WO2016013164A1 - 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 - Google Patents
音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 Download PDFInfo
- Publication number
- WO2016013164A1 WO2016013164A1 PCT/JP2015/003358 JP2015003358W WO2016013164A1 WO 2016013164 A1 WO2016013164 A1 WO 2016013164A1 JP 2015003358 W JP2015003358 W JP 2015003358W WO 2016013164 A1 WO2016013164 A1 WO 2016013164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subband
- spectrum
- acoustic signal
- unit
- bits
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 31
- 238000001228 spectrum Methods 0.000 claims abstract description 153
- 238000013139 quantization Methods 0.000 claims abstract description 133
- 238000004364 calculation method Methods 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000004458 analytical method Methods 0.000 claims description 16
- 238000000926 separation method Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000005236 sound signal Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/002—Dynamic bit allocation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
- G10L19/0208—Subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/12—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
- G10L19/135—Vector sum excited linear prediction [VSELP]
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
- G10L19/035—Scalar quantisation
Definitions
- This disclosure relates to an encoding technique and a decoding technique that improve the sound quality of an audio signal such as an audio signal or a music signal.
- Encoding technology that compresses acoustic signals at a low bit rate is an important technology that realizes effective use of radio waves in mobile communications. Furthermore, in recent years, expectations for improving the quality of telephone conversation voice have increased, and realization of a telephone service with a high sense of reality is desired. In order to realize this, an acoustic signal having a wide frequency band may be encoded at a high bit rate. However, this approach conflicts with the effective use of radio waves and frequency bands.
- Non-patent Document 1 The acoustic signal encoding technology adopted in the 719 standard (Non-patent Document 1) will be examined.
- a predetermined bit is assigned to a spectrum obtained by frequency-converting the acoustic signal.
- the units (units of the required number of bits) for dividing the spectrum into subbands having a predetermined frequency bandwidth and performing quantization by lattice vector quantization in order from the subband with the largest energy are as follows: To distribute.
- One unit is allocated to the subband with the maximum energy among all the subbands.
- 1 bit is allocated per spectrum, for example, if the number of spectral samples in a subband is 8, 1 unit is 8 bits (note that the maximum number of bits that can be allocated per spectrum is 9 bits, for example, sub (If the number of spectral samples in the frame is 8, 72 bits can be finally assigned).
- FIG. 6 shows the subband energy in each subband.
- the horizontal axis represents frequency
- the vertical axis represents logarithmic scale amplitude.
- the subband energy is represented by a horizontal line instead of a point, but each width represents the frequency bandwidth of each subband.
- FIG. 7 and FIG. It is a figure which shows the example of a bit allocation result to each subband at the time of using the encoding method defined by 719 standard.
- the horizontal axis represents frequency
- the vertical axis represents the number of allocated bits.
- FIG. 7 shows a case where the bit rate is 128 kbit / s
- FIG. 8 shows a case where the bit rate is 64 kbit / s.
- Fig. 9 shows G.M. at 20 kbit / s. It is a figure which shows the example of a bit allocation result to each subband at the time of using the encoding method defined by 719 standard. In this way, as a result of not being able to allocate bits not only to the high frequency part but also to the auditory important low frequency part, the spectrum in that subband cannot be encoded, and the quality of the acoustic signal Deterioration becomes remarkable.
- Patent Document 1 proposes a method of dynamically changing the bit allocation method.
- This disclosure provides an encoding technique and a decoding technique for realizing a high-quality acoustic signal while reducing the overall bit rate.
- An acoustic signal encoding device includes a time-frequency conversion unit that converts an input acoustic signal into a frequency domain to generate a spectrum, divides the spectrum into subbands for each predetermined frequency band, and outputs a subband spectrum.
- Subband energy quantization unit for obtaining quantized subband energy for each subband
- tonality calculation unit for analyzing the tonal property of the subband spectrum and outputting the analysis result
- tonal property analysis result and quantization subband Based on the energy, the second subband to be quantized by the second quantizer is selected from the subbands, and the first number of bits allocated to the first subband to be quantized by the first quantizer is determined.
- the first quantizing unit pulse-codes the subband spectrum included in the first subband using the first bit number, and the second quantizing unit includes the subband included in the second subband.
- the spectrum is encoded using a pitch filter.
- the decoding device According to the encoding device, the decoding device, and the like of the present disclosure, it is possible to encode and decode a high-quality acoustic signal while reducing the overall bit rate.
- the input signal to the encoding device of the present disclosure and the acoustic signal that is the output signal from the decoding device are a concept that includes an audio signal, a wider-band music signal, and a signal in which these signals are mixed.
- the “input sound signal” is a concept including a music signal, a sound signal, or a signal in which both are mixed.
- “quantized subband energy” is obtained by quantizing the subband energy that is the sum or average of the energy of the subband spectrum in the subband, and the subband energy is, for example, the subband spectrum in the subband.
- the sum of squares of “Tonality” refers to the degree to which a spectrum peak stands at a specific frequency component, and the analysis result can be expressed by a numerical value or a sign.
- Pulse coding refers to coding that approximates a spectrum using pulses.
- “Relatively low” refers to a lower value compared between subbands, for example, lower than the average of all subbands or lower than a predetermined value. “High frequency subband” refers to a subband located on the high frequency side among a plurality of subbands.
- the first (spectrum) quantization unit, the second (spectrum) quantization unit, the first (spectrum) decoding unit, the second (spectrum) decoding unit, the first sub described in the embodiments and claims.
- the band, the second subband, the third subband, the fourth subband, the first bit number, the second bit number, the third bit number, and the fourth bit number each mean a category. , Does not mean the order.
- FIG. 1 is a block diagram illustrating the configuration and operation of the acoustic signal encoding device 100 according to the first embodiment. 1 includes a time-frequency conversion unit 101, a subband energy quantization unit 102, a tonality calculation unit 103, a bit distribution unit 104, a normalization unit 105, a first spectrum quantization unit 106, The second spectrum quantization unit 107 and the multiplexing unit 108 are included.
- the antenna A is connected to the multiplexing unit 108. Then, the acoustic signal encoding apparatus 100 and the antenna A are combined to constitute a terminal apparatus or a base station apparatus.
- the time-frequency conversion unit 101 converts an input acoustic signal in the time domain into a frequency domain and generates an input acoustic signal spectrum (hereinafter referred to as “spectrum”).
- time-frequency conversion include MDCT (Modified Discrete Cosine Transform), but are not limited thereto.
- MDCT Modified Discrete Cosine Transform
- DCT Discrete Cosine Transform
- DFT Discrete Fourier Transform
- Fourier Transform and the like may be used.
- the time-frequency conversion unit 101 divides the spectrum into subbands that are predetermined frequency bands.
- the predetermined frequency bands may be different intervals, for example, wide in the high frequency range and narrow in the low frequency range.
- the time-frequency conversion unit 101 outputs the spectrum divided for each subband to the subband energy quantization unit 102, the tonality calculation unit 103, and the normalization unit 105 as a subband spectrum.
- the subband energy quantization unit 102 obtains subband energy that is energy of a subband spectrum for each subband, and quantizes the subband energy to obtain quantized subband energy.
- the subband energy can be obtained from the sum of squares of the subband spectra in the subband, but the present invention is not limited to this.
- the subband energy can be obtained by integrating the amplitude of the subband spectrum for each subband.
- the sum of squares is divided by the number of spectra in the subband (subband width). Then, the subband energy thus obtained is quantized with a predetermined step size.
- the obtained quantization subband energy is output to normalization section 105 and bit distribution section 104, and the encoded quantization subband energy obtained by encoding the quantization subband energy is output to multiplexing section 108. .
- the tonality calculation unit 103 analyzes the subband spectrum included in each subband and determines tonalness.
- Tonal property refers to the degree to which a spectrum peak stands at a specific frequency component, and is a concept that includes a peak property that means that a distinct peak exists. Quantitatively, for example, it can be obtained by the ratio of the amplitude of the average spectrum in the target subband and the amplitude of the maximum spectrum existing in the subband, and when this value exceeds a predetermined threshold,
- the spectrum of the subband is defined as having a tonal property (peak property).
- the significance of the tonality calculator is as follows.
- a pitch filter-based method ie low frequency spectrum is used for efficient quantization of a spectrum where the spectrum energy is distributed across the entire subband, such as a noisy spectrum. It is effective to use a method of expressing a high-frequency spectrum using this method. Therefore, the degree of energy dispersion in the subband is determined from the peak / tonal scale of the spectrum in the subband (such as the ratio of peak power to average power), and the spectrum sub- Bands are subject to quantization based on pitch filters.
- the bit allocation unit 104 refers to the quantized subband energy for each subband and the peak / tonal flag, and means the total number of bits that can be used for encoding for the subband spectrum in each subband. Allocate bits from bit assets. Specifically, a first number of bits, which is the number of bits assigned to the first subband that is a subband quantized by the first spectrum quantization unit, is calculated and determined, and this is calculated by the first spectrum quantization unit 106. Output as distribution bit information. Further, the second subband, which is a subband to be quantized by the second spectrum quantization unit 107, is selected and specified, and this is output to the second spectrum quantization unit 107 as a quantization mode.
- bit distribution unit 104 Details of the configuration and operation of the bit distribution unit 104 will be described later.
- bit allocation unit 104 refers to the peak / tonal flag and the quantized subband energy for each subband, but the reference order is arbitrary.
- the second subband to be quantized by the second spectrum quantization unit 107 may be the entire band, but generally, a band with a low quantization subband energy and a band with a low tonal property are Since it is mainly in the high frequency range, only a subband existing in a specific high frequency range may be targeted. For example, only four or five subbands in the high frequency range can be targeted.
- the sub-band on the high frequency side is substantially subject to quantization based on the pitch filter. For this reason, a method may be used in which the high frequency region side from the subband selected by tonal property is all subject to quantization by the pitch filter, and only the subband number is transmitted as the quantization mode.
- the normalization unit 105 generates a normalized subband spectrum by normalizing (dividing) each subband spectrum with the input quantized subband energy. Thereby, the difference in amplitude between subbands is normalized. Then, normalization section 105 outputs the normalized subband spectrum to first spectrum quantization section 106 and second spectrum quantization section 107.
- the normalization unit 105 has an arbitrary configuration.
- the normalization unit 105 has one configuration in the present embodiment, but two normalization units 105 may be arranged in front of each of the first spectrum quantization unit 106 and the second spectrum quantization unit 107.
- the first spectrum quantizing unit 106 is an example of a first quantizing unit, and uses the bit composed of the first number of bits allocated by the bit distributing unit 104 to input the normalized subband spectrum.
- the first spectrum quantization unit 106 quantizes the subband spectrum belonging to the first subband to be quantized. Then, the quantization result is output to the second spectrum quantization unit 107 as a quantized spectrum, and the first encoded information generated by encoding the quantized spectrum is output to the multiplexing unit 108.
- the first spectrum quantization unit 106 uses a pulse encoding unit.
- a pulse encoding unit As an example of the pulse encoding unit, a lattice vector quantization unit that performs lattice vector quantization, and a pulse that performs pulse encoding that approximates a subband spectrum with a small number of pulses.
- An encoding unit may be mentioned. In other words, any quantization unit can be used as long as it is a quantization method suitable for quantization of a spectrum with high tonal characteristics or a method of quantization with a small number of pulses.
- the second spectrum quantizing unit 107 is an example of a second quantizing unit, and can employ, for example, a quantization method using the following extension band (prediction model using a pitch filter).
- the pitch filter is a processing block that performs processing represented by the following Expression 1.
- the pitch filter refers to a filter that emphasizes the pitch period (T) with respect to the time-axis signal (emphasizes the pitch component on the frequency axis).
- T pitch period
- the discrete signal x For example, a digital filter represented by Formula 1 with respect to [i].
- the pitch filter in the present embodiment is defined as a processing block that performs the processing represented by Expression 1, and does not necessarily perform pitch emphasis on a time-axis signal.
- T that minimizes the error between the MDCT coefficient Mt [i] to be encoded and the calculated y [i] is encoded as lag information.
- the second spectrum quantization unit 107 identifies the second subband (normalized subband spectrum) to be quantized by the second spectrum quantization unit 107 with reference to the quantization mode. Thereby, the K and K ′ are specified.
- the normalized subband spectrum (corresponding to Mt [i], K ⁇ i ⁇ K ′) relating to the specified second subband (frequency K to K ′) is converted into a quantized spectrum (Mq [i],
- the subband or the band of the quantized spectrum having the maximum correlation in relation to i ⁇ K) is searched, and the position is generated as lag information (corresponding to T). Examples of the lag information include the absolute position and relative position of subbands and bands, or subband numbers.
- the second spectrum quantization unit 107 encodes the lag information and outputs the encoded lag information to the multiplexing unit 108 as second encoded information.
- the encoded quantization subband energy is multiplexed by the multiplexing unit 108 and transmitted, and the gain can be generated on the decoding unit side. Therefore, the gain is not encoded.
- the gain may be encoded and sent. In that case, the gain between the second subband to be quantized and the subband of the quantized spectrum having the maximum correlation is calculated, and the second spectrum quantization unit 107 encodes the lag information and the gain, It outputs to the multiplexing part 108 as 2nd encoding information.
- the bandwidth of the high frequency subband is set wider than that of the low frequency subband, but the lattice vector quantum is low because the energy of the subband of the low frequency region to be copied is small. In some cases, it may not be a target of conversion. In such a case, such a subband may be regarded as a zero spectrum, or noise may be added to avoid a sudden change in spectrum between subbands.
- the multiplexing unit 108 multiplexes the quantized subband energy, the first encoded information, the second encoded information, and the peak / tonal flag, and outputs the multiplexed information to the antenna A.
- the antenna A transmits the encoded information to the acoustic signal decoding device.
- the encoded information reaches the acoustic signal decoding apparatus via various nodes and base stations.
- bit distribution unit 104 Next, details of the bit distribution unit 104 will be described.
- FIG. 2 is a block diagram illustrating a detailed configuration and operation of the bit distribution unit 104 of the audio signal encoding device 100 according to the first embodiment.
- the bit distribution unit 104 illustrated in FIG. 2 includes a bit reservoir 111, a bit reservoir 112, a bit distribution calculation unit 113, and a quantization mode determination unit 114.
- the bit reservoir 111 refers to the peak / tonal flag output from the tonality calculation unit 103. When the peak / tonal flag is 0, the bit reservoir 111 is a bit required for the second spectrum quantization performed by the second spectrum quantization unit 107. Secure the number.
- the number of bits necessary for encoding the lag information is secured based on the pitch filter. Then, the reserved number of bits is removed from the bit assets that are the total number of bits that can be used for quantization, and the remaining bit assets are output to the bit reservoir 112.
- the bit assets are supplied from the subband energy quantization unit 102. This is because the bits excluding the number of bits necessary for variable-length coding of the quantized subband energy are the first spectrum quantization unit. 106, the second spectrum quantization unit 107, and the peak / tonal flag can be used for quantization (encoding).
- the subband energy quantization unit 102 does not always generate bit asset information.
- the bit reservoir 112 secures the number of bits used for the peak / tonal flag. For example, in the present embodiment, since the peak / tonal flag is sent in 5 subbands in the high frequency range, the bit reservoir 112 reserves 5 bits.
- the bit reservoir 112 outputs the number of bits obtained by subtracting the number of bits secured in the bit reservoir 112 from the bit asset input from the bit reservoir 111 to the bit allocation calculation unit 113 in the adaptive bit allocation unit.
- the total number of bits secured in the bit reservoir 111 and the bit reservoir 112 is the third bit number.
- a subband having a peak / tonal flag of zero corresponds to the third subband.
- bit reservoir 111 and the bit reservoir 112 may be changed. Further, in this embodiment, the bit reservoir 111 and the bit reservoir 112 block are separated, but this may be performed simultaneously in one block. Alternatively, these operations may be performed in the bit allocation calculation unit 113.
- the bit allocation calculation unit 113 calculates the bit allocation to the subbands quantized by the first spectrum quantization unit 106. Specifically, first, the number of bits output from the bit reservoir 112 is allocated to each subband with reference to the quantized subband energy. As described in the section of the prior art, the allocation method determines whether the quantization subband energy is large or small and whether it is important auditoryly or not, and assigns bits to the subbands that are considered important. As a result, no bits are allocated to subbands whose quantization subband energy is zero, or zero and lower than a predetermined value.
- the input peak / tonal flag is referred to, and the subband (third subband) having the peak / tonal flag of 0 is excluded from the target of bit allocation. That is, bits are allocated using only the subbands with high peak characteristics (subbands where the peak / tonal flag is set to 1 here) as the target subbands for bit allocation. Then, the subband (first subband) to which the bits are to be allocated is specified, and the number of bits allocated to each subband is combined to be allocated bit information, which is first output to the quantization mode determining unit 114.
- the quantization mode determination unit 114 receives the allocation bit information and the peak / tonal flag output from the bit allocation calculation unit 113. If there is a high frequency band subband that is not to be bit-distributed even though the tonal property is high (which is the quantization target of the first spectrum quantization unit 106), the subband is converted by the second spectrum quantization unit 107. Redefine the subband to be quantized (fourth subband), and calculate bit allocation to subtract the number of bits (fourth bit) required for quantization in the second spectrum quantizer from the allocated bit information Output to the unit 113. That is, the number of bits necessary for quantization by the second spectrum quantization unit 107 is assigned to the band, and the assigned number of bits (fourth bit number) is output. Alternatively, the number of allocated bits may be subtracted from the bit assets that can be used by the first spectrum quantization unit 106 and output to the bit allocation calculation unit 113.
- the quantization mode determination unit 114 specifies the subband to be quantized by the second spectrum quantization unit 107, and outputs this to the second spectrum quantization unit 107 as a quantization mode. Specifically, a high frequency region subband (third subband) with low tonality (peak / tonal flag is 0) and a high frequency region subband (fourth subband) to which no bits are allocated, A subband (second subband) to be quantized by the second spectrum quantization unit 107 is determined and output as a quantization mode.
- the bit allocation calculation unit 113 again updates the bit asset by subtracting the bit number (fourth bit number) received from the quantization mode determination unit 114 from the bit number (bit asset) input from the bit reservoir 112, The bit allocation to the subbands to be quantized by the first spectrum quantization unit 106 is recalculated.
- the bit allocation to the subbands to be quantized by the first spectrum quantization unit 106 is recalculated using the updated bit asset.
- the first bit number is a value obtained by subtracting the third bit number and the fourth bit number from the total bit number (bit asset).
- the number of bits after recalculation (first bit number) and the information of the subband (first subband) quantized by the first spectrum quantization unit 106 are used as distribution bit information, and this time, the first spectrum quantum. To the conversion unit 106.
- bit allocation calculation unit 113 When the bit allocation is calculated by the bit allocation calculation unit 113 for the first time, if no sub-calculation is necessary, for example, any subband is allocated, direct allocation bit information is converted to the first spectrum quantization unit. 106 may be output.
- FIG. 3 is a flowchart showing the operation of the acoustic signal encoding apparatus 100 according to the first embodiment, specifically, the operation of the bit distribution unit 104.
- the bit distribution unit 104 acquires the quantized subband energy from the subband energy quantization unit 102 (S1).
- bit allocation unit 104 acquires the peak / tonal flag in the high frequency range from the tonality calculation unit 103 (S2).
- the bit distribution unit 104 specifies the subband (third subband) to be quantized by the second spectrum quantization unit 107 based on the peak / tonal flag, and in the bit reservoir 111 and the bit reservoir 112, A bit (third bit number) to be quantized by the spectrum quantization unit 107 is secured (S3).
- the bit allocation unit 104 determines the number of bits to be allocated to the subbands to be quantized by the first spectrum quantization unit 106 based on the quantization subband energy (S4).
- the bit allocation unit 104 checks the allocation bit to the high frequency band subband determined by the bit allocation calculation unit 113 in the quantization mode determination unit 114 and quantizes the second spectrum quantization unit 107 as necessary.
- the power subband (second subband) is re-specified, and the bit asset for the first subband quantization unit 106 is updated (S5).
- bit allocation unit 104 recalculates the bit allocation (first bit number) to the first spectrum quantization unit 106 by using the updated bit asset again in the bit allocation calculation unit 113 ( S6).
- the audio signal encoding device of the present embodiment it is possible to realize high-quality audio signal encoding while reducing the overall bit rate.
- the first frequency can be generated without generating a subband without quantization (bit allocation is 0) in a high frequency region where the subband width is particularly wide. It is possible to realize bit allocation that maximizes the number of subbands quantized by the quantization unit. Therefore, it is possible to realize adaptive bit allocation that can bring out the best performance at a limited bit rate.
- FIG. 4 is a block diagram illustrating a configuration and an operation of the acoustic signal decoding device 200 according to the second embodiment.
- the acoustic signal decoding apparatus 200 illustrated in FIG. 4 includes a separation unit 201, a subband energy decoding unit 202, a bit distribution unit 203, a first spectrum decoding unit 204, a second spectrum decoding unit 205, a denormalization unit 206, and a frequency-time.
- the conversion unit 207 is configured.
- An antenna A is connected to the separation unit 201. Then, the acoustic signal decoding device 200 and the antenna A are combined to constitute a terminal device or a base station device.
- the separation unit 201 receives the encoded information received by the antenna A, and separates the encoded quantization subband energy, the first encoded information, the second encoded information, and the peak / tonal flag.
- the encoded quantization subband energy is a subband energy decoding unit 202
- the first encoded information is a first spectrum decoding unit 204
- the second encoded information is a second spectrum decoding unit 205
- the peak / tonal flag is a bit.
- the subband energy decoding unit 202 decodes the encoded quantization subband energy, generates decoded quantization subband energy, and outputs the decoded quantization subband energy to the bit distribution unit 203 and the inverse normalization unit 206.
- the bit allocation unit 203 determines the allocation of bits to be allocated by the first spectrum decoding unit 204 and the second spectrum decoding unit 205 with reference to the decoded quantization subband energy and the peak / tonal flag for each subband. Specifically, the number of bits (first bit number) to be assigned when the first spectrum decoding unit 204 decodes the first encoded information and the subband (first subband) to which the bits are assigned are determined and distributed.
- the sub-band (second sub-band) to be decoded is output to the second spectrum decoding unit 205 as the bit information, and the second encoded information decoded by the second spectrum decoding unit 205 is to be decoded. Output as quantization mode.
- bit distribution unit 203 Since the bit distribution unit 203 is the same as the configuration and operation of the bit distribution unit 104 described on the encoding device side as shown in FIG. 5, details of the operation are described in the description of the bit distribution unit 104 on the encoding device side. Quote.
- the first spectrum decoding unit 204 generates the first decoded spectrum by decoding the first encoded information using the first number of bits indicated in the allocated bit information, and outputs the first decoded spectrum to the second spectrum decoding unit 205.
- the second spectrum decoding unit 205 generates the second decoded spectrum by decoding the second encoded information using the first decoded spectrum in the subband specified in the quantization mode, and the second decoded spectrum and the first Combined with the decoded spectrum, a reproduction spectrum is generated and output.
- the denormalization unit 206 adjusts the amplitude (gain) of the reproduction spectrum with reference to the decoded quantization subband energy, and outputs this to the frequency-time conversion unit 207.
- the frequency-time conversion unit 207 converts the reproduction spectrum in the frequency domain into an output acoustic signal in the time domain and outputs it.
- the frequency-time conversion there is an inverse conversion of the conversion given in frequency-time.
- the acoustic signal decoding device of the present embodiment it is possible to realize high-quality acoustic signal decoding while reducing the overall bit rate.
- the encoding device and the decoding device of the present disclosure may be in a semi-finished product or component level form as represented by a system board or a semiconductor element, and also include a finished product level form such as a terminal device or a base station device. It is a concept.
- the encoding device and the decoding device according to the present disclosure are in a semi-finished product or a component level form, they are combined with an antenna, a DA / AD converter, an amplifying unit, a speaker, a microphone, and the like to obtain a finished product level form.
- FIGS. 1, 2, 4, and 5 represent the configuration and operation (method) of hardware designed exclusively, and execute the operation (method) of the present disclosure on general-purpose hardware. Including a case where the program is realized by installing a program for executing the program and executing the program on the processor.
- Examples of general-purpose hardware electronic computers include personal computers, various portable information terminals such as smartphones, and mobile phones.
- the hardware designed for exclusive use is not limited to the finished product level (consumer electronics) such as a mobile phone and a fixed phone, but includes a semi-finished product and a component level such as a system board and a semiconductor element.
- the acoustic signal encoding device and the acoustic signal decoding device according to the present disclosure can be applied to a machine part related to recording, transmission, and reproduction of an acoustic signal.
- DESCRIPTION OF SYMBOLS 100 Acoustic signal encoding apparatus 101 Time-frequency conversion part 102 Subband energy quantization part 103 Tonality calculation part 104 Bit allocation part 105 Normalization part 106 1st spectrum quantization part 107 2nd spectrum quantization part 108 Multiplexing part 111 Bit reservoir 112 Bit reservoir 113 Bit allocation calculation unit 114 Quantization mode determination unit 200 Acoustic signal decoding device 201 Separation unit 202 Subband energy decoding unit 203 Bit allocation unit 204 First spectrum decoding unit 205 Second spectrum decoding unit 206 Denormalization Section 207 Frequency-time conversion section 211 Bit reservoir 212 Bit reservoir 213 Bit allocation calculation section 214 Quantization mode determination section
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
全サブバンドの中からエネルギーが最大のサブバンドに1ユニットを配分する。
1ユニットを配分したサブバンドは、量子化サブバンドエネルギーを2レベル(6dB)下げる。もし、1ユニットを配分したサブバンドへのビット割り当てが最大値(9ビット)を超えていたら、次回以降のループで量子化対象から外す。
上記(1)に戻って同じ処理を繰り返す。
図1は、実施形態1にかかる音響信号符号化装置100の構成、および動作を示すブロック図である。図1に示す音響信号符号化装置100は、時間―周波数変換部101、サブバンドエネルギー量子化部102、トーナリティ計算部103、ビット配分部104、正規化部105、第1スペクトル量子化部106、第2スペクトル量子化部107、多重化部108により構成される。また、多重化部108には、アンテナAが接続されている。そして、音響信号符号化装置100とアンテナAとを合わせて、端末装置または基地局装置を構成する。
図4は、実施形態2にかかる音響信号復号装置200の構成、および動作を示すブロック図である。図4に示す音響信号復号装置200は、分離部201、サブバンドエネルギー復号部202、ビット配分部203、第1スペクトル復号部204、第2スペクトル復号部205、逆正規化部206、周波数―時間変換部207により構成される。また、分離部201には、アンテナAが接続されている。そして、音響信号復号装置200およびアンテナAを合わせて、端末装置または基地局装置を構成する。
以上、実施形態1、2で本開示の音響信号符号化装置および音響信号復号装置を説明した。本開示の符号化装置および復号装置は、システムボードや半導体素子に代表されるような半完成品や部品レベルの形態でもよいし、端末装置や基地局装置のような完成品レベルの形態も含む概念である。本開示の符号化装置および復号装置が半完成品や部品レベルの形態の場合は、アンテナ、DA/ADコンバータ、増幅部、スピーカ、およびマイク等と組み合わせることにより完成品レベルの形態となる。
101 時間―周波数変換部
102 サブバンドエネルギー量子化部
103 トーナリティ計算部
104 ビット配分部
105 正規化部
106 第1スペクトル量子化部
107 第2スペクトル量子化部
108 多重化部
111 ビットリザーバー
112 ビットリザーバー
113 ビット配分計算部
114 量子化モード決定部
200 音響信号復号装置
201 分離部
202 サブバンドエネルギー復号部
203 ビット配分部
204 第1スペクトル復号部
205 第2スペクトル復号部
206 逆正規化部
207 周波数―時間変換部
211 ビットリザーバー
212 ビットリザーバー
213 ビット配分計算部
214 量子化モード決定部
Claims (14)
- 入力音響信号を周波数領域に変換してスペクトルを生成し、前記スペクトルを所定の周波数帯域毎のサブバンドに分割してサブバンドスペクトルを出力する時間周波数変換部と、
前記サブバンド毎に量子化サブバンドエネルギーを求めるサブバンドエネルギー量子化部と、
前記サブバンドスペクトルのトーナル性を分析して分析結果を出力するトーナリティ計算部と、
前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2量子化部で量子化する第2サブバンドを選択し、第1量子化部で量子化する第1サブバンドに配分される第1のビット数を決定する、ビット配分部と、
前記第1量子化部及び前記第2量子化部から出力された符号化情報、前記量子化サブバンドエネルギー、および前記トーナル性の分析結果を含む情報を多重化し、出力する多重化部と、を備え、
前記第1量子化部は、前記第1サブバンドに含まれるサブバンドスペクトルを、前記第1のビット数からなるビットを用いてパルス符号化し、
前記第2量子化部は、前記第2サブバンドに含まれるサブバンドスペクトルを、ピッチフィルタを用いて符号化する、音響信号符号化装置。 - 前記ビット配分部は、
高周波数域の前記サブバンドから前記第2サブバンドを選択する、
請求項1に記載の音響信号符号化装置。 - 前記ビット配分部は、
前記トーナル性が所定の閾値より低い前記サブバンドを、前記第2サブバンドとして選択する、
請求項2に記載の音響信号符号化装置。 - 前記ビット配分部は、
前記量子化サブバンドエネルギーがゼロまたは所定の値より低い前記サブバンドを、前記第2サブバンドとして選択する、
請求項2に記載の音響信号符号化装置。 - 前記ビット配分部は、
量子化に用いることのできる総ビット数から、前記第2サブバンドに配分される第2のビット数を減じたものを、前記第1のビット数として決定する、
請求項1に記載の音響信号符号化装置。 - 前記ビット配分部は、
前記総ビット数の中から、前記トーナル性の分析結果に基づいて選択された第3サブバンドに配分される第3のビット数を計算し、
前記総ビット数から前記第3のビット数を減じたビット数を前記量子化サブバンドエネルギーに基づいて前記第1サブバンドに割り当てた際に、ビットが割り当てられない前記サブバンドを第4サブバンドとして選択し、前記第4サブバンドを前記第2量子化部で符号化する場合に配分される第4のビット数を計算し、
前記第3サブバンドおよび前記第4サブバンドを前記第2量子化部で量子化する前記第2サブバンドとして新たに選択し、前記総ビット数から前記第3のビット数および前記第4のビット数を減じたビット数を前記第1量子化部で量子化する前記第1サブバンドに配分する前記第1のビット数として決定する、
請求項5に記載の音響信号符号化装置。 - 前記トーナリティ計算部の分析結果は、トーナル性が所定の閾値より高いか否かを示すフラグとして出力される、
請求項1に記載の音響信号符号化装置。 - 音響信号符号化装置から出力された符号化情報を復号する音響信号復号装置であって、
前記符号化情報を、第1符号化情報、第2符号化情報、サブバンド毎に求められたエネルギーが量子化された量子化サブバンドエネルギー、およびサブバンド毎に計算されるトーナル性の分析結果、に分離する分離部と、
前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2復号部で復号する前記第2サブバンドを選択し、第1復号部で復号する第1サブバンドに配分される前記第1のビット数を決定するビット配分部と、
前記第2復号部から出力されるスペクトルを時間領域に変換して出力音響信号を生成し出力する周波数時間変換部と、を備え、
前記第1復号部は、前記第1符号化情報を、前記第1のビット数からなるビットを用いて復号することにより第1復号スペクトルを生成し、
前記第2復号部は、前記第2符号化情報を復号して第2復号スペクトルを生成し、前記第2復号スペクトルと前記第1復号スペクトルを用いて復号することにより再生スペクトルを生成する、
音響信号復号装置。 - 請求項1に記載の音響信号符号化装置と、
前記符号化情報を送信するアンテナと、
を有する端末装置。 - 請求項1に記載の音響信号符号化装置と、
前記符号化情報を送信するアンテナと、
を有する基地局装置。 - 前記符号化情報を受信して前記分離部に出力するアンテナと、
請求項8に記載の音響信号復号装置と、
を有する端末装置。 - 前記符号化情報を受信して前記分離部に出力するアンテナと、
請求項8に記載の音響信号復号装置と、
を有する基地局装置。 - 入力音響信号を周波数領域に変換してスペクトルを生成し、
前記スペクトルを所定の周波数帯域毎のサブバンドに分割してサブバンドスペクトルを出力し、
前記サブバンド毎に量子化サブバンドエネルギーを求め、
前記サブバンドスペクトルのトーナル性を分析して分析結果を出力し、
前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2サブバンドを選択し、
第1サブバンドに配分される第1のビット数を決定し、
前記第1サブバンドに含まれる前記サブバンドスペクトルを、前記第1のビット数からなるビットを用いて符号化して第1符号化情報を生成し、
前記第2サブバンドに含まれる前記サブバンドスペクトルを、ピッチフィルタを用いて符号化して第2符号化情報を生成し、
前記第1符号化情報および前記第2符号化情報を多重化して出力する、
音響信号符号化方法。 - 音響信号符号化装置から出力された符号化情報を復号する音響信号復号方法であって、
前記符号化情報を、第1符号化情報、第2符号化情報、サブバンド毎に求められたエネルギーが量子化された量子化サブバンドエネルギー、およびサブバンド毎に計算されるトーナル性の分析結果、に分離し、
前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2サブバンドを選択し、
第1サブバンドに配分される第1のビット数を決定し、
前記第1符号化情報を、前記第1のビット数からなるビットを用いて復号して第1復号スペクトルを生成し、
前記第2符号化情報を復号して第2復号スペクトルを生成し、前記第2復号スペクトルと前記第1復号スペクトルを用いて復号して再生スペクトルを生成し、
前記再生スペクトルを時間領域に変換して出力音響信号を生成し出力する、
音響信号復号方法。
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20176535.1A EP3723086B1 (en) | 2014-07-25 | 2015-07-03 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
CN201580015301.4A CN106133831B (zh) | 2014-07-25 | 2015-07-03 | 音响信号编码装置、音响信号解码装置、音响信号编码方法以及音响信号解码方法 |
AU2015291897A AU2015291897B2 (en) | 2014-07-25 | 2015-07-03 | Acoustic signal encoding device, acoustic signal decoding device, method for encoding acoustic signal, and method for decoding acoustic signal |
KR1020167024863A KR102165403B1 (ko) | 2014-07-25 | 2015-07-03 | 음향 신호 부호화 장치, 음향 신호 복호 장치, 음향 신호 부호화 방법 및 음향 신호 복호 방법 |
EP15824312.1A EP3174050B1 (en) | 2014-07-25 | 2015-07-03 | Audio signal coding apparatus, audio signal decoding device, and methods thereof |
SG11201701197TA SG11201701197TA (en) | 2014-07-25 | 2015-07-03 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
BR112017000629-4A BR112017000629B1 (pt) | 2014-07-25 | 2015-07-03 | aparelho de codificação de sinal de áudio e método de codificação de sinal de áudio |
MX2016015786A MX356371B (es) | 2014-07-25 | 2015-07-03 | Dispositivo de codificacion de señal acustica, dispositivo de decodificacion de señal acustica, metodo para codificar una señal acustica y metodo para decodificar una señal acustica. |
RU2017102311A RU2669706C2 (ru) | 2014-07-25 | 2015-07-03 | Устройство кодирования аудиосигнала, устройство декодирования аудиосигнала, способ кодирования аудиосигнала и способ декодирования аудиосигнала |
CA2958429A CA2958429C (en) | 2014-07-25 | 2015-07-03 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
PL15824312T PL3174050T3 (pl) | 2014-07-25 | 2015-07-03 | Urządzenie do kodowania sygnałów audio, urządzenie do dekodowania sygnałów audio i ich sposoby |
PL18186595T PL3413307T3 (pl) | 2014-07-25 | 2015-07-03 | Urządzenie do kodowania sygnałów audio, urządzenie do dekodowania sygnałów audio i ich sposoby |
JP2016535772A JP6717746B2 (ja) | 2014-07-25 | 2015-07-03 | 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 |
ES15824312T ES2707337T3 (es) | 2014-07-25 | 2015-07-03 | Aparato de codificación de señal de audio, dispositivo de decodificación de señal de audio y métodos del mismo |
EP18186595.7A EP3413307B1 (en) | 2014-07-25 | 2015-07-03 | Audio signal coding apparatus, audio signal decoding device, and methods thereof |
US15/353,780 US10311879B2 (en) | 2014-07-25 | 2016-11-17 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
ZA2017/01428A ZA201701428B (en) | 2014-07-25 | 2017-02-24 | Acoustic signal encoding device, acoustic signal decoding device, method for encoding acoustic signal, and method for decoding acoustic signal |
US16/370,748 US10643623B2 (en) | 2014-07-25 | 2019-03-29 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
US16/821,784 US11521625B2 (en) | 2014-07-25 | 2020-03-17 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462028805P | 2014-07-25 | 2014-07-25 | |
US62/028,805 | 2014-07-25 | ||
JP2014-219214 | 2014-10-28 | ||
JP2014219214 | 2014-10-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/353,780 Continuation US10311879B2 (en) | 2014-07-25 | 2016-11-17 | Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013164A1 true WO2016013164A1 (ja) | 2016-01-28 |
Family
ID=55162710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/003358 WO2016013164A1 (ja) | 2014-07-25 | 2015-07-03 | 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 |
Country Status (13)
Country | Link |
---|---|
US (3) | US10311879B2 (ja) |
EP (3) | EP3723086B1 (ja) |
JP (1) | JP6717746B2 (ja) |
KR (1) | KR102165403B1 (ja) |
CN (2) | CN106133831B (ja) |
AU (1) | AU2015291897B2 (ja) |
BR (1) | BR112017000629B1 (ja) |
CA (1) | CA2958429C (ja) |
MX (1) | MX356371B (ja) |
PL (2) | PL3174050T3 (ja) |
RU (1) | RU2669706C2 (ja) |
SG (1) | SG11201701197TA (ja) |
WO (1) | WO2016013164A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111312278B (zh) | 2014-03-03 | 2023-08-15 | 三星电子株式会社 | 用于带宽扩展的高频解码的方法及设备 |
KR20240046298A (ko) | 2014-03-24 | 2024-04-08 | 삼성전자주식회사 | 고대역 부호화방법 및 장치와 고대역 복호화 방법 및 장치 |
JP6611042B2 (ja) * | 2015-12-02 | 2019-11-27 | パナソニックIpマネジメント株式会社 | 音声信号復号装置及び音声信号復号方法 |
US10586546B2 (en) | 2018-04-26 | 2020-03-10 | Qualcomm Incorporated | Inversely enumerated pyramid vector quantizers for efficient rate adaptation in audio coding |
US10573331B2 (en) * | 2018-05-01 | 2020-02-25 | Qualcomm Incorporated | Cooperative pyramid vector quantizers for scalable audio coding |
US10734006B2 (en) | 2018-06-01 | 2020-08-04 | Qualcomm Incorporated | Audio coding based on audio pattern recognition |
CA3145047A1 (en) * | 2019-07-08 | 2021-01-14 | Voiceage Corporation | Method and system for coding metadata in audio streams and for efficient bitrate allocation to audio streams coding |
EP3786948A1 (en) * | 2019-08-28 | 2021-03-03 | Fraunhofer Gesellschaft zur Förderung der Angewand | Time-varying time-frequency tilings using non-uniform orthogonal filterbanks based on mdct analysis/synthesis and tdar |
CN113192517B (zh) * | 2020-01-13 | 2024-04-26 | 华为技术有限公司 | 一种音频编解码方法和音频编解码设备 |
CN113808597A (zh) * | 2020-05-30 | 2021-12-17 | 华为技术有限公司 | 一种音频编码方法和音频编码装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07336233A (ja) * | 1994-06-13 | 1995-12-22 | Sony Corp | 情報符号化方法及び装置並びに情報復号化方法及び装置 |
WO2005027095A1 (ja) * | 2003-09-16 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | 符号化装置および復号化装置 |
JP2005265865A (ja) * | 2004-02-16 | 2005-09-29 | Matsushita Electric Ind Co Ltd | オーディオ符号化のためのビット割り当て方法及び装置 |
WO2011086924A1 (ja) * | 2010-01-14 | 2011-07-21 | パナソニック株式会社 | 音声符号化装置および音声符号化方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3283413B2 (ja) | 1995-11-30 | 2002-05-20 | 株式会社日立製作所 | 符号化復号方法、符号化装置および復号装置 |
JP3157116B2 (ja) * | 1996-03-29 | 2001-04-16 | 三菱電機株式会社 | 音声符号化伝送システム |
US7389227B2 (en) * | 2000-01-14 | 2008-06-17 | C & S Technology Co., Ltd. | High-speed search method for LSP quantizer using split VQ and fixed codebook of G.729 speech encoder |
US7333930B2 (en) * | 2003-03-14 | 2008-02-19 | Agere Systems Inc. | Tonal analysis for perceptual audio coding using a compressed spectral representation |
US7844451B2 (en) | 2003-09-16 | 2010-11-30 | Panasonic Corporation | Spectrum coding/decoding apparatus and method for reducing distortion of two band spectrums |
DE102004007184B3 (de) * | 2004-02-13 | 2005-09-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Quantisieren eines Informationssignals |
DE102004007200B3 (de) * | 2004-02-13 | 2005-08-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audiocodierung |
JP4168976B2 (ja) * | 2004-05-28 | 2008-10-22 | ソニー株式会社 | オーディオ信号符号化装置及び方法 |
US7562021B2 (en) * | 2005-07-15 | 2009-07-14 | Microsoft Corporation | Modification of codewords in dictionary used for efficient coding of digital media spectral data |
KR101412255B1 (ko) * | 2006-12-13 | 2014-08-14 | 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 | 부호화 장치, 복호 장치 및 이들의 방법 |
JP5403949B2 (ja) | 2007-03-02 | 2014-01-29 | パナソニック株式会社 | 符号化装置および符号化方法 |
KR101355376B1 (ko) * | 2007-04-30 | 2014-01-23 | 삼성전자주식회사 | 고주파수 영역 부호화 및 복호화 방법 및 장치 |
EP2077550B8 (en) * | 2008-01-04 | 2012-03-14 | Dolby International AB | Audio encoder and decoder |
CN101853663B (zh) * | 2009-03-30 | 2012-05-23 | 华为技术有限公司 | 比特分配方法、编码装置及解码装置 |
CN102063905A (zh) * | 2009-11-13 | 2011-05-18 | 数维科技(北京)有限公司 | 一种用于音频解码的盲噪声填充方法及其装置 |
CN102194458B (zh) * | 2010-03-02 | 2013-02-27 | 中兴通讯股份有限公司 | 频带复制方法、装置及音频解码方法、系统 |
US9236063B2 (en) | 2010-07-30 | 2016-01-12 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for dynamic bit allocation |
US8660195B2 (en) * | 2010-08-10 | 2014-02-25 | Qualcomm Incorporated | Using quantized prediction memory during fast recovery coding |
EP4220636A1 (en) | 2012-11-05 | 2023-08-02 | Panasonic Intellectual Property Corporation of America | Speech audio encoding device and speech audio encoding method |
CN104838443B (zh) | 2012-12-13 | 2017-09-22 | 松下电器(美国)知识产权公司 | 语音声响编码装置、语音声响解码装置、语音声响编码方法及语音声响解码方法 |
CN105247614B (zh) * | 2013-04-05 | 2019-04-05 | 杜比国际公司 | 音频编码器和解码器 |
EP3217398B1 (en) * | 2013-04-05 | 2019-08-14 | Dolby International AB | Advanced quantizer |
PL3128513T3 (pl) | 2014-03-31 | 2019-11-29 | Fraunhofer Ges Forschung | Koder, dekoder, sposób kodowania, sposób dekodowania i program |
-
2015
- 2015-07-03 PL PL15824312T patent/PL3174050T3/pl unknown
- 2015-07-03 MX MX2016015786A patent/MX356371B/es active IP Right Grant
- 2015-07-03 WO PCT/JP2015/003358 patent/WO2016013164A1/ja active Application Filing
- 2015-07-03 EP EP20176535.1A patent/EP3723086B1/en active Active
- 2015-07-03 EP EP15824312.1A patent/EP3174050B1/en active Active
- 2015-07-03 JP JP2016535772A patent/JP6717746B2/ja active Active
- 2015-07-03 CA CA2958429A patent/CA2958429C/en active Active
- 2015-07-03 PL PL18186595T patent/PL3413307T3/pl unknown
- 2015-07-03 RU RU2017102311A patent/RU2669706C2/ru active
- 2015-07-03 EP EP18186595.7A patent/EP3413307B1/en active Active
- 2015-07-03 AU AU2015291897A patent/AU2015291897B2/en active Active
- 2015-07-03 CN CN201580015301.4A patent/CN106133831B/zh active Active
- 2015-07-03 KR KR1020167024863A patent/KR102165403B1/ko active IP Right Grant
- 2015-07-03 BR BR112017000629-4A patent/BR112017000629B1/pt active IP Right Grant
- 2015-07-03 CN CN202111171436.3A patent/CN114023341A/zh active Pending
- 2015-07-03 SG SG11201701197TA patent/SG11201701197TA/en unknown
-
2016
- 2016-11-17 US US15/353,780 patent/US10311879B2/en active Active
-
2019
- 2019-03-29 US US16/370,748 patent/US10643623B2/en active Active
-
2020
- 2020-03-17 US US16/821,784 patent/US11521625B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07336233A (ja) * | 1994-06-13 | 1995-12-22 | Sony Corp | 情報符号化方法及び装置並びに情報復号化方法及び装置 |
WO2005027095A1 (ja) * | 2003-09-16 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | 符号化装置および復号化装置 |
JP2005265865A (ja) * | 2004-02-16 | 2005-09-29 | Matsushita Electric Ind Co Ltd | オーディオ符号化のためのビット割り当て方法及び装置 |
WO2011086924A1 (ja) * | 2010-01-14 | 2011-07-21 | パナソニック株式会社 | 音声符号化装置および音声符号化方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3174050A4 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6717746B2 (ja) | 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 | |
US10685660B2 (en) | Voice audio encoding device, voice audio decoding device, voice audio encoding method, and voice audio decoding method | |
US20220130402A1 (en) | Encoding device, decoding device, encoding method, decoding method, and non-transitory computer-readable recording medium | |
CN111370008B (zh) | 解码装置、编码装置、解码方法、编码方法、终端装置、以及基站装置 | |
JP6957444B2 (ja) | 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15824312 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167024863 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015824312 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015824312 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016535772 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/015786 Country of ref document: MX |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017000629 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2958429 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2017102311 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015291897 Country of ref document: AU Date of ref document: 20150703 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112017000629 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170112 |