JP7439309B2 - 信号の高周波成分を生成するためのシステム及び方法 - Google Patents

信号の高周波成分を生成するためのシステム及び方法 Download PDF

Info

Publication number
JP7439309B2
JP7439309B2 JP2023000074A JP2023000074A JP7439309B2 JP 7439309 B2 JP7439309 B2 JP 7439309B2 JP 2023000074 A JP2023000074 A JP 2023000074A JP 2023000074 A JP2023000074 A JP 2023000074A JP 7439309 B2 JP7439309 B2 JP 7439309B2
Authority
JP
Japan
Prior art keywords
signal
analysis
subband
subband signals
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023000074A
Other languages
English (en)
Other versions
JP2023030188A (ja
Inventor
エクストランド,ペール
ヴィレモエス,ラルス
ヘデリン,ペール
Original Assignee
ドルビー・インターナショナル・アーベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42358052&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7439309(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ドルビー・インターナショナル・アーベー filed Critical ドルビー・インターナショナル・アーベー
Publication of JP2023030188A publication Critical patent/JP2023030188A/ja
Priority to JP2024020376A priority Critical patent/JP2024040439A/ja
Application granted granted Critical
Publication of JP7439309B2 publication Critical patent/JP7439309B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0091Means for obtaining special acoustic effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/06Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour
    • G10H1/12Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour by filtering complex waveforms
    • G10H1/125Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour by filtering complex waveforms using a digital filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/311Distortion, i.e. desired non-linear audio processing to change the tone color, e.g. by adding harmonics or deliberately distorting the amplitude of an audio waveform
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • G10L21/0388Details of processing therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Auxiliary Devices For Music (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、高周波再構築(HFR)のためのハーモニックトランスポジションを利用するオーディオコーディングシステムや、高調波歪の生成が処理信号にブライトネス(brightness)を加える所謂エキサイタのようなディジタルエフェクトプロセッサ等に関連する。特に、本願は高周波再構築のための簡易な方法に関連する。
特許文献1(WO98/57436)において、オーディオ信号の低い周波数バンドから高い周波数バンドを作り直す方法として、トランスポジション(transposition)の概念が確立されている。オーディオコーディングにおいてこの概念を使用することで、ビットレートのかなりの削減効果が得られる。HFRを用いたオーディオコーディングシステムの場合、信号の低周波数成分として言及される低帯域幅信号がコア波形コーダに与えられ、デコーダ側における高周波成分の目標のスペクトル形状を記述する非常にビットレートが低い付加サイド情報及び信号トランスポジションを利用して、信号の高周波成分として言及される高周波が再生成される。低いビットレートの場合、コアの符号化信号の帯域幅(すなわち、低バンド信号又は低周波数成分)は狭いので、知覚的に心地よい特性の高バンド信号(すなわち、高周波成分)を再生成することはますます重要になる。特許文献1(WO98/57436)で規定されているハーモニックトランスポジションは、低いクロスオーバ周波数の状況において、すなわち低バンド信号の上限周波数が低い状況において、複雑な音楽内容について良好に機能する。ハーモニックトランスポジションの原理は、周波数ωの正弦波を周波数Tωの正弦波にマッピング又は対応付けることであり、ここでT>1はトランスポジションの次数(すなわち、トランスポジション次数)を指定する整数である。これに対して、単一の再度バンド変調(SSB)を用いたHFRは、周波数ωの正弦波を周波数ω+Δωの正弦波にマッピングし、ここでΔωは一定の周波数シフト量である。低い帯域幅のコア信号(すなわち、上限周波数が低い低バンド信号)の場合、SSBトランスポジションは、通常、耳障りな共鳴アーチファクト(dissonant ringing artifact)を招くので、この点はハーモニックトランスポジションと比較した場合の欠点である。
改善されたオーディオ品質を達成し、かつ高バンド信号に必要な帯域幅を合成するために、ハーモニックHFR法は典型的にはいくつもの次数のトランスポジションを使用する。
様々なトランスポジション次数の複数のトランスポジションを実行するため、従来法は、分析ステージ、合成ステージ又はそれら双方において複数のフィルタバンクを必要とする。典型的には、異なるトランスポジション次数の各々について異なるフィルタバンクが必要である。コア波形コーダが最終的な出力信号のサンプリングレートよりも低いサンプリングレートで動作する場合、典型的には、コア信号を出力信号のサンプリングレートに変換する追加的な要請があり、そのようなコア信号のアップサンプリングは、通常、更に別のフィルタバンクを追加することで行われる。従って、異なるトランスポジション次数の種類の増加と共に、演算処理負担が著しく重くなってしまう。
国際公開第98/57436号
実施の形態の課題は、異なるトランスポジション次数の種類の増加と共に、演算処理負担が著しく重くなってしまう従来の問題を少なくとも軽減することである。
一実施形態によるシステムは、
信号の低周波成分から該信号の高周波成分を生成するように構成されるシステムであって、
前記信号の前記低周波成分から一群の分析サブバンド信号を提供するように構成される分析フィルタバンクであって、前記一群の分析サブバンド信号は少なくとも2つの分析サブバンド信号を含む、分析フィルタバンクと、
前記一群の分析サブバンド信号から一群の合成サブバンド信号を決定するように構成される非線形処理部であって、前記一群の分析サブバンド信号のうちのk番目の分析サブバンド信号及び(k+1)番目の分析サブバンド信号から、前記一群の合成サブバンド信号のうちのn番目の合成サブバンド信号を決定するように構成され、前記n番目の合成サブバンド信号の位相は、第1の整数位相乗数でスケーリングされたk番目の分析サブバンド信号の位相と、第2の整数位相乗数でスケーリングされた(k+1)番目の分析サブバンド信号の位相との総和として決定され、前記第1及び第2の整数位相乗数は異なる、非線形処理部と、
前記一群の合成サブバンド信号に基づいて、前記信号の高周波成分を生成するように構成される合成フィルタバンクと、
を有するシステムである。
1次の周波数領域(FD)ハーモニックトランスポーザの処理例を示す図。 いくつもの次数を利用したハーモニックトランスポーザの処理例を示す図。 共通する分析フィルタバンクを使用しつつ、いくつもの次数のトランスポジションを利用したハーモニックトランスポーザの従来の処理例を示す図。 共通する合成フィルタバンクを使用しつつ、いくつもの次数のトランスポジションを利用したハーモニックトランスポーザの従来の処理例を示す図。 共通する分析フィルタバンク及び共通する合成フィルタバンクを使用しつつ、いくつもの次数のトランスポジションを利用したハーモニックトランスポーザの処理例を示す図。 図5に示すマルチプルトランスポーザに対するサブバンド信号のマッピング例を示す図。 図5に示すマルチプルトランスポーザに対するサブバンド信号のマッピング例を示す図。 HFRエンハンストオーディオコーデックにおいていくつもの次数のトランスポジションを利用するハーモニックトランスポジションの第1実施形態を示す図。 図6の例においてサブサンプリングを行う例を示す図。 HFRエンハンストオーディオコーデックにおいていくつもの次数のトランスポジションを利用するハーモニックトランスポジションの第2実施形態を示す図。 図8の例においてサブサンプリングを行う例を示す図。 HFRエンハンストオーディオコーデックにおいていくつもの次数のトランスポジションを利用するハーモニックトランスポジションの第3実施形態を示す図。 図10の例においてサブサンプリングを行う例を示す図。 周波数領域の信号に対するハーモニックトランスポジションの影響を示す図。 重複する及び重複しないトランスポジション後の信号を合成する方法を示す図。 重複する及び重複しないトランスポジション後の信号を合成する方法を示す図。 周波数領域の信号にサブサンプリングを追加的に行う場合における次数T=2のハーモニックトランスポジションの影響を示す図。 周波数領域の信号にサブサンプリングを追加的に行う場合における次数T=3のハーモニックトランスポジションの影響を示す図。 周波数領域の信号にサブサンプリングを追加的に行う場合における次数T=Pのハーモニックトランスポジションの影響を示す図(重複しない場合)。 周波数領域の信号にサブサンプリングを追加的に行う場合における次数T=Pのハーモニックトランスポジションの影響を示す図(重複する場合)。 最大にデシメーションする(すなわち、充分にサンプリングする)トランスポーザ構築ブロックのレイアウト例を示す図。
本発明は、分析フィルタバンク群及び合成フィルタバンク群のペアをいくつものハーモニックトランスポーザで共用可能にすることにより、又は1つ以上のハーモニックトランスポーザ及びアップサンプラにより、ハーモニックHFR方法の複雑さを低減する方法を提供する。提案する周波数ドメインのトランスポジションは、分析フィルタバンクからの非線形に修正されたサブバンド信号を、合成フィルタバンクの選択されたサブバンドにマッピングすることを含む。サブバンド信号に関する非線形処理は何倍にも増やす位相乗算を含む。更に本発明はHFRシステムの複雑さを低減するいくつもの形態を提供する。
一実施形態として、信号の低周波成分から該信号の高周波成分を生成するシステムが説明される。本システムは、信号の前記低周波成分から、少なくとも2つの分析サブバンド信号を典型的には含む一群の分析サブバンド信号を提供する分析フィルタバンクを有する。合成フィルタバンクはΔfの周波数分解能とLA個の分析サブバンドとを有し、LA>1であり、分析サブバンドのインデックスkは、k=0,...,LA-1である。特に、分析フィルタバンクは、大きさのサンプル及び位相のサンプルを有する一群の複素分析サブバンド信号を提供する。
本システムは、あるトランスポジション次数Pを用いて一群の分析サブバンド信号から一群の合成サブバンド信号を決定する非線形処理部を更に有し、一群の合成サブバンド信号は、トランスポジション次数Pから導出された量だけ位相がシフトされた一群の分析サブバンド信号の一部分を典型的には有する。言い換えれば、一群の合成サブバンド信号は、トランスポジション次数Pから導出された量だけ位相がシフトされた一群の分析サブバンド信号の一部分に基づいて決定される。分析サブバンド信号の位相シフトは、分析サブバンド信号の位相サンプルに、トランスポジション因子Pから導出された量を乗算することで行われてもよい。その場合、一群の合成サブバンド信号は一群の分析サブバンド信号の一部又は部分集合に対応し、サブバンドサンプルの位相にはトランスポジション次数から導出された量が乗算されている。特に、トランスポジション次数から導出された量は、トランスポジション次数の分数(fraction)であってもよい。
本システムは、一群の合成サブバンド信号から信号の高周波成分を生成する、FΔfの周波数分解能を有する合成フィルタバンクを有する。FはF≧1であって分解能因子であり、合成フィルタバンクがLS個の合成サブバンドを有し、LS>1であり、合成サブバンドのインデックスnは、n=0,...,LS-1である。トランスポジション次数Pは分解能因子Fとは異なる。分析フィルタバンクは分析時間幅(分析時間ストライド)ΔtAを使用し、合成フィルタバンクは合成時間幅(合成時間ストライド)ΔtSを使用し、分析時間幅ΔtA及び合成時間幅ΔtSは等しくてもよい。
トランスポジション次数Pにより位相がシフトされた一群の分析サブバンド信号に属する分析サブバンド信号、又は一群の合成サブバンド信号中の一対の分析サブバンド信号に基づいて、非線形処理部は一群のサブバンド信号の合成サブバンド信号を決定し、一対のサブバンド信号の第1のメンバは因子P’によりシフトされた位相を有し、一対のサブバンド信号の第2のメンバは因子P”によりシフトされた位相を有し、P’+P”=Pである。上記の処理は合成及び分析サブバンド信号のサンプルについて実行されてもよい。言い換えれば、分析サブバンド信号のサンプルは、トランスポジション次数Pにより位相がシフトされた分析サブバンド信号のサンプルに基づいて、又は分析サブバンド信号の対応するペアからのサンプルペアに基づいて決定されてもよい。サンプルペアの内の第1のサンプルは因子P’だけ位相がシフトされており、サンプルペアの内の第2のサンプルは因子P”だけ位相がシフトされている。
非線形処理部は、一群の分析サブバンド信号の内のk番目の分析サブバンド信号及び隣接する(k+1)番目の分析サブバンド信号の組み合わせから、一群の合成サブバンド信号の内のn番目の合成サブバンド信号を決定する。特に、非線形処理部は、k番目の分析サブバンド信号の位相シフト及び(k+1)番目の分析サブバンド信号の位相シフトの総和としてn番目の合成サブバンド信号の位相を決定する。代替的又は付加的に、非線形処理部は、k番目の分析サブバンド信号の指数表示における大きさ及び(k+1)番目の分析サブバンド信号の指数表示における大きさの積としてn番目の合成サブバンド信号の大きさを決定する。
合成サブバンドインデックスnと共に合成サブバンドに寄与する分析サブバンド信号の分析サブバンドインデックスkは、(F/P)nを打ち切ることで取得された整数により与えられてもよい。打ち切った処理における剰余rは、(F/P)n-kにより与えられる。この場合において、非線形処理部は、P(1-r)だけシフトされたk番目の分析サブバンド信号の位相及びP(r)だけシフトされた(k+1)番目の分析サブバンド信号の位相の総和としてn番目の合成サブバンド信号の位相を決定してもよい。特に、非線形処理部は、P(1-r)が乗算されたk番目の分析サブバンド信号の位相及びP(r)が乗算された(k+1)番目の隣接する分析サブバンド信号の位相の総和としてn番目の合成サブバンド信号の位相を決定してもよい。代替的又は付加的に、非線形処理部は、k番目の分析サブバンド信号の指数表示における大きさの(1-r)乗と(k+1)番目の分析サブバンド信号の指数表示における大きさのr乗との積としてn番目の合成サブバンド信号の大きさを決定してもよい。
一実施形態において、分析フィルタバンク及び合成フィルタバンクは整数倍の位置に設定され、分析サブバンドの中心周波数はkΔfで与えられ、合成サブバンドの中心周波数はnFΔfで与えられてもよい。別の実施形態において、分析フィルタバンク及び合成フィルタバンクは半整数倍の位置に設定され、分析サブバンドの中心周波数は(k+(1/2))Δfで与えられ、合成サブバンドの中心周波数は(n+(1/2))FΔfで与えられ、トランスポジション次数P及び分解能因子Fの間の差分が偶数であってもよい。
別の実施形態として、信号の低周波数成分から該信号の高周波成分を生成するシステムが説明される。本システムは、信号の前記低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供する分析フィルタバンクを有する。
本システムは、第1のトランスポジション次数P1を用いて一群の分析サブバンド信号から第1の一群の合成サブバンド信号を決定する第1の非線形処理部を有し、第1の一群の合成サブバンド信号は、第1のトランスポジション次数P1から導出された量だけ位相がシフトされた一群の分析サブバンド信号の一部分に基づいて決定される。本システムは、第2のトランスポジション次数P2を用いて一群の分析サブバンド信号から第2の一群の合成サブバンド信号を決定する第2の非線形処理部を有する。第2の一群の合成サブバンド信号は、第2のトランスポジション次数P2から導出された量だけ位相がシフトされた一群の分析サブバンド信号の一部分に基づいて決定され、第1のトランスポジション次数P1及び第2のトランスポジション次数P2は異なる。第1及び第2の非線形処理部は本願で説明される任意の特徴及び形態に従って構築されてよい。
本システムは、第1及び第2の一群の合成サブバンド信号を合成し、合成された一群の合成サブバンド信号を生成する。そのような合成は、例えば、同一の周波数範囲に対応する第1及び第2の群中の合成サブバンド信号を組み合わせる(例えば、加算及び/又は平均化する)ことで実行されてもよい。言い換えれば、合成部は、重複する周波数範囲に対応する第1及び第2の一群の合成サブバンド信号中の合成サブバンド信号を重ね合わせるように構築される。更に、本システムは、合成された一群の合成サブバンド信号から信号の高周波成分を生成する合成フィルタバンクを備えていてもよい。
別の実施形態として、信号の低周波成分から信号の高周波成分を生成するシステムが説明される。本システムはΔfの周波数分解能を有する分析フィルタバンクを有する。分析フィルタバンクは、信号の低周波成分から一群の分析サブバンド信号を提供する。本システムは、あるトランスポジション次数Pを用いて一群の分析サブバンド信号から、PΔfの周波数分解能を有する中間的な一群の合成サブバンド信号を決定する非線形処理部を有する。中間的な一群の合成サブバンド信号は、トランスポジション次数Pにより位相がシフトされた一群の分析サブバンド信号の部分を含む。特に、非線形処理部は、複素分析サブバンド信号の位相にトランスポジション次数を乗算する。トランスポジション次数Pは上述したように例えばトランスポジション次数P又はP1又はP2であってもよいことに留意を要する。
非線形処理部は、1つ以上の中間的な合成サブバンド信号を補間し、FΔfの周波数分解能を有する一群の合成サブバンド信号の合成サブバンド信号を決定する。Fは分解能因子であり、F≧1である。一実施形態において、2以上の中間的な合成サブバンド信号が補間される。トランスポジション次数Pは周波数分解能Fと異なっていてもよい。
本システムは周波数分解能がFΔfである合成フィルタバンクを有する。合成フィルタバンクは、一群の合成サブバンド信号から信号の高周波成分を生成する。
本願において説明されるシステムは、エンコードされたビットストリームを信号の低周波成分に変換するコアデコーダを更に有し、コアデコーダは、ドルビーE(DollbyE)、ドルビーディジタル(Dollby Digital)、AAA及びHE-AACの内の何れかの符号化方式に基づいていてもよい。本システムは、マルチチャネル分析直交ミラーフィルタ(QMF)バンクを有し、QMFバンクは、高周波成分及び/又は低周波成分を複数のQMFサブバンド信号に変換し、及び/又は本システムはQMFサブバンド信号を修正する高周波再構築処理モジュールを有し、及び/又は本システムは修正されたQMFサブバンド信号から修正された高周波成分を生成する合成QMFバンクとを有する。本システムは、分析フィルタバンクの上流側において信号の低周波成分のサンプリングレートを減少させ、減少したサンプリングレートで低周波成分を出力するダウンサンプリング部を有する。
別の実施形態として、第1のサンプリング周波数による信号の低周波成分から、第2のサンプリング周波数による該信号の高周波成分を生成するシステムが説明される。特に、低周波成分及び高周波成分を含む信号は、第2のサンプリング周波数におけるものでもよい。第2のサンプリング周波数は第1のサンプリング周波数のR倍であり、R≧1である。本システムは、低周波成分から、変調された高周波成分を生成するT次のハーモニックトランスポーザを有し、該変調された高周波成分は、T倍高い周波数範囲にトランスポジションされた低周波成分のスペクトル部分に基づいて決定される。該変調された高周波成分は第1のサンプリング周波数に因子Sを乗算したものであり、T>1及びS≦Rである。言い換えれば、変調された高周波成分は、第2のサンプリング周波数より低いサンプリング周波数におけるものでもよい。特に、変調された高周波成分はクリティカルに(又はクリティカルに近い形式で)サンプリングされてもよい。
本システムは、変調された高周波成分を、Sの倍数であるX個のQMFサブバンドの内の少なくとも1つに対応付け(マッピングし)、少なくとも1つのQMFサブバンド信号を提供するQMFバンク;及び/又は前記少なくとも1つのQMFサブバンド信号(例えば、スケール1つ以上のQMFサブバンド信号)を修正する高周波再構築モジュール;及び/又は修正された少なくとも1つのQMFサブバンド信号から高周波成分を生成する合成QMFバンク;を有する。
ハーモニックトランスポーザは、上記特徴の内の何れかを備え、本願で説明される何れかの方法を実行するように構築される。特に、ハーモニックトランスポーザは、信号の低周波成分から、一群の分析サブバンド信号を提供する分析フィルタバンクを有する。ハーモニックトランスポーザは、一群の分析サブバンド信号の位相を変更することで、一群の分析サブバンド信号から一群の合成サブバンド信号を決定する、トランスポジション次数がTである非線形処理部を有する。上述したように、位相の変更は、分析サブバンド信号の複素サンプルの位相に乗算を行うことを含む。ハーモニックトランスポーザは、一群の合成サブバンド信号から、その信号の変調された高周波成分を生成する合成フィルタバンクを有する。
低周波成分はBである帯域幅を有する。ハーモニックトランスポーザは、(T-1)*BないしT*Bの周波数範囲内にある一群の合成サブバンド信号を生成する。その場合において、ハーモニックトランスポーザは、一群の合成サブバンド信号を、ゼロ周波数付近に中心を有するベースバンドに変調し、変調された高周波成分を生成する。そのような変調は、一群の合成サブバンド信号を含む一群のサブバンド信号から生成された時間領域信号をハイパスフィルタリングし、フィルタリングされた時間領域信号を変調及び/又は時間サンプリングすることにより行われてもよい。代替的又は追加的に、そのような変調は、一群の合成サブバンド信号から、変調された時間領域信号を直接的に生成することで実行されてもよい。これは、通常のサイズより小さな合成フィルタバンクを用いて実行されてもよい。合成フィルタバンクがLという通常のサイズを有し、(T-1)*BないしT*Bの周波数範囲がk0ないしk1の合成サブバンドインデックスに対応していたとすると、合成サブバンド信号は、k1-k0(<L)のサイズの合成フィルタバンクにおける0ないしk1-k0のサブバンドインデックスにマッピングされてもよい、すなわち合成フィルタバンクはLより狭いk1-k0のサイズを有する。
本システムは、ハーモニックトランスポーザの上流においてダウンサンプリング手段を更に有し、該ダウンリンクサンプリング手段は、信号の低周波成分から、ダウンサンプリング因子Qで除算した第1のサンプリング周波数によりクリティカルに(又はクリティカルに近い方法で)ダウンサンプリングされた低周波成分を提供する。この場合において、システムの中で様々なサンプリング周波数がダウンサンプリング因子Qにより分割されてもよい。特に、変調された高周波成分は、因子Sが乗算されかつダウンサンプリング因子Qにより除算された第1のサンプリング周波数でもよい。分析QMFバンクのサイズであるXはS/Qでもよい。
別の実施形態として、信号の低周波成分から該信号の高周波成分を生成する方法も説明されている。本方法は、Δfの周波数分解能を有する分析フィルタバンクを用いて、信号の低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供するステップを有する。本方法は、あるトランスポジション次数Pを用いて一群の分析サブバンド信号から一群の合成サブバンド信号を決定するステップを更に有する。一群の合成サブバンド信号は、トランスポジション次数Pから導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定される。更に、本方法は、FΔfの周波数分解能を有する合成フィルタバンクを用いて、一群の合成サブバンド信号から前記信号の高周波成分を生成するステップを有する。この場合において、F≧1であり、Fは分解能因子であり、トランスポジション次数Pは前記分解能因子Fとは異なる。
別の実施形態として、信号の低周波数成分から該信号の高周波成分を生成する方法も説明されている。本方法は、信号の低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供するステップを有する。本方法は、第1のトランスポジション次数P1を用いて一群の分析サブバンド信号から第1の一群の合成サブバンド信号を決定するステップを有する。第1の一群の合成サブバンド信号は、第1のトランスポジション次数P1から導出された量だけ位相がシフトされた一群の分析サブバンド信号の一部分に基づいて決定される。更に、本方法は、第2のトランスポジション次数P2を用いて一群の分析サブバンド信号から第2の一群の合成サブバンド信号を決定するステップを有する。第2の一群の合成サブバンド信号は、第2のトランスポジション次数P2から導出された量だけ位相がシフトされた一群の分析サブバンド信号の一部分に基づいて決定される。第1のトランスポジション次数P1及び第2のトランスポジション次数P2は異なる。第1及び第2の一群の合成サブバンド信号は合成され、合成された一群の合成サブバンド信号を生成し、合成された一群の合成サブバンド信号から信号の高周波成分が生成される。
別の実施形態として、信号の低周波成分から該信号の高周波成分を生成する方法も説明されている。本方法は、信号の低周波成分から、Δfの周波数分解能を有する分析サブバンド信号を提供するステップを含む。本方法は、あるトランスポジション次数Pを用いて一群の分析サブバンド信号からPΔfの周波数分解能を有する中間的な一群の合成サブバンド信号を決定するステップを更に有する。中間的な一群の合成サブバンド信号は、トランスポジション次数Pにより位相シフトされた一群の分析サブバンド信号の一部分を含む。1つ以上の中間的な合成サブバンド信号は補間され、FΔfの周波数分解能を有する一群の合成サブバンド信号の合成サブバンド信号が決定される。Fは分解能因子であり、F≧1である。トランスポジション次数Pは周波数分解能Fと異なっていてもよい。信号の高周波成分は一群の合成サブバンド信号から生成される。
更に別の実施形態として、第1のサンプリング周波数による信号の低周波成分から、第2のサンプリング周波数による該信号の高周波成分を生成する方法も説明される。第2のサンプリング周波数は第1のサンプリング周波数のR倍であり、R≧1である。本方法は、次数Tのハーモニックトランスポジションを行うことで、低周波成分から変調された高周波成分を生成するステップを有する。変調された高周波成分は、T倍高い周波数範囲にトランスポジションされた低周波成分の一部分に基づいて決定され、変調された高周波成分は第1のサンプリング周波数に因子Sを乗算したものであり、T>1及びS<Rである。
別の実施形態として、少なくとも信号を含む受信信号をデコードするセットトップボックスも説明される。セットトップボックスは、信号の低周波数成分から信号の高周波成分を生成するシステムを有する。そのシステムは本願で説明される何れかの形態及び/又は特徴を含む。
別の形態として、ソフトウェアプログラムも説明される。ソフトウェアプログラムは、コンピュータ装置で実行される場合に、本願で説明される何れかの形態及び方法をプロセッサに実行させる。
更に別の形態として、記憶媒体も説明されている。記憶媒体はソフトウェアプログラムを記憶し、ソフトウェアプログラムは、コンピュータ装置で実行される場合に、本願で説明される何れかの形態及び方法の特徴をプロセッサに実行させる。
別の形態として、コンピュータプログラムプロダクトも説明されている。コンピュータプログラムプロダクトは、コンピュータ装置で実行される場合に、本願で説明される何れかの形態及び方法をコンピュータに実行させる命令を有する。
本願において説明されている複数の実施例及び実施形態は任意に組み合わせられてもよいことに留意を要する。特に、システムに関連して説明されている例及び形態は、対応する方法に適用されてもよいし、その逆も成立することに留意を要する。更に、本願の開示内容は、従属請求項として明示的に示されている請求項の組み合わせ以外の請求項の組み合わせをも包含している点に留意を要する(すなわち、請求項及びその技術的な特徴は任意の順序及び任意の形態で組み合わせられてよい)。
以下、添付図面を参照しながら、本発明の範囲を限定するものではない実施例を説明する。
以下に説明する実施例は、効率的に合成されたハーモニックトランスポジションを行う本発明の原理を単に例示しているに過ぎない。説明されている形態及び具体的詳細例についての変形及び修正は、当業者にとって明らかであることが、理解されるであろう。従って、本発明は添付の特許請求の範囲によってのみ規定され、以下の説明及び記述により提示されている具体的な詳細によっては規定されないことに留意を要する。
図1は、1次の周波数領域(FD)ハーモニックトランスポーザ100の処理例を示す。基本形態において、T次のハーモニックトランスポーザは、理論的には、入力信号の全ての信号成分をT倍高い周波数に移す(シフトする)装置である。このような処理を周波数領域で実行するために、分析フィルタバンク(又は変換部)101は、入力信号を時間領域から周波数領域へ変換し、分析サブバンド又は分析サブバンド信号と言及される複素サブバンド又はサブバンド信号を出力する。分析サブバンド信号は非線形処理部102に与えられ、非線形処理部102は選択されたトランスポジション次数Tに従って位相及び/又は振幅を修正又は調整する。典型的には、非線形処理部はある数のサブバンド信号を出力し、それは入力サブバンド信号の数、すなわち分析サブバンド信号の数に等しい。しかしながら、高級な(advanced)非線形処理部の場合、入力サブバンド信号数とは異なる数のサブバンド信号を出力することが望ましい。特に、1つの出力サブバンド信号を生成するために、2つのサブバンド信号が非線形処理部で処理されてもよい。この点については以下において詳述する。合成サブバンド(analysis subband)又は合成サブバンド(synthesis subband)信号と言及される修正されたサブバンド又はサブバンド信号は合成フィルタバンク103(変換部)に与えられ、合成フィルタバンクは、サブバンド信号を周波数領域から時間領域へ変換し、トランスポジションの処理がなされた時間領域信号を出力する。
典型的には、フィルタバンクの各々は、ヘルツで表現される物理周波数分解能と秒で表現される時間ストライドパラメータ(time stride parameter)とを有する。これら2つのパラメータ(すなわち、周波数分解能及びタイムストライド)は、選択されたサンプリングレートにおけるフィルタバンクの離散時間パラメータを規定する。分析及び合成フィルタバンクの物理的時間ストライドパラメータ(すなわち、例えば秒である時間単位で測定される時間ストライドパラメータ)が一致するように選択することで、トランスポーザ100の出力信号は、入力信号と同じサンプリングレートを有するようになる。更に、非線形処理部102を省略することで、出力における入力信号の完全な再構築が達成される。これは、分析及び合成フィルタバンクについて注意深い設計を要する。一方、出力サンプリングレートが入力サンプリングレートと異なるように選択される場合、サンプリングレートの変換が行われる。この動作モードは、例えば、所望の出力帯域幅が入力サンプリングレートの半分より大きい信号トランスポジションを適用する場合、すなわち所望の出力帯域幅が入力信号のナイキスト周波数を超える場合に必要になる。
図2は、異なる次数の複数のハーモニックトランスポーザ201-1,...,201-Pを含むマルチプル(multiple)トランスポーザシステム200の例を示す。トランスポジションの処理が施される入力信号は、P個の個々のトランスポーザ201-1,201-2,...,201-Pのバンクに与えられる。個々のトランスポーザ201-1,201-2,...,201-Pは図1に関連して説明したような入力信号のハーモニックトランスポジションを実行する。典型的には、個々のトランスポーザ201-1,201-2,...,201-Pの各々は異なるトランスポジション次数Tのハーモニックトランスポジションを実行する。一例として、トランスポーザ201-1は次数T=1のトランスポジションを実行し、トランスポーザ201-2は次数T=2のトランスポジションを実行し、そしてトランスポーザ201-Pは次数T=Pのトランスポジションを実行してもよい。その成果、すなわち個々のトランスポーザ201-1,201-2,...,201-Pからの出力信号は合成部、加算部又はコンバイナ202において加算され、加算されたトランスポーザ出力を生成する。
トランスポーザ201-1,201-2,...,201-Pの各々は図1に示されているような分析及び合成フィルタバンクを要することに留意すべきである。更に、個々のトランスポーザ201-1,201-2,...,201-Pは、典型的には、処理される入力信号のサンプリングレートを異なる量だけ変更する。一例として、トランスポーザ201-1の出力信号のサンプリングレートは、トランスポーザ201-Pに対する入力信号のサンプリングレートよりもP倍高い。これは、トランスポーザ201-Pの中で使用されている帯域幅拡張因子(bandwidth expansion factor)Pに起因し、すなわち分析フィルタバンクよりもP倍多いサブチャネルを有する合成フィルタバンクを使用することに起因する。これを実行するため、サンプリングレート及びナイキスト周波数は因子Pにより増加させられている。その結果、個々の時間領域信号は、合成部202において様々な出力信号の合成を可能にするために、サンプリングし直される(リサンプリングされる)必要がある。時間領域信号のリサンプリングは、個々のトランスポーザ201-1,201-2,...,201-P各々に対する入力信号又は出力信号において実行可能である。
図3は、共通する分析フィルタバンクを使用して、いくつもの次数のトランスポジションを実行するマルチプルハーモニックトランスポーザ又はマルチプルトランスポーザシステム300の構成例を示す。マルチプルトランスポーザ300の設計の最初の段階では、全てのトランスポーザ201-1,201-2,...,201-Pの分析フィルタバンク(図1における参照符号101)が、同一でありかつ単独の分析フィルタバンク301で代替できるように、図2の個々のトランスポーザ201-1,201-2,...,201-Pを設計する。その結果、時間領域入力信号は、単一の一群の周波数領域サブバンド信号(すなわち、単一の一群の分析サブバンド信号)に変換される。これらのサブバンド信号は、様々な次数のトランスポジションに備えて様々な非線形処理部302-1,302-2,...,302-Pに与えられる。図1に関して説明したように、非線形処理部はサブバンド信号の位相及び/又は振幅の修正部を有し、この修正は異なる次数のトランスポジションについては異なっている。従って、別様に修正されたサブバンド信号又はサブバンドは、異なる非線形処理部302-1,302-2,...,302-Pに対応する異なる合成フィルタバンク303-1,303-2,...,303-Pにそれぞれ与えられる。その成果として、異なるトランスポジションが施された時間領域出力信号が得られ、それらは合成部304において加算され、加算されたトランスポーザ出力が得られる。
様々なトランスポジション次数に対応する合成フィルタバンク303-1,303-2,...,303-Pが、例えば様々な帯域幅拡張度を利用することで、様々なサンプリングレートで動作する場合、様々な合成フィルタバンク303-1,303-2,...,303-Pの時間領域出力信号は、合成部304で加算される前に、P個の出力信号を同じ時間単位又は時間グリッドに整合させるために様々にリサンプリングされる必要があることに、留意を要する。
図4は、共通する合成フィルタバンク404を使用して、複数の次数のトランスポジションを利用したマルチハーモニックトランスポーザシステム400の構成例を示す。マルチプルトランスポーザ400の設計の最初の段階では、全てのトランスポーザの合成フィルタバンクが、同一でありかつ単独の合成フィルタバンク404で代替できるように、図2の個々のトランスポーザ201-1,201-2,...,201-Pを設計する。図3に示す例と同様に、非線形処理部402-1,402-2,...,402-Pはトランスポジション次数各々について異なることに留意を要する。更に、分析フィルタバンク401-1,401-2,...,401-Pは異なるトランスポジション次数に対して異なっている。従って、P個の分析フィルタバンク401-1,401-2,...,401-Pの一群は、P個の群の分析サブバンド信号を決定する。これらのP個の群の分析サブバンド信号は対応する非線形処理部402-1,402-2,...,402-Pに与えられ、P個の群の修正されたサブバンド信号を出力する。これらP個の群のサブバンド信号は合成部403において周波数領域で合成され、合成された一群のサブバンド信号を、単一の合成フィルタバンク404の入力として出力する。合成部403における信号の合成は、別様に処理されたサブバンド信号を異なるサブバンドレンジに与えること、及び/又はサブバンド信号の寄与を重複する(オーバーラップする)サブバンドレンジに重ね合わせることを含む。言い換えれば、異なるトランスポジション次数で処理された様々な分析サブバンド信号は、重複する周波数範囲をカバーする。その場合、重ね合わせの個々の寄与が合成部403により合成される(すなわち、加算される及び/又は平均化される)。マルチプルトランスポーザ400の時間領域出力信号が共通の合成フィルタバンク404から得られる。上述したのと同様に、分析フィルタバンク401-1,401-2,...,401-Pが異なるサンプリングレートで動作する場合、様々な分析フィルタバンク401-1,401-2,...,401-Pに対する時間領域信号入力は、様々な非線形処理部402-1,402-2,...,402-Pの出力信号を同じ時間単位に整合させるようにリサンプリングされる必要がある。
図5は、1つの共通する分析フィルタバンク501及び1つの共通する合成フィルタバンク504を有し、複数の次数のトランスポジションを利用行うマルチハーモニックトランスポーザシステム500の例を示す。この場合、図2の個々のトランスポーザ201-1,201-2,...,201-Pは、P個のハーモニックトランスポーザの分析フィルタバンク及び合成フィルタバンクの双方が同じであるように設計される。異なるP個のハーモニックトランスポーザに関する同じ分析及び合成フィルタバンクの条件が合致していた場合、同じフィルタバンクは、1つの分析フィルタバンク501及び1つの合成フィルタバンク504により置換できる。アドバンスト非線形処理部502-1,502-2,...,502-Pは、合成部503において合成される様々な寄与成分を出力し、合成部は、合成フィルタバンク504の個々のサブバンドに対する合成された入力を生成する。図4に示すマルチハーモニックトランスポーザ400と同様に、合成部503における信号の合成は、非線形処理部502-1,502-2,...,502-Pの別様に処理された信号を様々なサブバンドレンジに供給すること、及び寄与する複数の出力を重複する複数のサブバンドレンジに重ね合わせることを含む。
上述したように、非線形処理部102は、典型的には、入力におけるサブバンド数に対応する数のサブバンドを出力において提供する。非線形処理部102は、典型的には、使用されるトランスポジション次数Tに従ってサブバンド又はサブバンド信号の位相及び/又は振幅を修正する。一例として、入力におけるサブバンドは出力においてT倍高い周波数のサブバンドンに変換され、すなわち、非線形処理部102に対する入力において[(k-(1/2))Δf,(k+(1/2))Δf]の範囲内のサブバンド(分析サブバンド)は、非線形処理部102の出力において[(k-(1/2))TΔf,(k+(1/2))TΔf]の範囲内のサブバンド(合成サブバンド)に変換される。ここで、kはサブバンドインデックス数であり、Δfは分析フィルタバンクの周波数分解能である。共通の分析フィルタバンク501及び共通の合成フィルタバンク504を使用できるようにするため、アドバンスト処理部502-1,502-2,...,502-Pの1つ以上は、入力サブバンド数とは異なる数の出力サブバンドを与えるように構成される。一実施形態において、アドバンスト処理部502-1,502-2,...,502-Pに対する入力サブバンド数は、出力サブバンド数のおよそF/T倍である。ここで、Tはアドバンスト処理部のトランスポジション次数であり、Fは以下の説明で導入されるフィルタバンク分解能因子(filter bank resolution factor)である。
以下、非線形処理部502-1,502-2,...,502-Pに関するアドバンスト処理部502-1,502-2,...,502-Pの原理を説明する。この目的のため、以下のことを仮定する。
●分析フィルタバンク及び合成フィルタバンクは同じ物理時間ストライドパラメータΔtを共有している。
●分析フィルタバンクは物理周波数分解能Δfを有する。
●合成フィルタバンクは物理周波数分解能FΔfを有し、分解能因子Fは1以上の整数である(F≧1)。
更に、複数のフィルタバンクは均等に又は整数倍の位置に(evenly)用意されており、すなわちインデックス0のサブバンドはゼロ周波数付近に中心を有し、分析フィルタバンクの中心周波数はkΔfで与えられることが仮定され、分析サブバンドインデックスkはk=0,1,...,LA-1であり、LAは分析フィルタバンクのサブバンド数である。合成フィルタバンクの中心周波数はnFΔfにより与えられ、合成サブバンドインデックスnは、n=0,1,...,Ls-1であり、Lsは合成フィルタバンクのサブバンド数である。
図1に示されるような次数T≧1の従来のトランスポジションを実行する場合、分解能因子FはF=Tであるように選択され、非線形処理部の分析サブバンドkは同じインデックスn=kの分析サブバンドにマッピングされる。非線形処理部102は典型的にはサブバンド又はサブバンド信号の位相に因子Tを乗算し、すなわちフィルタバンクのサブバンドの各サンプルに対して、次のように書くことができる:
θs(k)=TθA(k) (1)
θA(k)は分析サブバンドkのサンプルの位相であり、θs(k)は合成サブバンドkのサンプルの位相である。サブバンドのサンプルの大きさ又は振幅は、修正されないように維持されてもよいし、或いは一定のゲインファクタの分だけ増加又は減少させられてもよい。Tは整数であるので、(1)の数式の処理は位相角の定義に依存しない。
分解能因子Fがトランスポジション次数Tに等しい場合(すなわち、F=Tである場合)、合成フィルタバンクの周波数分解能(すなわち、FΔf)はトランジション次数Tに依存する。従って、分析又は合成の処理段において、異なるフィルタバンクについて異なるトランスポジション次数Tを使用する必要がある。これは、トランスポジション次数Tが、物理周波数分解能の程度、すなわち分析フィルタバンクの周波数分解能Δfの程度及び合成フィルタバンクの周波数分解能FΔfを規定していることに起因する。
複数の異なるトランスポジション次数T について共通の分析フィルタバンク501及び共通の合成フィルタバンク504を使用できるようにするため、本願では、合成フィルタバンクの周波数分解能をFΔfに設定することが提案される、すなわち合成フィルタバンク504の周波数分解能をトランスポジション次数Tに依存しないようにすることが提案される。従って、分析及び合成フィルタバンクの物理周波数分解能の程度を示す分解能因子Fが、F=Tという関係式に従う必要がない場合に、次数Tのトランスポジションを如何にして実行するかが問題になる。
上記において説明したように、ハーモニックトランスポーザの原理によれば、中心周波数がnFΔfである合成フィルタバンクのサブバンドnに対する入力は、1/T倍低い中心周波数(nFΔf/T)における分析サブバンドにより決定される。分析サブバンドの中心周波数は、分析サブバンドインデックスkを利用すれば、kΔfのように特定される。分析サブバンドインデックスの中心周波数の双方の表現(すなわち、nFΔf/T及びkΔf)は等しい(対応させてよい)。nが整数であることを考慮すると、nF/Tという表現の有理数は、整数の分析サブバンドインデックスkとそれ以外の部分r(r∈{0,1/T,2/T,...,(T-1)/T})との和として、次のように表現することができる:
nF/T=k+r (2)
従って、合成サブバンドインデックスnの合成サブバンドに対する入力は、次数Tのトランスポジションを用いて、数式(2)により与えられるインデックスの分析サブバンド又はサブバンドkから導出されることが、保証される。nF/Tは有理数であるので、余り又は剰余rは0に等しい値ではなく、値k+rは分析サブバンドインデックスkより大きくかつ分析サブバンドインデックスk+1より小さい。従って、合成サブバンドインデックスnの合成サブバンドに対する入力は、次数Tのトランスポジションを用いて、分析サブバンドインデックスk及びk+1の分析サブバンドから導出され、kは数式(2)により与えられる。
上記の分析の結果として、非線形処理部502-1,502-2,...,502-Pにおいて実行される高度な非線形処理(アドバンスト非線形処理)は、概して、出力を合成サブバンドnに与えるインデックスk及びk+1の2つの隣接する分析サブバンドを考慮することを含む。トランスポジション次数Tの場合、非線形処理部502-1,502-2,...,502-Pにより実行される位相調整は、従って、次の線形補間法により決定されてもよい:
θs(n)=T(1-r)θA(k)+TrθA(k+1) (3)
ここでθA(k)は分析サブバンドkのサンプルの位相であり、θA(k+1)は分析サブバンドk+1のサンプルの位相であり、θs(k)は合成サブバンドnのサンプルの位相である。すなわち、剰余rが0に近い場合、k+rの値はkに近くなり、その場合、合成サブバンドのサンプルの位相に主に寄与するものは、サブバンドkの分析サブバンドのサンプルの位相から得られる。一方、剰余rが1に近い場合、k+rの値はk+1に近くなり、その場合、合成サブバンドのサンプルの位相に主に寄与するものは、サブバンドk+1の分析サブバンドのサンプルの位相から得られる。数式(3)の位相調整が明確に規定されかつ位相角の定義に依存しないように、位相乗算因子T(1-r)及びTrは何れも整数であることに留意を要する。
サブバンドサンプルの大きさを考慮して、合成サブバンドサンプルの大きさを判定するために、以下の幾何平均値が選択される:
aS(n)=aA(k)(1-r)aA(k+1)r (4)
aS(n)は合成サブバンドnのサンプルの大きさを示し、aA(k)は分析サブバンドのサンプルの大きさを示し、aA(k+1)は分析サブバンドk+1のサンプルの大きさを示す。
フィルタバンクが半整数倍の位置に(oddly)用意されていた場合、分析フィルタバンクの中心周波数は(k+(1/2))Δfにより与えられ、k=0,1,...,LA-1であり、合成フィルタバンクの中心周波数は(n+(1/2))FΔfにより与えられ、n=0,1,...,LS-1であり、上記の数式(2)に対応する数式は、トランスポジション後の合成フィルタバンクの中心周波数(n+(1/2))FΔf/Tと分析フィルタバンクの中心周波数(k+(1/2))Δfとを等しく置くことで導出される。整数インデックスk及び剰余r∈[0,1]を考慮すると、半整数倍の位置にあるフィルタバンクについて以下の数式が導出される:
(n+(1/2))F/T=k+1/2+r (5)
T-F、すなわちトランスポジション次数及び分解能因子の差分が偶数(even)である場合、T(1-r)及びTrは双方とも整数であり、数式(3)及び(4)の補間の数式を使用できることが分かる。
図5bは、分析サブバンドを合成サブバンドに対応付ける様子を示す。図5bはT=1ないしT=4の4つの異なるトランスポジション次数に関する4つのマッピング例を示す。各々の図は、ソースビン510(すなわち、分析サブバンド)がターゲットビン530(すなわち、合成サブバンド)にどのようにマッピングされるかを示す。図示の簡明化のため、分解能因子Fは1であるとする。言い換えれば、図5bは、数式(2)及び(3)を用いて分析サブバンド信号を合成サブバンド信号にマッピングする様子を示す。図示の例の場合、F=1及び最大トランスポジション次数P=4と共に、分析/合成フィルタバンクは整数倍毎に(evenly)設定されている。
図示の例の場合、数式(2)は、n/T=k+r のように書ける。従って、トランスポジション次数T=1の場合、インデックスkの分析サブバンドは対応する合成サブバンドnにマッピングされ、剰余rはゼロである。これは図5bに示されており、ソースビン511はターゲットビンに531に1対1に対応付けられている。
トランスポジション次数T=2の場合、剰余rは0及び1/2の値をとり、ソースビンは複数のターゲットビンに対応付けられる。逆の観点から見れば、ターゲットビン532、535の各々は高々2つのソースビンから寄与を受けている、と言える。このことは図5bにおいて、ターゲットビン535がソースビン512及び515から寄与を受けているようなことで示されている。しかしながら、ターゲットビン532はソースビン512からの寄与しか受けていない。ターゲットビン535が偶数インデックスn(例えば、n=10)を有するとすると、数式(2)は、ターゲットビン532がインデックスk=n/2(すなわち、k=5)と共にソースビン512から寄与を受けることを示す。この場合、剰余rはゼロであり、すなわちインデックスk+1(すなわち、k+1=6)のソースビン515からの寄与はない。奇数インデックスn(例えば、n=11)のターゲットビン535の場合、状況は変わる。この場合、数式(2)は、ターゲットビン535がソースビン512(インデックスk=5)及びソースビン515(インデックスk+1=6)から寄与を受けることを示す。このことは、高次のトランスポジション次数T(例えば、図5bに示されているようなT=3及びT=4)についても同様である。
F=2の場合、数式(2)は2n/T=k+rのように書くことができ、この場合については図5cに示されている。トランスポジション次数T=2の場合、インデックスkの分析サブバンドは対応する合成サブバンドnにマッピングされ、剰余rは常にゼロである。これは、ソースビン521がターゲットビン514に1対1にマッピングされていることから分かる。
トランスポジション次数T=3の場合、剰余rは0、1/3、2/3の値をとり、ソースビンは複数のターゲットビンに対応付けられる。逆の観点から見れば、ターゲットビン542、545の各々は高々2つのソースビンから寄与を受けている、と言える。このことは図5cにおいて、ターゲットビン545がソースビン522及び525から寄与を受けているようなことで示されている。ターゲットビン545が例えばインデックスn=8を有するとすると、数式(2)は、k=5及びr=1/3であることを示し、ターゲットビン545がソースビン522(インデックスk=5)及びソースビン525(インデックスk+1=6)から寄与を受けることを示す。しかしながら、インデックスn=9のターゲットビン546の場合、剰余rはゼロになり、ターゲットビン546はソースビン525からの寄与しか受けない。このことは、高次のトランスポジション次数T(例えば、図5cに示されているようなT=4)についても同様である。
上記のアドバンスト非線形処理の更なる説明は次のようになる。アドバンスト非線形処理は、所与の次数Tのトランスポジションを行うことと、トランスポジション後のサブバンド信号を共通合成フィルタバンクにより規定される周波数グリッド(すなわち、周波数グリッドFΔf)にマッピングすることとの組み合わせとして理解できる。この解釈を説明するため、再び図5b又は5cを参照する。ただし、ソースビン510又は520は、トランスポジション次数Tを用いて分析サブバンドから導出された合成サブバンドであるとする。これらの合成サブバンドはTΔfにより与えられる周波数グリッドを有する。ターゲットビン530又は540により与えられる所定の周波数グリッドFΔfにおける合成サブバンドを生成するために、ソースビン510又は520(すなわち、周波数グリッドTΔfを有する合成サブバンド)は、所定の周波数グリッドFΔfにマッピングされる必要がある。これは、1つ以上のソースビン510又は520(すなわち、周波数グリッドTΔfにおける合成サブバンド信号)を補間し、ターゲットビン530又は540(すなわち、周波数グリッドFΔfにおける合成サブバンド信号)を決定することで行われる。好適実施形態の場合、線形補間が使用され、補間のウェイト(重み係数)は、ターゲットビン530又は540の中心周波数と対応するソースビン510又は520との間の差分の逆数に比例する。一例として、差分がゼロであった場合のウェイトは1であり、差分がTΔfであった場合のウェイトは0である。
要するに、いくつかの分析サブバンドのトランスポジションによる合成サブバンドへの寄与を決定できるようにする非線形処理法が説明されている。その非線形処理法は、様々なトランスポジション次数に対する単一の共通の分析及び合成サブバンドフィルタバンクを使用できるようにし、これにより複数のハーモニックトランスポーザの複雑な演算を大幅に減少させることができる。
以下、マルチハーモニックトランスポーザ又はハーモニックトランスポーザシステムのいくつかの実施形態を説明する。本願のリファレンスに含めている特許文献1(WO98/57436)等に示されているSBR(スペクトルバンドレプリケーション)のような高周波再構築(high frequency reconstruction: HFR)を使用するオーディオソース符号化/復号化システムの場合における典型的な処理では、コアデコーダ(すなわち、オーディオ信号の低周波成分のデコーダ)が、時間領域信号をHFRモジュール又はHFRシステム(すなわち、オーディオ信号の高周波成分の再構築を実行するモジュール又はシステム)に出力する。低周波数成分は、低周波数成分及び高周波数成分を含む元のオーディオ信号の帯域幅の半分より狭い帯域幅を有する。従って、低バンド信号(低帯域信号)と言及される低周波成分を含む時間ドメイン信号(時間領域信号)は、オーディオ符号化/復号化システムの最終的な出力信号のサンプリングレートの半分でサンプリングされてよい。その場合、HFRモジュールは、コア信号を出力信号に加えることを支援するように、コア信号(すなわち、低バンド信号)を、サンプリング周波数の2倍に効率的にサンプリングし直す(リサンプリングする)必要がある。したがって、HFRモジュールにより適用されるいわゆる帯域幅拡張因子(bandwidth extension factor)は2に等しい。
HFR生成信号と言及される高周波成分の生成後、HFR生成信号は、元の信号の高周波成分(すなわち、エンコードされた本来の信号の高周波成分)にできるだけ合致させるように動的に調整される。この調整は、典型的には、送信側の情報を利用するいわゆるHFRプロセッサにより実行される。送信側情報は元の信号の高周波成分のスペクトルエンベロープに関する情報を含み、HFR生成信号の調整はHFR生成信号のスペクトルエンベロープの調整を含む。
送信側情報に従ってHFR生成信号の調整を実行するために、HFR生成信号はマルチチャネル直交ミラーフィルタ(Quadrature Mirror Filter: QMF)バンクにより分析され、このマルチチャネルQMFバンクはHFR生成信号のスペクトルQMFサブバンド信号を提供する。そして、HFRプロセッサは、分析QMFバンクから取得したスペクトルQMFサブバンド信号におけるHFR生成信号の調整を実行する。最終的に、調整されたQMFサブバンド信号は分析QMFバンクにおいて合成される。サンプリング周波数の変更を実行するために、例えば、低バンド信号のサンプリング周波数からオーディオ符号化/復号化システムの出力信号のサンプリング周波数へサンプリング周波数を2倍にするために、分析QMFバンド数は合成QMFバンド数と異なっていてもよい。一実施形態において、分析QMFバンクは32個のサブバンド信号を生成し、合成QMFバンクプロセッサが64個のQMFサブバンドを処理し、これにより2倍のサンプリング周波数を提供してもよい。典型的には、トランスポーザの分析及び/又は合成フィルタバンクは何百もの分析及び/又は合成サブバンドを生成し、QMFバンクよりも非常に高い周波数分解能を提供してよいことに、留意を要する。
図6のHFRシステム600には、信号の高周波成分を生成する処理例が示されている。送信されたビットストリームはコアデコーダ601で受信され、サンプリング周波数fsにおいてコアデコーダはデコードされた出力信号の周波数成分を提供する。サンプリング周波数fsの低周波成分は個々の様々なトランスポーザ602-1,...,602-Pに入力され、単独のトランスポーザ各々は図1に示されているようなトランスポジション次数T=2,...,Pの単独のトランスポーザに対応する。T=1,2,...,Pに関するトランスポジション後の個々の信号は個々の分析QMFバンク603-1,...,603-Pの特定のインスタンスに別々に与えられる。低周波成分は次数T=1のトランスポジション信号と考えられていることに留意を要する。コア信号のリサンプリング(すなわち、サンプリング周波数fsにおける低周波成分のリサンプリング)は、ダウンサンプリングされたQMFバンク603-1(典型的には、64チャネルではなく32チャネルを有する)を用いて低周波成分をフィルタリングすることで行われる。その成果として32個のサブバンド信号が生成され、各QMFサブバンド信号はサンプリング周波数fs/32を有する。
サンプリング周波数fsにおいて次数T=2のトランスポジションによる信号への影響は図12aに示すような周波数ダイアグラムにより表現される。周波数ダイアグラム1210は帯域幅がBHzのトランスポーザ602-2に対する入力信号を示す。入力信号は分析フィルタバンクにより複数の分析サブバンド信号に分割(区分又はセグメント化)される。これは周波数バンド1211へのセグメント化により表現される。分析サブバンド信号は、T=2倍高い周波数範囲へ移され(トランスポジションされ)、サンプリグング周波数は2倍にされる。その結果の周波数領域信号は周波数ダイアグラム1220に示されており、周波数ダイアグラム1220は周波数ダイアグラム1210と同じ周波数スケールを有する(1目盛り又は1単位は同じである)。サブバンド1211はサブバンド1221にトランスポジションされていることが分かる。トランスポジションの処理は破線矢印で示されている。更に、トランスポジション後のサブバンド信号の周期的スペクトル1222が周波数ダイアグラム1220に示されている。代替的に、トランスポジションの処理は周波数ダイアグラム1230のように示されてもよく、この場合、周波数軸がスケール調整され、すなわちトランスポジション因子T=2が乗算されている。言い換えれば、周波数ダイアグラム1230はT=2倍大きなスケールによる周波数ダイアグラム1220に対応する。サブバンド信号1231の各々はセグメント1211の2倍の帯域幅を有する。これは、入力信号よりもT=2倍高いサンプリングレート(すなわち、2fsのサンプリングレート)を有するトランスポーザ602-2の出力信号となるが、信号の時間的な持続期間は不変のままである。
図6に示されているように及び上記において説明したように、トランスポジション次数T=2の個々のトランスポーザ602-2の出力信号は、2fsのサンプリング周波数を有する。サンプリング周波数がfs/32のQMFサブバンド信号を生成するために、64個のチャネルを有する分析QMFバンク603-2が使用されるべきである。同様に、トランスポジション次数T=Pの個々のトランスポーザ602-Pの出力信号は、Pfsのサンプリング周波数を有する。サンプリング周波数fs/32でQMFサブバンド信号を生成するために、32Pチャネルを有する分析QMFバンク603-2が使用されるべきである。サイズ(すなわち、分析QMFバンク603-1,...,603-P各々のチャネル数)が対応するトランスポーザ602-2,...,602-Pから生じる信号に適合していた場合、分析QMFバンク603-1,...,603-Pの全てのインスタンスからのサブバンド信号は等しいサンプリング周波数を有する。サンプリング周波数fs/32における一群のQMFサブバンド信号はHFR処理モジュール604に与えられ、高周波成分のスペクトル調整は送信側情報に従って実行される。最終的に、調整されたサブバンド信号は64個のチャネルインバース又は合成QMFバンク605により時間領域信号に合成され、これにより、fs/32でサンプリングされたQMFサブバンド信号からサンプリング周波数2fsでデコードされた信号を効率的に生成できる。
上記において説明したように、トランスポーザモジュール602-2,...,602-Pは、それぞれサンプリングレート2fs,...,Pfsのような様々なサンプリングレートの時間領域信号を生成する。トランスポーザモジュール602-2,...,602-Pの出力信号のリサンプリングは、後続の対応するQMF分析バンク603-1,...,603-Pにおいてサブバンドチャネルを「挿入(insert)」又は破棄することで行われる。言い換えれば、トランスポーザモジュール602-2,...,602-Pの出力信号のリサンプリングは、後続の個々の分析QMFバンク603-1,...,603-P及び合成QMFバンク605において異なる数のQMFサブバンドを用いることで行われてよい。従って、QMFバンド602-2,...,602-Pからの出力QMFサブバンド信号は、最終的に合成QMFバンク605に送信される64個のチャネルに適合している必要がある。この適合化又はマッピングは、32個のチャネル分析QMFバンク603-1からの32個のQMFサブバンド信号を、合成又はインバースQMFバンク605の最初の32チャネル(すなわち、32個の低い周波数のチャネル)にマッピング又は加えることで行われる。実際、これは分析QMFバンド603-1を因子2でアップサンプリングすることでフィルタリングされた信号になる。64個のチャネル分析QMFバンク603-2から生じる全てのサブバンド信号は、インバースQMFバンク605の64個のチャネルに直接的にマッピング又は加算されてもよい。分析QMFバンク603-2は合成QMFバンク605と厳密に同じサイズであるという事実の観点からは、トランスポジション後の個々の信号はリサンプルされない。QMFバンク603-3,...,603-Pは、64サブバンド信号を上回る多数の出力QMFサブバンド信号を有する。その場合、低周波側の64個のチャネルが合成QMFバンク605の64チャネルにマッピング又は加算されてよい。高周波側の残りのチャネルは破棄されてもよい。32P個のチャネル分析QMFバンク603-Pの成果として、QMFバンク603-Pによりフィルタリングされた信号は因子P/2でダウンサンプリングされる。従って、トランスポジション次数Pに依存するこのリサンプリングは、同じサンプリング周波数を有する全てのトランスポジション信号になる。
言い換えれば、トランスポーザモジュール602-2,...,602-Pが異なるサンプリングレートの時間領域信号を生成する場合であったとしても、サブバンド信号はHFR処理モジュール604に与えられる場合同じサンプリングレートを有することが望ましい。これは異なるサイズの分析QMFバンク603-3,...,603-Pを使用することで達成され、そのサイズは典型的には32Tであり、Tはトランスポジション因子又はトランスポジション次数である。HFR処理モジュール604及び合成QMFバンク605は典型的には64個のサブバンド信号(すなわち、分析QMFバンク603-1の2倍のサイズ)について処理を行うので、その数を超えるサブバンドインデックスの分析QMFバンク603-3,...,603-Pから生じるすべてのサブバンド信号は破棄されてもよい。トランスポーザ602-2,...,602-Pの出力信号は出力信号のナイキスト周波数を上回る周波数範囲を事実上カバーしているので、これが行われる。残りのサブバンド信号(すなわち、合成QMFバンク605のサブバンドにマッピングさえるサブバンド信号)は、周波数的に重複した(オーバーラップした)トランスポジション信号を生成するように加算されてもよいし(後述する図12b参照)、あるいは別方法により例えば図12c(後述)に示されているように重複していないトランスポジション信号を得るように合成されてもよい。重複しないトランスポジション信号の場合、次数Tのトランスポーザ602-T(T=2,...,P)は典型的には特定の周波数範囲に割り当てられ、トランスポーザ602-Tはその特定の周波数範囲のために周波数成分を排他的に生成する。一実施形態において、トラスポーザ602-Tの専用(個別)の周波数範囲は[(T-1)B,TB]であり、Bはトランスポーザ602-Tに対する入力信号の帯域幅である。その場合、個別の周波数範囲以外のトランスポーザ602-Tの合成サブバンド信号は無視又は破棄される。一方、トランスポーザ602-Tは他のトランスポーザ602-2,...,602-Pの周波数成分と重複する周波数成分を生成してもよい。その場合、それらの重複した周波数成分はQMFサブバンドのドメインで重ね合わせられる。
上述したように、典型的な実施形態において、マルチプルトランスポーザ602-2,...,602-PはHFRモジュール600の出力信号の高周波成分を生成するのに使用される。トランスポーザ602-2,...,602-Pに対する入力信号(すなわち、出力信号の低周波成分)は帯域幅BHz及びサンプリングレートfsを有し、HFRモジュール600の出力信号はサンプリングレート2fsを有することが、仮定される。従って、高周波成分は周波数範囲[B,fs]をカバーしてもよい。トランスポーザ602-2,...,602-Pの各々は、高周波成分に対する寄与を提供し、それらの寄与は重複していてもよいし及び/又は重複していなくてもよい。図12bでは、様々なトランスポーザ602-2,...,602-Pからの重複した寄与により、高周波成分が生成されている。周波数ダイアグラム1241は低周波成分(すなわち、トランスポーザ602-2,...,602-Pへの入力信号)を示す。周波数ダイアグラム1242は、周波数範囲[B,2B]におけるサブバンドを含む2次のトランスポーザ602-2の出力信号を示し、図中、ハッチングされた周波数範囲により示されている。トランスポーザにより生成される周波数範囲[0,B]は典型的には無視又は破棄される。なぜならその範囲は低周波入力信号によりカバーされているからである。これは、図中、白い周波数範囲により示されている。周波数ダイアグラム1243は、周波数範囲[B,3B]をカバーする3次のトランスポーザ602-3の出力信号を示し、図中、ハッチングされた周波数範囲により示されている。同様に、トランスポーザ602-Pは周波数ダイアグラム1244に示されている周波数範囲[B,PB]をカバーする出力信号を生成する。最終的に、様々なトランスポーザ602-2,...,602-Pの出力信号及び低周波成分は、分析QMFバンク603-1,...,603-Pを用いてQMFサブバンドにマッピングされ、これにより一群のQMFサブバンドをP個生成する。周波数ダイアグラム1245から分かるように、参照符号1246により示されている周波数範囲[0,B]をカバーするQMFサブバンドは、低周波数成分(すなわち、一次トランスポジションから得られる信号)からしか寄与がない。参照番号1247に示される周波数範囲[B,2B]をカバーするQMFサブバンドは、トランスポジション次数T=2,...,Pの出力信号からの寄与を受けている。参照番号1248に示される周波数範囲[2B,3B]をカバーするQMFサブバンドは、トランスポジション次数T=3,...,Pの出力信号からの寄与を受け、以下同様である。参照番号1249に示される周波数範囲[(P-1)B,PB]をカバーするQMFサブバンドは、トランスポジション次数T=Pの出力信号からの寄与を受けている。
これに対して図12cでは、トランスポーザ602-2,...,602-Pは、各自の出力信号の周波数範囲が重複しないように構成されている。周波数ダイアグラム1251は低周波数成分を示す。周波数ダイアグラム1252は周波数範囲[B,2B]をカバーする2次のトランスポーザの出力信号を示す。周波数ダイアグラム1253は周波数範囲[2B,3B]をカバーする3次のトランスポーザ602-3の出力信号を示し、周波数ダイアグラム1254は周波数範囲[(P-1)B,PB]をカバーするP次のトランスポーザ602-Pの出力信号を示す。低周波成分の信号及びトランスポーザ602-2,...,602-Pの出力信号は一群のQMFサブバンドをP個提供する分析QMFバンク603-1,...,603-Pにそれぞれ与えられる。典型的には、これらQMFサブバンドは重複する周波数範囲の寄与を有しない。これは周波数ダイアグラム1255に示されている。参照符号1256により示される周波数範囲[0,B]をカバーするQMFサブバンドは、低周波成分(一次トランスポジションからの信号)からの寄与しか受けていない。参照符号1257により示される周波数範囲[B,2B]をカバーするQMFサブバンドは、トランスポジション次数T=2トランスポーザの出力信号からの寄与を受けている。参照符号1258により示される周波数範囲[2B,3B]をカバーするQMFサブバンドは、トランスポジション次数T=3のトランスポーザの出力信号からの寄与を受けている。参照符号1259により示される周波数範囲[(P-1)B,PB]をカバーするQMFサブバンドは、トランスポジション次数T=Pのトランスポーザの出力信号からの寄与を受けている。
図12b及び12cは、トランスポーザ602-2,...,602-Pの出力信号が完全に重複している場合の例とトランスポーザ602-2,...,602-Pの出力信号が完全に重複していない場合の例とを示す。部分に重複している出力信号を有するそれらが混合している例も可能であることに留意を要する。図12b及び12cの2つの例は、各出力信号の周波数範囲が重複する又は重複しないようにトランスポーザ602-2,...,602-Pが構成された場合のシステムを示すことに留意を要する。これは、トランスポーザのスペクトル領域におけるウィンドウ化を適用することで、例えば選択されたサブバンド信号をゼロに設定することで行われてもよい。代替例は、トランスポーザ602-2,...,602-Pを図12b及び12cの双方において、分析QMFバンク603-1,...,603-Pから得られたサブバンド信号を適切な方法で合成することで、広帯域幅信号(ワイドバンド信号)を生成し、QMFサブバンド領域でトランスポジション信号のフィルタリングを実行する。例えば、非重複の場合、分析QMFバンク603-1,...,603-Pの唯1つのみが、トランスポーザ出力周波数範囲各々におけるHFRプロセッサ604に与えられたサブバンド信号に寄与する。重複の場合、複数のサブバンド信号がHFRプロセッサ604に入力される前に加算される。
HFRシステム600の信号の全部又は一部がクリティカルに(critically)(近接して)サンプリングされる場合、HFRシステム700に関する図7及び図13-16に示されているように、図6のシステムよりも効率的な実施形態が得られる。これは、コアデコーダ701の出力信号及び好ましくはHFRシステム700の他の中間信号(例えば、トランスポーザ702-2,...,702-Pの出力信号)はクリティカルにサンプリングされることを意味する。例えば、コアデコーダ701の出力におけるコアデコード信号は有理因数(rational factor)Q=M1/M2によりダウンサンプリングされ、M1及びM2は適切に選択された整数である。ダウンサンプリングファクタQは、帯域幅Bの入力信号がクリティカルにサンプリングされるように強制的に近づける最大の因子である。と同時に、QはQMFバンク703-1のサイズ(32/Q)が整数のままであるように選択される。有理因子Qによるダウンサンプリングは、ダウンサンプラ706において実行され、サンプリング周波数fs/Qで出力信号を生成する。クリティカルにサンプリングされたトランスポジション信号を提供するために、トランスポーザ702-2,...,702-Pは、関連するトランスポジション信号の一部分(すなわち、HFRプロセッサ704により実際に使用される周波数範囲)のみを出力することが好ましい。トランスポジション次数Tのトランスポーザ702-Tに関連する周波数範囲は、非重複の場合における帯域幅BHzを有する入力信号の範囲[(T-1)B,TB]でもよい。
これは、ダウンサンプラ706からの出力及びトランスポーザ702-2,...,702-Pからの出力がクリティカルにサンプリングされることを意味する。2次のトランスポーザ702-2の出力信号は、ダウンサンプラ706の出力信号に等しいサンプリング周波数fs/Qを有する。しかしながら、トランスポーザ702-2は近似的にBないし2BHzのトランスポジション周波数範囲のみを合成するように設計されているので、2次のトランスポーザ702-2からの信号は、事実上、fs/(2Q)の帯域幅のハイパス信号であることに留意を要する。
例えばトランスポーザ702-Pのようなより高次のトランスポーザに関し、少なくとも2つの状況が考えられる。第1の状況は、トランスポジション信号が重複している場合であり、すなわちP次のトランスポジション信号の低周波数側の部分は、P-1次のトランスポジション信号の周波数範囲と重複している(図12b参照)。この場合、クリティカルにサンプリングされたトランスポーザ702-Pからの出力は、Sfs/Qというサンプリング周波数を有し、S=min(P-1,2Q-1)である。S=P-1の場合、P次のトランスポジション信号の最高の周波数はHFRシステム700の出力信号のナイキスト周波数より依然として低く、S=2Q-1の場合、P次のトランスポジション信号の帯域幅は、HFRシステム700の出力信号のナイキスト周波数fsにより制限される。すなわち、トランスポーザ702-Pの出力信号のサンプリング周波数は(2-(1/Q))fsより決して大きくはなく、これはfs/(2Q)(低周波数側の信号の最高周波数)からナイキスト周波数fsに至るまでの周波数範囲をカバーする信号に対応している。別の状況は、トランスポジション信号が重複していない場合である。この場合、S=1であり、インバースQMFバンク705の出力信号において(すなわち、HFRシステム700の出力信号において)様々な重複しない周波数範囲をカバーしているが、トランスポジション信号の全てが同一のサンプリング周波数を有する(図12c参照)。
帯域幅BHzのコアデコーダ701の出力信号において上記のサブサンプリング又はダウンサンプリングを行った場合の影響は、図13-16に示されている。図13は、コアデコーダ701の出力からトランジション次数T=2のトランスポーザ702-2の出力への信号遷移の様子を概略的に示している。周波数ダイアグラム1310は帯域幅BHzのコアデコーダの出力信号を示す。この信号はダウンサンプラ706でクリティカルにダウンサンプリングされる。ダウンサンプリング因子Qは、分析QMFバンド703-1がサブバンドに関する整数値32/Qを有することを保証する有理数値である。更に、ダウンサンプラ706はクリティカルにサンプリングされた出力信号(すなわち、サンプリング周波数fs/Qを有する出力信号)(コアデコード信号の帯域幅の2倍)にできるだけ近い)を提供する(Q<fs/(2B))。そのようなクリティカルにサンプリングされた信号は周波数ダイアグラム1320に示されている。サンプリング周波数fs/Qのクリティカルにサンプリングされた信号はトランスポーザ702-2に与えられ、複数の分析サブバンドにセグメント化される。そのようにセグメント化された信号は周波数ダイアグラム1330に示されている。次に、分析サブバンド信号について非線形処理が実行され、分析サブバンド信号をT=2倍高い周波数範囲への伸張(stretching)及びサンプリング周波数2fs/Qとなる。これについては周波数ダイアグラム1340に示されている(あるいは、スケーリング(尺度調整)された周波数軸の周波数ダイアグラム1330として示されてもよい)。HFR処理モジュール704では典型的にはトランスポジションされるサブバンドの一部分のみが考慮されることに留意すべきである。これらの関連するトランスポジションされるサブバンドは、周波数ダイアグラム1340において、周波数範囲[B,2B]をカバーするハッチングされたサブバンドとして示されている。ハッチングされたサブバンドのみがトランスポーザ合成フィルタバンクにおいて考慮される必要があり、従って関連する範囲はベースバンドまで低く変調され、信号は因子2によりサンプリング周波数fs/Qにダウンサンプリングされる。これは周波数ダイアグラム1360に示されており、周波数範囲[B,2B]をカバーする信号はベースバンド範囲[0,B]に変調されていることが分かる。変調された信号がより高い周波数範囲[B,2B]を実際にはカバーするという事実は、参照符号「B」及び「2B」により示されている。
トランスポジション(周波数ダイアグラム1340)及び以後のベースバンドへの変調(周波数ダイアグラム1360)の図示のステップは、説明の目的で示しているに過ぎないことに留意すべきである。これら双方の処理は、ハッチングされたサブバンド(周波数ダイアグラム1340)を、分析フィルタバンクの半分の数のサブバンドを有する合成フィルタバンクの合成サブバンドに割り当てることで実行されてもよい。そのようなマッピング処理の結果として、(ゼロ周波数付近に中心を有する)ベースバンドに変調された周波数ダイアグラム1360により示されている出力信号が得られる。重複しない例の場合、合成フィルタバンクのサイズは分析フィルタバンクよりも削減され、ある比率により与えられる達成可能なダウンサンプリング因子を利用することができ、その比率はP次のトランスポーザ703-Pの出力信号によりカバーされる全周波数範囲[0,PB]とP次のトランスポーザ703-Pの出力信号によりカバーされる実際の周波数範囲[(P-1)B,PB]との比率、すなわち因子Pである。
図14は、重複する周波数範囲の場合におけるコアデコーダ702-1の出力からトランジション次数T=3のトランスポーザ702-3の出力への信号遷移を概略的に示す。周波数ダイアグラム1410に示されている帯域幅Bの信号はダウンサンプラ706で因子Qによりダウンサンプリングされ、周波数ダイアグラム1420に示される信号を生成する。周波数ダイアグラム1430に示されている分析サブバンドはT=3倍高い周波数のサブバンドにトランスポジションされる。トランスポジションサブバンドは周波数ダイアグラム1440に示されており、サンプリングレートはfs/Qから3fs/Qへ増加している。図13に関して説明したように、これは周波数軸を3倍したスケールで表現されてもよい。3次のトランスポーザ702-3の周波数範囲(すなわち、ハッチングされた周波数範囲[B,3B])は2次のトランスポーザ702-2の周波数範囲と重複することが分かる。図13の場合と同様に、ハッチングされたサブバンドは削減されたサイズの合成フィルタバンクに与えられ、これによりハッチングされた周波数からの周波数のみを有する信号を生成する。そして因子3/2のダウンサンプリングを用いてハイパス信号がベースバンドまで低く変調される。サンプリング周波数2fs/Qを有するトランスポーザ703-2のクリティカルにサンプリングされた出力信号が、周波数ダイアグラム1460に示されている。
図13の場合と同様に、周波数ダイアグラム1440に示されているトランスポジション処理及び周波数ダイアグラム1460に示されているベースバンドへの変調処理は、周波数ダイアグラム1440においてハッチングされているサブバンドを、削減されたサイズの合成フィルタバンクの合成サブバンドにマッピングすることで実行されることに、留意を要する。重複する例の場合、合成フィルタバンクのサイズは分析フィルタバンクよりも削減され、ある比率により与えられる達成可能なダウンサンプリング因子を利用することができ、その比率はP次のトランスポーザ703-Pの出力信号によりカバーされる全周波数範囲[0,PB]とP次のトランスポーザ703-Pの出力信号によりカバーされる実際の周波数範囲[B,PB]との比率、すなわち因子P/(P-1)である。
図15は、トランスポジション周波数範囲が低次のトランスポーザ(T=P-1)の関連する周波数範囲(すなわち、[(P-2)B,(P-1)B])と重複しない場合におけるダウンサンプラ706の出力からトランスポジション次数T=Pのトランスポーザ702-Pの出力への信号遷移の様子を概略的に示す。図13に関して説明したように、周波数ダイアグラム1530に示されているダウンサンプリングされた信号はトランスポーザ702-Pによりトランスポジションされる。関連する周波数範囲[(P-1)B,PB]をカバーするトランスポジションサブバンドは、周波数ダイアグラム1540においてハッチングされた周波数範囲として示されている。ハッチングされた周波数範囲に対応するサブバンドは削減されたサイズの合成フィルタに与えられ、これにより[(P-1)B,PB]という周波数範囲のみを含む信号を生成する。従ってこのハイパス信号はベースバンドに変調され、因子Pを用いてダウンサンプリングされる。その結果、周波数ダイアグラム1560に示されているトランスポーザ702-Pのクリティカルにサンプルされた出力信号が得られる。トランスポーザ702-Pの出力信号は[(P-1)B,PB]という周波数範囲の周波数成分を有する。これは、トランスポーザ出力をHFR処理に関するQMFサブバンドにマッピングする場合に考察される必要がある。
図16は、トランスポジション周波数範囲が低次のトランスポーザ(T=2,...,P-1)の関連する周波数範囲(すなわち、[B,(P-1)B])と重複する場合におけるダウンサンプラ706の出力からトランスポジション次数T=Pのトランスポーザ702-Pの出力への信号遷移の様子を概略的に示す。図14に関して説明したのと同様に、周波数ダイアグラム1630に示されているダウンサンプリングされた信号がトランスポーザ702-Pでトランスポジションされる。周波数範囲[B,PB]をカバーするトランスポジションサブバンドは、周波数ダイアグラム1640においてハッチングされた周波数範囲として示されている。図14の場合と同様に、ハッチングされたサブバンドは(P-1)Bより低い周波数をカバーしていることが分かる。従って、ハッチングされたサブバンドは低い次数のトランスポーザ702-2,...,702-P-1の周波数範囲と重複している。更に、ハッチングされたサブバンドは[(P-1)B,PB]より高い範囲をカバーしていることに起因して、削減されたダウンサンプリング因子のみを使用することができる。上述したように、P次のトランスポーザ702-Pの出力信号によりカバーされる周波数範囲が[B,(P-1)B]であった場合、このダウンサンプリング因子はP/(P-1)となる。その結果、(P-1)fs/Qというサンプリング周波数を有するトランスポーザのダウンサンプリングされた出力信号が得られる。
上述したように、トランスポーザ702-P内の中間信号(すなわち、特に、周波数ダイアグラム1340、1440、1540、1640に示されている信号)は図7に示されているHFRシステムに物理的に現れる信号ではないことに留意を要する。これらの信号は説明の目的で示しているに過ぎず、トランスポーザ702-Pにおける「仮想的な」信号として示され、黙示的なダウンサンプリングを行う際のトランスポジション及びフィルタリングの影響を示す。
上述したように、コアデコーダ701からの出力信号は、HFRモジュール700に入力する際にサンプリングレートfs/Qでクリティカルに予めサンプリングされていてもよいことに留意を要する。これは、例えばコアデコーダ701における通常のサイズよりも小さな合成変換サイズを用いて行うことができる。この場合、コアデコーダ701に使用される小さな合成変換及び旧式の(obsolete)ダウンサンプラに起因して、演算負担は減少する。
HFRシステムの効率を改善するための別の測定値が、図3、4又は5に関して説明した何れかの方法に従って図6の個々のトランスポーザ602-2,...,602-Pに組み合わせられる。一例として、様々なトランスポジション次数T=2,...,Pに関する個々のトランスポーザ602-2,...,602-Pの代わりに、マルチプルトランスポーザシステム300、400又は500が使用されてもよい。可能な状況は図8に示されており、2以下のトランスポジション因子Tのトランスポーザがマルチプルトランスポーザ802に対して一緒にグループ化され、図3-5に関して説明した何れかの形態に従って実現されてよい。マルチプルトランスポーザ802からの出力はサンプリング周波数2fs(すなわち、マルチプルトランスポーザ802に対する入力信号のサンプリング周波数より2倍高いサンプリング周波数)を有する。マルチプルトランスポーザ802の出力信号は64個のチャネルを有する単独の分析QMFバンク803-2によりフィルタリングされる。
図6に関して説明したように、コア信号のリサンプリング(すなわち、コアデコーダ801の出力信号のリサンプリング)は、32個のチャネルしか有していないダウンサンプルQMFバンク803-1を用いて信号をフィルタリングすることで実行されてもよい。その結果、一群のQMFサブバンド信号はサンプリング周波数fs/32のQMFサブバンド信号を有する。一群のQMFサブバンド信号の2つがHFR処理モジュール804に与えられ、最終的に、調整されたQMFサブバンド信号は64個の合成QMFバンク805により時間領域信号に合成される。説明した例において、マルチプルトランスポーザ802はサンプリングレートfsの2倍のトランスポジション時間ドメイン信号を生成することに留意すべきである。図3、4、5に関して説明したように、このトランスポジション時間ドメイン信号は異なるトランスポジション因子Tのいくつものトランスポジション信号の総和であり、Tは1より大きい。マルチプルトランスポーザ802がサンプリング周波数2fsの出力信号を提供することの理由は、マルチプルトランスポーザ802の出力信号がHFRモジュール800の出力信号の高い周波数範囲(すなわち、高々[B,fs]の範囲)をカバーしているからであり、Bは低い周波数成分の帯域幅であり、fsはHFRモジュール800の出力信号のナイキスト周波数である。
図7に関して説明したように、HFRシステム800の効率は時間領域信号のサブサンプリングのレベル(度合い)を増やすことで増加させることができ、すなわち好ましくはコアデコーダの出力及びトランスポーザの出力においてクリティカルにダウンサンプリングした信号を提供することで、HFRシステム800の効率を増加させることができる。これは図9に示されており、コアデコーダ901の出力信号はダウンサンプリング部906でダウンサンプリングされ、サンプリング周波数fs/Qでダウンサンプリング信号をもたらす。この信号はマルチプルトランスポーザ902及び分析QMFバンク903-1に与えられる。マルチプルトランスポーザ902の出力はT=2からPまでのトランスポジション次数の信号の組み合わせであるので、マルチプルトランスポーザ902の出力はサンプリング周波数Sfs/Qを有する(ただし、S=min(P-1,2Q-1)である)。トランスポジション信号はサイズが32S/Qである分析QMFバンク903―2に与えられる。上記の場合と同様に、2つの群のQMFサブバンド信号がHFRプロセッサ904において処理され、最終的には合成QMFバンク905を用いて時間領域信号に変換される。
一実施形態において、マルチプルトランスポーザがコア信号の不変のコピー(すなわち、コアデコーダの出力信号の不変のコピー)を通知するように構築されている場合、コア信号を分析するQMFバンク(すなわち、図8の分析QMFバンク803-1)は省略されてもよい。トランスポーザの用語の場合、これはトランスポジション因子T=1(すなわち、1次トランスポジション)を用いたトランスポジションと等価である。1次トランスポジションが図8のマルチプルトランスポーザシステム802に付加される場合、そのように修正されたHFRモジュール1000のブロック図は図10に示されている。図10に示されているように、コアデコーダ1001によりデコードされた信号は単にマルチプルトランスポーザ1002に対する入力として使用され、すなわちコアデコーダ1001によりデコードされた信号はHFRモジュール1000の如何なる付加的な素子にも与えられない。マルチプルトランスポーザ1002はその単独の出力信号がサンプリング周波数2fsを有するように構築される。言い換えれば、マルチプルトランスポーザ1002はサンプリングレートの2倍の時間領域信号を生成し、時間領域信号は異なるトランスポジション因子Tのいくつものトランスポジション信号の総和であり、Tは1ないしPの内の何れかの値をとる。マルチプルトランスポーザ1002からのこの単独の出力信号は64個のチャネルQMFバンク1003により分析され、QMFサブバンド信号はその後にHFR処理モジュール1004に与えられ、HFR処理モジュールは送信側の情報を用いてQMFサブバンド信号を調整する。調整されたQMFサブバンド信号は最終的に64チャネル合成QMFバンク1005により合成される。
図7及び9に関して説明したダウンサンプリングと同様に、HFRモジュール1000の効率は、時間領域信号のサブサンプリングを利用することで改善できる。そのようなHFRモジュール1100が図11に示されている。受信したビットストリームはコアデコーダ1101によりデコードされ、コアデコーダはサンプリング周波数fsで時間領域信号を提供する。時間領域出力信号はダウンサンプリング部1106を用いて因子Qでダウンサンプリングされる。サンプリング周波数fs/Qでダウンサンプリングされた信号はマルチプルトランスポーザ1102に与えられる。マルチプルトランスポーザ1102からの出力はサンプリング周波数Sfs/Qを有する。しかしながら、トランスポジション信号はコアデコーダ1101からのデコード及びダウンサンプリングされた出力信号を有するので、パラメータSはS=min(P,2Q)として選択される。マルチプルトランスポーザ1102の出力信号は、32S/Qチャネルを有する分析QMFバンク1103を用いてQMFサブバンド信号にセグメント化される。QMFサブバンド信号は、送信側情報を用いて調整され、その後に合成64チャネルQMFバンク1105により吸収される。
上述したように、図8-11に示されているマルチプルトランスポーザ802、902、1002及び1102は図3-5に関する何れの形態に基づいていてもよい。更に、図3-5のマルチプルトランスポーザと比較して演算処理効率は劣るが、図2に示すトランスポーザの構成が使用されてもよい。第1の好適実施形態において、図10及び11に示されているHFRモジュール構成は、図5に関して説明したマルチプルトランスポーザと共に組み合わせられてもよい。トランスポーザの分析サブバンドをトランスポーザの合成サブバンドにマッピングする具体例は図5bに示されている。第2の好適実施形態において、図8及び9に示されているHFRモジュール構成は、図5に関して説明したマルチプルトランスポーザと共に組み合わせられてもよい。トランスポーザ分析サブバンドをトランスポーザ合成サブバンドにマッピングする具体例は図5cに示されている。
図7、9、11、13-16に関して説明した例と共に、最大限にデシメートされた、又はクリティカルにサンプリングされたトランスポーザの一般的な構成ブロックが形成されてもよい。そのような構成ブロック170が図17に示されている。サンプリング周波数fsの入力信号は、先ず、因子Qのダウンサンプラ171で処理され、トランスポーザ分析フィルタバンク172によりフィルタリングされる。分析フィルタバンクは、Naであるフィルタバンクサイズ又は変換サイズ及びδaサンプルであるホップサイズ又は入力信号ストライドを有する。サブバンド信号は、その後に、トランスポジション因子Tを用いて非線形処理部173により処理される。非線形処理部173は本願で説明した何れかの非線形処理を実行する。一実施例において、図5、5b、5cに関して説明された非線形処理は、非線形処理部173において実行されてよい。最終的に、サブバンド信号はトランスポーザ合成フィルタバンク174においてサンプリング周波数Rfsの時間領域信号に集められ(組み立てられ、まとめられ、作成され)、Rは所望のリサンプリング因子である。合成フィルタバンクは、NSであるフィルタバンクサイズ又は変換サイズ及びδSサンプルであるホップサイズ又は入力信号ストライドを有する。分析フィルタバンク172、非線形処理部173及び合成フィルタバンク174に関する拡張因子Wは、次式のように、合成フィルタバンクからの出力信号のサンプリング周波数と分析フィルタバンクに対する入力信号との比率である。
W=Rfs/fs/Q=RQ (6)
フィルタバンク又は変換サイズNa及びNsは次式の関係を満たす。
Ns=(W/T)Na (7)
ホップサイズ又は信号ストライドδa及びδSは次式の関係を満たす。
δS=Wδa (8)
最大限にデシメートされ又はクリティカルにサンプリングされたトランスポーザ構成ブロック170は、分析フィルタバンク172に対する入力信号、合成フィルタバンク174からの出力又はそれら双方を有し、図7のHFR処理部704のように以後の処理に関するスペクトル帯域幅を排他的にカバーする。入力信号のクリティカルサンプリング(critical sampling)は、ダウンサンプラ171における入力信号をフィルタリングすることで(おそらくは、デシメーション後に変調することで)得られる。一実施形態において、出力信号のクリティカルサンプリングは、サブバンド信号を必要最小限のサイズの合成フィルタバンク174にマッピングし、例えば数式(7)に示されるような以後の処理に関連するサブバンドチャネルを排他的にカバーすることで実現される。図13-16は、合成フィルタバンクからの出力が関連するスペクトル帯域幅を排他的にカバーし、最大限にデシメートされる場合の状況を示す。
複数の構成ブロック170は、いくつものトランスポジション次数のクリティカルにサンプリングされるトランスポーザシステムが得られるように合成及び構成される。そのようなシステムにおいて、構成ブロック170の1つ以上のモジュール171-174は異なるトランスポジション次数の構成ブロックの間で共有されてもよい。典型的には、図3に関連して説明したように共通する分析フィルタバンク301を使用するシステムが、合成フィルタバンク303-1,...,303-Pから最大にデシメートされた出力信号を有する一方、共通する分析フィルタバンク301に対する入力信号は、最大の入力信号帯域幅を要するトランスポーザ構成ブロック170に関して最大にデシメートされる。図4に関して説明したような共通の合成フィルタバンク404を用いるシステムは、分析フィルタバンク401-1,...,401-Pに対する最大限にデシメートされた入力信号を有し、共通の合成フィルタ404からの最大限にデシメートされた出力信号を有していてもよい。図2に関して説明したシステムは、分析フィルタバンクに対して最大限にデシメートされた入力信号と合成フィルタバンクからの最大限にデシメートされた出力信号との双方を有することが好ましい。この例の場合、システムの構成は、単に複数のトランスポーザ構成ブロック170を並列的にしたものでもよい。図5に関して説明したように、共通の分析フィルタバンク501及び共通の合成フィルタバンク504双方を利用するシステムは、典型的には、共通の合成フィルタバンク504からの最大限にデシメートされた出力信号を有する一方、共通の合成フィルタバンク501への入力信号は、トランスポジション次数が最大の入力信号帯域幅を必要とする信号に関して最大限にデシメートされていてもよい。このシステムの場合、数式(7)のトランスポジション因子Tは、図5、5b及び5cに関して説明した因子Fで置き換えられる。図2の202及び図3の304の加算部は、上記の例の場合、トランスポーザ構築ブロックの合成フィルタバンクからのクリティカルにサンプリングされたサブバンド信号を処理及び合成するように構築されることに留意を要する。一例として、加算部は、サブバンド信号を合成する手段に続くQMF分析フィルタバンク又は信号を加算する手段の後に続く時間領域リサンプリング変調手段を有する。
本願により、共通分析フィルタバンク及び共通合成フィルタバンクを利用可能にするマルチプルトランスポジション方式及びシステムが説明された。共通する分析及び合成フィルタバンクを利用可能にするために、アドバンスト非線形処理方式が説明され、複数の分析サブバンドから合成サブバンドへのマッピングが行われる。共通分析フィルタバンク及び共通合成フィルタバンクを利用したことで、マルチプルトランスポジション方式は、従来のトランスポジション方式と比較して演算処理負担を軽減するように改善される。言い換えれば、いくつものハーモニックトランスポーザの関する分析及び合成フィルタバンクのペアの共有化を図ることで、或いは1つ以上のハーモニックトランスポーザをアップサンプラと共に組み合わせることで、ハーモニックHFR法における演算負担を大幅に削減する。
更に、複数のトランジションを行うHFRモジュールの様々な形態も説明された。特に、複雑さが低減したHFRモジュールの形態が説明され、その形態ではクリティカルにダウンサンプリングされた信号が処理される。説明された方法及びシステムは、例えば、マルチメディア受信機、ビデオ/オーディオセットトップボックス、移動機、オーディオプレーヤ、ビデオプレーヤ等のような様々なデコード装置において使用されてよい。
本願において説明されたトランスポジション及び/又は高周波再構築のための方法及びシステムは、ソフトウェア、ファームウェア及び/又はハードウェアとして実現されてもよい。ある構成要素は例えばディジタル信号プロセッサ又はマイクロプロセッサ上で動作するソフトウェアとして実現されてもよい。別の構成要素は例えばハードウェア及び/又は特定用途向け集積回路として実現されてもよい。説明された方法及びシステムで使用される信号は、ランダムアクセスメモリ又は光記憶媒体のような媒体に保存されてもよい。これらの情報は無線ネットワーク、衛生ネットワーク、ワイヤレスネットワーク又は有線ネットワーク等のようなネットワーク(例えば、インターネット等を含む)を通じて伝送されてもよい。本願において説明された方法及びシステムを利用する典型的な装置は、オーディオ信号を保存及び/又は使用する携帯用電子装置又はその他のコンシューマ装置である。本方法及びシステムは、例えば音楽信号等のようなオーディオ信号をダウンロード用に保存及び提供するコンピュータシステム(例えば、インターネットウェブサーバ)で使用されてもよい。
以下、実施の形態による手段を例示的に列挙する。
[付記項1]
信号の低周波成分から該信号の高周波成分を生成するシステムであって、
前記信号の前記低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供する、Δfの周波数分解能を有する分析フィルタバンクと、
あるトランスポジション次数Pを用いて前記一群の分析サブバンド信号から一群の合成サブバンド信号を決定する非線形処理部であって、前記一群の合成サブバンド信号は、前記トランスポジション次数Pから導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定する非線形処理部と、
前記一群の合成サブバンド信号からの信号の高周波成分を生成する、FΔfの周波数分解能を有する合成フィルタバンクであって、前記FはF≧1であって分解能因子であり、前記トランスポジション次数Pは前記分解能因子Fとは異なる、合成フィルタバンクと
を有するシステム。
[付記項2]
前記トランスポジション次数Pにより位相がシフトされた前記一群の分析サブバンド信号に属する分析サブバンド信号、又は
前記一群の合成サブバンド信号中の一対の分析サブバンド信号
に基づいて、前記非線形処理部が前記一群のサブバンド信号の合成サブバンド信号を決定し、前記一対のサブバンド信号の第1のメンバは因子P’によりシフトされた位相を有し、前記一対のサブバンド信号の第2のメンバは因子P”によりシフトされた位相を有し、P’+P”=Pである、付記項1記載のシステム。
[付記項3]
前記分析フィルタバンクがLA個の分析サブバンドを有し、LA>1であり、分析サブバンドのインデックスkは、k=0,...,LA-1であり、
前記合成フィルタバンクがLS個の合成サブバンドを有し、LS>1であり、合成サブバンドのインデックスnは、n=0,...,LS--1である、付記項1記載のシステム。
[付記項4]
前記非線形処理部は、前記一群の分析サブバンド信号の内のk番目の分析サブバンド信号及び(k+1)番目の分析サブバンド信号から、前記一群の合成サブバンド信号の内のn番目の合成サブバンド信号を決定する、付記項3記載のシステム。
[付記項5]
前記非線形処理部が、
前記k番目の分析サブバンド信号の位相シフト及び前記(k+1)番目の分析サブバンド信号の位相シフトの総和として前記n番目の合成サブバンド信号の位相を決定し、及び/又は
前記k番目の分析サブバンド信号の指数表示における大きさ及び前記(k+1)番目の分析サブバンド信号の指数表示における大きさの積として前記n番目の合成サブバンド信号の大きさを決定する、付記項4記載のシステム。
[付記項6]
合成サブバンドインデックスnと共に前記合成サブバンドに寄与する前記分析サブバンド信号の前記分析サブバンドインデックスkが、(F/P)nを打ち切ることで取得された整数により与えられ、(F/P)nの剰余rは、(F/P)n-kにより与えられる、付記項5記載のシステム。
[付記項7]
前記非線形処理部が、
P(1-r)が乗算された前記k番目の分析サブバンド信号の位相及びP(r)が乗算された前記(k+1)番目の分析サブバンド信号の位相の総和として前記n番目の合成サブバンド信号の位相を決定し、及び/又は
前記k番目の分析サブバンド信号の指数表示における大きさの(1-r)乗と前記(k+1)番目の分析サブバンド信号の指数表示における大きさのr乗との積として前記n番目の合成サブバンド信号の大きさを決定する、付記項6記載のシステム。
[付記項8]
前記分析フィルタバンク及び前記合成フィルタバンクが整数倍の位置に設定され、分析サブバンドの中心周波数はkΔfで与えられ、合成サブバンドの中心周波数はnFΔfで与えられる、付記項1-7の何れか1項に記載のシステム。
[付記項9]
前記分析フィルタバンク及び前記合成フィルタバンクが半整数倍の位置に設定され、分析サブバンドの中心周波数は(k+(1/2))Δfで与えられ、合成サブバンドの中心周波数は(n+(1/2))FΔfで与えられ、
前記トランスポジション次数P及び前記分解能因子Fの間の差分が偶数である、付記項1-7の何れか1項に記載のシステム。
[付記項10]
前記分析フィルタバンクが分析時間幅ΔtAを使用し、
前記合成フィルタバンクが合成時間幅ΔtSを使用し、
前記分析時間幅ΔtA及び前記合成時間幅ΔtSは等しい、付記項1-9の何れか1項に記載のシステム。
[付記項11]
前記非線形処理部は、前記トランスポジション次数Pを用いて、前記一群の分析サブバンド信号からPΔfの周波数分解能を有する一群の中間的な合成サブバンド信号を決定し、前記一群の中間的な合成サブバンド信号は前記トランスポジション次数Pにより位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定され、
前記非線形処理部は、1つ以上の中間的な合成サブバンド信号を補間し、FΔfの周波数分解能を有する前記一群の合成サブバンド信号の合成サブバンド信号を決定する、付記項1記載のシステム。
[付記項12]
信号の低周波数成分から該信号の高周波成分を生成するシステムであって、
前記信号の前記低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供する分析フィルタバンクと、
第1のトランスポジション次数P1を用いて前記一群の分析サブバンド信号から第1の一群の合成サブバンド信号を決定する第1の非線形処理部であって、前記第1の一群の合成サブバンド信号は、前記第1のトランスポジション次数P1から導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定される、第1の非線形処理部と、
第2のトランスポジション次数P2を用いて前記一群の分析サブバンド信号から第2の一群の合成サブバンド信号を決定する第2の非線形処理部であって、前記第2の一群の合成サブバンド信号は、前記第2のトランスポジション次数P2から導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定され、前記第1のトランスポジション次数P1及び前記第2のトランスポジション次数P2は異なる、第2の非線形処理部と、
前記第1及び第2の一群の合成サブバンド信号を合成し、合成された一群の合成サブバンド信号を生成する合成部と、
前記合成された一群の合成サブバンド信号から前記信号の前記高周波成分を生成する合成フィルタバンクと
を有するシステム。
[付記項13]
前記合成部が、重複する周波数範囲に対応する前記第1及び第2の一群の合成サブバンド信号に属する合成サブバンド信号を重ね合わせる、付記項12記載のシステム。
[付記項14]
エンコードされたビットストリームを前記信号の前記低周波成分に変換するコアデコーダと、
前記高周波成分を複数の直交ミラーフィルタ(QMF)サブバンド信号に変換するQMFバンクと、
前記QMFサブバンド信号を修正する高周波再構築処理モジュールと、
前記修正されたQMFサブバンド信号から修正された高周波成分を生成する合成QMFバンクと
を更に有する付記項12又は13に記載のシステム。
[付記項15]
前記分析フィルタバンクの上流側において前記信号の前記低周波成分のサンプリングレートを減少させ、減少したサンプリングレートで低周波成分を出力するダウンサンプリング部を更に有する付記項14記載のシステム。
[付記項16]
前記コアデコーダが、ドルビーE、ドルビーディジタル、AAA及びHE-AACの内の何れかである符号化方式に基づいている、付記項14又は15記載のシステム。
[付記項17]
第1のサンプリング周波数による信号の低周波成分から、該第1のサンプリング周波数のR倍である第2のサンプリング周波数による該信号の高周波成分を生成するシステムであって、
前記低周波成分から変調された高周波成分を生成するT次のハーモニックトランスポーザ
を有し、該変調された高周波成分は、T倍高い周波数範囲にトランスポジションされた前記低周波成分のスペクトル部分に基づいて決定され、該変調された高周波成分は前記第1のサンプリング周波数に因子Sを乗算したものであり、R≧1、T>1及びS<Rである、システム。
[付記項18]
前記変調された高周波成分を、Sの倍数であるX個の分析直交ミラーフィルタ(QMF)サブバンドの内の少なくとも1つに対応付け、少なくとも1つのQMFサブバンド信号を提供するQMFバンクと、
前記少なくとも1つのQMFサブバンド信号を修正する高周波再構築モジュールと、
修正された前記少なくとも1つのQMFサブバンド信号から前記高周波成分を生成する合成QMFバンクと
を更に有する付記項17記載のシステム。
[付記項19]
前記ハーモニックトランスポーザが、
前記信号の前記低周波成分から、一群の分析サブバンド信号を提供する分析フィルタバンクと、
前記一群の分析サブバンド信号の位相を変更することで、前記一群の分析サブバンド信号から一群の合成サブバンド信号を決定する、トランスポジション次数がTである非線形処理部と、
前記一群の合成サブバンド信号から、該信号の変調された高周波成分を生成する合成フィルタバンクと
を有する付記項17又は18に記載のシステム。
[付記項20]
前記低周波成分がBである帯域幅を有し、
前記一群の合成サブバンド信号が(T-1)*BないしT*Bの周波数範囲内にあり、
前記ハーモニックトランスポーザは、前記一群の合成サブバンド信号をゼロ周波数付近に中心を有するベースバンドに変調し、前記変調された高周波成分を生成する、付記項19記載のシステム。
[付記項21]
前記ハーモニックトランスポーザが、前記一群のサブバンド信号を前記合成フィルタバンクのサブバンドに対応付ける、付記項20記載のシステム。
[付記項22]
前記ハーモニックトランスポーザが付記項1-13の何れか1項に記載のシステムを構成する、付記項17-21の何れか1項に記載のシステム。
[付記項23]
前記ハーモニックトランスポーザの上流においてダウンサンプリング手段を更に有し、該ダウンリンクサンプリング手段は、前記信号の低周波成分から、ダウンサンプリング因子Qで除算した前記第1のサンプリング周波数によりクリティカルにダウンサンプリングされた低周波成分を提供し、
前記変調された高周波成分は、因子Sが乗算されかつ前記ダウンサンプリング因子Qにより除算された前記第1のサンプリング周波数であり、
XはS/Qである、付記項18-22の何れか1項に記載のシステム。
[付記項24]
信号の低周波成分から該信号の高周波成分を生成する方法であって、
Δfの周波数分解能を有する分析フィルタバンクを用いて、前記信号の前記低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供するステップと、
あるトランスポジション次数Pを用いて前記一群の分析サブバンド信号から一群の合成サブバンド信号を決定するステップであって、前記一群の合成サブバンド信号は、前記トランスポジション次数Pから導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定される、ステップと、
FΔfの周波数分解能を有する合成フィルタバンクを用いて、前記一群の合成サブバンド信号から前記信号の高周波成分を生成するステップと
を有し、前記FはF≧1であって分解能因子であり、前記トランスポジション次数Pは前記分解能因子Fとは異なる、方法。
[付記項25]
信号の低周波数成分から該信号の高周波成分を生成する方法であって、
前記信号の前記低周波成分から少なくとも2つの分析サブバンド信号を含む一群の分析サブバンド信号を提供するステップと、
第1のトランスポジション次数P1を用いて前記一群の分析サブバンド信号から第1の一群の合成サブバンド信号を決定するステップであって、前記第1の一群の合成サブバンド信号は、前記第1のトランスポジション次数P1から導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定される、ステップと、
第2のトランスポジション次数P2を用いて前記一群の分析サブバンド信号から第2の一群の合成サブバンド信号を決定するステップであって、前記第2の一群の合成サブバンド信号は、前記第2のトランスポジション次数P2から導出された量だけ位相がシフトされた前記一群の分析サブバンド信号の一部分に基づいて決定され、前記第1のトランスポジション次数P1及び前記第2のトランスポジション次数P2は異なる、ステップと、
前記第1及び第2の一群の合成サブバンド信号を合成し、合成された一群の合成サブバンド信号を生成するステップと、
前記合成された一群の合成サブバンド信号から前記信号の前記高周波成分を生成するステップと
を有する方法。
[付記項26]
第1のサンプリング周波数による信号の低周波成分から、該第1のサンプリング周波数のR倍である第2のサンプリング周波数による該信号の高周波成分を生成する方法であって、
次数Tのハーモニックトランスポジションを行うことで、前記低周波成分から変調された高周波成分を生成するステップ
を有し、該変調された高周波成分は、T倍高い周波数範囲にトランスポジションされた前記低周波成分の一部分に基づいて決定され、該変調された高周波成分は前記第1のサンプリング周波数に因子Sを乗算したものであり、R≧1、T>1及びS<Rである、方法。
[付記項27]
少なくとも信号を含む受信信号をデコードするセットトップボックスであって、
前記信号の低周波数成分から前記信号の高周波成分を生成する付記項1-23の何れか1項に記載のシステム
を有するセットトップボックス。
[付記項28]
付記項24-26の何れか1項に記載の方法をコンピュータ装置のプロセッサに実行させるソフトウェアプログラム。
[付記項29]
付記項24-26の何れか1項に記載の方法をコンピュータ装置のプロセッサに実行させるソフトウェアプログラムを記憶する記憶媒体。
[付記項30]
付記項24-26の何れか1項に記載の方法をコンピュータに実行させる命令を有するコンピュータプログラム。

Claims (9)

  1. 信号の低周波成分から該信号の高周波成分を生成するように構成されたシステムであって、
    前記信号の前記低周波成分から一群の分析サブバンド信号を提供するように構成された分析フィルタバンクであって、前記一群の分析サブバンド信号は少なくとも2つの分析サブバンド信号を含む、分析フィルタバンクと、
    前記一群の分析サブバンド信号から一群の合成サブバンド信号を決定するように構成された非線形処理部であって、前記一群の分析サブバンド信号のうちのk番目の分析サブバンド信号及び(k+1)番目の分析サブバンド信号から、前記一群の合成サブバンド信号のうちのn番目の合成サブバンド信号を決定するように構成され、前記n番目の合成サブバンド信号の大きさと位相は双方ともトランスポジション次数Tに依存している、非線形処理部と、
    前記一群の合成サブバンド信号に基づいて、前記信号の高周波成分を生成するように構成された合成フィルタバンクと、
    を有するシステム。
  2. 前記分析フィルタバンクがL個の分析サブバンドを有し、L>1であり、分析サブバンドのインデックスkは、k=0,...,L-1であり、
    前記合成フィルタバンクがL個の合成サブバンドを有し、L>1であり、合成サブバンドのインデックスnは、n=0,...,L-1である、請求項1記載のシステム。
  3. 前記分析サブバンドの個数Lは前記合成サブバンドの個数Lに等しい、請求項2に記載のシステム。
  4. 前記分析フィルタバンクはΔfの周波数分解能を有し、
    前記合成フィルタバンクはFΔfの周波数分解能を有し、Fは、F≧1である分解能因子である、請求項1に記載のシステム。
  5. エンコードされたビットストリームを前記信号の低周波成分に変換するように構成されたコアデコーダと、
    前記高周波成分を複数のQMFサブバンド信号に変換するように構成された分析直交ミラーフィルタバンク(QMFバンク)と、
    前記QMFサブバンド信号を修正するように構成された高周波再構築処理モジュールと、
    修正されたQMFサブバンド信号から、修正された高周波成分を生成するように構成された合成QMFバンクと、
    を更に有する請求項1に記載のシステム。
  6. 信号の低周波成分から該信号の高周波成分を生成する方法であって、
    前記信号の前記低周波成分から一群の分析サブバンド信号を提供するステップであって、前記一群の分析サブバンド信号は少なくとも2つの分析サブバンド信号を含む、ステップと、
    前記一群の分析サブバンド信号から一群の合成サブバンド信号を決定するステップであって、前記一群の合成サブバンド信号のうちのn番目の合成サブバンド信号は、前記一群の分析サブバンド信号のうちのk番目の分析サブバンド信号及び(k+1)番目の分析サブバンド信号から決定され、前記n番目の合成サブバンド信号の大きさと位相は双方ともトランスポジション次数Tに依存している、ステップと、
    前記一群の合成サブバンド信号に基づいて、前記信号の高周波成分を生成するステップと、
    を有する方法。
  7. 前記一群の分析サブバンド信号は、分析フィルタバンクを利用して前記低周波成分から生成され、
    前記高周波成分は、合成フィルタバンクを利用して前記一群の合成サブバンド信号から生成される、請求項6に記載の方法。
  8. プロセッサで実行されるように構成されたソフトウェアプログラムであって、コンピュータ装置で実行される場合に、請求項6に記載の方法のステップを実行させる、ソフトウェアプログラム。
  9. プロセッサで実行されるように構成されたソフトウェアプログラムであって、コンピュータ装置で実行される場合に、請求項6に記載の方法のステップを実行させるソフトウェアプログラムを含む記憶媒体。
JP2023000074A 2009-05-27 2023-01-04 信号の高周波成分を生成するためのシステム及び方法 Active JP7439309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024020376A JP2024040439A (ja) 2009-05-27 2024-02-14 信号の高周波成分を生成するためのシステム及び方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US18136409P 2009-05-27 2009-05-27
US61/181,364 2009-05-27
US31210710P 2010-03-09 2010-03-09
US61/312,107 2010-03-09
JP2019227191A JP6882439B2 (ja) 2009-05-27 2019-12-17 信号の高周波成分を生成するためのシステム及び方法
JP2021078511A JP7206318B2 (ja) 2009-05-27 2021-05-06 信号の高周波成分を生成するためのシステム及び方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021078511A Division JP7206318B2 (ja) 2009-05-27 2021-05-06 信号の高周波成分を生成するためのシステム及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024020376A Division JP2024040439A (ja) 2009-05-27 2024-02-14 信号の高周波成分を生成するためのシステム及び方法

Publications (2)

Publication Number Publication Date
JP2023030188A JP2023030188A (ja) 2023-03-07
JP7439309B2 true JP7439309B2 (ja) 2024-02-27

Family

ID=42358052

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2012512344A Active JP5363648B2 (ja) 2009-05-27 2010-05-25 オーディオ信号の高周波成分を生成するシステム及び方法
JP2013183732A Active JP5787951B2 (ja) 2009-05-27 2013-09-05 信号の高周波成分を生成するためのシステム及び方法
JP2015148603A Active JP6058761B2 (ja) 2009-05-27 2015-07-28 信号の高周波成分を生成するためのシステム及び方法
JP2016237326A Active JP6430466B2 (ja) 2009-05-27 2016-12-07 信号の高周波成分を生成するためのシステム及び方法
JP2018199044A Active JP6636116B2 (ja) 2009-05-27 2018-10-23 信号の高周波成分を生成するためのシステム及び方法
JP2019227191A Active JP6882439B2 (ja) 2009-05-27 2019-12-17 信号の高周波成分を生成するためのシステム及び方法
JP2021078511A Active JP7206318B2 (ja) 2009-05-27 2021-05-06 信号の高周波成分を生成するためのシステム及び方法
JP2023000074A Active JP7439309B2 (ja) 2009-05-27 2023-01-04 信号の高周波成分を生成するためのシステム及び方法
JP2024020376A Pending JP2024040439A (ja) 2009-05-27 2024-02-14 信号の高周波成分を生成するためのシステム及び方法

Family Applications Before (7)

Application Number Title Priority Date Filing Date
JP2012512344A Active JP5363648B2 (ja) 2009-05-27 2010-05-25 オーディオ信号の高周波成分を生成するシステム及び方法
JP2013183732A Active JP5787951B2 (ja) 2009-05-27 2013-09-05 信号の高周波成分を生成するためのシステム及び方法
JP2015148603A Active JP6058761B2 (ja) 2009-05-27 2015-07-28 信号の高周波成分を生成するためのシステム及び方法
JP2016237326A Active JP6430466B2 (ja) 2009-05-27 2016-12-07 信号の高周波成分を生成するためのシステム及び方法
JP2018199044A Active JP6636116B2 (ja) 2009-05-27 2018-10-23 信号の高周波成分を生成するためのシステム及び方法
JP2019227191A Active JP6882439B2 (ja) 2009-05-27 2019-12-17 信号の高周波成分を生成するためのシステム及び方法
JP2021078511A Active JP7206318B2 (ja) 2009-05-27 2021-05-06 信号の高周波成分を生成するためのシステム及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024020376A Pending JP2024040439A (ja) 2009-05-27 2024-02-14 信号の高周波成分を生成するためのシステム及び方法

Country Status (16)

Country Link
US (6) US8983852B2 (ja)
EP (7) EP2436005B1 (ja)
JP (9) JP5363648B2 (ja)
KR (1) KR101303776B1 (ja)
CN (2) CN103971699B (ja)
AR (1) AR076799A1 (ja)
AU (1) AU2010252028B9 (ja)
BR (4) BR122020025925B1 (ja)
ES (6) ES2907243T3 (ja)
HK (3) HK1167924A1 (ja)
MY (1) MY157184A (ja)
PL (5) PL2800093T3 (ja)
RU (1) RU2490728C2 (ja)
SG (3) SG10201401896QA (ja)
TW (5) TWI643187B (ja)
WO (1) WO2010136459A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971551B2 (en) 2009-09-18 2015-03-03 Dolby International Ab Virtual bass synthesis using harmonic transposition
EP2491557B1 (en) 2009-10-21 2014-07-30 Dolby International AB Oversampling in a combined transposer filter bank
JP5619177B2 (ja) * 2009-11-19 2014-11-05 テレフオンアクチーボラゲット エル エムエリクソン(パブル) 低域オーディオ信号の帯域拡張
KR101783818B1 (ko) 2010-01-19 2017-10-10 돌비 인터네셔널 에이비 고조파 전위에 기초하여 개선된 서브밴드 블록
JP5850216B2 (ja) * 2010-04-13 2016-02-03 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
EP2390644B1 (en) * 2010-05-31 2015-09-16 Siemens Industry Software NV Method and system for determining static and/or dynamic, loads using inverse dynamic calibration
BR112012002839B1 (pt) 2010-06-09 2020-10-13 Panasonic Intellectual Property Corporation Of America método de extensão de largura de banda, aparelho de extensão de largura de banda, circuito integrado e aparelho de decodificação de áudio
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter
KR102632248B1 (ko) 2010-07-19 2024-02-02 돌비 인터네셔널 에이비 고주파 복원 동안 오디오 신호들의 프로세싱
US12002476B2 (en) * 2010-07-19 2024-06-04 Dolby International Ab Processing of audio signals during high frequency reconstruction
JP6075743B2 (ja) 2010-08-03 2017-02-08 ソニー株式会社 信号処理装置および方法、並びにプログラム
US8762158B2 (en) * 2010-08-06 2014-06-24 Samsung Electronics Co., Ltd. Decoding method and decoding apparatus therefor
JP5665987B2 (ja) 2010-08-12 2015-02-04 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Qmfベースのオーディオコーデックの出力信号のリサンプリング
JP5807453B2 (ja) * 2011-08-30 2015-11-10 富士通株式会社 符号化方法、符号化装置および符号化プログラム
EP2682941A1 (de) * 2012-07-02 2014-01-08 Technische Universität Ilmenau Vorrichtung, Verfahren und Computerprogramm für frei wählbare Frequenzverschiebungen in der Subband-Domäne
WO2014049192A1 (en) * 2012-09-26 2014-04-03 Nokia Corporation A method, an apparatus and a computer program for creating an audio composition signal
TWI557727B (zh) 2013-04-05 2016-11-11 杜比國際公司 音訊處理系統、多媒體處理系統、處理音訊位元流的方法以及電腦程式產品
KR102170665B1 (ko) 2013-04-05 2020-10-29 돌비 인터네셔널 에이비 인터리브된 파형 코딩을 위한 오디오 인코더 및 디코더
KR101732059B1 (ko) 2013-05-15 2017-05-04 삼성전자주식회사 오디오 신호의 부호화, 복호화 방법 및 장치
JP6305694B2 (ja) * 2013-05-31 2018-04-04 クラリオン株式会社 信号処理装置及び信号処理方法
EP2830056A1 (en) * 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
CA2934602C (en) 2013-12-27 2022-08-30 Sony Corporation Decoding apparatus and method, and program
US9564141B2 (en) * 2014-02-13 2017-02-07 Qualcomm Incorporated Harmonic bandwidth extension of audio signals
US9577798B1 (en) * 2014-04-30 2017-02-21 Keysight Technologies, Inc. Real-time separation of signal components in spectrum analyzer
TW202242853A (zh) 2015-03-13 2022-11-01 瑞典商杜比國際公司 解碼具有增強頻譜帶複製元資料在至少一填充元素中的音訊位元流
WO2016180704A1 (en) 2015-05-08 2016-11-17 Dolby International Ab Dialog enhancement complemented with frequency transposition
EP3107096A1 (en) 2015-06-16 2016-12-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Downscaled decoding
US10770082B2 (en) * 2016-06-22 2020-09-08 Dolby International Ab Audio decoder and method for transforming a digital audio signal from a first to a second frequency domain
CN109328382B (zh) 2016-06-22 2023-06-16 杜比国际公司 用于将数字音频信号从第一频域变换到第二频域的音频解码器及方法
US10411816B2 (en) * 2016-11-30 2019-09-10 Rohde & Schwarz Gmbh & Co. Kg Method for searching a spur in a signal received and device for searching a spur in a signal received
TW202341126A (zh) * 2017-03-23 2023-10-16 瑞典商都比國際公司 用於音訊信號之高頻重建的諧波轉置器的回溯相容整合
US10825467B2 (en) * 2017-04-21 2020-11-03 Qualcomm Incorporated Non-harmonic speech detection and bandwidth extension in a multi-source environment
CN109936430B (zh) * 2017-12-18 2024-04-12 华为技术有限公司 一种信号发送、接收方法及设备
MA50760A (fr) 2018-04-25 2020-06-10 Dolby Int Ab Intégration de techniques de reconstruction haute fréquence à retard post-traitement réduit
MA52530A (fr) * 2018-04-25 2021-03-03 Dolby Int Ab Intégration de techniques de reconstruction audio haute fréquence
US11573103B2 (en) * 2018-05-11 2023-02-07 Sankyo Seisakusho Co. Angle detector
CN110335620B (zh) * 2019-07-08 2021-07-27 广州欢聊网络科技有限公司 一种噪声抑制方法、装置和移动终端
WO2021026314A1 (en) * 2019-08-08 2021-02-11 Boomcloud 360, Inc. Nonlinear adaptive filterbanks for psychoacoustic frequency range extension
CN113838398B (zh) 2020-06-24 2023-07-18 京东方科技集团股份有限公司 显示面板、显示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173607A (ja) 1997-06-10 2005-06-30 Coding Technologies Ab 時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790016A (en) 1985-11-14 1988-12-06 Gte Laboratories Incorporated Adaptive method and apparatus for coding speech
WO1986003873A1 (en) 1984-12-20 1986-07-03 Gte Laboratories Incorporated Method and apparatus for encoding speech
US5127054A (en) 1988-04-29 1992-06-30 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
US5109417A (en) 1989-01-27 1992-04-28 Dolby Laboratories Licensing Corporation Low bit rate transform coder, decoder, and encoder/decoder for high-quality audio
US5297236A (en) 1989-01-27 1994-03-22 Dolby Laboratories Licensing Corporation Low computational-complexity digital filter bank for encoder, decoder, and encoder/decoder
US5357594A (en) 1989-01-27 1994-10-18 Dolby Laboratories Licensing Corporation Encoding and decoding using specially designed pairs of analysis and synthesis windows
US5752225A (en) 1989-01-27 1998-05-12 Dolby Laboratories Licensing Corporation Method and apparatus for split-band encoding and split-band decoding of audio information using adaptive bit allocation to adjacent subbands
US5479562A (en) 1989-01-27 1995-12-26 Dolby Laboratories Licensing Corporation Method and apparatus for encoding and decoding audio information
US5222189A (en) 1989-01-27 1993-06-22 Dolby Laboratories Licensing Corporation Low time-delay transform coder, decoder, and encoder/decoder for high-quality audio
CN1062963C (zh) 1990-04-12 2001-03-07 多尔拜实验特许公司 用于产生高质量声音信号的解码器和编码器
FR2667404B1 (fr) 1990-09-28 1992-10-30 Thomson Csf Dispositif generateur de plusieurs faisceaux de lumiere.
US5235671A (en) 1990-10-15 1993-08-10 Gte Laboratories Incorporated Dynamic bit allocation subband excited transform coding method and apparatus
JPH04220461A (ja) 1990-12-21 1992-08-11 Asahi Chem Ind Co Ltd 熱可塑性樹脂組成物
SG49883A1 (en) 1991-01-08 1998-06-15 Dolby Lab Licensing Corp Encoder/decoder for multidimensional sound fields
US5274740A (en) 1991-01-08 1993-12-28 Dolby Laboratories Licensing Corporation Decoder for variable number of channel presentation of multidimensional sound fields
US5291557A (en) 1992-10-13 1994-03-01 Dolby Laboratories Licensing Corporation Adaptive rematrixing of matrixed audio signals
US5623577A (en) 1993-07-16 1997-04-22 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions
US5632003A (en) 1993-07-16 1997-05-20 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for coding method and apparatus
US5463424A (en) 1993-08-03 1995-10-31 Dolby Laboratories Licensing Corporation Multi-channel transmitter/receiver system providing matrix-decoding compatible signals
US5581653A (en) 1993-08-31 1996-12-03 Dolby Laboratories Licensing Corporation Low bit-rate high-resolution spectral envelope coding for audio encoder and decoder
US5727119A (en) 1995-03-27 1998-03-10 Dolby Laboratories Licensing Corporation Method and apparatus for efficient implementation of single-sideband filter banks providing accurate measures of spectral magnitude and phase
JP2766466B2 (ja) 1995-08-02 1998-06-18 株式会社東芝 オーディオ方式、その再生方法、並びにその記録媒体及びその記録媒体への記録方法
US5890106A (en) 1996-03-19 1999-03-30 Dolby Laboratories Licensing Corporation Analysis-/synthesis-filtering system with efficient oddly-stacked singleband filter bank using time-domain aliasing cancellation
JP3765622B2 (ja) 1996-07-09 2006-04-12 ユナイテッド・モジュール・コーポレーション オーディオ符号化復号化システム
TW423143B (en) * 1997-05-15 2001-02-21 Li Tsang Sung A low voltage CMOS transconductor for VHF continuous-time filters
RU2256293C2 (ru) * 1997-06-10 2005-07-10 Коудинг Технолоджиз Аб Усовершенствование исходного кодирования с использованием дублирования спектральной полосы
US5890125A (en) 1997-07-16 1999-03-30 Dolby Laboratories Licensing Corporation Method and apparatus for encoding and decoding multiple audio channels at low bit rates using adaptive selection of encoding method
US5899969A (en) 1997-10-17 1999-05-04 Dolby Laboratories Licensing Corporation Frame-based audio coding with gain-control words
US5913191A (en) 1997-10-17 1999-06-15 Dolby Laboratories Licensing Corporation Frame-based audio coding with additional filterbank to suppress aliasing artifacts at frame boundaries
US5903872A (en) 1997-10-17 1999-05-11 Dolby Laboratories Licensing Corporation Frame-based audio coding with additional filterbank to attenuate spectral splatter at frame boundaries
US5913190A (en) 1997-10-17 1999-06-15 Dolby Laboratories Licensing Corporation Frame-based audio coding with video/audio data synchronization by audio sample rate conversion
US6124895A (en) 1997-10-17 2000-09-26 Dolby Laboratories Licensing Corporation Frame-based audio coding with video/audio data synchronization by dynamic audio frame alignment
US6085163A (en) 1998-03-13 2000-07-04 Todd; Craig Campbell Using time-aligned blocks of encoded audio in video/audio applications to facilitate audio switching
US6233718B1 (en) 1998-10-19 2001-05-15 Dolby Laboratories Licensing Corporation Avoiding forbidden data patterns in coded audio data
SE9903553D0 (sv) 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
US6226608B1 (en) 1999-01-28 2001-05-01 Dolby Laboratories Licensing Corporation Data framing for adaptive-block-length coding system
US6363338B1 (en) 1999-04-12 2002-03-26 Dolby Laboratories Licensing Corporation Quantization in perceptual audio coders with compensation for synthesis filter noise spreading
US6246345B1 (en) 1999-04-16 2001-06-12 Dolby Laboratories Licensing Corporation Using gain-adaptive quantization and non-uniform symbol lengths for improved audio coding
US6978236B1 (en) 1999-10-01 2005-12-20 Coding Technologies Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
SE0001926D0 (sv) * 2000-05-23 2000-05-23 Lars Liljeryd Improved spectral translation/folding in the subband domain
SE0004163D0 (sv) 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
SE0004187D0 (sv) * 2000-11-15 2000-11-15 Coding Technologies Sweden Ab Enhancing the performance of coding systems that use high frequency reconstruction methods
SE0101175D0 (sv) 2001-04-02 2001-04-02 Coding Technologies Sweden Ab Aliasing reduction using complex-exponential-modulated filterbanks
SE0202159D0 (sv) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
EP1423847B1 (en) 2001-11-29 2005-02-02 Coding Technologies AB Reconstruction of high frequency components
US20030187663A1 (en) * 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
SE0202770D0 (sv) 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks
TW573294B (en) * 2002-09-18 2004-01-21 Walsin Lihwa Corp Method for quantifying non-linear frequency division vector
JP3646939B1 (ja) * 2002-09-19 2005-05-11 松下電器産業株式会社 オーディオ復号装置およびオーディオ復号方法
SE0301273D0 (sv) 2003-04-30 2003-04-30 Coding Technologies Sweden Ab Advanced processing based on a complex-exponential-modulated filterbank and adaptive time signalling methods
US7318035B2 (en) 2003-05-08 2008-01-08 Dolby Laboratories Licensing Corporation Audio coding systems and methods using spectral component coupling and spectral component regeneration
US20080260048A1 (en) 2004-02-16 2008-10-23 Koninklijke Philips Electronics, N.V. Transcoder and Method of Transcoding Therefore
WO2005104094A1 (ja) * 2004-04-23 2005-11-03 Matsushita Electric Industrial Co., Ltd. 符号化装置
CN101053019B (zh) * 2004-11-02 2012-01-25 皇家飞利浦电子股份有限公司 使用复值滤波器组的音频信号的编码和解码的装置和方法
WO2006049204A1 (ja) * 2004-11-05 2006-05-11 Matsushita Electric Industrial Co., Ltd. 符号化装置、復号化装置、符号化方法及び復号化方法
US8311840B2 (en) * 2005-06-28 2012-11-13 Qnx Software Systems Limited Frequency extension of harmonic signals
JP4760278B2 (ja) * 2005-10-04 2011-08-31 株式会社ケンウッド 補間装置、オーディオ再生装置、補間方法および補間プログラム
US7345549B2 (en) * 2006-02-28 2008-03-18 Teradyne, Inc. Phase locking on aliased frequencies
TWI309910B (en) * 2006-04-13 2009-05-11 Tatung Co Ltd Design of random pulse-width modulated inverter with lower-order harmonic elimination
US20080158026A1 (en) * 2006-12-29 2008-07-03 O'brien David Compensating for harmonic distortion in an instrument channel
EP3598446B1 (en) 2009-01-16 2021-12-22 Dolby International AB Cross product enhanced harmonic transposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173607A (ja) 1997-06-10 2005-06-30 Coding Technologies Ab 時間的に離散した音声信号のアップサンプリングした信号を発生する方法と装置

Also Published As

Publication number Publication date
HK1167924A1 (en) 2012-12-14
JP2024040439A (ja) 2024-03-25
TW201837898A (zh) 2018-10-16
ES2662013T3 (es) 2018-04-05
JP2021107945A (ja) 2021-07-29
US9881597B2 (en) 2018-01-30
JP2012528344A (ja) 2012-11-12
EP4293669A2 (en) 2023-12-20
JP2019028477A (ja) 2019-02-21
JP2023030188A (ja) 2023-03-07
EP3324408A1 (en) 2018-05-23
JP7206318B2 (ja) 2023-01-17
TWI643187B (zh) 2018-12-01
EP3742442A1 (en) 2020-11-25
CN103971699B (zh) 2018-03-23
JP2015194773A (ja) 2015-11-05
BR122020025925B1 (pt) 2021-08-10
TW201521018A (zh) 2015-06-01
US20120065983A1 (en) 2012-03-15
CN103971699A (zh) 2014-08-06
US20150149158A1 (en) 2015-05-28
JP2014013408A (ja) 2014-01-23
SG10201401896QA (en) 2014-10-30
RU2011147676A (ru) 2013-05-27
US10657937B2 (en) 2020-05-19
ES2808079T3 (es) 2021-02-25
PL3742442T3 (pl) 2022-04-04
EP2436005B1 (en) 2014-07-30
JP2020042312A (ja) 2020-03-19
AU2010252028B9 (en) 2013-11-28
EP2800093B1 (en) 2017-12-27
HK1254144A1 (zh) 2019-07-12
EP3742442B1 (en) 2021-12-22
BRPI1011282A2 (pt) 2020-09-15
JP6430466B2 (ja) 2018-11-28
US8983852B2 (en) 2015-03-17
TWI675367B (zh) 2019-10-21
KR101303776B1 (ko) 2013-09-04
TW201117196A (en) 2011-05-16
MY157184A (en) 2016-05-13
WO2010136459A1 (en) 2010-12-02
SG10201911467TA (en) 2020-01-30
AU2010252028B2 (en) 2013-10-03
RU2490728C2 (ru) 2013-08-20
CN102449692B (zh) 2014-05-07
TWI484481B (zh) 2015-05-11
SG175975A1 (en) 2011-12-29
JP6058761B2 (ja) 2017-01-11
US11200874B2 (en) 2021-12-14
US20200349911A1 (en) 2020-11-05
PL3989223T3 (pl) 2023-03-06
EP2436005A1 (en) 2012-04-04
AR076799A1 (es) 2011-07-06
BR122020025890B1 (pt) 2021-07-06
TW201730877A (zh) 2017-09-01
EP2800093A1 (en) 2014-11-05
JP5787951B2 (ja) 2015-09-30
EP4152319B1 (en) 2023-10-11
BR122020025894B1 (pt) 2021-08-17
US9190067B2 (en) 2015-11-17
PL3324408T3 (pl) 2020-10-19
US10304431B2 (en) 2019-05-28
ES2507190T3 (es) 2014-10-14
US20180114514A1 (en) 2018-04-26
US20160035329A1 (en) 2016-02-04
TW201701273A (zh) 2017-01-01
EP3989223B1 (en) 2022-11-02
EP3324408B9 (en) 2021-01-13
JP2017045076A (ja) 2017-03-02
JP5363648B2 (ja) 2013-12-11
KR20120018341A (ko) 2012-03-02
ES2907243T3 (es) 2022-04-22
JP6882439B2 (ja) 2021-06-02
PL4152319T3 (pl) 2024-02-19
ES2963211T3 (es) 2024-03-25
PL2800093T3 (pl) 2018-04-30
BRPI1011282B1 (pt) 2021-07-06
EP4152319A1 (en) 2023-03-22
EP3324408B1 (en) 2020-07-08
AU2010252028A1 (en) 2011-12-01
TWI591625B (zh) 2017-07-11
TWI556227B (zh) 2016-11-01
US20190237052A1 (en) 2019-08-01
JP6636116B2 (ja) 2020-01-29
EP3989223A1 (en) 2022-04-27
ES2937443T3 (es) 2023-03-28
HK1202970A1 (en) 2015-10-09
CN102449692A (zh) 2012-05-09
EP4293669A3 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP7439309B2 (ja) 信号の高周波成分を生成するためのシステム及び方法
AU2022241544B2 (en) Efficient combined harmonic transposition
AU2021200726B2 (en) Efficient combined harmonic transposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7439309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150