RU2689181C2 - Кодер, декодер, способ кодирования, способ декодирования и программа - Google Patents

Кодер, декодер, способ кодирования, способ декодирования и программа Download PDF

Info

Publication number
RU2689181C2
RU2689181C2 RU2016138694A RU2016138694A RU2689181C2 RU 2689181 C2 RU2689181 C2 RU 2689181C2 RU 2016138694 A RU2016138694 A RU 2016138694A RU 2016138694 A RU2016138694 A RU 2016138694A RU 2689181 C2 RU2689181 C2 RU 2689181C2
Authority
RU
Russia
Prior art keywords
signal
highband
band
energy
tonal
Prior art date
Application number
RU2016138694A
Other languages
English (en)
Other versions
RU2016138694A (ru
RU2016138694A3 (ru
Inventor
Срикантх НАГИСЕТТИ
Чжун Сянь ЛЮ
Хироюки ЭХАРА
Original Assignee
Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. filed Critical Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф.
Publication of RU2016138694A publication Critical patent/RU2016138694A/ru
Publication of RU2016138694A3 publication Critical patent/RU2016138694A3/ru
Application granted granted Critical
Publication of RU2689181C2 publication Critical patent/RU2689181C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/028Noise substitution, i.e. substituting non-tonal spectral components by noisy source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/035Scalar quantisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Abstract

Изобретение относится к средствам для кодирования аудиосигналов. Технический результат заключается в повышении эффективности кодирования аудио. Кодируют низкополосный сигнал из речевого или аудио входного сигнала, чтобы генерировать первый кодированный сигнал. Декодируют первый кодированный сигнал, чтобы генерировать низкополосный декодированный сигнал. Кодируют, на основе низкополосного декодированного сигнала, высокополосный сигнал, имеющий полосу, более высокую, чем полоса низкополосного сигнала, чтобы генерировать высокополосный кодированный сигнал. Вычисляют отношение энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, и второй энергией, относящейся к энергии высокополосной нетональной компоненты высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала. Мультиплексируют первый кодированный сигнал и высокополосный кодированный сигнал. 8 н. и 7 з.п. ф-лы, 10 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее раскрытие относится к устройству, которое кодирует речевой сигнал и аудиосигнал (в дальнейшем упоминаемые как речевой сигнал и подобное), и устройству, которое декодирует речевой сигнал и подобное.
УРОВЕНЬ ТЕХНИКИ
[0002] Технология кодирования речи, которая сжимает речевой сигнал и подобное с низким битрейтом, является важной технологией, которая реализует эффективное использование радиоволн и подобное в мобильной связи. В дополнение, ожидания в отношении телефонной речи более высокого качества возросли в последние годы, и требуется телефонная услуга с улучшенным реалистическим ощущением. Чтобы реализовать это, является достаточным, чтобы речевой сигнал и подобное, имеющий широкую частотную полосу, кодировался при высоком битрейте. Однако этот подход противоречит эффективному использованию радиоволн или частотных полос.
[0003] В качестве способа, который кодирует сигнал, имеющий широкую частотную полосу, с высоким качеством с низким битрейтом, существует способ, который уменьшает полный битрейт посредством разделения спектра входного сигнала на два спектра низкополосной части и высокополосной части, и посредством дублирования низкополосного спектра и транспонирования высокополосного спектра с дублированным низкополосным спектром, то есть, посредством подстановки низкополосного спектра вместо высокополосного спектра (PTL 1). В этом способе, кодирование выполняется посредством назначения уменьшенного количества бит посредством выполнения следующей обработки в качестве базовой обработки: кодирование низкополосного спектра с высоким качеством посредством назначения большого количества бит и дублирование кодированного низкополосного спектра как высокополосного спектра.
[0004] Если способ, раскрытый в PTL 1, используется без какой-либо модификации, сигнал, имеющий сильную пиковую характеристику, видимую в низкополосном спектре, дублируется как есть в высокую полосу. Таким образом, генерируется шум, который звучит как звенящий колокольчик, уменьшая субъективное качество. Соответственно, существует способ, который использует низкополосный спектр с соответствующим образом отрегулированным динамическим диапазоном, в качестве высокополосного спектра (PTL 2).
СПИСОК ССЫЛОЧНЫХ МАТЕРИАЛОВ
ПАТЕНТНАЯ ЛИТЕРАТУРА
[0005] PTL 1: Публикация японской не прошедшей экспертизу патентной заявки (перевод заявки PCT), номер 2001-521648
PTL 2: Международная публикация, номер 2005/111568
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] В способе, раскрытом в PTL 2, динамический диапазон определяется посредством учета всех компонент, составляющих низкополосный спектр. Однако спектр речевого сигнала и подобного включает в себя компоненту, имеющую сильную пиковую характеристику, то есть компоненту, имеющую большую амплитуду (тональную компоненту), и компоненту, имеющую слабую пиковую характеристику, то есть компоненту, имеющую малую амплитуду (нетональную компоненту). Способ, раскрытый в PTL 2, осуществляет оценку посредством учета всех компонент, включающих в себя обе из вышеупомянутых компонент, и, поэтому, не всегда формирует наилучший результат.
[0007] Один вариант осуществления настоящего раскрытия обеспечивает устройство, которое обеспечивает возможность кодирования речевого сигнала и подобного с более высоким качеством посредством выделения и использования тональной компоненты и нетональной компоненты индивидуально для кодирования при уменьшении полного битрейта, и устройство, которое обеспечивает возможность декодирования речевого сигнала и подобного.
[0008] Кодер согласно настоящему раскрытию использует такую конфигурацию, которая включает в себя первый блок кодирования, который кодирует низкополосный сигнал, имеющий частоту более низкую, чем или равную предварительно определенной частоте, из речевого или аудио входного сигнала, чтобы генерировать первый кодированный сигнал, и декодирует первый кодированный сигнал, чтобы генерировать низкополосный декодированный сигнал; второй блок кодирования, который кодирует, на основе низкополосного декодированного сигнала, высокополосный сигнал, имеющий полосу, более высокую, чем полоса низкополосного сигнала, чтобы генерировать высокополосный кодированный сигнал; и первый блок мультиплексирования, который мультиплексирует первый кодированный сигнал и высокополосный кодированный сигнал, чтобы генерировать и выводить кодированный сигнал. Второй блок кодирования вычисляет отношение энергии между высокополосной компонентой шума, которая является компонентой шума высокополосного сигнала, и высокополосной нетональной компонентой высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала, и выводит вычисленное отношение в качестве высокополосного кодированного сигнала.
[0009] Следует отметить, что общие или конкретные варианты осуществления могут осуществляться как система, способ, интегральная схема, компьютерная программа, запоминающий носитель, или любая выбранная комбинация перечисленного.
[0010] Является возможным кодировать и декодировать речевой сигнал и подобное с более высоким качеством посредством использования кодера и декодера в одном варианте осуществления настоящего раскрытия.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0011]
[Фиг. 1] Фиг. 1 иллюстрирует полную конфигурацию кодера согласно настоящему раскрытию.
[Фиг. 2] Фиг. 2 иллюстрирует конфигурацию блока кодирования второго уровня в кодере согласно первому варианту осуществления настоящего раскрытия.
[Фиг. 3] Фиг. 3 иллюстрирует конфигурацию блока кодирования второго уровня в кодере согласно второму варианту осуществления настоящего раскрытия.
[Фиг. 4] Фиг. 4 иллюстрирует полную конфигурацию другого кодера согласно варианту осуществления настоящего раскрытия.
[Фиг. 5] Фиг. 5 иллюстрирует полную конфигурацию декодера согласно настоящему раскрытию.
[Фиг. 6] Фиг. 6 иллюстрирует конфигурацию блока декодирования второго уровня в декодере согласно третьему варианту осуществления настоящего раскрытия.
[Фиг. 7] Фиг. 7 иллюстрирует конфигурацию блока декодирования второго уровня в декодере согласно четвертому варианту осуществления настоящего раскрытия.
[Фиг. 8] Фиг. 8 иллюстрирует полную конфигурацию другого декодера согласно варианту осуществления настоящего раскрытия.
[Фиг. 9] Фиг. 9 иллюстрирует полную конфигурацию другого кодера согласно варианту осуществления настоящего раскрытия.
[Фиг. 10] Фиг. 10 иллюстрирует полную конфигурацию другого декодера согласно варианту осуществления настоящего раскрытия.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0012] Конфигурации и операции в вариантах осуществления настоящего раскрытия будут описываться ниже со ссылкой на чертежи. Отметим, что входной сигнал, который вводится в кодер согласно настоящему раскрытию, и выходной сигнал, который выводится из декодера согласно настоящему раскрытию, включают в себя, в дополнение к случаю только речевых сигналов в узком смысле, случай аудиосигналов, имеющих более широкие полосы частот, и случай, когда эти сигналы сосуществуют.
[0013] (ПЕРВЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ)
Фиг. 1 является блок-схемой, иллюстрирующей конфигурацию кодера для речевого сигнала и подобного согласно первому варианту осуществления. Будет описываться иллюстративный случай, в котором кодированный сигнал имеет многоуровневую конфигурацию, включающую в себя множество уровней; то есть, будет описываться случай выполнения иерархического кодирования (масштабируемого кодирования). Пример, который охватывает кодирование, другое, нежели масштабируемое кодирование, будет описываться ниже со ссылкой на фиг. 4. Кодер 100, проиллюстрированный на фиг. 1, включает в себя блок 101 дискретизации с понижением, блок 102 кодирования первого уровня, блок 103 мультиплексирования, блок 104 декодирования первого уровня, блок 105 задержки, и блок 106 кодирования второго уровня. В дополнение, антенна, которая не проиллюстрирована, соединена с блоком 103 мультиплексирования.
[0014] Блок 101 дискретизации с понижением генерирует сигнал, имеющий низкую частоту дискретизации, из входного сигнала и выводит сгенерированный сигнал в блок 102 кодирования первого уровня в качестве низкополосного сигнала, имеющего частоту более низкую, чем или равную предварительно определенной частоте.
[0015] Блок 102 кодирования первого уровня, который является одним вариантом осуществления компонента первого блока кодирования, кодирует низкополосный сигнал. Примеры кодирования включают в себя кодирование CELP (линейного предсказания с кодовым возбуждением) и кодирование с преобразованием. Кодированный низкополосный сигнал выводится в блок 104 декодирования первого уровня и блок 103 мультиплексирования в качестве низкополосного кодированного сигнала, который является первым кодированным сигналом.
[0016] Блок 104 декодирования первого уровня, который также является одним вариантом осуществления компонента первого блока кодирования, декодирует низкополосный кодированный сигнал, тем самым, генерируя низкополосный декодированный сигнал. Затем, блок 104 декодирования первого уровня выводит низкополосный декодированный сигнал S1 в блок кодирования второго уровня 106.
[0017] С другой стороны, блок 105 задержки осуществляет задержку входного сигнала на предварительно определенный период. Этот период задержки используется, чтобы корректировать временную задержку, сгенерированную в блоке 101 дискретизации с понижением, блоке 102 кодирования первого уровня, и блоке 104 декодирования первого уровня. Блок 105 задержки выводит подвергнутый задержке входной сигнал S2 в блок 106 кодирования второго уровня.
[0018] На основе низкополосного декодированного сигнала S1, сгенерированного посредством блока 104 декодирования первого уровня, блок 106 кодирования второго уровня, который является одним вариантом осуществления второго блока кодирования, кодирует высокополосный сигнал, имеющий частоту, более высокую, чем или равную предварительно определенной частоте, из входного сигнала S2, тем самым, генерируя высокополосный кодированный сигнал. Низкополосный декодированный сигнал S1 и входной сигнал S2 вводятся в блок кодирования второго уровня после того, как подвергаются частотному преобразованию, такому как MDCT (модифицированное дискретное косинусное преобразование). Затем, блок 106 кодирования второго уровня выводит высокополосный кодированный сигнал в блок 103 мультиплексирования. Подробности блока 106 кодирования второго уровня будут описываться ниже.
[0019] Блок 103 мультиплексирования мультиплексирует низкополосный кодированный сигнал и высокополосный кодированный сигнал, тем самым, генерируя кодированный сигнал, и передает кодированный сигнал в декодер посредством антенны, которая не проиллюстрирована.
[0020] Фиг. 2 является блок-схемой, иллюстрирующей конфигурацию блока 106 кодирования второго уровня в этом варианте осуществления. Блок 106 кодирования второго уровня включает в себя блок 201 добавления шума, блок 202 выделения, блок 203 расширения полосы частот, блок 204 вычисления энергии компоненты шума (первый блок вычисления), блок 205 вычисления усиления (второй блок вычисления), блок 206 вычисления энергии, блок 207 мультиплексирования, и блок 208 расширения полосы частот.
[0021] Блок 201 добавления шума добавляет сигнал шума к низкополосному декодированному сигналу S1, который был введен из блока 104 декодирования первого уровня. Отметим, что признак "сигнал шума" указывает на сигнал, имеющий случайные характеристики, и является, например, сигналом, имеющим амплитуду интенсивности сигнала, которая флуктуирует нерегулярно по отношению к временной оси или частотной оси. Сигнал шума может генерироваться, как необходимо, на основе случайных чисел. Альтернативно, сигнал шума (например, белый шум, гауссовский шум, или розовый шум), который генерируется заранее, может храниться в устройстве хранения, таком как память, и может вызываться и выводиться. В дополнение, сигнал шума не ограничен одиночным сигналом, и один из множества сигналов шума может выбираться и выводиться в соответствии с предварительно определенными условиями.
[0022] Чтобы кодировать входной сигнал, если количество бит, которое может быть назначено, является малым, только некоторые из частотных компонент могут квантоваться, что дает результатом ухудшение в субъективном качестве. Однако посредством добавления шума посредством использования блока 201 добавления шума, сигналы шума компенсируют компоненты, которые были бы нулевыми в силу того, что не подвергаются квантованию, и, таким образом, может ожидаться эффект ослабления ухудшения.
[0023] Отметим, что блок 201 добавления шума имеет произвольную конфигурацию. Затем, блок 201 добавления шума выводит, в блок 202 выделения, низкополосный декодированный сигнал, к которому был добавлен сигнал шума.
[0024] Из низкополосного декодированного сигнала, к которому был добавлен сигнал шума, блок 202 выделения выделяет низкополосный нетональный сигнал, который является нетональной компонентой, и низкополосный тональный сигнал, который является тональной компонентой. Здесь, признак "тональная компонента" указывает на компоненту, имеющую амплитуду, большую, чем предварительно определенный порог, или компоненту, которая была квантована посредством модуля импульсного квантования. В дополнение, признак "нетональная компонента" указывает на компоненту, имеющую амплитуду, меньшую, чем или равную предварительно определенному порогу, или компоненту, которая стала нулевой в силу того, что не подвергается квантованию посредством модуля импульсного квантования.
[0025] В случае различения тональной компоненты и нетональной компоненты друг от друга посредством использования предварительно определенного порога, выполняется выделение в зависимости от того, является ли или нет амплитуда компоненты низкополосного декодированного сигнала более большой, чем предварительно определенный порог. В случае различения тональной компоненты и нетональной компоненты друг от друга в зависимости от того, была ли или нет компонента квантована посредством модуля импульсного квантования, так как этот случай соответствует случаю, когда пороговое значение является нулевым, низкополосный тональный сигнал может генерироваться посредством вычитания низкополосного декодированного сигнала S1 из низкополосного декодированного сигнала, к которому был добавлен шум посредством блока 201 добавления шума.
[0026] Затем, блок 202 выделения выводит низкополосный нетональный сигнал в блок 203 расширения полосы частот и выводит низкополосный тональный сигнал в блок 208 расширения полосы частот.
[0027] Блок 208 расширения полосы частот осуществляет поиск конкретной полосы низкополосного тонального сигнала, в которой корреляция между высокополосным сигналом из входного сигнала S2 и низкополосным тональным сигналом, сгенерированным для расширения полосы частот, становится максимальной. Поиск может выполняться посредством выбора кандидата, в котором корреляция становится максимальной, из числа конкретных положений кандидатов, которые были подготовлены заранее. Как низкополосный тональный сигнал, сгенерированный для расширения полосы частот, низкополосный тональный сигнал, который был выделен (квантован) посредством блока 202 выделения, может использоваться без какой-либо обработки, или может использоваться сглаженный или нормализованный тональный сигнал.
[0028] Затем, блок 208 расширения полосы частот выводит, в блок 207 мультиплексирования и блок 203 расширения полосы частот, информацию, которая определяет положение найденной конкретной полосы, другими словами, информацию запаздывания, которая определяет положение (частоту) низкополосного спектра, используемого, чтобы генерировать расширенные полосы частот. Отметим, что информация запаздывания не должна включать в себя всю информацию, соответствующую всем расширенным полосам частот, и может передаваться только некоторая информация, соответствующая некоторым из расширенных полос частот. Например, информация запаздывания может кодироваться для некоторых подполос, подлежащих генерированию посредством расширения полосы частот; и кодирование может не выполняться для оставшейся части подполос, и подполосы могут генерироваться посредством наложения спектра, сгенерированного посредством использования информации запаздывания, на стороне декодера.
[0029] Блок 208 расширения полосы частот выбирает компоненту, имеющую большую амплитуду, из высокополосного сигнала из входного сигнала S2 и вычисляет корреляцию посредством использования только выбранной компоненты, тем самым, уменьшая объем вычислений для вычисления корреляции, и выводит, в блок 204 вычисления энергии компоненты шума (первый блок вычисления), информацию положения частоты выбранной компоненты в качестве информации положения частоты высокополосной тональной компоненты.
[0030] На основе положения конкретной полосы, определенной посредством информации запаздывания, блок 203 расширения полосы частот извлекает низкополосный нетональный сигнал, устанавливает низкополосный нетональный сигнал в качестве высокополосного нетонального сигнала, и выводит высокополосный нетональный сигнал в блок 205 вычисления усиления.
[0031] Посредством использования информации положения частоты высокополосной тональной компоненты, блок 204 вычисления энергии компоненты шума вычисляет энергию высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, из входного сигнала S2, и выводит энергию в блок 205 вычисления усиления. Конкретно, посредством вычитания энергии компоненты в положении частоты высокополосной тональной компоненты в высокополосной части из энергии компонент во всей высокополосной части входного сигнала S2, получается энергия компонент, других, нежели высокополосная тональная компонента, и эта энергия выводится в блок 205 вычисления усиления в качестве энергии высокополосной компоненты шума.
[0032] Блок 205 вычисления усиления вычисляет энергию высокополосного нетонального сигнала, выведенного из блока 203 расширения полосы частот, вычисляет отношение между этой энергией и энергией высокополосной компоненты шума, выведенной из блока 204 вычисления энергии компоненты шума, и выводит это отношение в блок 207 мультиплексирования в качестве коэффициента масштабирования.
[0033] Блок 206 вычисления энергии вычисляет энергию входного сигнала S2 для каждой подполосы. Например, энергия может вычисляться из суммы квадратов спектров в подполосах, полученных посредством разделения входного сигнала S2 на подполосы. Например, энергия может определяться посредством следующего выражения.
[0034]
[Математическое выражение 1]
Figure 00000001
[0035] В выражении, X является коэффициентом MDCT, b является номером подполосы, и Epsilon является постоянной для скалярного квантования.
[0036] Затем, блок 206 вычисления энергии выводит индекс, представляющий степень полученной квантованной энергии полосы, в блок 207 мультиплексирования в качестве квантованной энергии полосы.
[0037] Блок 207 мультиплексирования кодирует и мультиплексирует информацию запаздывания, коэффициент масштабирования, и квантованную энергию полосы. Затем, сигнал, полученный посредством мультиплексирования, выводится в качестве высокополосного кодированного сигнала. Отметим, что блок 207 мультиплексирования и блок 103 мультиплексирования могут обеспечиваться отдельно или объединено.
[0038] В вышеизложенном способе, в этом варианте осуществления, блок 205 вычисления усиления (второй блок вычисления) вычисляет отношение между энергией высокополосной нетональной компоненты (шума) высокополосного сигнала из входного сигнала и энергией высокополосного нетонального сигнала (шума) из высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала. Соответственно, этот вариант осуществления формирует эффект обеспечения возможности более точного воспроизведения энергии нетональной компоненты (шума) декодированного сигнала.
[0039] То есть, является возможным более точно воспроизводить энергию нетональной компоненты, которая является более малой, чем энергия тональной компоненты и имеет тенденцию содержать ошибки, и энергия нетональной компоненты декодированного сигнала стабилизируется. В дополнение, также является возможным более точно воспроизводить энергию тональной компоненты, вычисленную посредством использования энергии полосы и энергии нетональной компоненты. Дополнительно, является возможным выполнять кодирование посредством использования малого количества бит, чтобы генерировать высокополосный кодированный сигнал.
[0040] (ВТОРОЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ)
Далее, конфигурация кодера согласно второму варианту осуществления настоящего раскрытия будет описываться со ссылкой на фиг. 3. Отметим, что полная конфигурация кодера 100 согласно этому варианту осуществления имеет конфигурацию, проиллюстрированную на фиг. 1, как в первом варианте осуществления.
[0041] Фиг. 3 является блок-схемой, иллюстрирующей конфигурацию блока 106 кодирования второго уровня в этом варианте осуществления, отличающегося от блока 106 кодирования второго уровня в первом варианте осуществления в том, что отношение положения блока добавления шума и блока выделения обращено и что содержатся блок 302 выделения и блок 301 добавления шума.
[0042] Из низкополосного декодированного сигнала, блок 302 выделения выделяет низкополосный нетональный сигнал, который является нетональной компонентой, и низкополосный тональный сигнал, который является тональной компонентой. Способ выделения, используемый является таким же как способ в описании первого варианта осуществления, и выделение выполняется согласно степени амплитуды на основе предварительно определенного порога. Порог может устанавливаться на нуль.
[0043] Блок 301 добавления шума добавляет сигнал шума к низкополосному нетональному сигналу, выведенному из блока 302 выделения. Чтобы не добавлять сигнал шума к компоненте, которая уже имеет некоторую амплитуду, может осуществляться ссылка на низкополосный декодированный сигнал S1.
[0044] Отметим, что примеры использования масштабируемого кодирования описываются в первом и втором вариантах осуществления. Однако первый и второй варианты осуществления могут применяться к случаям, когда используется кодирование, другое, нежели масштабируемое кодирование. Фиг. 4 и 9 являются примерами других кодеров, кодеров 110 и 610, соответственно. Сначала, будет описываться кодер 110, проиллюстрированный на фиг. 4.
[0045] Кодер 110, проиллюстрированный на фиг. 4, включает в себя блок 111 время-частотного преобразования, первый блок 112 кодирования, блок 113 мультиплексирования, блок 114 нормализации энергии полосы, и второй блок 115 кодирования.
[0046] Блок 111 время-частотного преобразования выполняет частотное преобразование над входным сигналом посредством MDCT или подобного.
[0047] Для каждой предварительно определенной полосы, блок 114 нормализации энергии полосы вычисляет, квантует, и кодирует энергию полосы входного спектра, которая является входным сигналом, подвергнутым частотному преобразованию, и выводит результирующий кодированный сигнал энергии полосы в блок 113 мультиплексирования. В дополнение, блок 114 нормализации энергии полосы вычисляет информацию B1 и B2 назначения битов относительно битов, подлежащих назначению первому блоку кодирования и второму блоку кодирования, соответственно, посредством использования квантованной энергии полосы, и выводит информацию B1 и B2 назначения битов в первый блок 112 кодирования и второй блок 115 кодирования, соответственно. В дополнение, блок 114 нормализации энергии полосы дополнительно нормализует входной спектр в каждой полосе посредством использования квантованной энергии полосы, и выводит нормализованный входной спектр S2 в первый блок 112 кодирования и второй блок 115 кодирования.
[0048] Первый блок 112 кодирования выполняет первое кодирование над нормализованным входным спектром S2, включающим в себя низкополосный сигнал, имеющий частоту более низкую, чем или равную предварительно определенной частоте, на основе информации B1 назначения битов, которая была введена. Затем, первый блок 112 кодирования выводит, в блок 113 мультиплексирования, первый кодированный сигнал, сгенерированный как результат кодирования. В дополнение, первый блок 112 кодирования выводит, во второй блок 115 кодирования, низкополосный декодированный сигнал S1, полученный в обработке кодирования.
[0049] Второй блок 115 кодирования выполняет второе кодирование над частью нормализованного входного спектра S2, где первый блок 112 кодирования потерпел неудачу в кодировании. Второй блок 115 кодирования может иметь конфигурацию блока 106 кодирования второго уровня, описанного со ссылкой на фиг. 2 и 3.
[0050] Далее, будет описываться кодер 610, проиллюстрированный на фиг. 9. Кодер 610, проиллюстрированный на фиг. 9, включает в себя блок 611 время-частотного преобразования, первый блок 612 кодирования, блок 613 мультиплексирования, и второй блок 614 кодирования.
[0051] Блок 611 время-частотного преобразования выполняет частотное преобразование над входным сигналом посредством MDCT или подобного.
[0052] Для каждой предварительно определенной полосы, первый блок 612 кодирования вычисляет, квантует, и кодирует энергию полосы входного спектра, которая является входным сигналом, подвергнутым частотному преобразованию, и выводит результирующий кодированный сигнал энергии полосы в блок 613 мультиплексирования. В дополнение, первый блок 612 кодирования вычисляет информацию назначения битов, подлежащую назначению первому кодированному сигналу и второму кодированному сигналу, посредством использования квантованной энергии полосы, и выполняет, на основе информации назначения битов, первое кодирование над нормализованным входным спектром S2, включающим в себя низкополосный сигнал, имеющий частоту более низкую, чем или равную предварительно определенной частоте. Затем, первый блок 612 кодирования выводит первый кодированный сигнал в блок 613 мультиплексирования и выводит, во второй блок 614 кодирования, низкополосный декодированный сигнал, который является низкополосной компонентой декодированного сигнала первого кодированного сигнала. Первое кодирование здесь может выполняться над входным сигналом, который был нормализован посредством квантованной энергии полосы. В этом случае, декодированный сигнал первого кодированного сигнала соответствует сигналу, полученному посредством обратной нормализации посредством квантованной энергии полосы. В дополнение, первый блок 612 кодирования выводит информацию назначения битов, подлежащую назначению второму кодированному сигналу, и высокополосную квантованную энергию полосы во второй блок 614 кодирования.
[0053] Второй блок 614 кодирования выполняет второе кодирование над частью нормализованного входного спектра S2, где первый блок 612 кодирования потерпел неудачу в кодировании. Второй блок 614 кодирования может иметь конфигурацию блока 106 кодирования второго уровня, описанного со ссылкой на фиг. 2 и 3. Отметим, что, хотя не проиллюстрировано явно на фиг. 2 или 3, информация назначения битов вводится в блок 208 расширения полосы частот, который кодирует информацию запаздывания, и блок вычисления усиления, который кодирует коэффициент масштабирования. В дополнение, блок 206 вычисления энергии вычисляет и квантует энергию полосы посредством использования входного сигнала на фиг. 2 и 3, но является ненужным на фиг. 9, так как первый блок 612 кодирования выполняет эту обработку.
[0054] (ТРЕТИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ)
Фиг. 5 является блок-схемой, иллюстрирующей конфигурацию декодера речевого сигнала согласно третьему варианту осуществления. В качестве примера, в последующем описании, кодированный сигнал является сигналом, который имеет многоуровневую конфигурацию, включающую в себя множество уровней, и который передается от кодера, и декодер декодирует этот кодированный сигнал. Отметим, что пример, в котором кодированный сигнал не имеет многоуровневую конфигурацию, будет описываться со ссылкой на фиг. 8.
[0055] Декодер 400, проиллюстрированный на фиг. 5, включает в себя блок 401 выделения, блок 402 декодирования первого уровня, и блок 403 декодирования второго уровня. Антенна, которая не проиллюстрирована, соединена с блоком 401 выделения.
[0056] Из кодированного сигнала, введенного посредством антенны, которая не проиллюстрирована, блок 401 выделения выделяет низкополосный кодированный сигнал, который является первым кодированным сигналом, и высокополосный кодированный сигнал. Блок 401 выделения выводит низкополосный кодированный сигнал в блок 402 декодирования первого уровня и выводит высокополосный кодированный сигнал в блок 403 декодирования второго уровня.
[0057] Блок 402 декодирования первого уровня, который является одним вариантом осуществления первого блока декодирования, декодирует низкополосный кодированный сигнал, тем самым, генерируя низкополосный декодированный сигнал S1. Примеры декодирования посредством блока 402 декодирования первого уровня включают в себя декодирование CELP. Блок 402 декодирования первого уровня выводит низкополосный декодированный сигнал в блок 403 декодирования второго уровня.
[0058] Блок 403 декодирования второго уровня, который является одним вариантом осуществления второго блока декодирования, декодирует высокополосный кодированный сигнал, тем самым, генерируя широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала, и выводит широкополосный декодированный сигнал. Подробности блока 403 декодирования второго уровня будут описываться ниже.
[0059] Затем, низкополосный декодированный сигнал и/или широкополосный декодированный сигнал воспроизводятся посредством усилителя и громкоговорителя, которые не проиллюстрированы.
[0060] Фиг. 6 является блок-схемой, иллюстрирующей конфигурацию блока 403 декодирования второго уровня в этом варианте осуществления. Блок 403 декодирования второго уровня включает в себя блок 501 декодирования и выделения, блок 502 добавления шума, блок 503 выделения, блок 504 расширения полосы частот, блок 505 масштабирования, блок 506 соединения, блок 507 добавления, блок 508 расширения полосы частот, блок 509 соединения, блок 510 оценки энергии тонального сигнала, и блок 511 масштабирования.
[0061] Блок 501 декодирования и выделения декодирует высокополосный кодированный сигнал и выделяет квантованную энергию A полосы, коэффициент B масштабирования, и информацию C запаздывания. Отметим, что блок 401 выделения и блок 501 декодирования и выделения могут обеспечиваться отдельно или объединенно.
[0062] Блок 502 добавления шума добавляет сигнал шума к низкополосному декодированному сигналу S1, введенному из блока 402 декодирования первого уровня. Используемый сигнал шума является таким же, как сигнал шума, который добавляется посредством блока 201 добавления шума в кодере 100. Затем, блок 502 добавления шума выводит, в блок 503 выделения, низкополосный декодированный сигнал, к которому был добавлен сигнал шума.
[0063] Из низкополосного декодированного сигнала, к которому был добавлен сигнал шума, блок 503 выделения выделяет нетональную компоненту и тональную компоненту, и выводит нетональную компоненту и тональную компоненту в качестве низкополосного нетонального сигнала и низкополосного тонального сигнала, соответственно. Способ для выделения низкополосного нетонального сигнала и низкополосного тонального сигнала является таким же, как способ, описанный для блока 202 выделения в кодере 100.
[0064] Посредством использования информации C запаздывания, блок 504 расширения полосы частот копирует низкополосный нетональный сигнал, имеющий конкретную полосу, в высокую полосу, тем самым, генерируя высокополосный нетональный сигнал.
[0065] Блок 505 масштабирования умножает высокополосный нетональный сигнал, сгенерированный посредством блока 504 расширения полосы частот, на коэффициент B масштабирования, тем самым, регулируя амплитуду высокополосного нетонального сигнала.
[0066] Затем, блок 506 соединения соединяет низкополосный нетональный сигнал и высокополосный нетональный сигнал, чья амплитуда была отрегулирована посредством блока 505 масштабирования, тем самым, генерируя широкополосный нетональный сигнал.
[0067] С другой стороны, низкополосный тональный сигнал, выделенный посредством блока 503 выделения, вводится в блок 508 расширения полосы частот. Затем, таким же способом как блок 504 расширения полосы частот, посредством использования информации C запаздывания, блок 508 расширения полосы частот копирует низкополосный тональный сигнал, имеющий конкретную полосу, в высокую полосу, тем самым, генерируя высокополосный тональный сигнал.
[0068] Блок 510 оценки энергии тонального сигнала вычисляет энергию высокополосного нетонального сигнала, который был введен из блока 505 масштабирования и который имеет отрегулированную амплитуду, и вычитает энергию высокополосного нетонального сигнала из значения квантованной энергии A полосы, тем самым, получая энергию высокополосного тонального сигнала. Затем, блок 510 оценки энергии тонального сигнала выводит отношение между энергией высокополосного нетонального сигнала и энергией высокополосного тонального сигнала в блок 511 масштабирования.
[0069] Блок 511 масштабирования умножает высокополосный тональный сигнал на отношение между энергией высокополосного нетонального сигнала и энергией высокополосного тонального сигнала, тем самым, регулируя амплитуду высокополосного тонального сигнала.
[0070] Затем, блок 509 соединения соединяет низкополосный тональный сигнал и высокополосный тональный сигнал, имеющий отрегулированную амплитуду, тем самым, генерируя широкополосный тональный сигнал.
[0071] Наконец, блок 507 добавления добавляет широкополосный нетональный сигнал и широкополосный тональный сигнал, тем самым, генерируя широкополосный декодированный сигнал, и выводит широкополосный декодированный сигнал.
[0072] В вышеизложенном способе, этот вариант осуществления имеет конфигурацию, в которой нетональная компонента генерируется посредством использования низкополосного квантованного спектра и малого количества бит и регулируется, чтобы иметь соответствующую энергию, посредством использования коэффициента масштабирования, и, в которой энергия высокополосного тонального сигнала регулируется посредством использования энергии отрегулированной нетональной компоненты. Соответственно, является возможным кодировать, передавать, и декодировать музыкальный сигнал и подобное с помощью малого объема информации и соответствующим образом воспроизводить энергию высокополосной нетональной компоненты. Также является возможным воспроизводить энергию соответствующей тональной компоненты посредством определения энергии тональной компоненты посредством использования информации квантованной энергии полосы и информации энергии нетональной компоненты.
[0073] (ЧЕТВЕРТЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ)
Далее, конфигурация декодера согласно четвертому варианту осуществления настоящего раскрытия будет описываться со ссылкой на фиг. 7. Отметим, что полная конфигурация декодера 400 согласно этому варианту осуществления включает в себя конфигурацию, проиллюстрированную на фиг. 4, как в первом варианте осуществления.
[0074] Фиг. 7 является блок-схемой, иллюстрирующей конфигурацию блока 403 декодирования второго уровня в этом варианте осуществления, отличающегося от блока 403 декодирования второго уровня в третьем варианте осуществления в том, что отношение положения блока добавления шума и блока выделения обращено и содержатся блок 603 выделения и блок 602 добавления шума, как в отношении между первым вариантом осуществления и вторым вариантом осуществления. Отметим, что блок 501 декодирования и выделения опущен из иллюстрации на фиг. 7.
[0075] Из низкополосного декодированного сигнала, блок 603 выделения выделяет низкополосный нетональный сигнал, который является нетональной компонентой, и низкополосный тональный сигнал, который является тональной компонентой.
[0076] Блок 602 добавления шума добавляет сигнал шума к низкополосному нетональному сигналу, выведенному из блока 603 выделения.
[0077] Отметим, что пример использования масштабируемого кодирования был описан в третьем и четвертом вариантах осуществления. Однако третий и четвертый варианты осуществления могут применяться к случаям, когда используется кодирование, другое, нежели масштабируемое кодирование. Фиг. 8 и 10 иллюстрируют примеры других декодеров, декодеров 410 и 620, соответственно. Сначала, будет описываться декодер 410, проиллюстрированный на фиг. 8.
[0078] Декодер 410, проиллюстрированный на фиг. 8, включает в себя блок 411 выделения, первый блок 412 декодирования, второй блок 413 декодирования, блок 414 частотно-временного преобразования, блок 415 обратной нормализации энергии полосы, и блок 116 синтеза.
[0079] Из кодированного сигнала, введенного посредством антенны, которая не проиллюстрирована, блок 411 выделения выделяет первый кодированный сигнал, высокополосный кодированный сигнал, и кодированный сигнал энергии полосы. Блок 411 выделения выводит первый кодированный сигнал, высокополосный кодированный сигнал, и кодированный сигнал энергии полосы в первый блок 412 декодирования, второй блок 413 декодирования, и блок 415 обратной нормализации энергии полосы, соответственно.
[0080] Блок 415 обратной нормализации энергии полосы декодирует кодированный сигнал энергии полосы, тем самым, генерируя квантованную энергию полосы. На основе квантованной энергии полосы, блок 415 обратной нормализации энергии полосы вычисляет информацию B1 и B2 назначения битов и выводит информацию B1 и B2 назначения битов в первый блок декодирования и второй блок декодирования, соответственно. В дополнение, блок 415 обратной нормализации энергии полосы выполняет обратную нормализацию, в которой сгенерированная квантованная энергия полосы умножается на нормализованный широкополосный декодированный сигнал, введенный из блока 416 синтеза, тем самым, генерируя окончательный широкополосный декодированный сигнал, и выводит широкополосный декодированный сигнал в блок 414 частотно-временного преобразования.
[0081] Первый блок 412 декодирования декодирует первый кодированный сигнал в соответствии с информацией B1 назначения битов, тем самым, генерируя низкополосный декодированный сигнал S1 и высокополосный декодированный сигнал. Первый блок 412 декодирования выводит низкополосный декодированный сигнал и высокополосный декодированный сигнал во второй блок 413 декодирования и блок 416 синтеза, соответственно.
[0082] Второй блок 413 декодирования декодирует высокополосный кодированный сигнал в соответствии с информацией B2 назначения битов, тем самым, генерируя широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала, и выводит широкополосный декодированный сигнал. Второй блок 413 декодирования может иметь такую же конфигурацию, что и блок 403 декодирования второго уровня, описанный со ссылкой на фиг. 6 и 7.
[0083] Блок 416 синтеза добавляет высокополосный декодированный сигнал, декодированный посредством первого блока декодирования, к широкополосному декодированному сигналу, введенному из второго блока декодирования, тем самым, генерируя нормализованный широкополосный декодированный сигнал, и выводит широкополосный декодированный сигнал в блок 415 обратной нормализации энергии полосы.
[0084] Затем, широкополосный декодированный сигнал, выведенный из блока 415 обратной нормализации энергии полосы, преобразуется в сигнал временной области посредством блока 414 частотно-временного преобразования и воспроизводится посредством усилителя и громкоговорителя, которые не проиллюстрированы.
[0085] Далее, будет описываться декодер 620, проиллюстрированный на фиг. 10. Фиг. 10 является примером другого декодера, декодера 620. Декодер 620, проиллюстрированный на фиг. 10, включает в себя первый блок 621 декодирования, второй блок 622 декодирования, блок 623 синтеза, и блок 624 частотно-временного преобразования.
[0086] Кодированный сигнал (включающий в себя первый кодированный сигнал, высокополосный кодированный сигнал, и кодированный сигнал энергии полосы), введенный посредством антенны, которая не проиллюстрирована, вводится в первый блок 621 декодирования. Сначала, первый блок 621 декодирования выделяет и декодирует энергию полосы, и выводит высокополосную часть декодированной энергии полосы во второй блок 622 декодирования в качестве высокополосной энергии (A) полосы. Затем, на основе декодированной энергии полосы, первый блок 621 декодирования вычисляет информацию назначения битов и выделяет и декодирует первый кодированный сигнал. Эта обработка декодирования может включать в себя обработку обратной нормализации с использованием декодированной энергии полосы. Первый блок 621 декодирования выводит, во второй блок 621 декодирования, низкополосную часть первого декодированного сигнала, полученного посредством декодирования, в качестве низкополосного декодированного сигнала. Затем, первый блок 621 декодирования выделяет и декодирует высокополосный кодированный сигнал на основе информации назначения битов. Высокополосный декодированный сигнал, полученный посредством декодирования, включает в себя коэффициент (B) масштабирования и информацию (C) запаздывания, и коэффициент масштабирования и информация запаздывания выводятся во второй блок 622 декодирования. Первый блок 621 декодирования также выводит высокополосную часть первого декодированного сигнала в блок 623 синтеза в качестве высокополосного декодированного сигнала. Высокополосный декодированный сигнал может быть нулевым в некоторых случаях.
[0087] Второй блок 622 декодирования генерирует широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала, декодированной квантованной энергии полосы, коэффициента масштабирования, и информации запаздывания, введенных из первого блока 621 декодирования, и выводит широкополосный декодированный сигнал. Второй блок 622 декодирования может иметь такую же конфигурацию, что и блок 403 декодирования второго уровня, описанный со ссылкой на фиг. 6 и 7.
[0088] Блок 623 синтеза добавляет высокополосный декодированный сигнал, декодированный посредством первого блока 621 декодирования, к широкополосному декодированному сигналу, введенному из второго блока 622 декодирования, тем самым, генерируя широкополосный декодированный сигнал. Результирующий сигнал преобразуется в сигнал временной области посредством блока 624 частотно-временного преобразования и воспроизводится посредством усилителя и громкоговорителя, которые не проиллюстрированы.
[0089] (ЗАКЛЮЧЕНИЕ)
Вышеописанные первый по четвертый варианты осуществления описывают кодеры и декодеры согласно настоящему раскрытию. Кодеры и декодеры согласно настоящему раскрытию являются идеями, включающими в себя форму уровня наполовину законченного продукта или форму уровня компонентов, обычно системную печатную плату или полупроводниковый элемент, и включающими в себя форму уровня законченного продукта, как, например, терминальное устройство или устройство базовой станции. В случае, когда каждый из кодеров и декодеров согласно настоящему раскрытию находится в форме уровня наполовину законченного продукта или форме уровня компонентов, форма уровня законченного продукта реализуется посредством комбинирования с антенной, преобразователем DA/AD (цифроаналоговым/аналого-цифровым), усилителем, громкоговорителем, микрофоном, или подобным.
[0090] Отметим, что блок-схемы на фиг. 1 по 10 иллюстрируют конфигурации аппаратного обеспечения и операции (способы) специализированного дизайна и также включают в себя случаи, когда аппаратные конфигурации и операции реализуются посредством установки программ, которые исполняют операции (способы) согласно настоящему раскрытию в аппаратном обеспечении общего назначения, и исполняя программы посредством процессора. Примеры электронного модуля вычисления, служащего в качестве такого аппаратного обеспечения общего назначения, включают в себя персональные компьютеры, различные мобильные информационные терминалы, включающие в себя смартфоны, и сотовые телефоны.
[0091] В дополнение, аппаратное обеспечение специализированного дизайна не ограничено уровнем законченного продукта (потребительской электроникой), как, например, сотовым телефоном или телефоном наземной линии, и включает в себя уровень наполовину законченного продукта или уровень компонентов, как, например, системную печатную плату или полупроводниковый элемент.
[0092] Пример, когда настоящее раскрытие используется в базовой станции, может иметь место, что транскодирование для изменения схемы кодирования речи выполняется в базовой станции. Отметим, что базовая станция является идеей, включающей в себя различные узлы, существующие в линии связи.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
[0093] Кодеры и декодеры согласно настоящему раскрытию являются применимыми к устройствам, относящимся к записи, передаче, и воспроизведению речевых сигналов и аудиосигналов.
СПИСОК ПОЗИЦИОННЫХ ОБОЗНАЧЕНИЙ
[0094]
100, 110, 610 кодер
101 блок дискретизации с понижением
102 блок кодирования первого уровня
103, 113, 613 блок мультиплексирования
104 блок декодирования первого уровня
105 блок задержки
106 блок кодирования второго уровня
201, 301 блок добавления шума
202, 302 блок выделения
203 блок расширения полосы частот
204 блок вычисления энергии компоненты шума (первый блок вычисления)
205 блок вычисления усиления (второй блок вычисления)
206 блок вычисления энергии
207 блок мультиплексирования
208 блок расширения полосы частот
400, 410, 620 декодер
401, 411 блок выделения
402 блок декодирования первого уровня
403 блок декодирования второго уровня
501 блок декодирования и выделения
502, 602 блок добавления шума
503, 603 блок выделения
504 блок расширения полосы частот
505 блок масштабирования
506 блок соединения
507 блок добавления
508 блок расширения полосы частот
509 блок соединения
510 блок оценки энергии тонального сигнала
511 блок масштабирования
112, 612 первый блок кодирования
115, 614 второй блок кодирования
412, 621 первый блок декодирования
413, 622 второй блок декодирования.

Claims (100)

1. Устройство кодирования, содержащее:
первый кодер, который при функционировании кодирует низкополосный сигнал среди речевого или аудио входного сигнала, чтобы генерировать первый кодированный сигнал, и декодирует первый кодированный сигнал, чтобы генерировать низкополосный декодированный сигнал;
второй кодер, который при функционировании кодирует, на основе низкополосного декодированного сигнала, высокополосный сигнал, имеющий полосу, более высокую, чем полоса низкополосного сигнала, чтобы генерировать высокополосный кодированный сигнал; и
первый мультиплексор, который при функционировании мультиплексирует первый кодированный сигнал и высокополосный кодированный сигнал, чтобы генерировать и выводить кодированный сигнал,
при этом второй кодер вычисляет отношение энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, и второй энергией, относящейся к энергии высокополосной нетональной компоненты высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала, и выводит вычисленное отношение в качестве высокополосного кодированного сигнала.
2. Устройство кодирования по п. 1, дополнительно содержащее модуль вычисления энергии, который при функционировании вычисляет энергию речевого или аудио входного сигнала и выводит вычисленную энергию в качестве квантованной энергии полосы,
при этом первый мультиплексор мультиплексирует квантованную энергию полосы, первый кодированный сигнал и высокополосный кодированный сигнал и выводит кодированный сигнал, причем выводимый кодированный сигнал содержит квантованную энергию полосы, первый кодированный сигнал и высокополосный кодированный сигнал.
3. Устройство кодирования по п. 2,
при этом второй кодер включает в себя:
блок выделения, который выделяет из низкополосного декодированного сигнала низкополосный нетональный сигнал, который является нетональной компонентой низкополосного декодированного сигнала, и низкополосный тональный сигнал, который является тональной компонентой низкополосного декодированного сигнала,
первый блок расширения полосы частот, который выводит, в качестве информации запаздывания, информацию положения относительно конкретной полосы, в которой корреляция между высокополосным сигналом и низкополосным тональным сигналом становится максимальной,
второй блок расширения полосы частот, который выводит, в качестве высокополосного нетонального сигнала, низкополосный нетональный сигнал, соответствующий информации запаздывания,
первый блок вычисления, который вычисляет энергию высокополосной компоненты шума, которая является компонентой шума, из высокополосного сигнала, соответствующего информации запаздывания,
второй блок вычисления, который вычисляет отношение из отношения энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, и второй энергией, относящейся к энергии высокополосного нетонального сигнала, и выводит вычисленное отношение в качестве коэффициента масштабирования, и
второй блок мультиплексирования, который мультиплексирует информацию запаздывания и коэффициент масштабирования в качестве высокополосного кодированного сигнала и выводит высокополосный кодированный сигнал.
4. Устройство кодирования по п. 3,
в котором второй кодер дополнительно включает в себя блок добавления шума, который добавляет сигнал шума к низкополосному декодированному сигналу, или
в котором второй кодер дополнительно включает в себя блок добавления шума, который добавляет сигнал шума к низкополосному нетональному сигналу, выводимому из блока выделения.
5. Устройство кодирования по п. 1, дополнительно содержащее:
модуль вычисления энергии, который при функционировании вычисляет энергию речевого или аудио входного сигнала и выводит вычисленную энергию в качестве квантованной энергии полосы;
при этом первый мультиплексор, при функционировании, также мультиплексирует квантованную энергию полосы,
при этом второй кодер включает в себя:
блок выделения, который выделяет, из низкополосного декодированного сигнала, низкополосный нетональный сигнал, который является нетональной компонентой низкополосного декодированного сигнала, и низкополосный тональный сигнал, который является тональной компонентой низкополосного декодированного сигнала, причем тональная компонента является компонентой, которая была квантована посредством модуля импульсного квантования, а нетональная компонента является компонентой, которая стала нулевой в силу того, что не подверглась квантованию посредством модуля импульсного квантования,
блок добавления шума, который добавляет сигнал шума к низкополосному декодированному сигналу или к низкополосному нетональному сигналу, выводимому из блока выделения,
первый блок расширения полосы частот, который выводит, в качестве информации запаздывания, информацию положения относительно конкретной полосы, в которой корреляция между высокополосным входным сигналом и низкополосным тональным сигналом становится максимальной,
второй блок расширения полосы частот, который выводит, в качестве высокополосного нетонального сигнала, низкополосный нетональный сигнал, соответствующий информации запаздывания, на основании информации положения относительно конкретной полосы,
блок вычисления, который вычисляет отношение энергии между высокополосной компонентой шума и высокополосным нетональным сигналом, полученным вторым блоком расширения полосы частот, и выводит вычисленное отношение в качестве коэффициента масштабирования, и
второй блок мультиплексирования, который мультиплексирует информацию запаздывания и коэффициент масштабирования в качестве высокополосного кодированного сигнала и выводит высокополосный кодированный сигнал.
6. Устройство декодирования, которое принимает первый кодированный сигнал и высокополосный кодированный сигнал, при этом устройство декодирования содержит:
демультиплексор, который при функционировании демультиплексирует первый кодированный сигнал и высокополосный кодированный сигнал;
первый декодер, который при функционировании декодирует первый кодированный сигнал, чтобы генерировать низкополосный декодированный сигнал; и
второй декодер, который при функционировании декодирует высокополосный кодированный сигнал, чтобы генерировать широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала,
при этом высокополосный кодированный сигнал включает в себя отношение энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума, и второй энергией, относящейся к энергии высокополосной нетональной компоненты высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала, и
при этом второй декодер регулирует амплитуду низкополосного нетонального сигнала, который является нетональной компонентой низкополосного декодированного сигнала, посредством ссылки на упомянутое отношение, которое декодировано.
7. Устройство декодирования, которое принимает первый кодированный сигнал, высокополосный кодированный сигнал, и кодированный сигнал энергии полосы, при этом устройство декодирования содержит:
первый декодер, который при функционировании декодирует первый кодированный сигнал, чтобы генерировать низкополосный декодированный сигнал;
второй декодер, который при функционировании декодирует высокополосный кодированный сигнал, чтобы генерировать широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала; и
третий декодер, который при функционировании декодирует кодированный сигнал энергии полосы, чтобы генерировать квантованную энергию полосы,
при этом второй декодер включает в себя:
блок выделения, который выделяет из низкополосного декодированного сигнала низкополосный нетональный сигнал, который является нетональной компонентой низкополосного декодированного сигнала, и низкополосный тональный сигнал, который является тональной компонентой низкополосного декодированного сигнала,
первый блок расширения полосы частот, который копирует низкополосный нетональный сигнал в высокую полосу посредством использования информации запаздывания, полученной посредством декодирования высокополосного кодированного сигнала, чтобы генерировать высокополосный нетональный сигнал,
первый блок масштабирования, который регулирует амплитуду высокополосного нетонального сигнала посредством использования коэффициента масштабирования, полученного посредством декодирования высокополосного кодированного сигнала,
блок оценки энергии тонального сигнала, который оценивает энергию высокополосного тонального сигнала из энергии высокополосного нетонального сигнала и квантованной энергии полосы,
первый блок соединения, который соединяет низкополосный нетональный сигнал и высокополосный нетональный сигнал, чтобы генерировать широкополосный нетональный сигнал,
второй блок расширения полосы частот, который копирует низкополосный тональный сигнал в высокую полосу посредством использования информации запаздывания, чтобы генерировать высокополосный тональный сигнал,
второй блок масштабирования, который регулирует амплитуду высокополосного тонального сигнала на основе энергии высокополосного тонального сигнала,
второй блок соединения, который соединяет низкополосный тональный сигнал и высокополосный тональный сигнал, имеющий отрегулированную амплитуду, чтобы генерировать широкополосный тональный сигнал, и
блок добавления, который добавляет широкополосный нетональный сигнал и широкополосный тональный сигнал, чтобы генерировать широкополосный декодированный сигнал,
при этом информация запаздывания является информацией положения относительно конкретной полосы, в которой корреляция между высокополосным сигналом и низкополосным тональным сигналом становится максимальной, и
при этом коэффициент масштабирования является отношением энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, соответствующего информации запаздывания, и второй энергией, относящейся к энергии высокополосного нетонального сигнала.
8. Устройство декодирования по п. 6,
в котором второй декодер дополнительно включает в себя блок добавления шума, который добавляет сигнал шума к низкополосному декодированному сигналу.
9. Устройство декодирования по п. 6,
в котором второй декодер дополнительно включает в себя блок добавления шума, который добавляет сигнал шума к низкополосному нетональному сигналу, выведенному из блока выделения.
10. Способ кодирования, содержащий:
кодирование низкополосного сигнала из речевого или аудио входного сигнала, чтобы генерировать первый кодированный сигнал;
декодирование первого кодированного сигнала, чтобы генерировать низкополосный декодированный сигнал;
кодирование, на основе низкополосного декодированного сигнала, высокополосного сигнала, имеющего полосу, более высокую, чем полоса низкополосного сигнала, чтобы генерировать высокополосный кодированный сигнал;
вычисление отношения энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, и второй энергией, относящейся к энергии высокополосной нетональной компоненты высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала; и
мультиплексирование первого кодированного сигнала и высокополосного кодированного сигнала, включающего в себя отношение, чтобы генерировать и выводить кодированный сигнал, причем выводимый кодированный сигнал содержит первый кодированный сигнал и высокополосный кодированный сигнал, высокополосный кодированный сигнал содержит упомянутое отношение.
11. Способ кодирования по п. 10, дополнительно содержащий:
вычисление энергии речевого или аудио входного сигнала и вывод вычисленной энергии в качестве квантованной энергии полосы;
выделение из низкополосного декодированного сигнала низкополосного нетонального сигнала, который является нетональной компонентой низкополосного декодированного сигнала, и низкополосного тонального сигнала, который является тональной компонентой низкополосного декодированного сигнала;
вывод, в качестве информации запаздывания, информации положения относительно конкретной полосы, в которой корреляция между высокополосным сигналом и низкополосным тональным сигналом становится максимальной;
вывод низкополосного нетонального сигнала, соответствующего информации запаздывания, в качестве высокополосного нетонального сигнала;
вычисление энергии высокополосной компоненты шума, которая является компонентой шума, из высокополосного сигнала, соответствующего информации запаздывания; и
вычисление отношения энергии между первой энергией, относящейся к энергии высокополосной компоненты шума и второй энергией, относящейся к энергии высокополосного нетонального сигнала, и вывод вычисленного отношения в качестве коэффициента масштабирования.
12. Способ декодирования для первого кодированного сигнала и высокополосного кодированного сигнала, при этом способ содержит:
демультиплексирование первого кодированного сигнала и высокополосного кодированного сигнала;
декодирование первого кодированного сигнала, чтобы генерировать низкополосный декодированный сигнал;
декодирование высокополосного кодированного сигнала, чтобы генерировать широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала,
при этом высокополосный кодированный сигнал включает в себя отношение энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума, и второй энергией, относящейся к энергии высокополосной нетональной компоненты высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала; и
генерирование отношения, которое декодируется, и регулировку амплитуды низкополосного нетонального сигнала, который является нетональной компонентой низкополосного декодированного сигнала, посредством ссылки на упомянутое отношение.
13. Способ декодирования для первого кодированного сигнала, высокополосного кодированного сигнала и кодированного сигнала энергии полосы, при этом способ содержит:
декодирование первого кодированного сигнала, чтобы генерировать низкополосный декодированный сигнал;
декодирование высокополосного кодированного сигнала, чтобы генерировать широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала;
декодирование кодированного сигнала энергии полосы, чтобы генерировать квантованную энергию полосы;
демультиплексирование, из низкополосного декодированного сигнала, низкополосного нетонального сигнала, который является нетональной компонентой низкополосного декодированного сигнала, и низкополосного тонального сигнала, который является тональной компонентой низкополосного декодированного сигнала;
копирование низкополосного нетонального сигнала в высокую полосу посредством использования информации запаздывания, полученной посредством декодирования высокополосного кодированного сигнала, чтобы генерировать высокополосный нетональный сигнал;
регулировку амплитуды высокополосного нетонального сигнала посредством использования коэффициента масштабирования, полученного посредством декодирования высокополосного кодированного сигнала;
оценку энергии высокополосного тонального сигнала из энергии высокополосного нетонального сигнала и квантованной энергии полосы;
соединение низкополосного нетонального сигнала и высокополосного нетонального сигнала, чтобы генерировать широкополосный нетональный сигнал;
копирование низкополосного тонального сигнала в высокую полосу посредством использования информации запаздывания, чтобы генерировать высокополосный тональный сигнал;
регулировку амплитуды высокополосного тонального сигнала на основе энергии высокополосного тонального сигнала;
соединение низкополосного тонального сигнала и высокополосного тонального сигнала, имеющего отрегулированную амплитуду, чтобы генерировать широкополосный тональный сигнал; и
добавление широкополосного нетонального сигнала и широкополосного тонального сигнала, чтобы генерировать широкополосный декодированный сигнал,
при этом информация запаздывания является информацией положения относительно конкретной полосы, в которой корреляция между высокополосным сигналом и низкополосным тональным сигналом становится максимальной, и
при этом коэффициент масштабирования является отношением энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, соответствующего информации запаздывания, и второй энергией, относящейся к энергии высокополосного нетонального сигнала.
14. Невременный компьютерно-читаемый записывающий носитель, хранящий программу, предписывающую процессору исполнять:
обработку для кодирования низкополосного сигнала из речевого или аудио входного сигнала, чтобы генерировать первый кодированный сигнал;
обработку для декодирования первого кодированного сигнала, чтобы генерировать низкополосный декодированный сигнал;
обработку для кодирования, на основе низкополосного декодированного сигнала, высокополосного сигнала, имеющего полосу, более высокую, чем полоса низкополосного сигнала, чтобы генерировать высокополосный кодированный сигнал;
обработку для вычисления отношения энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума высокополосного сигнала, и второй энергией, относящейся к энергии высокополосного нетонального сигнала высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала; и
обработку для мультиплексирования первого кодированного сигнала и высокополосного кодированного сигнала, включающего в себя отношение, чтобы генерировать и выводить кодированный сигнал, причем выводимый кодированный сигнал содержит первый кодированный сигнал и высокополосный кодированный сигнал, высокополосный кодированный сигнал содержит упомянутое отношение.
15. Невременный компьютерно-читаемый записывающий носитель, хранящий программу, предписывающую процессору исполнять, для первого кодированного сигнала и высокополосного кодированного сигнала:
обработку для демультиплексирования первого кодированного сигнала и высокополосного кодированного сигнала;
обработку для декодирования первого кодированного сигнала, чтобы генерировать низкополосный декодированный сигнал;
обработку для декодирования высокополосного кодированного сигнала, чтобы генерировать широкополосный декодированный сигнал посредством использования низкополосного декодированного сигнала,
при этом высокополосный кодированный сигнал включает в себя отношение энергии между первой энергией, относящейся к энергии высокополосной компоненты шума, которая является компонентой шума, и второй энергией, относящейся к энергии высокополосного нетонального сигнала высокополосного декодированного сигнала, сгенерированного из низкополосного декодированного сигнала; и
обработку для генерирования отношения, которое декодируется, и регулировки амплитуды низкополосного нетонального сигнала, который является нетональной компонентой низкополосного декодированного сигнала, посредством ссылки на упомянутое отношение.
RU2016138694A 2014-03-31 2015-03-23 Кодер, декодер, способ кодирования, способ декодирования и программа RU2689181C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461972722P 2014-03-31 2014-03-31
US61/972,722 2014-03-31
JP2014-153832 2014-07-29
JP2014153832 2014-07-29
PCT/JP2015/001601 WO2015151451A1 (ja) 2014-03-31 2015-03-23 符号化装置、復号装置、符号化方法、復号方法、およびプログラム

Publications (3)

Publication Number Publication Date
RU2016138694A RU2016138694A (ru) 2018-05-07
RU2016138694A3 RU2016138694A3 (ru) 2018-08-27
RU2689181C2 true RU2689181C2 (ru) 2019-05-24

Family

ID=54239798

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016138694A RU2689181C2 (ru) 2014-03-31 2015-03-23 Кодер, декодер, способ кодирования, способ декодирования и программа

Country Status (10)

Country Link
US (3) US10269361B2 (ru)
EP (2) EP3550563B1 (ru)
JP (1) JPWO2015151451A1 (ru)
KR (1) KR102121642B1 (ru)
CN (2) CN105874534B (ru)
BR (1) BR112016019838B1 (ru)
MX (1) MX367639B (ru)
PL (1) PL3128513T3 (ru)
RU (1) RU2689181C2 (ru)
WO (1) WO2015151451A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3128513T3 (pl) * 2014-03-31 2019-11-29 Fraunhofer Ges Forschung Koder, dekoder, sposób kodowania, sposób dekodowania i program
WO2016013164A1 (ja) 2014-07-25 2016-01-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法
ES2823250T3 (es) * 2014-07-25 2021-05-06 Fraunhofer Ges Forschung Aparato de codificación de señal de audio, dispositivo de decodificación de señal de audio y métodos del mismo
JP6691440B2 (ja) * 2016-06-21 2020-04-28 日本電信電話株式会社 音声符号化装置、音声復号装置、音声符号化方法、音声復号方法、プログラム、および記録媒体
CN113192523A (zh) * 2020-01-13 2021-07-30 华为技术有限公司 一种音频编解码方法和音频编解码设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045379A2 (en) * 1999-01-27 2000-08-03 Coding Technologies Sweden Ab Enhancing perceptual performance of sbr and related hfr coding methods by adaptive noise-floor addition and noise substitution limiting
US20090326931A1 (en) * 2005-07-13 2009-12-31 France Telecom Hierarchical encoding/decoding device
JP2010020251A (ja) * 2008-07-14 2010-01-28 Ntt Docomo Inc 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
JP2011075728A (ja) * 2009-09-29 2011-04-14 Oki Electric Industry Co Ltd 音声帯域拡張装置および音声帯域拡張プログラム
RU2441286C2 (ru) * 2007-06-22 2012-01-27 Войсэйдж Корпорейшн Способ и устройство для обнаружения звуковой активности и классификации звуковых сигналов
WO2013035257A1 (ja) * 2011-09-09 2013-03-14 パナソニック株式会社 符号化装置、復号装置、符号化方法および復号方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277699B2 (ja) * 1994-06-13 2002-04-22 ソニー株式会社 信号符号化方法及び装置並びに信号復号化方法及び装置
JP3557674B2 (ja) * 1994-12-15 2004-08-25 ソニー株式会社 高能率符号化方法及び装置
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
JP4173940B2 (ja) 1999-03-05 2008-10-29 松下電器産業株式会社 音声符号化装置及び音声符号化方法
EP1423847B1 (en) * 2001-11-29 2005-02-02 Coding Technologies AB Reconstruction of high frequency components
US7333930B2 (en) * 2003-03-14 2008-02-19 Agere Systems Inc. Tonal analysis for perceptual audio coding using a compressed spectral representation
CN1677492A (zh) * 2004-04-01 2005-10-05 北京宫羽数字技术有限责任公司 一种增强音频编解码装置及方法
CN101656077B (zh) * 2004-05-14 2012-08-29 松下电器产业株式会社 音频编码装置、音频编码方法以及通信终端和基站装置
EP3336843B1 (en) 2004-05-14 2021-06-23 Panasonic Intellectual Property Corporation of America Speech coding method and speech coding apparatus
WO2006107837A1 (en) * 2005-04-01 2006-10-12 Qualcomm Incorporated Methods and apparatus for encoding and decoding an highband portion of a speech signal
CN101371296B (zh) * 2006-01-18 2012-08-29 Lg电子株式会社 用于编码和解码信号的设备和方法
CN101336451B (zh) * 2006-01-31 2012-09-05 西门子企业通讯有限责任两合公司 音频信号编码的方法和装置
JP2008058727A (ja) * 2006-08-31 2008-03-13 Toshiba Corp 音声符号化装置
EP2063418A4 (en) * 2006-09-15 2010-12-15 Panasonic Corp AUDIO CODING DEVICE AND AUDIO CODING METHOD
US8015368B2 (en) * 2007-04-20 2011-09-06 Siport, Inc. Processor extensions for accelerating spectral band replication
US9177569B2 (en) * 2007-10-30 2015-11-03 Samsung Electronics Co., Ltd. Apparatus, medium and method to encode and decode high frequency signal
WO2009084221A1 (ja) * 2007-12-27 2009-07-09 Panasonic Corporation 符号化装置、復号装置およびこれらの方法
DE102008015702B4 (de) * 2008-01-31 2010-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Bandbreitenerweiterung eines Audiosignals
JP5247826B2 (ja) * 2008-03-05 2013-07-24 ヴォイスエイジ・コーポレーション 復号化音調音響信号を増強するためのシステムおよび方法
MX2011000382A (es) * 2008-07-11 2011-02-25 Fraunhofer Ges Forschung Codificador de audio, decodificador de audio, metodos para la codificacion y decodificacion de audio; transmision de audio y programa de computacion.
US8352279B2 (en) * 2008-09-06 2013-01-08 Huawei Technologies Co., Ltd. Efficient temporal envelope coding approach by prediction between low band signal and high band signal
EP2945159B1 (en) * 2008-12-15 2018-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder and bandwidth extension decoder
JP5511785B2 (ja) * 2009-02-26 2014-06-04 パナソニック株式会社 符号化装置、復号装置およびこれらの方法
AU2014201331B2 (en) * 2009-06-29 2015-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bandwidth extension encoder, bandwidth extension decoder and phase vocoder
PL2273493T3 (pl) * 2009-06-29 2013-07-31 Fraunhofer Ges Forschung Kodowanie i dekodowanie z rozszerzaniem szerokości pasma
FR2947945A1 (fr) * 2009-07-07 2011-01-14 France Telecom Allocation de bits dans un codage/decodage d'amelioration d'un codage/decodage hierarchique de signaux audionumeriques
JP5652658B2 (ja) * 2010-04-13 2015-01-14 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
US8306493B2 (en) 2010-04-13 2012-11-06 Newport Media, Inc. Pilot based adaptation for FM radio receiver
ES2719102T3 (es) * 2010-04-16 2019-07-08 Fraunhofer Ges Forschung Aparato, procedimiento y programa informático para generar una señal de banda ancha que utiliza extensión de ancho de banda guiada y extensión de ancho de banda ciega
WO2012005209A1 (ja) 2010-07-05 2012-01-12 日本電信電話株式会社 符号化方法、復号方法、装置、プログラム及び記録媒体
US9047875B2 (en) * 2010-07-19 2015-06-02 Futurewei Technologies, Inc. Spectrum flatness control for bandwidth extension
KR101826331B1 (ko) * 2010-09-15 2018-03-22 삼성전자주식회사 고주파수 대역폭 확장을 위한 부호화/복호화 장치 및 방법
CN102436820B (zh) * 2010-09-29 2013-08-28 华为技术有限公司 高频带信号编码方法及装置、高频带信号解码方法及装置
CA2836122C (en) 2011-05-13 2020-06-23 Samsung Electronics Co., Ltd. Bit allocating, audio encoding and decoding
CN102800317B (zh) * 2011-05-25 2014-09-17 华为技术有限公司 信号分类方法及设备、编解码方法及设备
KR102078865B1 (ko) * 2011-06-30 2020-02-19 삼성전자주식회사 대역폭 확장신호 생성장치 및 방법
CN102208188B (zh) * 2011-07-13 2013-04-17 华为技术有限公司 音频信号编解码方法和设备
EP2791937B1 (en) * 2011-11-02 2016-06-08 Telefonaktiebolaget LM Ericsson (publ) Generation of a high band extension of a bandwidth extended audio signal
CN103187065B (zh) * 2011-12-30 2015-12-16 华为技术有限公司 音频数据的处理方法、装置和系统
US9478221B2 (en) * 2013-02-05 2016-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced audio frame loss concealment
JP2014153832A (ja) 2013-02-06 2014-08-25 Seiko Instruments Inc 携帯型電子機器用のカバー
US9489959B2 (en) * 2013-06-11 2016-11-08 Panasonic Intellectual Property Corporation Of America Device and method for bandwidth extension for audio signals
US9615185B2 (en) * 2014-03-25 2017-04-04 Bose Corporation Dynamic sound adjustment
PL3128513T3 (pl) * 2014-03-31 2019-11-29 Fraunhofer Ges Forschung Koder, dekoder, sposób kodowania, sposób dekodowania i program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045379A2 (en) * 1999-01-27 2000-08-03 Coding Technologies Sweden Ab Enhancing perceptual performance of sbr and related hfr coding methods by adaptive noise-floor addition and noise substitution limiting
US20090326931A1 (en) * 2005-07-13 2009-12-31 France Telecom Hierarchical encoding/decoding device
RU2441286C2 (ru) * 2007-06-22 2012-01-27 Войсэйдж Корпорейшн Способ и устройство для обнаружения звуковой активности и классификации звуковых сигналов
JP2010020251A (ja) * 2008-07-14 2010-01-28 Ntt Docomo Inc 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
JP2011075728A (ja) * 2009-09-29 2011-04-14 Oki Electric Industry Co Ltd 音声帯域拡張装置および音声帯域拡張プログラム
WO2013035257A1 (ja) * 2011-09-09 2013-03-14 パナソニック株式会社 符号化装置、復号装置、符号化方法および復号方法

Also Published As

Publication number Publication date
CN111710342A (zh) 2020-09-25
US20160336017A1 (en) 2016-11-17
EP3128513A4 (en) 2017-03-29
EP3128513A1 (en) 2017-02-08
US10269361B2 (en) 2019-04-23
US20220130402A1 (en) 2022-04-28
JPWO2015151451A1 (ja) 2017-04-13
US20190251979A1 (en) 2019-08-15
EP3550563A1 (en) 2019-10-09
EP3550563C0 (en) 2024-03-06
PL3128513T3 (pl) 2019-11-29
CN111710342B (zh) 2024-04-16
CN105874534A (zh) 2016-08-17
MX2016010595A (es) 2016-11-29
RU2016138694A (ru) 2018-05-07
BR112016019838A2 (ru) 2017-08-15
US11232803B2 (en) 2022-01-25
KR102121642B1 (ko) 2020-06-10
EP3128513B1 (en) 2019-05-15
KR20160138373A (ko) 2016-12-05
MX367639B (es) 2019-08-29
EP3550563B1 (en) 2024-03-06
CN105874534B (zh) 2020-06-19
WO2015151451A1 (ja) 2015-10-08
RU2016138694A3 (ru) 2018-08-27
BR112016019838B1 (pt) 2023-02-23

Similar Documents

Publication Publication Date Title
RU2579662C2 (ru) Устройство кодирования и способ кодирования
EP3118849B1 (en) Encoding device, decoding device, and method thereof
US20220130402A1 (en) Encoding device, decoding device, encoding method, decoding method, and non-transitory computer-readable recording medium
US11521625B2 (en) Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method
US8099275B2 (en) Sound encoder and sound encoding method for generating a second layer decoded signal based on a degree of variation in a first layer decoded signal
RU2610293C2 (ru) Расширение полосы частот гармонического аудиосигнала
US9230551B2 (en) Audio encoder or decoder apparatus
ES2737889T3 (es) Codificador, decodificador, procedimiento de codificación, procedimiento de decodificación y programa
WO2011058752A1 (ja) 符号化装置、復号装置およびこれらの方法