないが、制約を設けて高帯域包絡線軌跡を現実的な境界内に保つのは有益である。スペクトル包絡線を推定する別の方法は、多数の代表的スペクトル包絡線のベクトル量子化VQを用いて、これをルックアップテーブルまたはコードブックに記憶することである。ベクトル量子化は大量の訓練データ(この場合はオーディオスペクトル包絡線)上の所望の数のベクトルを訓練することにより行う。この訓練は通常は一般化されたロイド(Lloyd)アルゴリズムで行い[非特許文献11]、訓練データの内容を最適にカバーするベクトルを生成する。B包絡線で訓練されたAスペクトル包絡線(B>>A)から成るVQコードブックを考えると、A包絡線は、多くの種類の音のB個の観察に基づく、低帯域包絡線から高帯域包絡線へのA個の最も可能性のある遷移を表す。これは理論的には、B個の観察に基づいて包絡線を予測するためのA個の最適規則である。新しい高帯域スペクトル包絡線を推定するときは、初めの低帯域包絡線を用いてコードブックを探し、コードブックの最も合致する項目の高帯域部を適用して新しい高帯域スペクトルを作成する。
図23に、基準化されたサブバンドサンプルを2301で表し、スペクトル包絡線を換算係数2305で表す。例示のために、デコーダ2303への伝送を並列形式で示す。SBR−2法の図24では、図23と同様にスペクトル包絡線情報を生成して伝送するが、サブバンドサンプルは低帯域だけを伝送する。したがって伝送される換算係数は全周波数範囲にわたるが、サブバンドサンプルは高帯域を除く限られた周波数範囲だけである。デコーダで低帯域サブバンドサンプル2401を2403のように置換し、受信した高帯域スペクトル包絡線情報2405と結合する。このようにすれば、合成高帯域スペクトル包絡線は初めのスペクトル包絡線と同じであるがビットレートは大幅に下がる。
或るコーデックでは、図24に示すように全スペクトル包絡線の換算係数を伝送し、高帯域サブバンドサンプルは省略することができる。他のコーデック標準では、換算係数とサブバンドサンプルが同じ周波数範囲をカバーするよう規定しなければならない。すなわち、サブバンドサンプルを省略した場合は換算係数を伝送することはできない。この場合はいくつかの解決法がある。例えば、高帯域スペクトル包絡線情報を別のフレームで伝送してよい。このフレームは、自身のヘッダと任意の誤り保護を持ち、その後にデータが続く。本発明を利用しない普通のデコーダはヘッダを認識しないので、余分なフレームは廃棄する。第2の解決法では高帯域スペクトル包絡線情報を、符号化されたビットストリーム内の補助データとして伝送する。しかし利用可能な補助データフィールドは包絡線情報を保持するだけ十分大きくなければならない。この2つの解決法が適用できない場合は、第3の解決法、すなわち高帯域スペクトル包絡線情報をサブバンドサンプルとして隠す方法を適用してよい。サブバンド換算係数は、一般に100dBを超える大きな動的範囲をカバーする。任意の数のサブバンド換算係数(図25の2505)を非常に低い値に設定して、高帯域換算係数をサブバンドサンプルとして「偽装し」て2501のように伝送することができる。このように高帯域換算係数をデコーダ2503に伝送することにより、ビットストリーム構文と両立させることができる。任意のデータをこの方法で伝送してよい。これに関連して、情報を符号化してサブバンドサンプルストリームにする方法がある[特許文献5]。図26に示す第4の解決法は、符号化システムがハフマンまたは他の冗長度符号化2603を用いるときに適用することができる。高い冗長度を達成するには、高帯域のサブバンドサンプルをゼロ(2601)にまたは一定値に設定する。
過渡応答の改善
過渡信号に関連する人工音はオーディオコーデックの共通の問題であり、同様な人工音は本発明でも発生する。一般に、パッチングを行うと時間領域の前エコーと後エコー(すなわち「真の」過渡信号の前か後の疑似過渡信号)に相当するスペクトル「ゼロ」すなわちノッチを生成する。Pブロックはゆっくり変化する音信号の「ゼロを埋める」が、前エコーと後エコーは残る。改善された多帯域法は、正弦波の数がサブバンド当たり1個に制限された離散的正弦波に作用するものである。サブバンド内の過渡信号すなわち雑音は、そのサブバンド内の多数の離散的正弦波と見ることができる。これは相互変調歪みを生成する。これらの人工音は、複製された高帯域チャンネルに過渡期間中に接続された追加の量子化雑音源と考えられる。したがって、知覚オーディオコーダ内の前エコーおよび後エコー人工音を避ける従来の方法(例えば適応窓切替え)を用いえば、改善された多帯域法の主観的品質を高めることができる。コーデックまたは別個の検出器による過渡検出を用い、また過渡状態にあるチャンネル数を減らせば、「量子化雑音」は時間に依存するマスキングしきい値を超えない。過渡信号の通過中は少数のチャンネルを用い、音の通過中は多数のチャンネルを用いる。このような適応的な窓切替えはコーデック内で普通に用いられており、周波数分解能と時間分解能の間で取引する。フィルタバンク大きさが固定されている応用には別の方法を用いてよい。1つの方法は、スペクトル領域内の直線予測により「量子化雑音」を時間で成形することである。次に残留信号に置換を行う。これが直線予測フィルタの出力である。その後で反転予測フィルタを、初めのチャンネルとスペクトル複製チャンネルに同時にかける。別の方法はコンパンダシステム(すなわち、置換または符号化の前の過渡信号の動的振幅圧縮と、置換の後の補足的な伸張)を用いる。また、信号に依存して置換法の間で切り替えることもできる。例えば定常信号に高分解能フィルタバンク置換法を用い、過渡信号に時変パターン探索予測法を用いる。
実際的な応用
標準の信号プロセッサまたは強力PCを用いると、SBR強化コーデックを実時間で動作させることができる。SBR強化コーデックはカスタムチップにハードで符号化してもよい。また図27や図28のように任意のコーデックを用いて種々のシステムでこれを実現して、アナログ信号またはディジタル信号の記憶または伝送に用いてよい。SBR−1法は、デコーダに組み込んでも、付加的なハードウエアまたはソフトウエア後処理モジュールとして供給してもよい。SBR−2法はエンコーダを更に修正する必要がある。図27において、アナログ入力信号がA/D変換器2701に入り、ディジタル信号を形成して任意のエンコーダ2703に与え、ここで原始コーディングを行う。この装置に入る信号は、聴覚範囲内のスペクトル帯域をすでに廃棄した、またはスペクトル帯域を任意のエンコーダ内で廃棄した低域信号でよい。得られる低帯域信号をマルチプレクサ2705に与えて直列ビットストリームを形成し、2707で伝送または記憶する。デマルチプレクサ2709は信号を回復して任意のデコーダ2711に与える。スペクトル包絡線情報2715をデコーダ2711で評価してSBR−1ユニット2713に与える。ユニット2713は低帯域信号を高帯域信号に置換して、包絡線を調整した広帯域信号を生成する。最後に、2717でディジタル広帯域信号をアナログ出力信号に変換する。
SBR−2法はエンコーダを更に修正する必要がある。図28において、アナログ入力信号がA/D変換器2801に入り、ディジタル信号を形成して任意のエンコーダ2803に与え、ここで原始コーディングを行う。2805でスペクトル包絡線情報を取り出す。得られる信号は低帯域サブバンドサンプルまたは係数と広帯域包絡線情報で、これをマルチプレクサ2807に与えて直列ビットストリームを形成し、2809で伝送または記憶する。デマルチプレクサ2811は信号や低帯域サブバンドサンプルまたは係数や広帯域包絡線情報を回復して、任意のデコーダ2815に与える。スペクトル包絡線情報2813をデマルチプレクサ2811からSBR−2ユニット2817に送り、低帯域信号を高帯域信号に置換して、包絡線を調整した広帯域信号を生成する。最後に、2819でディジタル広帯域信号をアナログ出力信号に変換する。
非常に低いビットレートだけしか利用できないときは(インターネットや、遅い電話モデム、AM放送など)、オーディオプログラム材料のモノコーディングが避けられない。知覚品質を高めて、より快適な音をプログラムするには、タップ付き遅延線2901を導入すれば図29に示す簡単な「疑似ステレオ」発生器が得られる。これは、10msと15msの遅延信号を2903で約−6dBにして各出力チャンネルに与え、2905で初めのモノ信号に加える。疑似ステレオ発生器を用いると、低い計算コストで大きな知覚改善が得られる。
上述の実施の形態は、オーディオ原始コーディングを改善するための本発明の原理を示すものに過ぎない。理解されるように、ここに述べた装置や詳細の修正や変更は当業者には明らかである。したがって、課せられる制約は特許請求の範囲だけによるものであって、ここで実施の形態の記述や説明により示した特定の詳細によるものではない。
本発明の符号化装置内に挿入されたSBRである。 本発明の上部高調波のスペクトル複製を示す。 本発明の帯域内高調波のスペクトル複製を示す。 本発明のトランスポーザの時間領域実現のブロック図である。 本発明のパターン探索予測トランスポーザの動作のサイクルを表す流れ図である。 本発明の同期点の探索を表す流れ図である。 図7a,図7bは、本発明の過渡状態中のコードブック位置決めを示す。 本発明のSBR動作のための、適当なフィルタバンクに関するいくつかの時間領域トランスポーザの実現のブロック図である。 図9a,図9cは、2次高調波を生成するよう構成された本発明のSTFT分析および合成用の装置を表すブロック図である。 図10a,図10bは、本発明のSTFT装置内の直線周波数シフトを持つ1つのサブバンドのブロック図である。 本発明の位相乗算器を用いる1つのサブバンドを示す。 本発明の3次高調波を生成する方法を示す。 本発明の2次および3次高調波を同時に生成する方法を示す。 本発明のいくつかの次数の高調波の重ならない組合わせの生成を示す。 本発明のいくつかの次数の高調波の交互配置組合わせの生成を示す。 高帯域の直線周波数シフトの生成を示す。 本発明の分数調波を生成する方法を示す。 図18a,図18bは、知覚コーデックのブロック図である。 最大10進化フィルタバンクの基本構造を示す。 本発明の最大10進化フィルタバンクの2次高調波の生成を示す。 本発明のサブバンド信号上で動作する最大10進化フィルタバンク内の改善された多帯域置換のブロック図である。 本発明のサブバンド信号上で動作する最大10進化フィルタバンク内の改善された多帯域置換を表す流れ図である。 一般的なコーデックのサブバンドサンプルと換算係数を示す。 本発明のSBR−2用のサブバンドサンプルと包絡線情報を示す。 本発明のSBR−2内の包絡線の隠された伝送を示す。 本発明のSBR−2内の冗長度符号化を示す。 本発明のSBR−1法を用いたコーデックの実現を示す。 本発明のSBR−2法を用いたコーデックの実現を示す。 本発明の「疑似ステレオ」発生器のブロック図である。
符号の説明
103 エンコーダ
107 デコーダ
2001 分析フィルタ
2003 デシメータ
2005 補間回路
2007 合成フィルタ

Claims (9)

  1. 時間的に離散した音声信号のアップサンプリングした信号を発生する方法であって、該音声信号が第1のサンプリングレートによりサンプリングされる方法において、前記方法は、
    音声信号の分析された信号を与えるステップであって、該分析された信号は、L個のチャネル分析フィルタバンクにより得られたL個の分析サブバンド信号を含み、該LはL個のチャネル分析フィルタバンクのフィルタバンクチャネルの個数を表している前記与えるステップと、
    L個の低域チャネルとL(Q−1)個の高域チャネルとを有するQL個のチャネル合成フィルタバンクを使用して音声信号の分析された信号をフィルタリングして、該時間的に離散した音声信号のアップサンプリングした信号を得るステップであって、該アップサンプリングした信号が前記第1のサンプリングレートにQ(Qは係数)を乗じた値である第2のサンプリングレートを有する前記フィルタリングするステップとを有し、
    前記フィルタリングのステップにおいて、前記合成フィルタバンクのL個の低域チャネルのみを使用することによって、音声信号のアップサンプリングされた信号は該音声信号と同一の帯域幅を持つようにし、
    前記フィルタリングのステップの前に、L個の低域チャネルのサブバンド信号の数を高域チャネルの数にパッチングして、音声信号のアップサンプリングした信号の帯域を拡大する
    ことを特徴とする前記方法。
  2. 請求項1に記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、前記与えるステップにおいて、
    時間的に離散した音声信号をL個のチャネル分析フィルタバンクに供給し、L個のチャネルの1つがバンドパスフィルタとそれの後に接続されるデシメータとを含み、該デシメータがLに等しいデシメーション係数を有することを特徴とする前記方法。
  3. 請求項1に記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、前記与えるステップは、
    量子化サブバンドサンプルをビットストリームでデマルチプレクシングするステップと、
    量子化サブバンドサンプルを再量子化して音声信号の分析された信号を得るステップと
    を含むことを特徴とする前記方法。
  4. 請求項1から3のいずれかに記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、前記フィルタリングのステップは、L個の低域チャネルのチャネルについて、
    QL個の補間係数によりチャネル信号を補間して補間チャネル信号を得るステップと、
    補間チャネル信号をチャネルのバンドパスフィルタによりフィルタリングするステップと
    を含む前記方法。
  5. 請求項1から4のいずれかに記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、前記フィルタリングのステップは、L(Q−1)個の高域チャネルのチャネルについて、
    チャネルのバンドパスフィルタにゼロを与えるステップを含むことを特徴とする前記方法。
  6. 請求項4に記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、前記フィルタリングのステップは、L個の低域チャネルのフィルタ出力を合成するステップを含むことを特徴とする前記方法。
  7. 請求項1から6のいずれかに記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、係数Qは、QとLの積が整数値となるような条件から選択されることを特徴とする前記方法。
  8. 請求項1から7のいずれかに記載の時間的に離散した音声信号のアップサンプリングした信号を発生する方法において、前記QLチャネル合成フィルタバンクは、フィルタバンクとしてQL個の周波数係数入力を有する周波数/時間変換により実施することを特徴とする前記方法。
  9. 時間的に離散した音声信号のアップサンプリングした信号を発生する装置であって、該音声信号が第1のサンプリングレートによりサンプリングされる装置において、前記装置は、
    音声信号の分析された信号を与えるステップであって、該分析された信号は、L個のチャネル分析フィルタバンクにより得られたL個の分析サブバンド信号を含み、該LはL個のチャネル分析フィルタバンクのフィルタバンクチャネルの個数を表している前記与える手段と、
    音声信号の分析された信号をフィルタリングして、該時間的に離散した音声信号のアップサンプリングした信号を得るL個の低域チャネルとL(Q−1)個の高域チャネルとを有するQL個のチャネル合成フィルタバンクであって、該アップサンプリングした信号が前記第1のサンプリングレートにQ(Qは係数)を乗じた値である第2のサンプリングレートを有する前記フィルタリングするQL個のチャネル合成フィルタバンクとを有し、
    前記合成フィルタバンクのL個の低域チャネルのみを使用することによって、音声信号のアップサンプリングされた信号は該音声信号と同一の帯域幅を持つようにし、
    L個の低域チャネルのサブバンド信号の数を高域チャネルの数にパッチングして、音声信号のアップサンプリングした信号の帯域を拡大する
    ことを特徴とする前記装置。
JP2004355011A 1997-06-10 2004-12-08 時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置 Expired - Lifetime JP4220461B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9702213A SE9702213D0 (sv) 1997-06-10 1997-06-10 A method and a device for bit-rate reduction using synthetic bandwidth expansion
SE9704634A SE9704634D0 (sv) 1997-12-12 1997-12-12 Synthetic bandwidth expansion of audio signals
SE9800268A SE512719C2 (sv) 1997-06-10 1998-01-30 En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50196299A Division JP3871347B2 (ja) 1997-06-10 1998-06-09 スペクトル帯域複製を用いた原始コーディングの強化

Publications (2)

Publication Number Publication Date
JP2005173607A true JP2005173607A (ja) 2005-06-30
JP4220461B2 JP4220461B2 (ja) 2009-02-04

Family

ID=27355877

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50196299A Expired - Lifetime JP3871347B2 (ja) 1997-06-10 1998-06-09 スペクトル帯域複製を用いた原始コーディングの強化
JP2004355011A Expired - Lifetime JP4220461B2 (ja) 1997-06-10 2004-12-08 時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP50196299A Expired - Lifetime JP3871347B2 (ja) 1997-06-10 1998-06-09 スペクトル帯域複製を用いた原始コーディングの強化

Country Status (14)

Country Link
US (4) US6680972B1 (ja)
EP (2) EP0940015B1 (ja)
JP (2) JP3871347B2 (ja)
CN (2) CN1206816C (ja)
AT (2) ATE303679T1 (ja)
AU (1) AU7446598A (ja)
BR (1) BR9805989B1 (ja)
DE (2) DE69831435T2 (ja)
DK (2) DK1367566T3 (ja)
ES (2) ES2213901T3 (ja)
HK (2) HK1030843A1 (ja)
PT (2) PT940015E (ja)
SE (1) SE512719C2 (ja)
WO (1) WO1998057436A2 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052331A (ja) * 2005-08-19 2007-03-01 Kenwood Corp 補間装置、オーディオ再生装置、補間方法および補間プログラム
WO2007063913A1 (ja) * 2005-11-30 2007-06-07 Matsushita Electric Industrial Co., Ltd. サブバンド符号化装置およびサブバンド符号化方法
JP2007148274A (ja) * 2005-11-30 2007-06-14 Kenwood Corp 補間装置、音再生装置、補間方法および補間プログラム
JP2007532934A (ja) * 2004-01-23 2007-11-15 マイクロソフト コーポレーション 広義知覚類似性(wide−senseperceptualsimilarity)を使用するデジタルメディアスペクトルデータの効率的なコーディング
JP2008129541A (ja) * 2006-11-24 2008-06-05 Fujitsu Ltd 復号化装置および復号化方法
WO2009054228A1 (ja) * 2007-10-26 2009-04-30 D & M Holdings Inc. オーディオ信号補間装置及びオーディオ信号補間方法
JP2009533716A (ja) * 2006-04-10 2009-09-17 クゥアルコム・インコーポレイテッド オーディオ符号化並びに復号化における励起の処理
JP2009541790A (ja) * 2006-06-21 2009-11-26 サムスン エレクトロニクス カンパニー リミテッド 適応的高周波数領域の符号化及び復号化方法及び装置
JP2010515946A (ja) * 2007-01-12 2010-05-13 サムスン エレクトロニクス カンパニー リミテッド 帯域幅拡張の符号化及び復号化のための方法、装置及び媒体
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
US8340962B2 (en) 2006-06-21 2012-12-25 Samsumg Electronics Co., Ltd. Method and apparatus for adaptively encoding and decoding high frequency band
KR101250596B1 (ko) 2008-08-21 2013-04-03 모토로라 모빌리티 엘엘씨 신호 경계 주파수의 결정을 용이하게 하는 방법 및 장치
US8428957B2 (en) 2007-08-24 2013-04-23 Qualcomm Incorporated Spectral noise shaping in audio coding based on spectral dynamics in frequency sub-bands
JP2013521536A (ja) * 2010-03-09 2013-06-10 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. オーディオ信号用の位相ボコーダに基づく帯域幅拡張方法における改善された振幅応答及び時間的整列のための装置及び方法
KR101303776B1 (ko) * 2009-05-27 2013-09-04 돌비 인터네셔널 에이비 효율적인 조합 고조파 변조 방법
US8554569B2 (en) 2001-12-14 2013-10-08 Microsoft Corporation Quality improvement techniques in an audio encoder
JP2014142653A (ja) * 2008-12-15 2014-08-07 Fraunhofer Ges Zur Foerderung Der Angewandten Forschung Ev オーディオエンコーダおよび帯域幅拡張デコーダ
JP2015018273A (ja) * 2009-10-21 2015-01-29 ドルビー・インターナショナル・アーベー 結合されたトランスポーザーフィルターバンクにおけるオーバーサンプリング
US9026452B2 (en) 2007-06-29 2015-05-05 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US9159333B2 (en) 2006-06-21 2015-10-13 Samsung Electronics Co., Ltd. Method and apparatus for adaptively encoding and decoding high frequency band
KR101610626B1 (ko) 2010-09-16 2016-04-20 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US12033645B2 (en) 2023-10-05 2024-07-09 Dolby International Ab Cross product enhanced subband block based harmonic transposition

Families Citing this family (394)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE371298T1 (de) * 1996-11-07 2007-09-15 Koninkl Philips Electronics Nv Übertragung eines bitstromsignals
JP4193243B2 (ja) * 1998-10-07 2008-12-10 ソニー株式会社 音響信号符号化方法及び装置、音響信号復号化方法及び装置並びに記録媒体
SE9903553D0 (sv) * 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
SE9903552D0 (sv) * 1999-01-27 1999-10-01 Lars Liljeryd Efficient spectral envelope coding using dynamic scalefactor grouping and time/frequency switching
US7085377B1 (en) * 1999-07-30 2006-08-01 Lucent Technologies Inc. Information delivery in a multi-stream digital broadcasting system
US6978236B1 (en) * 1999-10-01 2005-12-20 Coding Technologies Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
WO2001053982A1 (en) * 2000-01-18 2001-07-26 National Research Council Of Canada Parallel correlator archtitecture
FI119576B (fi) * 2000-03-07 2008-12-31 Nokia Corp Puheenkäsittelylaite ja menetelmä puheen käsittelemiseksi, sekä digitaalinen radiopuhelin
CN1154975C (zh) * 2000-03-15 2004-06-23 皇家菲利浦电子有限公司 用于声频编码的拉盖尔函数
US7742927B2 (en) * 2000-04-18 2010-06-22 France Telecom Spectral enhancing method and device
FR2807897B1 (fr) 2000-04-18 2003-07-18 France Telecom Methode et dispositif d'enrichissement spectral
US7330814B2 (en) * 2000-05-22 2008-02-12 Texas Instruments Incorporated Wideband speech coding with modulated noise highband excitation system and method
SE0001926D0 (sv) 2000-05-23 2000-05-23 Lars Liljeryd Improved spectral translation/folding in the subband domain
US6718300B1 (en) * 2000-06-02 2004-04-06 Agere Systems Inc. Method and apparatus for reducing aliasing in cascaded filter banks
JP3538122B2 (ja) * 2000-06-14 2004-06-14 株式会社ケンウッド 周波数補間装置、周波数補間方法及び記録媒体
JP3576935B2 (ja) * 2000-07-21 2004-10-13 株式会社ケンウッド 周波数間引き装置、周波数間引き方法及び記録媒体
JP3576941B2 (ja) * 2000-08-25 2004-10-13 株式会社ケンウッド 周波数間引き装置、周波数間引き方法及び記録媒体
US20020049586A1 (en) * 2000-09-11 2002-04-25 Kousuke Nishio Audio encoder, audio decoder, and broadcasting system
SE0004163D0 (sv) * 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
SE0004187D0 (sv) * 2000-11-15 2000-11-15 Coding Technologies Sweden Ab Enhancing the performance of coding systems that use high frequency reconstruction methods
SE0004818D0 (sv) * 2000-12-22 2000-12-22 Coding Technologies Sweden Ab Enhancing source coding systems by adaptive transposition
US20020087315A1 (en) * 2000-12-29 2002-07-04 Lee Victor Wai Leung Computer-implemented multi-scanning language method and system
US6845170B2 (en) 2001-01-11 2005-01-18 Sony Corporation Watermark resistant to resizing and rotation
US20020128839A1 (en) * 2001-01-12 2002-09-12 Ulf Lindgren Speech bandwidth extension
WO2002058052A1 (en) * 2001-01-19 2002-07-25 Koninklijke Philips Electronics N.V. Wideband signal transmission system
US7660424B2 (en) 2001-02-07 2010-02-09 Dolby Laboratories Licensing Corporation Audio channel spatial translation
FR2821475B1 (fr) * 2001-02-23 2003-05-09 France Telecom Procede et dispositif de reconstruction spectrale de signaux a plusieurs voies, notamment de signaux stereophoniques
FR2821476B1 (fr) * 2001-02-23 2003-04-11 France Telecom Procede de reconstruction spectrale de signal audio a spectre incomplet et dispositif correspondant
FR2821501B1 (fr) * 2001-02-23 2004-07-16 France Telecom Procede et dispositif de reconstruction spectrale d'un signal a spectre incomplet et systeme de codage/decodage associe
JP4008244B2 (ja) * 2001-03-02 2007-11-14 松下電器産業株式会社 符号化装置および復号化装置
US6865273B2 (en) * 2002-06-05 2005-03-08 Sony Corporation Method and apparatus to detect watermark that are resistant to resizing, rotation and translation
US7602936B2 (en) * 2001-03-08 2009-10-13 Sony Corporation Method to make wavelet watermarks resistant to affine transformations
SE0101175D0 (sv) * 2001-04-02 2001-04-02 Coding Technologies Sweden Ab Aliasing reduction using complex-exponential-modulated filterbanks
AUPR433901A0 (en) 2001-04-10 2001-05-17 Lake Technology Limited High frequency signal construction method
US7711123B2 (en) * 2001-04-13 2010-05-04 Dolby Laboratories Licensing Corporation Segmenting audio signals into auditory events
WO2003003345A1 (fr) 2001-06-29 2003-01-09 Kabushiki Kaisha Kenwood Dispositif et procede d'interpolation des composantes de frequence d'un signal
US8605911B2 (en) 2001-07-10 2013-12-10 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
SE0202159D0 (sv) * 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
JP2003108197A (ja) * 2001-07-13 2003-04-11 Matsushita Electric Ind Co Ltd オーディオ信号復号化装置およびオーディオ信号符号化装置
CN1272911C (zh) 2001-07-13 2006-08-30 松下电器产业株式会社 音频信号解码装置及音频信号编码装置
JP4012506B2 (ja) * 2001-08-24 2007-11-21 株式会社ケンウッド 信号の周波数成分を適応的に補間するための装置および方法
EP1446797B1 (en) * 2001-10-25 2007-05-23 Koninklijke Philips Electronics N.V. Method of transmission of wideband audio signals on a transmission channel with reduced bandwidth
EP1440433B1 (en) 2001-11-02 2005-05-04 Matsushita Electric Industrial Co., Ltd. Audio encoding and decoding device
DE10154932B4 (de) * 2001-11-08 2008-01-03 Grundig Multimedia B.V. Verfahren zur Audiocodierung
JP3926726B2 (ja) * 2001-11-14 2007-06-06 松下電器産業株式会社 符号化装置および復号化装置
JP4308229B2 (ja) * 2001-11-14 2009-08-05 パナソニック株式会社 符号化装置および復号化装置
CN100395817C (zh) 2001-11-14 2008-06-18 松下电器产业株式会社 编码设备、解码设备和解码方法
US20030108108A1 (en) * 2001-11-15 2003-06-12 Takashi Katayama Decoder, decoding method, and program distribution medium therefor
WO2003042648A1 (fr) * 2001-11-16 2003-05-22 Matsushita Electric Industrial Co., Ltd. Codeur de signal vocal, decodeur de signal vocal, procede de codage de signal vocal et procede de decodage de signal vocal
US7317811B2 (en) * 2001-11-28 2008-01-08 Sony Electronics Inc. Method to decode temporal watermarks in compressed video
US7433489B2 (en) * 2001-11-28 2008-10-07 Sony Electronics Inc. Method to ensure temporal synchronization and reduce complexity in the detection of temporal watermarks
WO2003046891A1 (en) 2001-11-29 2003-06-05 Coding Technologies Ab Methods for improving high frequency reconstruction
JP4317355B2 (ja) * 2001-11-30 2009-08-19 パナソニック株式会社 符号化装置、符号化方法、復号化装置、復号化方法および音響データ配信システム
US6934677B2 (en) 2001-12-14 2005-08-23 Microsoft Corporation Quantization matrices based on critical band pattern information for digital audio wherein quantization bands differ from critical bands
CN1288625C (zh) 2002-01-30 2006-12-06 松下电器产业株式会社 音频编码与解码设备及其方法
JP3751001B2 (ja) * 2002-03-06 2006-03-01 株式会社東芝 オーディオ信号再生方法および再生装置
CN1625876B (zh) * 2002-03-20 2011-01-26 伊哥·玻利索维奇·多尼夫 传输离散信号的方法和系统
US20030187663A1 (en) * 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
DE60307252T2 (de) 2002-04-11 2007-07-19 Matsushita Electric Industrial Co., Ltd., Kadoma Einrichtungen, verfahren und programme zur kodierung und dekodierung
JP4296752B2 (ja) 2002-05-07 2009-07-15 ソニー株式会社 符号化方法及び装置、復号方法及び装置、並びにプログラム
US7447631B2 (en) 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
US7921445B2 (en) * 2002-06-06 2011-04-05 International Business Machines Corporation Audio/video speedup system and method in a server-client streaming architecture
TWI288915B (en) * 2002-06-17 2007-10-21 Dolby Lab Licensing Corp Improved audio coding system using characteristics of a decoded signal to adapt synthesized spectral components
KR100462615B1 (ko) 2002-07-11 2004-12-20 삼성전자주식회사 적은 계산량으로 고주파수 성분을 복원하는 오디오 디코딩방법 및 장치
US7376280B2 (en) * 2002-07-14 2008-05-20 Apple Inc Video encoding and decoding
US7379956B2 (en) * 2002-07-14 2008-05-27 Apple Inc. Encoding and decoding data arrays
US7555434B2 (en) * 2002-07-19 2009-06-30 Nec Corporation Audio decoding device, decoding method, and program
JP4313993B2 (ja) * 2002-07-19 2009-08-12 パナソニック株式会社 オーディオ復号化装置およびオーディオ復号化方法
JP4227772B2 (ja) * 2002-07-19 2009-02-18 日本電気株式会社 オーディオ復号装置と復号方法およびプログラム
EP1527442B1 (en) 2002-08-01 2006-04-05 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and audio decoding method based on spectral band replication
JP3861770B2 (ja) * 2002-08-21 2006-12-20 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
US7502743B2 (en) 2002-09-04 2009-03-10 Microsoft Corporation Multi-channel audio encoding and decoding with multi-channel transform selection
JP3881943B2 (ja) * 2002-09-06 2007-02-14 松下電器産業株式会社 音響符号化装置及び音響符号化方法
TW564375B (en) * 2002-09-17 2003-12-01 Ind Tech Res Inst Amplitude phase shift information embedding and detecting method based on phase features
SE0202770D0 (sv) 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks
AU2006235812B2 (en) * 2002-09-18 2009-10-01 Dolby International Ab Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
BRPI0306434B1 (pt) 2002-09-19 2018-06-12 Nec Corporation Aparelho e método de decodificação de áudio
US7191136B2 (en) * 2002-10-01 2007-03-13 Ibiquity Digital Corporation Efficient coding of high frequency signal information in a signal using a linear/non-linear prediction model based on a low pass baseband
JP4041385B2 (ja) * 2002-11-29 2008-01-30 株式会社ケンウッド 信号補間装置、信号補間方法及びプログラム
KR100501930B1 (ko) * 2002-11-29 2005-07-18 삼성전자주식회사 적은 계산량으로 고주파수 성분을 복원하는 오디오 디코딩방법 및 장치
AU2002953284A0 (en) * 2002-12-12 2003-01-02 Lake Technology Limited Digital multirate filtering
KR100524065B1 (ko) * 2002-12-23 2005-10-26 삼성전자주식회사 시간-주파수 상관성을 이용한 개선된 오디오 부호화및/또는 복호화 방법과 그 장치
US20040252772A1 (en) * 2002-12-31 2004-12-16 Markku Renfors Filter bank based signal processing
TWI220753B (en) * 2003-01-20 2004-09-01 Mediatek Inc Method for determining quantization parameters
US7318027B2 (en) 2003-02-06 2008-01-08 Dolby Laboratories Licensing Corporation Conversion of synthesized spectral components for encoding and low-complexity transcoding
JP4380174B2 (ja) * 2003-02-27 2009-12-09 沖電気工業株式会社 帯域補正装置
KR100917464B1 (ko) * 2003-03-07 2009-09-14 삼성전자주식회사 대역 확장 기법을 이용한 디지털 데이터의 부호화 방법,그 장치, 복호화 방법 및 그 장치
KR100923300B1 (ko) * 2003-03-22 2009-10-23 삼성전자주식회사 대역 확장 기법을 이용한 오디오 데이터의 부호화 방법,그 장치, 복호화 방법 및 그 장치
KR100923301B1 (ko) * 2003-03-22 2009-10-23 삼성전자주식회사 대역 확장 기법을 이용한 오디오 데이터의 부호화 방법,그 장치, 복호화 방법 및 그 장치
RU2244386C2 (ru) * 2003-03-28 2005-01-10 Корпорация "Самсунг Электроникс" Способ восстановления высокочастотной составляющей аудиосигнала и устройство для его реализации
US8311809B2 (en) * 2003-04-17 2012-11-13 Koninklijke Philips Electronics N.V. Converting decoded sub-band signal into a stereo signal
RU2005135648A (ru) * 2003-04-17 2006-03-20 Конинклейке Филипс Электроникс Н.В. (Nl) Генерация аудиосигналов
US7318035B2 (en) * 2003-05-08 2008-01-08 Dolby Laboratories Licensing Corporation Audio coding systems and methods using spectral component coupling and spectral component regeneration
JP2005010621A (ja) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd 音声帯域拡張装置及び帯域拡張方法
DE10328777A1 (de) 2003-06-25 2005-01-27 Coding Technologies Ab Vorrichtung und Verfahren zum Codieren eines Audiosignals und Vorrichtung und Verfahren zum Decodieren eines codierten Audiosignals
JP2005024756A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 復号処理回路および移動端末装置
KR101058062B1 (ko) * 2003-06-30 2011-08-19 코닌클리케 필립스 일렉트로닉스 엔.브이. 잡음 부가에 의한 디코딩된 오디오의 품질 개선
FI118550B (fi) * 2003-07-14 2007-12-14 Nokia Corp Parannettu eksitaatio ylemmän kaistan koodaukselle koodekissa, joka käyttää kaistojen jakoon perustuvia koodausmenetelmiä
US7082573B2 (en) 2003-07-30 2006-07-25 America Online, Inc. Method and system for managing digital assets
US7724827B2 (en) * 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US7844992B2 (en) * 2003-09-10 2010-11-30 Thomson Licensing Video on demand server system and method
US7844451B2 (en) * 2003-09-16 2010-11-30 Panasonic Corporation Spectrum coding/decoding apparatus and method for reducing distortion of two band spectrums
DE602004032587D1 (de) * 2003-09-16 2011-06-16 Panasonic Corp Codierungsvorrichtung und Decodierungsvorrichtung
JP4679049B2 (ja) * 2003-09-30 2011-04-27 パナソニック株式会社 スケーラブル復号化装置
DE602004030594D1 (de) * 2003-10-07 2011-01-27 Panasonic Corp Verfahren zur entscheidung der zeitgrenze zur codierung der spektro-hülle und frequenzauflösung
US7461003B1 (en) * 2003-10-22 2008-12-02 Tellabs Operations, Inc. Methods and apparatus for improving the quality of speech signals
US7949057B2 (en) * 2003-10-23 2011-05-24 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
KR101106026B1 (ko) * 2003-10-30 2012-01-17 돌비 인터네셔널 에이비 오디오 신호 인코딩 또는 디코딩
US7672838B1 (en) * 2003-12-01 2010-03-02 The Trustees Of Columbia University In The City Of New York Systems and methods for speech recognition using frequency domain linear prediction polynomials to form temporal and spectral envelopes from frequency domain representations of signals
KR100587953B1 (ko) * 2003-12-26 2006-06-08 한국전자통신연구원 대역-분할 광대역 음성 코덱에서의 고대역 오류 은닉 장치 및 그를 이용한 비트스트림 복호화 시스템
US6980933B2 (en) * 2004-01-27 2005-12-27 Dolby Laboratories Licensing Corporation Coding techniques using estimated spectral magnitude and phase derived from MDCT coefficients
JP5230103B2 (ja) * 2004-02-18 2013-07-10 ニュアンス コミュニケーションズ,インコーポレイテッド 自動音声認識器のためのトレーニングデータを生成する方法およびシステム
US7668711B2 (en) 2004-04-23 2010-02-23 Panasonic Corporation Coding equipment
KR20070009644A (ko) * 2004-04-27 2007-01-18 마츠시타 덴끼 산교 가부시키가이샤 스케일러블 부호화 장치, 스케일러블 복호화 장치 및 그방법
US8629836B2 (en) 2004-04-30 2014-01-14 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
JP2007535773A (ja) 2004-04-30 2007-12-06 ヒルクレスト・ラボラトリーズ・インコーポレイテッド 自由空間ポインティングデバイスおよびポインティング方法
CN101656074B (zh) * 2004-05-14 2013-01-23 松下电器产业株式会社 音频解码装置、音频解码方法以及通信终端和基站装置
US8417515B2 (en) 2004-05-14 2013-04-09 Panasonic Corporation Encoding device, decoding device, and method thereof
WO2005112001A1 (ja) 2004-05-19 2005-11-24 Matsushita Electric Industrial Co., Ltd. 符号化装置、復号化装置、およびこれらの方法
KR20070028432A (ko) 2004-06-21 2007-03-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 오디오 인코딩 방법
GB2416285A (en) 2004-07-14 2006-01-18 British Broadcasting Corp Transmission of a data signal in an audio signal
KR100608062B1 (ko) * 2004-08-04 2006-08-02 삼성전자주식회사 오디오 데이터의 고주파수 복원 방법 및 그 장치
JP2008510197A (ja) * 2004-08-17 2008-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スケーラブルなオーディオ符号化
KR100640893B1 (ko) * 2004-09-07 2006-11-02 엘지전자 주식회사 음성 인식용 베이스밴드 모뎀 및 이동통신용 단말기
WO2006030754A1 (ja) * 2004-09-17 2006-03-23 Matsushita Electric Industrial Co., Ltd. オーディオ符号化装置、復号化装置、方法、及びプログラム
US7630902B2 (en) * 2004-09-17 2009-12-08 Digital Rise Technology Co., Ltd. Apparatus and methods for digital audio coding using codebook application ranges
US7620675B1 (en) * 2004-09-23 2009-11-17 Texas Instruments Incorporated Image and audio transform methods
JP4618634B2 (ja) * 2004-10-07 2011-01-26 Kddi株式会社 圧縮オーディオデータ処理方法
JP4815780B2 (ja) * 2004-10-20 2011-11-16 ヤマハ株式会社 オーバーサンプリングシステム、デコードlsi、およびオーバーサンプリング方法
US7555081B2 (en) * 2004-10-29 2009-06-30 Harman International Industries, Incorporated Log-sampled filter system
ES2791001T3 (es) 2004-11-02 2020-10-30 Koninklijke Philips Nv Codificación y decodificación de señales de audio mediante el uso de bancos de filtros de valor complejo
SE0402652D0 (sv) * 2004-11-02 2004-11-02 Coding Tech Ab Methods for improved performance of prediction based multi- channel reconstruction
KR101220621B1 (ko) * 2004-11-05 2013-01-18 파나소닉 주식회사 부호화 장치 및 부호화 방법
US8137195B2 (en) 2004-11-23 2012-03-20 Hillcrest Laboratories, Inc. Semantic gaming and application transformation
KR100657916B1 (ko) * 2004-12-01 2006-12-14 삼성전자주식회사 주파수 대역간의 유사도를 이용한 오디오 신호 처리 장치및 방법
US20060143013A1 (en) * 2004-12-28 2006-06-29 Broadcom Corporation Method and system for playing audio at an accelerated rate using multiresolution analysis technique keeping pitch constant
US8082156B2 (en) * 2005-01-11 2011-12-20 Nec Corporation Audio encoding device, audio encoding method, and audio encoding program for encoding a wide-band audio signal
US20060187770A1 (en) * 2005-02-23 2006-08-24 Broadcom Corporation Method and system for playing audio at a decelerated rate using multiresolution analysis technique keeping pitch constant
WO2006090852A1 (ja) * 2005-02-24 2006-08-31 Matsushita Electric Industrial Co., Ltd. データ再生装置
JP4761506B2 (ja) * 2005-03-01 2011-08-31 国立大学法人北陸先端科学技術大学院大学 音声処理方法と装置及びプログラム並びに音声システム
JP4645241B2 (ja) * 2005-03-10 2011-03-09 ヤマハ株式会社 音声処理装置およびプログラム
KR100707186B1 (ko) * 2005-03-24 2007-04-13 삼성전자주식회사 오디오 부호화 및 복호화 장치와 그 방법 및 기록 매체
KR100956877B1 (ko) * 2005-04-01 2010-05-11 콸콤 인코포레이티드 스펙트럼 엔벨로프 표현의 벡터 양자화를 위한 방법 및장치
KR100818268B1 (ko) * 2005-04-14 2008-04-02 삼성전자주식회사 오디오 데이터 부호화 및 복호화 장치와 방법
US7627481B1 (en) 2005-04-19 2009-12-01 Apple Inc. Adapting masking thresholds for encoding a low frequency transient signal in audio data
US8086451B2 (en) 2005-04-20 2011-12-27 Qnx Software Systems Co. System for improving speech intelligibility through high frequency compression
US7813931B2 (en) * 2005-04-20 2010-10-12 QNX Software Systems, Co. System for improving speech quality and intelligibility with bandwidth compression/expansion
US8249861B2 (en) 2005-04-20 2012-08-21 Qnx Software Systems Limited High frequency compression integration
PT1875463T (pt) 2005-04-22 2019-01-24 Qualcomm Inc Sistemas, métodos e aparelho para nivelamento de fator de ganho
EP1742509B1 (en) 2005-07-08 2013-08-14 Oticon A/S A system and method for eliminating feedback and noise in a hearing device
DE102005032724B4 (de) * 2005-07-13 2009-10-08 Siemens Ag Verfahren und Vorrichtung zur künstlichen Erweiterung der Bandbreite von Sprachsignalen
US7562021B2 (en) * 2005-07-15 2009-07-14 Microsoft Corporation Modification of codewords in dictionary used for efficient coding of digital media spectral data
US7630882B2 (en) * 2005-07-15 2009-12-08 Microsoft Corporation Frequency segmentation to obtain bands for efficient coding of digital media
KR100803205B1 (ko) * 2005-07-15 2008-02-14 삼성전자주식회사 저비트율 오디오 신호 부호화/복호화 방법 및 장치
US20070030923A1 (en) * 2005-08-02 2007-02-08 Xiaoming Yu High accuracy non data-aided frequency estimator for M-ary phase shift keying modulation
US8599925B2 (en) * 2005-08-12 2013-12-03 Microsoft Corporation Efficient coding and decoding of transform blocks
WO2007028407A1 (en) 2005-09-06 2007-03-15 Nero Ag Method for signing a data package and signing apparatus
JP4627548B2 (ja) * 2005-09-08 2011-02-09 パイオニア株式会社 帯域拡張装置、帯域拡張方法および帯域拡張プログラム
BRPI0616624A2 (pt) 2005-09-30 2011-06-28 Matsushita Electric Ind Co Ltd aparelho de codificação de fala e método de codificação de fala
US20070118361A1 (en) * 2005-10-07 2007-05-24 Deepen Sinha Window apparatus and method
US7953605B2 (en) * 2005-10-07 2011-05-31 Deepen Sinha Method and apparatus for audio encoding and decoding using wideband psychoacoustic modeling and bandwidth extension
US8069035B2 (en) * 2005-10-14 2011-11-29 Panasonic Corporation Scalable encoding apparatus, scalable decoding apparatus, and methods of them
KR100739180B1 (ko) * 2005-10-20 2007-07-13 엘지전자 주식회사 이동 통신 단말기의 멀티미디어 데이터를 송수신하는 장치및 그 방법
KR100958144B1 (ko) 2005-11-04 2010-05-18 노키아 코포레이션 오디오 압축
US7489111B2 (en) 2005-12-08 2009-02-10 Robert W. Wise Holstered cordless power tool
US7536299B2 (en) * 2005-12-19 2009-05-19 Dolby Laboratories Licensing Corporation Correlating and decorrelating transforms for multiple description coding systems
TWI311856B (en) * 2006-01-04 2009-07-01 Quanta Comp Inc Synthesis subband filtering method and apparatus
US7953604B2 (en) * 2006-01-20 2011-05-31 Microsoft Corporation Shape and scale parameters for extended-band frequency coding
KR100739786B1 (ko) * 2006-01-20 2007-07-13 삼성전자주식회사 다중 채널 디지털 앰프 시스템 및 그 신호 처리 방법
US7831434B2 (en) * 2006-01-20 2010-11-09 Microsoft Corporation Complex-transform channel coding with extended-band frequency coding
US8190425B2 (en) * 2006-01-20 2012-05-29 Microsoft Corporation Complex cross-correlation parameters for multi-channel audio
WO2007098258A1 (en) * 2006-02-24 2007-08-30 Neural Audio Corporation Audio codec conditioning system and method
US7590523B2 (en) * 2006-03-20 2009-09-15 Mindspeed Technologies, Inc. Speech post-processing using MDCT coefficients
CA2646961C (en) * 2006-03-28 2013-09-03 Sascha Disch Enhanced method for signal shaping in multi-channel audio reconstruction
WO2007114291A1 (ja) * 2006-03-31 2007-10-11 Matsushita Electric Industrial Co., Ltd. 音声符号化装置、音声復号化装置、およびこれらの方法
EP2017830B9 (en) * 2006-05-10 2011-02-23 Panasonic Corporation Encoding device and encoding method
JP2007310298A (ja) * 2006-05-22 2007-11-29 Oki Electric Ind Co Ltd 帯域外信号生成装置及び周波数帯域拡張装置
WO2008001318A2 (en) * 2006-06-29 2008-01-03 Nxp B.V. Noise synthesis
AR061807A1 (es) * 2006-07-04 2008-09-24 Coding Tech Ab Compresor de filtro y metodo para fabricar respuestas al impulso de filtro de subbanda comprimida
EP1881485A1 (en) 2006-07-18 2008-01-23 Deutsche Thomson-Brandt Gmbh Audio bitstream data structure arrangement of a lossy encoded signal together with lossless encoded extension data for said signal
WO2008022181A2 (en) * 2006-08-15 2008-02-21 Broadcom Corporation Updating of decoder states after packet loss concealment
JP2008066851A (ja) * 2006-09-05 2008-03-21 Sony Corp 情報処理装置および情報処理方法、記録媒体、並びに、プログラム
CN101140759B (zh) * 2006-09-08 2010-05-12 华为技术有限公司 语音或音频信号的带宽扩展方法及系统
US8417532B2 (en) * 2006-10-18 2013-04-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
US8126721B2 (en) * 2006-10-18 2012-02-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
US8041578B2 (en) * 2006-10-18 2011-10-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
US8295507B2 (en) * 2006-11-09 2012-10-23 Sony Corporation Frequency band extending apparatus, frequency band extending method, player apparatus, playing method, program and recording medium
JP5141180B2 (ja) * 2006-11-09 2013-02-13 ソニー株式会社 周波数帯域拡大装置及び周波数帯域拡大方法、再生装置及び再生方法、並びに、プログラム及び記録媒体
JP4967618B2 (ja) * 2006-11-24 2012-07-04 富士通株式会社 復号化装置および復号化方法
EP1927981B1 (en) * 2006-12-01 2013-02-20 Nuance Communications, Inc. Spectral refinement of audio signals
JPWO2008084688A1 (ja) * 2006-12-27 2010-04-30 パナソニック株式会社 符号化装置、復号装置及びこれらの方法
EP1947644B1 (en) * 2007-01-18 2019-06-19 Nuance Communications, Inc. Method and apparatus for providing an acoustic signal with extended band-width
US7852745B2 (en) * 2007-03-02 2010-12-14 Signalink Technologies Inc. Non-orthogonal frequency-division multiplexed communication through a non-linear transmission medium
GB0704622D0 (en) * 2007-03-09 2007-04-18 Skype Ltd Speech coding system and method
JP5355387B2 (ja) * 2007-03-30 2013-11-27 パナソニック株式会社 符号化装置および符号化方法
US7774205B2 (en) * 2007-06-15 2010-08-10 Microsoft Corporation Coding of sparse digital media spectral data
US7761290B2 (en) 2007-06-15 2010-07-20 Microsoft Corporation Flexible frequency and time partitioning in perceptual transform coding of audio
JP5098492B2 (ja) * 2007-07-30 2012-12-12 ソニー株式会社 信号処理装置及び信号処理方法、並びにプログラム
US20090198500A1 (en) * 2007-08-24 2009-08-06 Qualcomm Incorporated Temporal masking in audio coding based on spectral dynamics in frequency sub-bands
CN101790757B (zh) * 2007-08-27 2012-05-30 爱立信电话股份有限公司 语音与音频信号的改进的变换编码
WO2009055715A1 (en) * 2007-10-24 2009-04-30 Red Shift Company, Llc Producing time uniform feature vectors of speech
US8326610B2 (en) * 2007-10-24 2012-12-04 Red Shift Company, Llc Producing phonitos based on feature vectors
WO2009057327A1 (ja) * 2007-10-31 2009-05-07 Panasonic Corporation 符号化装置および復号装置
JP5547081B2 (ja) * 2007-11-02 2014-07-09 華為技術有限公司 音声復号化方法及び装置
CN101896968A (zh) * 2007-11-06 2010-11-24 诺基亚公司 音频编码装置及其方法
WO2009059632A1 (en) * 2007-11-06 2009-05-14 Nokia Corporation An encoder
EP2212884B1 (en) * 2007-11-06 2013-01-02 Nokia Corporation An encoder
KR100970446B1 (ko) * 2007-11-21 2010-07-16 한국전자통신연구원 주파수 확장을 위한 가변 잡음레벨 결정 장치 및 그 방법
CA2705968C (en) * 2007-11-21 2016-01-26 Lg Electronics Inc. A method and an apparatus for processing a signal
US8688441B2 (en) 2007-11-29 2014-04-01 Motorola Mobility Llc Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content
AU2008339211B2 (en) 2007-12-18 2011-06-23 Lg Electronics Inc. A method and an apparatus for processing an audio signal
US8423371B2 (en) 2007-12-21 2013-04-16 Panasonic Corporation Audio encoder, decoder, and encoding method thereof
JPWO2009084221A1 (ja) * 2007-12-27 2011-05-12 パナソニック株式会社 符号化装置、復号装置およびこれらの方法
EP2077550B8 (en) * 2008-01-04 2012-03-14 Dolby International AB Audio encoder and decoder
KR101413968B1 (ko) * 2008-01-29 2014-07-01 삼성전자주식회사 오디오 신호의 부호화, 복호화 방법 및 장치
DE102008015702B4 (de) * 2008-01-31 2010-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Bandbreitenerweiterung eines Audiosignals
US8433582B2 (en) * 2008-02-01 2013-04-30 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20090201983A1 (en) * 2008-02-07 2009-08-13 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
US20090203395A1 (en) * 2008-02-08 2009-08-13 Sony Ericsson Mobile Communications Ab Amplitude modulation radio transmission with extended bandwidth
EP2296145B1 (en) 2008-03-10 2019-05-22 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Device and method for manipulating an audio signal having a transient event
JP5326311B2 (ja) * 2008-03-19 2013-10-30 沖電気工業株式会社 音声帯域拡張装置、方法及びプログラム、並びに、音声通信装置
EP3273442B1 (en) * 2008-03-20 2021-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for synthesizing a parameterized representation of an audio signal
JP2009300707A (ja) * 2008-06-13 2009-12-24 Sony Corp 情報処理装置および方法、並びにプログラム
US9378751B2 (en) * 2008-06-19 2016-06-28 Broadcom Corporation Method and system for digital gain processing in a hardware audio CODEC for audio transmission
US8909361B2 (en) * 2008-06-19 2014-12-09 Broadcom Corporation Method and system for processing high quality audio in a hardware audio codec for audio transmission
WO2009157280A1 (ja) * 2008-06-26 2009-12-30 独立行政法人科学技術振興機構 オーディオ信号圧縮装置、オーディオ信号圧縮方法、オーディオ信号復号装置及びオーディオ信号復号方法
US8010313B2 (en) 2008-06-27 2011-08-30 Movea Sa Hand held pointing device with roll compensation
US20140184509A1 (en) 2013-01-02 2014-07-03 Movea Sa Hand held pointing device with roll compensation
US8880410B2 (en) 2008-07-11 2014-11-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a bandwidth extended signal
RU2491658C2 (ru) * 2008-07-11 2013-08-27 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Синтезатор аудиосигнала и кодирующее устройство аудиосигнала
USRE47180E1 (en) 2008-07-11 2018-12-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a bandwidth extended signal
KR101239812B1 (ko) * 2008-07-11 2013-03-06 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 대역폭 확장 신호를 생성하기 위한 장치 및 방법
PL2346030T3 (pl) * 2008-07-11 2015-03-31 Fraunhofer Ges Forschung Koder audio, sposób kodowania sygnału audio oraz program komputerowy
CA2730200C (en) * 2008-07-11 2016-09-27 Max Neuendorf An apparatus and a method for generating bandwidth extension output data
KR101756834B1 (ko) * 2008-07-14 2017-07-12 삼성전자주식회사 오디오/스피치 신호의 부호화 및 복호화 방법 및 장치
US8326640B2 (en) * 2008-08-26 2012-12-04 Broadcom Corporation Method and system for multi-band amplitude estimation and gain control in an audio CODEC
JP2010079275A (ja) * 2008-08-29 2010-04-08 Sony Corp 周波数帯域拡大装置及び方法、符号化装置及び方法、復号化装置及び方法、並びにプログラム
US8532998B2 (en) 2008-09-06 2013-09-10 Huawei Technologies Co., Ltd. Selective bandwidth extension for encoding/decoding audio/speech signal
US8352279B2 (en) * 2008-09-06 2013-01-08 Huawei Technologies Co., Ltd. Efficient temporal envelope coding approach by prediction between low band signal and high band signal
US8532983B2 (en) * 2008-09-06 2013-09-10 Huawei Technologies Co., Ltd. Adaptive frequency prediction for encoding or decoding an audio signal
US8407046B2 (en) * 2008-09-06 2013-03-26 Huawei Technologies Co., Ltd. Noise-feedback for spectral envelope quantization
WO2010028301A1 (en) * 2008-09-06 2010-03-11 GH Innovation, Inc. Spectrum harmonic/noise sharpness control
US8577673B2 (en) * 2008-09-15 2013-11-05 Huawei Technologies Co., Ltd. CELP post-processing for music signals
WO2010031003A1 (en) * 2008-09-15 2010-03-18 Huawei Technologies Co., Ltd. Adding second enhancement layer to celp based core layer
US8831958B2 (en) 2008-09-25 2014-09-09 Lg Electronics Inc. Method and an apparatus for a bandwidth extension using different schemes
EP2184929B1 (en) 2008-11-10 2013-04-03 Oticon A/S N band FM demodulation to aid cochlear hearing impaired persons
US8548816B1 (en) * 2008-12-01 2013-10-01 Marvell International Ltd. Efficient scalefactor estimation in advanced audio coding and MP3 encoder
CN101751925B (zh) * 2008-12-10 2011-12-21 华为技术有限公司 一种语音解码方法及装置
GB2466201B (en) * 2008-12-10 2012-07-11 Skype Ltd Regeneration of wideband speech
GB0822537D0 (en) 2008-12-10 2009-01-14 Skype Ltd Regeneration of wideband speech
US9947340B2 (en) * 2008-12-10 2018-04-17 Skype Regeneration of wideband speech
AU2013203159B2 (en) * 2008-12-15 2015-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder and bandwidth extension decoder
WO2010070770A1 (ja) * 2008-12-19 2010-06-24 富士通株式会社 音声帯域拡張装置及び音声帯域拡張方法
EP2380172B1 (en) 2009-01-16 2013-07-24 Dolby International AB Cross product enhanced harmonic transposition
EP2211339B1 (en) 2009-01-23 2017-05-31 Oticon A/s Listening system
US20100191534A1 (en) * 2009-01-23 2010-07-29 Qualcomm Incorporated Method and apparatus for compression or decompression of digital signals
AU2015221516B2 (en) * 2009-01-28 2017-08-10 Dolby International Ab Improved Harmonic Transposition
BR122019023709B1 (pt) 2009-01-28 2020-10-27 Dolby International Ab sistema para gerar um sinal de áudio de saída a partir de um sinal de áudio de entrada usando um fator de transposição t, método para transpor um sinal de áudio de entrada por um fator de transposição t e meio de armazenamento
AU2013211560B2 (en) * 2009-01-28 2016-04-28 Dolby International Ab Improved harmonic transposition
CA3076203C (en) 2009-01-28 2021-03-16 Dolby International Ab Improved harmonic transposition
EP2214165A3 (en) 2009-01-30 2010-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and computer program for manipulating an audio signal comprising a transient event
US8463599B2 (en) 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
AU2009339343A1 (en) 2009-02-06 2011-08-18 Oticon A/S Spectral band substitution to avoid howls and sub-oscillation
TWI716833B (zh) * 2009-02-18 2021-01-21 瑞典商杜比國際公司 用於高頻重建或參數立體聲之複指數調變濾波器組
TWI559680B (zh) 2009-02-18 2016-11-21 杜比國際公司 低延遲調變濾波器組及用以設計該低延遲調變濾波器組之方法
BR122019023924B1 (pt) 2009-03-17 2021-06-01 Dolby International Ab Sistema codificador, sistema decodificador, método para codificar um sinal estéreo para um sinal de fluxo de bits e método para decodificar um sinal de fluxo de bits para um sinal estéreo
JP5267257B2 (ja) * 2009-03-23 2013-08-21 沖電気工業株式会社 音声ミキシング装置、方法及びプログラム、並びに、音声会議システム
RU2452044C1 (ru) * 2009-04-02 2012-05-27 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Устройство, способ и носитель с программным кодом для генерирования представления сигнала с расширенным диапазоном частот на основе представления входного сигнала с использованием сочетания гармонического расширения диапазона частот и негармонического расширения диапазона частот
EP2239732A1 (en) * 2009-04-09 2010-10-13 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Apparatus and method for generating a synthesis audio signal and for encoding an audio signal
JP4932917B2 (ja) 2009-04-03 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
JP4921611B2 (ja) * 2009-04-03 2012-04-25 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
CN101521014B (zh) * 2009-04-08 2011-09-14 武汉大学 音频带宽扩展编解码装置
CO6440537A2 (es) 2009-04-09 2012-05-15 Fraunhofer Ges Forschung Aparato y metodo para generar una señal de audio de sintesis y para codificar una señal de audio
AU2013207549B2 (en) * 2009-04-09 2015-06-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a synthesis audio signal and for encoding an audio signal
AU2013263712B2 (en) * 2009-05-27 2015-11-12 Dolby International Ab Efficient Combined Harmonic Transposition
US8971551B2 (en) 2009-09-18 2015-03-03 Dolby International Ab Virtual bass synthesis using harmonic transposition
US11657788B2 (en) 2009-05-27 2023-05-23 Dolby International Ab Efficient combined harmonic transposition
AU2015264887B2 (en) * 2009-05-27 2017-12-07 Dolby International Ab Efficient Combined Harmonic Transposition
AU2014201331B2 (en) * 2009-06-29 2015-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bandwidth extension encoder, bandwidth extension decoder and phase vocoder
ES2400661T3 (es) * 2009-06-29 2013-04-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Codificación y decodificación de extensión de ancho de banda
JP5365380B2 (ja) * 2009-07-07 2013-12-11 ソニー株式会社 音響信号処理装置、その処理方法およびプログラム
EP2306456A1 (en) * 2009-09-04 2011-04-06 Thomson Licensing Method for decoding an audio signal that has a base layer and an enhancement layer
JP5031006B2 (ja) * 2009-09-04 2012-09-19 パナソニック株式会社 スケーラブル復号化装置及びスケーラブル復号化方法
KR101701759B1 (ko) 2009-09-18 2017-02-03 돌비 인터네셔널 에이비 입력 신호를 전위시키기 위한 시스템 및 방법, 및 상기 방법을 수행하기 위한 컴퓨터 프로그램이 기록된 컴퓨터 판독가능 저장 매체
JP5754899B2 (ja) * 2009-10-07 2015-07-29 ソニー株式会社 復号装置および方法、並びにプログラム
JP5771618B2 (ja) 2009-10-19 2015-09-02 ドルビー・インターナショナル・アーベー 音声オブジェクトの区分を示すメタデータ時間標識情報
US9026236B2 (en) 2009-10-21 2015-05-05 Panasonic Intellectual Property Corporation Of America Audio signal processing apparatus, audio coding apparatus, and audio decoding apparatus
WO2011047886A1 (en) * 2009-10-21 2011-04-28 Dolby International Ab Apparatus and method for generating a high frequency audio signal using adaptive oversampling
US20110257978A1 (en) * 2009-10-23 2011-10-20 Brainlike, Inc. Time Series Filtering, Data Reduction and Voice Recognition in Communication Device
TWI484473B (zh) 2009-10-30 2015-05-11 Dolby Int Ab 用於從編碼位元串流擷取音訊訊號之節奏資訊、及估算音訊訊號之知覺顯著節奏的方法及系統
US8856011B2 (en) 2009-11-19 2014-10-07 Telefonaktiebolaget L M Ericsson (Publ) Excitation signal bandwidth extension
JP5812998B2 (ja) * 2009-11-19 2015-11-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) オーディオコーデックにおけるラウドネスおよびシャープネスの補償のための方法および装置
CN102612712B (zh) * 2009-11-19 2014-03-12 瑞典爱立信有限公司 低频带音频信号的带宽扩展
CN103854651B (zh) * 2009-12-16 2017-04-12 杜比国际公司 Sbr比特流参数缩混
PL3564954T3 (pl) 2010-01-19 2021-04-06 Dolby International Ab Ulepszona transpozycja harmonicznych oparta na bloku podpasma
AU2014200151B2 (en) * 2010-01-19 2015-04-16 Dolby International Ab Improved subband block based harmonic transposition
AU2015203065B2 (en) * 2010-01-19 2017-05-11 Dolby International Ab Improved subband block based harmonic transposition
KR101712101B1 (ko) 2010-01-28 2017-03-03 삼성전자 주식회사 신호 처리 방법 및 장치
EP2362375A1 (en) * 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Apparatus and method for modifying an audio signal using harmonic locking
RU2591012C2 (ru) 2010-03-09 2016-07-10 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Устройство и способ обработки переходных процессов для аудио сигналов с изменением скорости воспроизведения или высоты тона
CA2792452C (en) 2010-03-09 2018-01-16 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an input audio signal using cascaded filterbanks
DK2375782T3 (en) * 2010-04-09 2019-03-18 Oticon As Improvements in sound perception by using frequency transposing by moving the envelope
JP5850216B2 (ja) 2010-04-13 2016-02-03 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
ES2719102T3 (es) * 2010-04-16 2019-07-08 Fraunhofer Ges Forschung Aparato, procedimiento y programa informático para generar una señal de banda ancha que utiliza extensión de ancho de banda guiada y extensión de ancho de banda ciega
US8452826B2 (en) * 2010-05-04 2013-05-28 Raytheon Applied Signal Technology, Inc. Digital frequency channelizer
US8751225B2 (en) 2010-05-12 2014-06-10 Electronics And Telecommunications Research Institute Apparatus and method for coding signal in a communication system
US8600737B2 (en) * 2010-06-01 2013-12-03 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for wideband speech coding
EP2581905B1 (en) 2010-06-09 2016-01-06 Panasonic Intellectual Property Corporation of America Bandwidth extension method, bandwidth extension apparatus, program, integrated circuit, and audio decoding apparatus
US9117459B2 (en) 2010-07-19 2015-08-25 Dolby International Ab Processing of audio signals during high frequency reconstruction
US12002476B2 (en) 2010-07-19 2024-06-04 Dolby International Ab Processing of audio signals during high frequency reconstruction
JP6075743B2 (ja) 2010-08-03 2017-02-08 ソニー株式会社 信号処理装置および方法、並びにプログラム
US8762158B2 (en) * 2010-08-06 2014-06-24 Samsung Electronics Co., Ltd. Decoding method and decoding apparatus therefor
BR122021003887B1 (pt) * 2010-08-12 2021-08-24 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Reamostrar sinais de saída de codecs de áudio com base em qmf
JP5552988B2 (ja) * 2010-09-27 2014-07-16 富士通株式会社 音声帯域拡張装置および音声帯域拡張方法
US8924200B2 (en) * 2010-10-15 2014-12-30 Motorola Mobility Llc Audio signal bandwidth extension in CELP-based speech coder
US8868432B2 (en) * 2010-10-15 2014-10-21 Motorola Mobility Llc Audio signal bandwidth extension in CELP-based speech coder
JP5707842B2 (ja) 2010-10-15 2015-04-30 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
KR20120046627A (ko) * 2010-11-02 2012-05-10 삼성전자주식회사 화자 적응 방법 및 장치
TWI412022B (zh) * 2010-12-30 2013-10-11 Univ Nat Cheng Kung 遞迴式離散餘弦正、逆轉換之系統
JP5743137B2 (ja) 2011-01-14 2015-07-01 ソニー株式会社 信号処理装置および方法、並びにプログラム
KR101424372B1 (ko) * 2011-02-14 2014-08-01 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 랩핑 변환을 이용한 정보 신호 표현
AR085794A1 (es) 2011-02-14 2013-10-30 Fraunhofer Ges Forschung Prediccion lineal basada en esquema de codificacion utilizando conformacion de ruido de dominio espectral
PT2676270T (pt) 2011-02-14 2017-05-02 Fraunhofer Ges Forschung Codificação de uma parte de um sinal de áudio utilizando uma deteção de transiente e um resultado de qualidade
PL2676268T3 (pl) 2011-02-14 2015-05-29 Fraunhofer Ges Forschung Urządzenie i sposób przetwarzania zdekodowanego sygnału audio w domenie widmowej
PT3239978T (pt) 2011-02-14 2019-04-02 Fraunhofer Ges Forschung Codificação e descodificação de posições de pulso de faixas de um sinal de áudio
CA2827482C (en) * 2011-02-18 2018-01-02 Ntt Docomo, Inc. Speech decoder, speech encoder, speech decoding method, speech encoding method, speech decoding program, and speech encoding program
WO2012141635A1 (en) * 2011-04-15 2012-10-18 Telefonaktiebolaget L M Ericsson (Publ) Adaptive gain-shape rate sharing
US9536534B2 (en) 2011-04-20 2017-01-03 Panasonic Intellectual Property Corporation Of America Speech/audio encoding apparatus, speech/audio decoding apparatus, and methods thereof
WO2012169133A1 (ja) * 2011-06-09 2012-12-13 パナソニック株式会社 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法
US9070361B2 (en) * 2011-06-10 2015-06-30 Google Technology Holdings LLC Method and apparatus for encoding a wideband speech signal utilizing downmixing of a highband component
US20130006644A1 (en) * 2011-06-30 2013-01-03 Zte Corporation Method and device for spectral band replication, and method and system for audio decoding
DE102011106034A1 (de) * 2011-06-30 2013-01-03 Zte Corporation Verfahren und Vorrichtung zur Spektralbandreplikation und Verfahren und System zur Audiodecodierung
EP2562751B1 (en) 2011-08-22 2014-06-11 Svox AG Temporal interpolation of adjacent spectra
JP5975243B2 (ja) 2011-08-24 2016-08-23 ソニー株式会社 符号化装置および方法、並びにプログラム
JP6037156B2 (ja) 2011-08-24 2016-11-30 ソニー株式会社 符号化装置および方法、並びにプログラム
JP5807453B2 (ja) * 2011-08-30 2015-11-10 富士通株式会社 符号化方法、符号化装置および符号化プログラム
US8774308B2 (en) 2011-11-01 2014-07-08 At&T Intellectual Property I, L.P. Method and apparatus for improving transmission of data on a bandwidth mismatched channel
US8781023B2 (en) * 2011-11-01 2014-07-15 At&T Intellectual Property I, L.P. Method and apparatus for improving transmission of data on a bandwidth expanded channel
CN103918029B (zh) 2011-11-11 2016-01-20 杜比国际公司 使用过采样谱带复制的上采样
JP5817499B2 (ja) 2011-12-15 2015-11-18 富士通株式会社 復号装置、符号化装置、符号化復号システム、復号方法、符号化方法、復号プログラム、及び符号化プログラム
US8712076B2 (en) 2012-02-08 2014-04-29 Dolby Laboratories Licensing Corporation Post-processing including median filtering of noise suppression gains
US9173025B2 (en) 2012-02-08 2015-10-27 Dolby Laboratories Licensing Corporation Combined suppression of noise, echo, and out-of-location signals
WO2013142650A1 (en) 2012-03-23 2013-09-26 Dolby International Ab Enabling sampling rate diversity in a voice communication system
US8965290B2 (en) * 2012-03-29 2015-02-24 General Electric Company Amplitude enhanced frequency modulation
JP5997592B2 (ja) * 2012-04-27 2016-09-28 株式会社Nttドコモ 音声復号装置
EP2682941A1 (de) * 2012-07-02 2014-01-08 Technische Universität Ilmenau Vorrichtung, Verfahren und Computerprogramm für frei wählbare Frequenzverschiebungen in der Subband-Domäne
JP6065452B2 (ja) * 2012-08-14 2017-01-25 富士通株式会社 データ埋め込み装置及び方法、データ抽出装置及び方法、並びにプログラム
EP2704142B1 (en) 2012-08-27 2015-09-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for reproducing an audio signal, apparatus and method for generating a coded audio signal, computer program and coded audio signal
EP2709106A1 (en) 2012-09-17 2014-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for generating a bandwidth extended signal from a bandwidth limited audio signal
US9129600B2 (en) * 2012-09-26 2015-09-08 Google Technology Holdings LLC Method and apparatus for encoding an audio signal
AU2014211479B2 (en) 2013-01-29 2017-02-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder, method for providing an encoded audio information, method for providing a decoded audio information, computer program and encoded representation using a signal-adaptive bandwidth extension
JP6146069B2 (ja) 2013-03-18 2017-06-14 富士通株式会社 データ埋め込み装置及び方法、データ抽出装置及び方法、並びにプログラム
KR20230020553A (ko) * 2013-04-05 2023-02-10 돌비 인터네셔널 에이비 스테레오 오디오 인코더 및 디코더
ES2688134T3 (es) 2013-04-05 2018-10-31 Dolby International Ab Codificador y decodificador de audio para codificación de forma de onda intercalada
US8804971B1 (en) 2013-04-30 2014-08-12 Dolby International Ab Hybrid encoding of higher frequency and downmixed low frequency content of multichannel audio
SG11201510164RA (en) 2013-06-10 2016-01-28 Fraunhofer Ges Forschung Apparatus and method for audio signal envelope encoding, processing and decoding by splitting the audio signal envelope employing distribution quantization and coding
PT3008726T (pt) 2013-06-10 2017-11-24 Fraunhofer Ges Forschung Aparelho e método de codificação, processamento e descodificação de envelope de sinal de áudio por modelação da representação de soma cumulativa empregando codificação e quantização de distribuição
DK2822263T3 (da) 2013-07-05 2019-06-17 Sennheiser Communications As Kommunikationsanordning med ekkoundertrykkelse
EP2830055A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Context-based entropy coding of sample values of a spectral envelope
EP2830061A1 (en) 2013-07-22 2015-01-28 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
EP2871641A1 (en) * 2013-11-12 2015-05-13 Dialog Semiconductor B.V. Enhancement of narrowband audio signals using a single sideband AM modulation
KR20160087827A (ko) 2013-11-22 2016-07-22 퀄컴 인코포레이티드 고대역 코딩에서의 선택적 위상 보상
CA3162763A1 (en) 2013-12-27 2015-07-02 Sony Corporation Decoding apparatus and method, and program
CN103795420B (zh) * 2014-02-10 2017-04-05 南京邮电大学 一种基于分段的sbr多属性数据压缩方法
MX361028B (es) 2014-02-28 2018-11-26 Fraunhofer Ges Forschung Dispositivo de decodificación, dispositivo de codificación, método de decodificación, método de codificación, dispositivo de terminal y dispositivo de estación de base.
JP6439296B2 (ja) * 2014-03-24 2018-12-19 ソニー株式会社 復号装置および方法、並びにプログラム
RU2689181C2 (ru) 2014-03-31 2019-05-24 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Кодер, декодер, способ кодирования, способ декодирования и программа
EP2963649A1 (en) * 2014-07-01 2016-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio processor and method for processing an audio signal using horizontal phase correction
KR102125410B1 (ko) * 2015-02-26 2020-06-22 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 타깃 시간 도메인 포락선을 사용하여 처리된 오디오 신호를 얻도록 오디오 신호를 처리하기 위한 장치 및 방법
TWI732403B (zh) * 2015-03-13 2021-07-01 瑞典商杜比國際公司 解碼具有增強頻譜帶複製元資料在至少一填充元素中的音訊位元流
TWI758146B (zh) * 2015-03-13 2022-03-11 瑞典商杜比國際公司 解碼具有增強頻譜帶複製元資料在至少一填充元素中的音訊位元流
US10129659B2 (en) 2015-05-08 2018-11-13 Doly International AB Dialog enhancement complemented with frequency transposition
US10847170B2 (en) 2015-06-18 2020-11-24 Qualcomm Incorporated Device and method for generating a high-band signal from non-linearly processed sub-ranges
US9837089B2 (en) * 2015-06-18 2017-12-05 Qualcomm Incorporated High-band signal generation
US10861475B2 (en) * 2015-11-10 2020-12-08 Dolby International Ab Signal-dependent companding system and method to reduce quantization noise
EP3182411A1 (en) * 2015-12-14 2017-06-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for processing an encoded audio signal
US10395664B2 (en) 2016-01-26 2019-08-27 Dolby Laboratories Licensing Corporation Adaptive Quantization
JP6763194B2 (ja) * 2016-05-10 2020-09-30 株式会社Jvcケンウッド 符号化装置、復号装置、通信システム
EP3246923A1 (en) * 2016-05-20 2017-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for processing a multichannel audio signal
JP6621709B2 (ja) * 2016-05-26 2019-12-18 アルパイン株式会社 音声処理装置、音声処理方法及びコンピュータプログラム
CN107845385B (zh) 2016-09-19 2021-07-13 南宁富桂精密工业有限公司 信息隐藏的编解码方法及系统
GB201620317D0 (en) * 2016-11-30 2017-01-11 Microsoft Technology Licensing Llc Audio signal processing
NO343581B1 (no) * 2017-03-01 2019-04-08 Dolby Int Ab Fremgangsmåte, anordning og program til spektralinnhyllingsjustering
CN109215675B (zh) * 2017-07-05 2021-08-03 苏州谦问万答吧教育科技有限公司 一种啸叫抑制的方法、装置及设备
US10714098B2 (en) * 2017-12-21 2020-07-14 Dolby Laboratories Licensing Corporation Selective forward error correction for spatial audio codecs
WO2019207036A1 (en) 2018-04-25 2019-10-31 Dolby International Ab Integration of high frequency audio reconstruction techniques
CN114242090A (zh) 2018-04-25 2022-03-25 杜比国际公司 具有减少后处理延迟的高频重建技术的集成
EP3671741A1 (en) * 2018-12-21 2020-06-24 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Audio processor and method for generating a frequency-enhanced audio signal using pulse processing
CN113113032A (zh) * 2020-01-10 2021-07-13 华为技术有限公司 一种音频编解码方法和音频编解码设备
WO2022097242A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
US20230386497A1 (en) * 2020-11-05 2023-11-30 Nippon Telegraph And Telephone Corporation Sound signal high frequency compensation method, sound signal post processing method, sound signal decode method, apparatus thereof, program, and storage medium
CN113516987B (zh) * 2021-07-16 2024-04-12 科大讯飞股份有限公司 一种说话人识别方法、装置、存储介质及设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150253A (en) * 1976-03-15 1979-04-17 Inter-Technology Exchange Ltd. Signal distortion circuit and method of use
US4667340A (en) * 1983-04-13 1987-05-19 Texas Instruments Incorporated Voice messaging system with pitch-congruent baseband coding
US4790016A (en) * 1985-11-14 1988-12-06 Gte Laboratories Incorporated Adaptive method and apparatus for coding speech
CA1220282A (en) * 1985-04-03 1987-04-07 Northern Telecom Limited Transmission of wideband speech signals
SE444750B (sv) * 1985-06-04 1986-04-28 Lars Gustaf Liljeryd Metod for att pa elektronisk veg astadkomma fortydligande av ljud- eller bildinformation jemte anordning for utforande av metoden
US4776014A (en) * 1986-09-02 1988-10-04 General Electric Company Method for pitch-aligned high-frequency regeneration in RELP vocoders
US4771465A (en) 1986-09-11 1988-09-13 American Telephone And Telegraph Company, At&T Bell Laboratories Digital speech sinusoidal vocoder with transmission of only subset of harmonics
US5127054A (en) 1988-04-29 1992-06-30 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
US5040217A (en) 1989-10-18 1991-08-13 At&T Bell Laboratories Perceptual coding of audio signals
US5388181A (en) * 1990-05-29 1995-02-07 Anderson; David J. Digital audio compression system
US5436940A (en) * 1992-06-11 1995-07-25 Massachusetts Institute Of Technology Quadrature mirror filter banks and method
CA2106440C (en) * 1992-11-30 1997-11-18 Jelena Kovacevic Method and apparatus for reducing correlated errors in subband coding systems with quantizers
US5684920A (en) 1994-03-17 1997-11-04 Nippon Telegraph And Telephone Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein
US5717823A (en) * 1994-04-14 1998-02-10 Lucent Technologies Inc. Speech-rate modification for linear-prediction based analysis-by-synthesis speech coders
US5687340A (en) * 1995-05-16 1997-11-11 Hewlett-Packard Company Reduced area floating point processor control logic utilizing a decoder between a control unit and the FPU
US5692050A (en) * 1995-06-15 1997-11-25 Binaura Corporation Method and apparatus for spatially enhancing stereo and monophonic signals
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
US5687191A (en) 1995-12-06 1997-11-11 Solana Technology Development Corporation Post-compression hidden data transport
US5822370A (en) * 1996-04-16 1998-10-13 Aura Systems, Inc. Compression/decompression for preservation of high fidelity speech quality at low bandwidth
US6049766A (en) * 1996-11-07 2000-04-11 Creative Technology Ltd. Time-domain time/pitch scaling of speech or audio signals with transient handling
JP3017715B2 (ja) * 1997-10-31 2000-03-13 松下電器産業株式会社 音声再生装置
EP0957579A1 (en) * 1998-05-15 1999-11-17 Deutsche Thomson-Brandt Gmbh Method and apparatus for sampling-rate conversion of audio signals
JP3546755B2 (ja) * 1999-05-06 2004-07-28 ヤマハ株式会社 リズム音源信号の時間軸圧伸方法及び装置
US6988066B2 (en) * 2001-10-04 2006-01-17 At&T Corp. Method of bandwidth extension for narrow-band speech

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443525B2 (en) 2001-12-14 2016-09-13 Microsoft Technology Licensing, Llc Quality improvement techniques in an audio encoder
US8805696B2 (en) 2001-12-14 2014-08-12 Microsoft Corporation Quality improvement techniques in an audio encoder
US8554569B2 (en) 2001-12-14 2013-10-08 Microsoft Corporation Quality improvement techniques in an audio encoder
JP4745986B2 (ja) * 2004-01-23 2011-08-10 マイクロソフト コーポレーション 広義知覚類似性(wide−senseperceptualsimilarity)を使用するデジタルメディアスペクトルデータの効率的なコーディング
JP2007532934A (ja) * 2004-01-23 2007-11-15 マイクロソフト コーポレーション 広義知覚類似性(wide−senseperceptualsimilarity)を使用するデジタルメディアスペクトルデータの効率的なコーディング
US8645127B2 (en) 2004-01-23 2014-02-04 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
JP4715385B2 (ja) * 2005-08-19 2011-07-06 株式会社ケンウッド 補間装置、オーディオ再生装置、補間方法および補間プログラム
JP2007052331A (ja) * 2005-08-19 2007-03-01 Kenwood Corp 補間装置、オーディオ再生装置、補間方法および補間プログラム
JP5030789B2 (ja) * 2005-11-30 2012-09-19 パナソニック株式会社 サブバンド符号化装置およびサブバンド符号化方法
JP2007148274A (ja) * 2005-11-30 2007-06-14 Kenwood Corp 補間装置、音再生装置、補間方法および補間プログラム
WO2007063913A1 (ja) * 2005-11-30 2007-06-07 Matsushita Electric Industrial Co., Ltd. サブバンド符号化装置およびサブバンド符号化方法
US8103516B2 (en) 2005-11-30 2012-01-24 Panasonic Corporation Subband coding apparatus and method of coding subband
US8392176B2 (en) 2006-04-10 2013-03-05 Qualcomm Incorporated Processing of excitation in audio coding and decoding
JP2009533716A (ja) * 2006-04-10 2009-09-17 クゥアルコム・インコーポレイテッド オーディオ符号化並びに復号化における励起の処理
US9847095B2 (en) 2006-06-21 2017-12-19 Samsung Electronics Co., Ltd. Method and apparatus for adaptively encoding and decoding high frequency band
JP2012208514A (ja) * 2006-06-21 2012-10-25 Samsung Electronics Co Ltd 符号化方法及び復号化方法
US8340962B2 (en) 2006-06-21 2012-12-25 Samsumg Electronics Co., Ltd. Method and apparatus for adaptively encoding and decoding high frequency band
US9159333B2 (en) 2006-06-21 2015-10-13 Samsung Electronics Co., Ltd. Method and apparatus for adaptively encoding and decoding high frequency band
JP2009541790A (ja) * 2006-06-21 2009-11-26 サムスン エレクトロニクス カンパニー リミテッド 適応的高周波数領域の符号化及び復号化方法及び装置
JP2008129541A (ja) * 2006-11-24 2008-06-05 Fujitsu Ltd 復号化装置および復号化方法
US8990075B2 (en) 2007-01-12 2015-03-24 Samsung Electronics Co., Ltd. Method, apparatus, and medium for bandwidth extension encoding and decoding
JP2010515946A (ja) * 2007-01-12 2010-05-13 サムスン エレクトロニクス カンパニー リミテッド 帯域幅拡張の符号化及び復号化のための方法、装置及び媒体
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US9026452B2 (en) 2007-06-29 2015-05-05 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US9741354B2 (en) 2007-06-29 2017-08-22 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US9349376B2 (en) 2007-06-29 2016-05-24 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US8428957B2 (en) 2007-08-24 2013-04-23 Qualcomm Incorporated Spectral noise shaping in audio coding based on spectral dynamics in frequency sub-bands
US8655663B2 (en) 2007-10-26 2014-02-18 D&M Holdings, Inc. Audio signal interpolation device and audio signal interpolation method
JP5147851B2 (ja) * 2007-10-26 2013-02-20 株式会社ディーアンドエムホールディングス オーディオ信号補間装置及びオーディオ信号補間方法
WO2009054228A1 (ja) * 2007-10-26 2009-04-30 D & M Holdings Inc. オーディオ信号補間装置及びオーディオ信号補間方法
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
KR101250596B1 (ko) 2008-08-21 2013-04-03 모토로라 모빌리티 엘엘씨 신호 경계 주파수의 결정을 용이하게 하는 방법 및 장치
JP2015187747A (ja) * 2008-12-15 2015-10-29 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオエンコーダおよび帯域幅拡張デコーダ
JP2014142653A (ja) * 2008-12-15 2014-08-07 Fraunhofer Ges Zur Foerderung Der Angewandten Forschung Ev オーディオエンコーダおよび帯域幅拡張デコーダ
US10229696B2 (en) 2008-12-15 2019-03-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder and bandwidth extension decoder
JP7439309B2 (ja) 2009-05-27 2024-02-27 ドルビー・インターナショナル・アーベー 信号の高周波成分を生成するためのシステム及び方法
JP2014013408A (ja) * 2009-05-27 2014-01-23 Dolby International Ab 信号の高周波成分を生成するためのシステム及び方法
JP7206318B2 (ja) 2009-05-27 2023-01-17 ドルビー・インターナショナル・アーベー 信号の高周波成分を生成するためのシステム及び方法
JP2021107945A (ja) * 2009-05-27 2021-07-29 ドルビー・インターナショナル・アーベー 信号の高周波成分を生成するためのシステム及び方法
KR101303776B1 (ko) * 2009-05-27 2013-09-04 돌비 인터네셔널 에이비 효율적인 조합 고조파 변조 방법
JP2015018273A (ja) * 2009-10-21 2015-01-29 ドルビー・インターナショナル・アーベー 結合されたトランスポーザーフィルターバンクにおけるオーバーサンプリング
JP2013521536A (ja) * 2010-03-09 2013-06-10 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. オーディオ信号用の位相ボコーダに基づく帯域幅拡張方法における改善された振幅応答及び時間的整列のための装置及び方法
KR101483157B1 (ko) * 2010-03-09 2015-01-15 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 오디오 신호들의 대역폭 연장에 기반한 위상 보코더의 개선된 크기 응답과 시간적 정렬을 위한 방법과 장치
KR101924326B1 (ko) 2010-09-16 2018-12-03 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US10706863B2 (en) 2010-09-16 2020-07-07 Dolby International Ab Cross product enhanced subband block based harmonic transposition
US10192562B2 (en) 2010-09-16 2019-01-29 Dolby International Ab Cross product enhanced subband block based harmonic transposition
US9940941B2 (en) 2010-09-16 2018-04-10 Dolby International Ab Cross product enhanced subband block based harmonic transposition
KR20190053306A (ko) * 2010-09-16 2019-05-17 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR101980070B1 (ko) 2010-09-16 2019-05-20 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR20190099092A (ko) * 2010-09-16 2019-08-23 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR102014696B1 (ko) 2010-09-16 2019-08-27 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US10446161B2 (en) 2010-09-16 2019-10-15 Dolby International Ab Cross product enhanced subband block based harmonic transposition
KR102073544B1 (ko) 2010-09-16 2020-02-05 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR20200013092A (ko) * 2010-09-16 2020-02-05 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR20180128983A (ko) * 2010-09-16 2018-12-04 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US9735750B2 (en) 2010-09-16 2017-08-15 Dolby International Ab Cross product enhanced subband block based harmonic transposition
KR20210124538A (ko) * 2010-09-16 2021-10-14 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR102312475B1 (ko) 2010-09-16 2021-10-14 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US11355133B2 (en) 2010-09-16 2022-06-07 Dolby International Ab Cross product enhanced subband block based harmonic transposition
KR102439053B1 (ko) 2010-09-16 2022-09-02 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR20220123752A (ko) * 2010-09-16 2022-09-08 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR101744621B1 (ko) 2010-09-16 2017-06-09 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
KR102564590B1 (ko) 2010-09-16 2023-08-09 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US11817110B2 (en) 2010-09-16 2023-11-14 Dolby International Ab Cross product enhanced subband block based harmonic transposition
KR101610626B1 (ko) 2010-09-16 2016-04-20 돌비 인터네셔널 에이비 교차 곱 강화된 서브밴드 블록 기반 고조파 전위
US12033645B2 (en) 2023-10-05 2024-07-09 Dolby International Ab Cross product enhanced subband block based harmonic transposition

Also Published As

Publication number Publication date
US6925116B2 (en) 2005-08-02
CN1629937A (zh) 2005-06-22
BR9805989A (pt) 1999-08-31
WO1998057436A3 (en) 2000-02-10
HK1030843A1 (en) 2001-05-18
SE9800268L (sv) 1998-12-11
EP1367566A3 (en) 2004-09-08
DE69831435T2 (de) 2006-06-14
US20040078205A1 (en) 2004-04-22
CN1272259A (zh) 2000-11-01
ES2247466T3 (es) 2006-03-01
AU7446598A (en) 1998-12-30
PT1367566E (pt) 2005-11-30
SE512719C2 (sv) 2000-05-02
DK0940015T3 (da) 2004-04-26
US7283955B2 (en) 2007-10-16
DK1367566T3 (da) 2005-10-10
HK1057815A1 (en) 2004-04-16
CN1206816C (zh) 2005-06-15
ATE257987T1 (de) 2004-01-15
SE9800268D0 (sv) 1998-01-30
JP2001521648A (ja) 2001-11-06
EP0940015B1 (en) 2004-01-14
US6680972B1 (en) 2004-01-20
EP1367566A2 (en) 2003-12-03
DE69821089T2 (de) 2004-11-11
DE69821089D1 (de) 2004-02-19
ES2213901T3 (es) 2004-09-01
BR9805989B1 (pt) 2009-12-01
JP3871347B2 (ja) 2007-01-24
DE69831435D1 (de) 2005-10-06
ATE303679T1 (de) 2005-09-15
WO1998057436A2 (en) 1998-12-17
US7328162B2 (en) 2008-02-05
EP0940015A1 (en) 1999-09-08
US20040078194A1 (en) 2004-04-22
JP4220461B2 (ja) 2009-02-04
US20040125878A1 (en) 2004-07-01
EP1367566B1 (en) 2005-08-31
CN1308916C (zh) 2007-04-04
PT940015E (pt) 2004-06-30

Similar Documents

Publication Publication Date Title
JP4220461B2 (ja) 時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置
JP4740260B2 (ja) 音声信号の帯域幅を疑似的に拡張するための方法および装置
JP5090390B2 (ja) サブバンド領域における改良されたスペクトル移動/折返し
US10014000B2 (en) Audio signal encoder and method for generating a data stream having components of an audio signal in a first frequency band, control information and spectral band replication parameters
JP4345890B2 (ja) 不完全なスペクトルを持つオーディオ信号の周波数変換に基づくスペクトルの再構築
KR101589942B1 (ko) 외적 향상 고조파 전치
EP2056294B1 (en) Apparatus, Medium and Method to Encode and Decode High Frequency Signal
US10255928B2 (en) Apparatus, medium and method to encode and decode high frequency signal
JP2009515212A (ja) オーディオ圧縮
JP2011248378A (ja) 符号化装置、復号化装置、およびこれらの方法
MX2012010416A (es) Aparato y método para procesar una señal de audio usando alineación de borde de patching.
CA2879823C (en) Device, method and computer program for freely selectable frequency shifts in the subband domain
RU2256293C2 (ru) Усовершенствование исходного кодирования с использованием дублирования спектральной полосы
RU2452044C1 (ru) Устройство, способ и носитель с программным кодом для генерирования представления сигнала с расширенным диапазоном частот на основе представления входного сигнала с использованием сочетания гармонического расширения диапазона частот и негармонического расширения диапазона частот
JP2004053940A (ja) オーディオ復号化装置およびオーディオ復号化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term