WO2016013164A1 - 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 - Google Patents

音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 Download PDF

Info

Publication number
WO2016013164A1
WO2016013164A1 PCT/JP2015/003358 JP2015003358W WO2016013164A1 WO 2016013164 A1 WO2016013164 A1 WO 2016013164A1 JP 2015003358 W JP2015003358 W JP 2015003358W WO 2016013164 A1 WO2016013164 A1 WO 2016013164A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
spectrum
acoustic signal
unit
bits
Prior art date
Application number
PCT/JP2015/003358
Other languages
English (en)
French (fr)
Inventor
河嶋 拓也
江原 宏幸
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2958429A priority Critical patent/CA2958429C/en
Priority to KR1020167024863A priority patent/KR102165403B1/ko
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to PL18186595T priority patent/PL3413307T3/pl
Priority to PL15824312T priority patent/PL3174050T3/pl
Priority to EP15824312.1A priority patent/EP3174050B1/en
Priority to SG11201701197TA priority patent/SG11201701197TA/en
Priority to BR112017000629-4A priority patent/BR112017000629B1/pt
Priority to MX2016015786A priority patent/MX356371B/es
Priority to RU2017102311A priority patent/RU2669706C2/ru
Priority to CN201580015301.4A priority patent/CN106133831B/zh
Priority to EP20176535.1A priority patent/EP3723086B1/en
Priority to AU2015291897A priority patent/AU2015291897B2/en
Priority to JP2016535772A priority patent/JP6717746B2/ja
Priority to ES15824312T priority patent/ES2707337T3/es
Priority to EP18186595.7A priority patent/EP3413307B1/en
Publication of WO2016013164A1 publication Critical patent/WO2016013164A1/ja
Priority to US15/353,780 priority patent/US10311879B2/en
Priority to ZA2017/01428A priority patent/ZA201701428B/en
Priority to US16/370,748 priority patent/US10643623B2/en
Priority to US16/821,784 priority patent/US11521625B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • G10L19/135Vector sum excited linear prediction [VSELP]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/035Scalar quantisation

Definitions

  • This disclosure relates to an encoding technique and a decoding technique that improve the sound quality of an audio signal such as an audio signal or a music signal.
  • Encoding technology that compresses acoustic signals at a low bit rate is an important technology that realizes effective use of radio waves in mobile communications. Furthermore, in recent years, expectations for improving the quality of telephone conversation voice have increased, and realization of a telephone service with a high sense of reality is desired. In order to realize this, an acoustic signal having a wide frequency band may be encoded at a high bit rate. However, this approach conflicts with the effective use of radio waves and frequency bands.
  • Non-patent Document 1 The acoustic signal encoding technology adopted in the 719 standard (Non-patent Document 1) will be examined.
  • a predetermined bit is assigned to a spectrum obtained by frequency-converting the acoustic signal.
  • the units (units of the required number of bits) for dividing the spectrum into subbands having a predetermined frequency bandwidth and performing quantization by lattice vector quantization in order from the subband with the largest energy are as follows: To distribute.
  • One unit is allocated to the subband with the maximum energy among all the subbands.
  • 1 bit is allocated per spectrum, for example, if the number of spectral samples in a subband is 8, 1 unit is 8 bits (note that the maximum number of bits that can be allocated per spectrum is 9 bits, for example, sub (If the number of spectral samples in the frame is 8, 72 bits can be finally assigned).
  • FIG. 6 shows the subband energy in each subband.
  • the horizontal axis represents frequency
  • the vertical axis represents logarithmic scale amplitude.
  • the subband energy is represented by a horizontal line instead of a point, but each width represents the frequency bandwidth of each subband.
  • FIG. 7 and FIG. It is a figure which shows the example of a bit allocation result to each subband at the time of using the encoding method defined by 719 standard.
  • the horizontal axis represents frequency
  • the vertical axis represents the number of allocated bits.
  • FIG. 7 shows a case where the bit rate is 128 kbit / s
  • FIG. 8 shows a case where the bit rate is 64 kbit / s.
  • Fig. 9 shows G.M. at 20 kbit / s. It is a figure which shows the example of a bit allocation result to each subband at the time of using the encoding method defined by 719 standard. In this way, as a result of not being able to allocate bits not only to the high frequency part but also to the auditory important low frequency part, the spectrum in that subband cannot be encoded, and the quality of the acoustic signal Deterioration becomes remarkable.
  • Patent Document 1 proposes a method of dynamically changing the bit allocation method.
  • This disclosure provides an encoding technique and a decoding technique for realizing a high-quality acoustic signal while reducing the overall bit rate.
  • An acoustic signal encoding device includes a time-frequency conversion unit that converts an input acoustic signal into a frequency domain to generate a spectrum, divides the spectrum into subbands for each predetermined frequency band, and outputs a subband spectrum.
  • Subband energy quantization unit for obtaining quantized subband energy for each subband
  • tonality calculation unit for analyzing the tonal property of the subband spectrum and outputting the analysis result
  • tonal property analysis result and quantization subband Based on the energy, the second subband to be quantized by the second quantizer is selected from the subbands, and the first number of bits allocated to the first subband to be quantized by the first quantizer is determined.
  • the first quantizing unit pulse-codes the subband spectrum included in the first subband using the first bit number, and the second quantizing unit includes the subband included in the second subband.
  • the spectrum is encoded using a pitch filter.
  • the decoding device According to the encoding device, the decoding device, and the like of the present disclosure, it is possible to encode and decode a high-quality acoustic signal while reducing the overall bit rate.
  • the input signal to the encoding device of the present disclosure and the acoustic signal that is the output signal from the decoding device are a concept that includes an audio signal, a wider-band music signal, and a signal in which these signals are mixed.
  • the “input sound signal” is a concept including a music signal, a sound signal, or a signal in which both are mixed.
  • “quantized subband energy” is obtained by quantizing the subband energy that is the sum or average of the energy of the subband spectrum in the subband, and the subband energy is, for example, the subband spectrum in the subband.
  • the sum of squares of “Tonality” refers to the degree to which a spectrum peak stands at a specific frequency component, and the analysis result can be expressed by a numerical value or a sign.
  • Pulse coding refers to coding that approximates a spectrum using pulses.
  • “Relatively low” refers to a lower value compared between subbands, for example, lower than the average of all subbands or lower than a predetermined value. “High frequency subband” refers to a subband located on the high frequency side among a plurality of subbands.
  • the first (spectrum) quantization unit, the second (spectrum) quantization unit, the first (spectrum) decoding unit, the second (spectrum) decoding unit, the first sub described in the embodiments and claims.
  • the band, the second subband, the third subband, the fourth subband, the first bit number, the second bit number, the third bit number, and the fourth bit number each mean a category. , Does not mean the order.
  • FIG. 1 is a block diagram illustrating the configuration and operation of the acoustic signal encoding device 100 according to the first embodiment. 1 includes a time-frequency conversion unit 101, a subband energy quantization unit 102, a tonality calculation unit 103, a bit distribution unit 104, a normalization unit 105, a first spectrum quantization unit 106, The second spectrum quantization unit 107 and the multiplexing unit 108 are included.
  • the antenna A is connected to the multiplexing unit 108. Then, the acoustic signal encoding apparatus 100 and the antenna A are combined to constitute a terminal apparatus or a base station apparatus.
  • the time-frequency conversion unit 101 converts an input acoustic signal in the time domain into a frequency domain and generates an input acoustic signal spectrum (hereinafter referred to as “spectrum”).
  • time-frequency conversion include MDCT (Modified Discrete Cosine Transform), but are not limited thereto.
  • MDCT Modified Discrete Cosine Transform
  • DCT Discrete Cosine Transform
  • DFT Discrete Fourier Transform
  • Fourier Transform and the like may be used.
  • the time-frequency conversion unit 101 divides the spectrum into subbands that are predetermined frequency bands.
  • the predetermined frequency bands may be different intervals, for example, wide in the high frequency range and narrow in the low frequency range.
  • the time-frequency conversion unit 101 outputs the spectrum divided for each subband to the subband energy quantization unit 102, the tonality calculation unit 103, and the normalization unit 105 as a subband spectrum.
  • the subband energy quantization unit 102 obtains subband energy that is energy of a subband spectrum for each subband, and quantizes the subband energy to obtain quantized subband energy.
  • the subband energy can be obtained from the sum of squares of the subband spectra in the subband, but the present invention is not limited to this.
  • the subband energy can be obtained by integrating the amplitude of the subband spectrum for each subband.
  • the sum of squares is divided by the number of spectra in the subband (subband width). Then, the subband energy thus obtained is quantized with a predetermined step size.
  • the obtained quantization subband energy is output to normalization section 105 and bit distribution section 104, and the encoded quantization subband energy obtained by encoding the quantization subband energy is output to multiplexing section 108. .
  • the tonality calculation unit 103 analyzes the subband spectrum included in each subband and determines tonalness.
  • Tonal property refers to the degree to which a spectrum peak stands at a specific frequency component, and is a concept that includes a peak property that means that a distinct peak exists. Quantitatively, for example, it can be obtained by the ratio of the amplitude of the average spectrum in the target subband and the amplitude of the maximum spectrum existing in the subband, and when this value exceeds a predetermined threshold,
  • the spectrum of the subband is defined as having a tonal property (peak property).
  • the significance of the tonality calculator is as follows.
  • a pitch filter-based method ie low frequency spectrum is used for efficient quantization of a spectrum where the spectrum energy is distributed across the entire subband, such as a noisy spectrum. It is effective to use a method of expressing a high-frequency spectrum using this method. Therefore, the degree of energy dispersion in the subband is determined from the peak / tonal scale of the spectrum in the subband (such as the ratio of peak power to average power), and the spectrum sub- Bands are subject to quantization based on pitch filters.
  • the bit allocation unit 104 refers to the quantized subband energy for each subband and the peak / tonal flag, and means the total number of bits that can be used for encoding for the subband spectrum in each subband. Allocate bits from bit assets. Specifically, a first number of bits, which is the number of bits assigned to the first subband that is a subband quantized by the first spectrum quantization unit, is calculated and determined, and this is calculated by the first spectrum quantization unit 106. Output as distribution bit information. Further, the second subband, which is a subband to be quantized by the second spectrum quantization unit 107, is selected and specified, and this is output to the second spectrum quantization unit 107 as a quantization mode.
  • bit distribution unit 104 Details of the configuration and operation of the bit distribution unit 104 will be described later.
  • bit allocation unit 104 refers to the peak / tonal flag and the quantized subband energy for each subband, but the reference order is arbitrary.
  • the second subband to be quantized by the second spectrum quantization unit 107 may be the entire band, but generally, a band with a low quantization subband energy and a band with a low tonal property are Since it is mainly in the high frequency range, only a subband existing in a specific high frequency range may be targeted. For example, only four or five subbands in the high frequency range can be targeted.
  • the sub-band on the high frequency side is substantially subject to quantization based on the pitch filter. For this reason, a method may be used in which the high frequency region side from the subband selected by tonal property is all subject to quantization by the pitch filter, and only the subband number is transmitted as the quantization mode.
  • the normalization unit 105 generates a normalized subband spectrum by normalizing (dividing) each subband spectrum with the input quantized subband energy. Thereby, the difference in amplitude between subbands is normalized. Then, normalization section 105 outputs the normalized subband spectrum to first spectrum quantization section 106 and second spectrum quantization section 107.
  • the normalization unit 105 has an arbitrary configuration.
  • the normalization unit 105 has one configuration in the present embodiment, but two normalization units 105 may be arranged in front of each of the first spectrum quantization unit 106 and the second spectrum quantization unit 107.
  • the first spectrum quantizing unit 106 is an example of a first quantizing unit, and uses the bit composed of the first number of bits allocated by the bit distributing unit 104 to input the normalized subband spectrum.
  • the first spectrum quantization unit 106 quantizes the subband spectrum belonging to the first subband to be quantized. Then, the quantization result is output to the second spectrum quantization unit 107 as a quantized spectrum, and the first encoded information generated by encoding the quantized spectrum is output to the multiplexing unit 108.
  • the first spectrum quantization unit 106 uses a pulse encoding unit.
  • a pulse encoding unit As an example of the pulse encoding unit, a lattice vector quantization unit that performs lattice vector quantization, and a pulse that performs pulse encoding that approximates a subband spectrum with a small number of pulses.
  • An encoding unit may be mentioned. In other words, any quantization unit can be used as long as it is a quantization method suitable for quantization of a spectrum with high tonal characteristics or a method of quantization with a small number of pulses.
  • the second spectrum quantizing unit 107 is an example of a second quantizing unit, and can employ, for example, a quantization method using the following extension band (prediction model using a pitch filter).
  • the pitch filter is a processing block that performs processing represented by the following Expression 1.
  • the pitch filter refers to a filter that emphasizes the pitch period (T) with respect to the time-axis signal (emphasizes the pitch component on the frequency axis).
  • T pitch period
  • the discrete signal x For example, a digital filter represented by Formula 1 with respect to [i].
  • the pitch filter in the present embodiment is defined as a processing block that performs the processing represented by Expression 1, and does not necessarily perform pitch emphasis on a time-axis signal.
  • T that minimizes the error between the MDCT coefficient Mt [i] to be encoded and the calculated y [i] is encoded as lag information.
  • the second spectrum quantization unit 107 identifies the second subband (normalized subband spectrum) to be quantized by the second spectrum quantization unit 107 with reference to the quantization mode. Thereby, the K and K ′ are specified.
  • the normalized subband spectrum (corresponding to Mt [i], K ⁇ i ⁇ K ′) relating to the specified second subband (frequency K to K ′) is converted into a quantized spectrum (Mq [i],
  • the subband or the band of the quantized spectrum having the maximum correlation in relation to i ⁇ K) is searched, and the position is generated as lag information (corresponding to T). Examples of the lag information include the absolute position and relative position of subbands and bands, or subband numbers.
  • the second spectrum quantization unit 107 encodes the lag information and outputs the encoded lag information to the multiplexing unit 108 as second encoded information.
  • the encoded quantization subband energy is multiplexed by the multiplexing unit 108 and transmitted, and the gain can be generated on the decoding unit side. Therefore, the gain is not encoded.
  • the gain may be encoded and sent. In that case, the gain between the second subband to be quantized and the subband of the quantized spectrum having the maximum correlation is calculated, and the second spectrum quantization unit 107 encodes the lag information and the gain, It outputs to the multiplexing part 108 as 2nd encoding information.
  • the bandwidth of the high frequency subband is set wider than that of the low frequency subband, but the lattice vector quantum is low because the energy of the subband of the low frequency region to be copied is small. In some cases, it may not be a target of conversion. In such a case, such a subband may be regarded as a zero spectrum, or noise may be added to avoid a sudden change in spectrum between subbands.
  • the multiplexing unit 108 multiplexes the quantized subband energy, the first encoded information, the second encoded information, and the peak / tonal flag, and outputs the multiplexed information to the antenna A.
  • the antenna A transmits the encoded information to the acoustic signal decoding device.
  • the encoded information reaches the acoustic signal decoding apparatus via various nodes and base stations.
  • bit distribution unit 104 Next, details of the bit distribution unit 104 will be described.
  • FIG. 2 is a block diagram illustrating a detailed configuration and operation of the bit distribution unit 104 of the audio signal encoding device 100 according to the first embodiment.
  • the bit distribution unit 104 illustrated in FIG. 2 includes a bit reservoir 111, a bit reservoir 112, a bit distribution calculation unit 113, and a quantization mode determination unit 114.
  • the bit reservoir 111 refers to the peak / tonal flag output from the tonality calculation unit 103. When the peak / tonal flag is 0, the bit reservoir 111 is a bit required for the second spectrum quantization performed by the second spectrum quantization unit 107. Secure the number.
  • the number of bits necessary for encoding the lag information is secured based on the pitch filter. Then, the reserved number of bits is removed from the bit assets that are the total number of bits that can be used for quantization, and the remaining bit assets are output to the bit reservoir 112.
  • the bit assets are supplied from the subband energy quantization unit 102. This is because the bits excluding the number of bits necessary for variable-length coding of the quantized subband energy are the first spectrum quantization unit. 106, the second spectrum quantization unit 107, and the peak / tonal flag can be used for quantization (encoding).
  • the subband energy quantization unit 102 does not always generate bit asset information.
  • the bit reservoir 112 secures the number of bits used for the peak / tonal flag. For example, in the present embodiment, since the peak / tonal flag is sent in 5 subbands in the high frequency range, the bit reservoir 112 reserves 5 bits.
  • the bit reservoir 112 outputs the number of bits obtained by subtracting the number of bits secured in the bit reservoir 112 from the bit asset input from the bit reservoir 111 to the bit allocation calculation unit 113 in the adaptive bit allocation unit.
  • the total number of bits secured in the bit reservoir 111 and the bit reservoir 112 is the third bit number.
  • a subband having a peak / tonal flag of zero corresponds to the third subband.
  • bit reservoir 111 and the bit reservoir 112 may be changed. Further, in this embodiment, the bit reservoir 111 and the bit reservoir 112 block are separated, but this may be performed simultaneously in one block. Alternatively, these operations may be performed in the bit allocation calculation unit 113.
  • the bit allocation calculation unit 113 calculates the bit allocation to the subbands quantized by the first spectrum quantization unit 106. Specifically, first, the number of bits output from the bit reservoir 112 is allocated to each subband with reference to the quantized subband energy. As described in the section of the prior art, the allocation method determines whether the quantization subband energy is large or small and whether it is important auditoryly or not, and assigns bits to the subbands that are considered important. As a result, no bits are allocated to subbands whose quantization subband energy is zero, or zero and lower than a predetermined value.
  • the input peak / tonal flag is referred to, and the subband (third subband) having the peak / tonal flag of 0 is excluded from the target of bit allocation. That is, bits are allocated using only the subbands with high peak characteristics (subbands where the peak / tonal flag is set to 1 here) as the target subbands for bit allocation. Then, the subband (first subband) to which the bits are to be allocated is specified, and the number of bits allocated to each subband is combined to be allocated bit information, which is first output to the quantization mode determining unit 114.
  • the quantization mode determination unit 114 receives the allocation bit information and the peak / tonal flag output from the bit allocation calculation unit 113. If there is a high frequency band subband that is not to be bit-distributed even though the tonal property is high (which is the quantization target of the first spectrum quantization unit 106), the subband is converted by the second spectrum quantization unit 107. Redefine the subband to be quantized (fourth subband), and calculate bit allocation to subtract the number of bits (fourth bit) required for quantization in the second spectrum quantizer from the allocated bit information Output to the unit 113. That is, the number of bits necessary for quantization by the second spectrum quantization unit 107 is assigned to the band, and the assigned number of bits (fourth bit number) is output. Alternatively, the number of allocated bits may be subtracted from the bit assets that can be used by the first spectrum quantization unit 106 and output to the bit allocation calculation unit 113.
  • the quantization mode determination unit 114 specifies the subband to be quantized by the second spectrum quantization unit 107, and outputs this to the second spectrum quantization unit 107 as a quantization mode. Specifically, a high frequency region subband (third subband) with low tonality (peak / tonal flag is 0) and a high frequency region subband (fourth subband) to which no bits are allocated, A subband (second subband) to be quantized by the second spectrum quantization unit 107 is determined and output as a quantization mode.
  • the bit allocation calculation unit 113 again updates the bit asset by subtracting the bit number (fourth bit number) received from the quantization mode determination unit 114 from the bit number (bit asset) input from the bit reservoir 112, The bit allocation to the subbands to be quantized by the first spectrum quantization unit 106 is recalculated.
  • the bit allocation to the subbands to be quantized by the first spectrum quantization unit 106 is recalculated using the updated bit asset.
  • the first bit number is a value obtained by subtracting the third bit number and the fourth bit number from the total bit number (bit asset).
  • the number of bits after recalculation (first bit number) and the information of the subband (first subband) quantized by the first spectrum quantization unit 106 are used as distribution bit information, and this time, the first spectrum quantum. To the conversion unit 106.
  • bit allocation calculation unit 113 When the bit allocation is calculated by the bit allocation calculation unit 113 for the first time, if no sub-calculation is necessary, for example, any subband is allocated, direct allocation bit information is converted to the first spectrum quantization unit. 106 may be output.
  • FIG. 3 is a flowchart showing the operation of the acoustic signal encoding apparatus 100 according to the first embodiment, specifically, the operation of the bit distribution unit 104.
  • the bit distribution unit 104 acquires the quantized subband energy from the subband energy quantization unit 102 (S1).
  • bit allocation unit 104 acquires the peak / tonal flag in the high frequency range from the tonality calculation unit 103 (S2).
  • the bit distribution unit 104 specifies the subband (third subband) to be quantized by the second spectrum quantization unit 107 based on the peak / tonal flag, and in the bit reservoir 111 and the bit reservoir 112, A bit (third bit number) to be quantized by the spectrum quantization unit 107 is secured (S3).
  • the bit allocation unit 104 determines the number of bits to be allocated to the subbands to be quantized by the first spectrum quantization unit 106 based on the quantization subband energy (S4).
  • the bit allocation unit 104 checks the allocation bit to the high frequency band subband determined by the bit allocation calculation unit 113 in the quantization mode determination unit 114 and quantizes the second spectrum quantization unit 107 as necessary.
  • the power subband (second subband) is re-specified, and the bit asset for the first subband quantization unit 106 is updated (S5).
  • bit allocation unit 104 recalculates the bit allocation (first bit number) to the first spectrum quantization unit 106 by using the updated bit asset again in the bit allocation calculation unit 113 ( S6).
  • the audio signal encoding device of the present embodiment it is possible to realize high-quality audio signal encoding while reducing the overall bit rate.
  • the first frequency can be generated without generating a subband without quantization (bit allocation is 0) in a high frequency region where the subband width is particularly wide. It is possible to realize bit allocation that maximizes the number of subbands quantized by the quantization unit. Therefore, it is possible to realize adaptive bit allocation that can bring out the best performance at a limited bit rate.
  • FIG. 4 is a block diagram illustrating a configuration and an operation of the acoustic signal decoding device 200 according to the second embodiment.
  • the acoustic signal decoding apparatus 200 illustrated in FIG. 4 includes a separation unit 201, a subband energy decoding unit 202, a bit distribution unit 203, a first spectrum decoding unit 204, a second spectrum decoding unit 205, a denormalization unit 206, and a frequency-time.
  • the conversion unit 207 is configured.
  • An antenna A is connected to the separation unit 201. Then, the acoustic signal decoding device 200 and the antenna A are combined to constitute a terminal device or a base station device.
  • the separation unit 201 receives the encoded information received by the antenna A, and separates the encoded quantization subband energy, the first encoded information, the second encoded information, and the peak / tonal flag.
  • the encoded quantization subband energy is a subband energy decoding unit 202
  • the first encoded information is a first spectrum decoding unit 204
  • the second encoded information is a second spectrum decoding unit 205
  • the peak / tonal flag is a bit.
  • the subband energy decoding unit 202 decodes the encoded quantization subband energy, generates decoded quantization subband energy, and outputs the decoded quantization subband energy to the bit distribution unit 203 and the inverse normalization unit 206.
  • the bit allocation unit 203 determines the allocation of bits to be allocated by the first spectrum decoding unit 204 and the second spectrum decoding unit 205 with reference to the decoded quantization subband energy and the peak / tonal flag for each subband. Specifically, the number of bits (first bit number) to be assigned when the first spectrum decoding unit 204 decodes the first encoded information and the subband (first subband) to which the bits are assigned are determined and distributed.
  • the sub-band (second sub-band) to be decoded is output to the second spectrum decoding unit 205 as the bit information, and the second encoded information decoded by the second spectrum decoding unit 205 is to be decoded. Output as quantization mode.
  • bit distribution unit 203 Since the bit distribution unit 203 is the same as the configuration and operation of the bit distribution unit 104 described on the encoding device side as shown in FIG. 5, details of the operation are described in the description of the bit distribution unit 104 on the encoding device side. Quote.
  • the first spectrum decoding unit 204 generates the first decoded spectrum by decoding the first encoded information using the first number of bits indicated in the allocated bit information, and outputs the first decoded spectrum to the second spectrum decoding unit 205.
  • the second spectrum decoding unit 205 generates the second decoded spectrum by decoding the second encoded information using the first decoded spectrum in the subband specified in the quantization mode, and the second decoded spectrum and the first Combined with the decoded spectrum, a reproduction spectrum is generated and output.
  • the denormalization unit 206 adjusts the amplitude (gain) of the reproduction spectrum with reference to the decoded quantization subband energy, and outputs this to the frequency-time conversion unit 207.
  • the frequency-time conversion unit 207 converts the reproduction spectrum in the frequency domain into an output acoustic signal in the time domain and outputs it.
  • the frequency-time conversion there is an inverse conversion of the conversion given in frequency-time.
  • the acoustic signal decoding device of the present embodiment it is possible to realize high-quality acoustic signal decoding while reducing the overall bit rate.
  • the encoding device and the decoding device of the present disclosure may be in a semi-finished product or component level form as represented by a system board or a semiconductor element, and also include a finished product level form such as a terminal device or a base station device. It is a concept.
  • the encoding device and the decoding device according to the present disclosure are in a semi-finished product or a component level form, they are combined with an antenna, a DA / AD converter, an amplifying unit, a speaker, a microphone, and the like to obtain a finished product level form.
  • FIGS. 1, 2, 4, and 5 represent the configuration and operation (method) of hardware designed exclusively, and execute the operation (method) of the present disclosure on general-purpose hardware. Including a case where the program is realized by installing a program for executing the program and executing the program on the processor.
  • Examples of general-purpose hardware electronic computers include personal computers, various portable information terminals such as smartphones, and mobile phones.
  • the hardware designed for exclusive use is not limited to the finished product level (consumer electronics) such as a mobile phone and a fixed phone, but includes a semi-finished product and a component level such as a system board and a semiconductor element.
  • the acoustic signal encoding device and the acoustic signal decoding device according to the present disclosure can be applied to a machine part related to recording, transmission, and reproduction of an acoustic signal.
  • DESCRIPTION OF SYMBOLS 100 Acoustic signal encoding apparatus 101 Time-frequency conversion part 102 Subband energy quantization part 103 Tonality calculation part 104 Bit allocation part 105 Normalization part 106 1st spectrum quantization part 107 2nd spectrum quantization part 108 Multiplexing part 111 Bit reservoir 112 Bit reservoir 113 Bit allocation calculation unit 114 Quantization mode determination unit 200 Acoustic signal decoding device 201 Separation unit 202 Subband energy decoding unit 203 Bit allocation unit 204 First spectrum decoding unit 205 Second spectrum decoding unit 206 Denormalization Section 207 Frequency-time conversion section 211 Bit reservoir 212 Bit reservoir 213 Bit allocation calculation section 214 Quantization mode determination section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

音響信号符号化装置(100)は、入力信号からサブバンドスペクトルを出力する時間周波数変換部(101)と、サブバンドエネルギー量子化部(102)と、サブバンドスペクトルのトーナル性を分析するトーナリティ計算部(103)と、トーナル性の分析結果及び量子化サブバンドエネルギーに基づき、第2量子化部で量子化する第2サブバンドを選択し、第1量子化部で量子化する第1サブバンドに配分される第1ビット数を決定するビット配分部(104)と、第1ビット数からなるビットを用いて符号化する第1量子化部(106)と、ピッチフィルタを用いて符号化する第2量子化部(107)と、多重化部(108)と、を有する。

Description

音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法
 本開示は、音声信号や音楽信号等の音響信号の音質を改善する符号化技術、および復号技術に関する。
 音響信号を低ビットレートで圧縮する符号化技術は、移動体通信における電波等の有効利用を実現する重要な技術である。さらに、近年通話音声の品質向上に対する期待が高まっており、臨場感の高い通話サービスの実現が望まれている。これを実現するためには、周波数帯域の広い音響信号を高ビットレートで符号化すればよい。しかし、このアプローチは電波や周波数帯域の有効利用と相反する。
 ここで、例としてG.719規格(非特許文献1)に採用されている音響信号符号化技術について検討する。
 G.719規格では、音響信号を符号化するに際し、音響信号を周波数変換したスペクトルに対し所定のビットを割り当てる。具体的には、スペクトルを所定の周波数帯域幅を有するサブバンドに分割し、エネルギーの大きいサブバンドから順にラティスベクトル量子化により量子化を行うためのユニット(必要ビット数の単位)を以下の通り配分する。
 (1)
 全サブバンドの中からエネルギーが最大のサブバンドに1ユニットを配分する。
 1スペクトル当たり1ビットずつ配分するので、例えばサブバンド内のスペクトルサンプル数が8なら、1ユニットは8ビットとなる(なお、1スペクトル当たりに配分可能なビット数は最大で9ビットで、例えばサブフレームのスペクトルサンプル数が8なら最終的に72ビットまで割り当てが可能)。
 (2)
 1ユニットを配分したサブバンドは、量子化サブバンドエネルギーを2レベル(6dB)下げる。もし、1ユニットを配分したサブバンドへのビット割り当てが最大値(9ビット)を超えていたら、次回以降のループで量子化対象から外す。
 (3)
 上記(1)に戻って同じ処理を繰り返す。
 図6は、各サブバンドにおけるサブバンドエネルギーを示す。横軸は周波数、縦軸は対数目盛の振幅を表す。図中、サブバンドエネルギーは点ではなく横線で表されているが、この一つ一つの幅が、各サブバンドの周波数帯域幅を表している。
 図7、図8は、G.719規格で定められた符号化方法を用いた場合の各サブバンドへのビット配分結果例を示す図である。各図の横軸は周波数、縦軸は割り当てられたビット数を表す。そして、図7は、ビットレートが128kbit/s、図8は、ビットレートが64kbit/sの場合である。
 128kbit/sの場合は割り当て可能なビット資産が豊富にあるので、多くのサブバンド(スペクトル)に、最大値である9ビットを割り当てることが可能であり、音響信号を高品質に保つことができる。
 これに対し、64kbit/sの場合は、最大値である9ビットが割り当てられたサブバンドがなくなるが、逆にビットが割り当てられていないサブバンドもなく、音響信号の品質の劣化を抑えつつ電波や周波数帯域の有効利用を両立できているといえる。
特表2013-534328号公報 国際公開第2005/027095号
ITU―T Standard G.719、2008年
 しかし、さらなる電波や周波数帯域の有効利用を図る必要がある。ここで、G.719規格で採用されている上記方法を用いて20kbp/s以下程度の低ビットレートで32kHz程度のサンプリング周波数の音響信号を符号化する場合には、全てのサブバンドを量子化するためのユニット(ビット数)を確保できなくなるという問題がある。
 図9は、20kbit/sでのG.719規格で定められた符号化方法を用いた場合の各サブバンドへのビット配分結果例を示す図である。このように、高周波数域部分はもちろん、場合によっては聴覚上重要な低周波数域部分についてもビットを割り当てることができなくなる結果、そのサブバンドにおけるスペクトルは符号化できないこととなり、音響信号の品質の劣化が著しくなる。
 これに対し、ビットの割り当て方法をダイナミックに変更する方法を採用することも考えられる(特許文献1)。
 しかし、符号化方法(量子化方法)を変更せずに単一の符号化方法(量子化方法)でビット割り当て方法を変更することにより、音響信号の品質劣化を対策するにも限界がある。
 本開示は、全体のビットレートを低減させつつも、高品質の音響信号を実現するための符号化技術および復号技術を提供する。
 本開示の音響信号符号化装置は、入力音響信号を周波数領域に変換してスペクトルを生成し、スペクトルを所定の周波数帯域毎のサブバンドに分割してサブバンドスペクトルを出力する時間周波数変換部と、サブバンド毎に量子化サブバンドエネルギーを求めるサブバンドエネルギー量子化部と、サブバンドスペクトルのトーナル性を分析して分析結果を出力するトーナリティ計算部と、トーナル性の分析結果および量子化サブバンドエネルギーに基づき、サブバンドの中から第2量子化部で量子化する第2サブバンドを選択し、第1量子化部で量子化する第1サブバンドに配分される第1のビット数を決定する、ビット配分部と、第1量子化部及び第2量子化部から出力された符号化情報、量子化サブバンドエネルギー、およびトーナル性の分析結果を含む情報を多重化し、出力する多重化部と、を構成する。第1量子化部は、第1サブバンドに含まれるサブバンドスペクトルを、第1のビット数からなるビットを用いてパルス符号化し、第2量子化部は、第2サブバンドに含まれるサブバンドスペクトルを、ピッチフィルタを用いて符号化する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、またはコンピュータプログラムで実現されてもよく、システム、装置、方法、集積回路、およびコンピュータプログラムの任意な組み合わせで実現されてもよい。
 本開示の符号化装置、復号装置等によれば、全体のビットレートを低減させつつも、高品質な音響信号を符号化および復号することができる。
本開示の実施形態1における符号化装置の構成図 本開示の実施形態1における符号化装置のビット配分部の詳細構成図 本開示の実施形態1における符号化装置の動作を示す説明図 本開示の実施形態2における復号装置の構成図 本開示の実施形態2における復号装置のビット配分部の詳細構成図 従来技術の符号化装置におけるサブバンドエネルギーを説明する説明図 従来技術の符号化装置におけるサブバンドへのビット配分結果を説明する説明図 従来技術の符号化装置におけるサブバンドへのビット配分結果を説明する説明図 従来技術の符号化装置におけるサブバンドへのビット配分結果を説明する説明図
 以下、本開示の実施形態の構成および動作について、図面を参照して説明する。なお、本開示の符号化装置への入力信号、および復号装置からの出力信号である音響信号は、音声信号、より帯域の広い音楽信号、さらにはこれらが混在する信号も包含する概念である。
 本開示において、「入力音響信号」とは、音楽信号や音声信号、あるいは両者が混在した信号も包含する概念である。また、「量子化サブバンドエネルギー」とは、サブバンド内のサブバンドスペクトルのエネルギーの総和または平均であるサブバンドエネルギーを量子化したものであり、サブバンドエネルギーは例えばサブバンド内のサブバンドスペクトルの二乗和で求めることができる。「トーナル性」とは、特定の周波数成分にスペクトルのピークが立っている度合いをいい、その分析結果は、数値や符号などで表現することができる。「パルス符号化」とは、パルスを用いてスペクトルを近似する符号化をいう。
 「相対的に低い」とは、サブバンド間を比較してより低いものをいい、例えば全サブバンドの平均よりも低い場合や、所定の値よりも低い場合がこれにあたる。「高周波数域のサブバンド」とは、複数のサブバンドのうち、高周波数側に位置するサブバンドをいう。
 なお、実施形態や特許請求の範囲に記載の、第1(スペクトル)量子化部、第2(スペクトル)量子化部、第1(スペクトル)復号部、第2(スペクトル)復号部、第1サブバンド、第2サブバンド、第3サブバンド、第4サブバンド、第1のビット数、第2のビット数、第3のビット数、第4のビット数は、それぞれカテゴリーを意味するものであり、順序を意味するものではない。
 (実施形態1)
 図1は、実施形態1にかかる音響信号符号化装置100の構成、および動作を示すブロック図である。図1に示す音響信号符号化装置100は、時間―周波数変換部101、サブバンドエネルギー量子化部102、トーナリティ計算部103、ビット配分部104、正規化部105、第1スペクトル量子化部106、第2スペクトル量子化部107、多重化部108により構成される。また、多重化部108には、アンテナAが接続されている。そして、音響信号符号化装置100とアンテナAとを合わせて、端末装置または基地局装置を構成する。
 時間―周波数変換部101は、時間領域の入力音響信号を周波数領域に変換して入力音響信号スペクトル(以下、「スペクトル」とする。)を生成する。時間―周波数変換の例としてMDCT(修正離散コサイン変換)が挙げられるが、これに限定されず、例えば、DCT(離散コサイン変換)、DFT(離散フーリエ変換)、フーリエ変換等を用いてもよい。
 また、時間―周波数変換部101は、スペクトルを所定の周波数帯域であるサブバンドに分割する。所定の周波数帯域は、等間隔である場合の他、例えば高周波数域では広く低周波数域では狭くするなど、異なる間隔であってもよい。
 そして、時間―周波数変換部101は、サブバンド毎に分割したスペクトルを、サブバンドスペクトルとしてサブバンドエネルギー量子化部102、トーナリティ計算部103、および正規化部105に出力する。
 サブバンドエネルギー量子化部102は、サブバンド毎にサブバンドスペクトルのエネルギーであるサブバンドエネルギーを求め、これを量子化して量子化サブバンドエネルギーを求める。具体的には、サブバンド内のサブバンドスペクトルの二乗和でサブバンドエネルギーを求めることができるが、これに限らない。例えば、サブバンド毎にサブバンドスペクトルの振幅を積分してサブバンドエネルギーを求めることができる。また、サブバンドエネルギーを平均化する場合は、二乗和をサブバンド内のスペクトル数(サブバンド幅)で除算する。そして、このようにして求めたサブバンドエネルギーを所定の刻み幅で量子化する。
 そして、求めた量子化サブバンドエネルギーを、正規化部105、およびビット配分部104に出力するとともに、量子化サブバンドエネルギーを符号化した符号化量子化サブバンドエネルギーを多重化部108に出力する。
 トーナリティ計算部103は、各サブバンドに含まれるサブバンドスペクトルを分析して、トーナル性を判定する。トーナル性とは、特定の周波数成分にスペクトルのピークが立っている度合いをいい、際立ったピークが存在することを意味するピーク性を含む概念である。定量的には、例えば、対象とするサブバンド内の平均スペクトルの振幅と、そのサブバンド内に存在する最大スペクトルの振幅との比で求めることができ、この値が所定の閾値を超える場合、そのサブバンドのスペクトルはトーナル性(ピーク性)を有すると定義する。本実施形態では、所定の閾値を超えている場合はピーク/トーナルフラグとして1を、所定の閾値以下の場合はピーク/トーナルフラグとして0を生成し、これを分析結果としてビット配分部104、および多重化部108に出力する。もちろん、上記比を直接分析結果として出力してもよい。
 トーナリティ計算部の意義は次の通りである。
 低ビットレート条件下においては、雑音的なスペクトルのようにスペクトルのエネルギーがサブバンド全体に分散しているスペクトルの効率的な量子化には、ピッチフィルタに基づく方法(つまり、低周波数域スペクトルを利用して高周波数域スペクトルを表現する方法)を用いることが有効である。それゆえ、サブバンド内のスペクトルのピーク性/トーナル性の尺度(ピークパワーと平均パワーの比など)からサブバンド内のエネルギー分散度合を判定して、ピーク性/トーナル性が高くないスペクトルのサブバンドはピッチフィルタに基づく量子化の対象にする。
 ビット配分部104は、サブバンド毎の量子化サブバンドエネルギー、およびピーク/トーナルフラグを参照して、各サブバンドにおけるサブバンドスペクトルに対し、符号化に用いることができる総ビット数を意味する、ビット資産からビットを割り当てる。具体的には、第1スペクトル量子化部で量子化するサブバンドである第1サブバンドに割り当てるビット数である、第1のビット数を計算・決定し、これを第1スペクトル量子化部106に、配分ビット情報として出力する。また、第2スペクトル量子化部107で量子化するサブバンドである、第2サブバンドを選択・特定し、これを第2スペクトル量子化部107に量子化モードとして出力する。
 ビット配分部104の構成及び動作の詳細は後述する。
 なお、ビット配分部104は、本実施形態では、ピーク/トーナルフラグおよびサブバンド毎の量子化サブバンドエネルギーの順で参照するが、参照の順序は任意である。
 また、第2スペクトル量子化部107で量子化の対象となる第2サブバンドは、全帯域を候補としてもよいが、一般的に量子化サブバンドエネルギーが低い帯域、およびトーナル性が低い帯域は、主として高周波数域であるから、特定の高周波数域に存在するサブバンドのみを対象としてもよい。例えば、高周波数域の4つまたは5つのサブバンドのみを対象とすることができる。
 あるいは、音響信号は通常、低周波数域側がトーナル性が高く、高周波数域側はトーナル性が低いため、実質的には高周波数域側のサブバンドがピッチフィルタに基づく量子化の対象となる。このため、トーナル性で選択されたサブバンドから高周波数域側は全てピッチフィルタによる量子化の対象とし、このサブバンドの番号だけを量子化モードとして送信する方法でもよい。
 正規化部105は、入力された量子化サブバンドエネルギーで各サブバンドスペクトルを正規化(除算)することにより、正規化サブバンドスペクトルを生成する。これにより、サブバンド間での振幅の大きさの違いが正規化される。そして、正規化部105は、正規化サブバンドスペクトルを第1スペクトル量子化部106、および第2スペクトル量子化部107に出力される。
 なお、正規化部105は任意の構成である。
 また、正規化部105は、本実施形態では1つの構成であるが、第1スペクトル量子化部106、および第2スペクトル量子化部107のそれぞれの前段に配置して2つとしてもよい。
 第1スペクトル量子化部106は、第1量子化部の一例であって、ビット配分部104で配分された第1のビット数からなるビットを用いて、入力された正規化サブバンドスペクトルのうち第1スペクトル量子化部106で量子化すべき第1サブバンドに属するサブバンドスペクトルを量子化する。そして、量子化の結果を、量子化スペクトルとして第2スペクトル量子化部107に出力するとともに、量子化スペクトルを符号化して生成した第1符号化情報を多重化部108に出力する。
 第1スペクトル量子化部106はパルス符号部を用いるが、パルス符号部の例として、ラティスベクトル量子化を行うラティスベクトル量子化部、少数のパルスでサブバンドスペクトルを近似するパルス符号化を行うパルス符号化部が挙げられる。つまり、トーナル性の高いスペクトルの量子化に適した量子化方法、少数のパルスで量子化する方法であれば、任意の量子化部を用いることができる。
 なお、非常に低いビットレートでは、ラティスベクトル量子化よりも少数のパルスでサブバンドスペクトルを近似するパルス符号化による量子化の方がより音質を維持する効果が期待できる。
 第2スペクトル量子化部107は、第2量子化部の一例であって、例えば以下のような拡張帯域(ピッチフィルタによる予測モデル)による量子化法を採ることができる。
 ここで、ピッチフィルタとは、以下の式1で表される処理を行う処理ブロックである。
Figure JPOXMLDOC01-appb-M000001
 一般的にピッチフィルタとは、時間軸の信号に対してピッチ周期(T)を強調する(周波数軸上でピッチ成分を強調する)フィルタのことを指し、タップ数が1の場合、離散信号x[i]に対して例えば式1で表されるデジタルフィルタである。しかしながら、本実施形態におけるピッチフィルタは、式1で表される処理を行う処理ブロックとして定義され、必ずしも時間軸の信号に対してピッチ強調を行うものではない。
 本実施形態では、前記ピッチフィルタ(式1で表される処理ブロック)を量子化MDCT係数列Mq[i]に適用する。具体的には式1において、x[i]=0(i≧K,Kは符号化対象とするMDCT係数の周波数下限)、y[i]=Mq[i](i<K)としてy[i](K≦i≦K’,K’は符号化対象とするMDCT係数の周波数上限)を算出する。符号化対象とするMDCT係数Mt[i]と算出されたy[i]との誤差を最小とするTをラグ情報として符号化する.このようなピッチフィルタに基づくスペクトル符号化は、特許文献2などに開示されている。
 第2スペクトル量子化部107は、量子化モードを参照して第2スペクトル量子化部107で量子化すべき第2サブバンド(正規化サブバンドスペクトル)を特定する。これにより、前記KおよびK’が特定される。そして、特定した第2サブバンド(周波数K~K’)にかかる正規化サブバンドスペクトル(前記Mt[i],K≦i≦K’ に相当)が、量子化スペクトル(前記Mq[i],i<K に相当)との関係で相関が最大となる量子化スペクトルのサブバンドもしくは帯域を探索し、その位置をラグ情報(前記Tに相当)として生成する。ラグ情報は、サブバンドや帯域の絶対位置や相対位置、あるいはサブバンドの番号が例として挙げられる。そして、第2スペクトル量子化部107は、ラグ情報を符号化して、第2符号化情報として多重化部108に出力する。
 なお、本実施形態では、符号化量子化サブバンドエネルギーを多重化部108で多重化して送信しており、復号部側でゲインを生成できることから、ゲインは符号化していない。しかし、ゲインを符号化して送るようにしてもよい。その際は、量子化すべき第2サブバンドと相関が最大となる量子化スペクトルのサブバンドとの間のゲインを算出し、第2スペクトル量子化部107は、ラグ情報およびゲインを符号化して、第2符号化情報として多重化部108に出力する。
 なお、高周波数域のサブバンドは低周波数域のサブバンドよりバンド幅を広く設定するのが一般的だが、コピーされる低周波数域のサブバンドの一部について、エネルギーが小さいため、ラティスベクトル量子化の対象となっていない場合もあり得る。このような場合には、そのようなサブバンドはゼロスペクトルと見なすか、雑音付加を行ってサブバンド間のスペクトルの急変を回避すればよい。
 多重化部108は、量子化サブバンドエネルギー、第1符号化情報、第2符号化情報、およびピーク/トーナルフラグを多重化して符号化情報としてアンテナAに出力する。
 そして、アンテナAは、符号化情報を音響信号復号装置に向けて送信する。符号化情報は、各種ノードや基地局を経由して音響信号復号装置に至る。
 次に、ビット配分部104の詳細について説明する。
 図2は、実施形態1にかかる音響信号符号化装置100のビット配分部104の詳細な構成、および動作を示すブロック図である。図2に示すビット配分部104は、ビットリザーバー111、ビットリザーバー112、ビット配分計算部113、量子化モード決定部114から構成される。
 ビットリザーバー111は、トーナリティ計算部103の出力であるピーク/トーナルフラグを参照して、ピーク/トーナルフラグが0の場合、第2スペクトル量子化部107で行われる第2スペクトル量子化に必要なビット数を確保する。
 本実施形態では、ピッチフィルタに基づき、ラグ情報の符号化に必要なビット数を確保する。そして、確保されたビット数は、量子化に用いることができる総ビット数であるビット資産から除かれ、残ったビット資産がビットリザーバー112に出力される。なお、ビット資産はサブバンドエネルギー量子化部102から供給されているが、これは量子化サブバンドエネルギーを可変長符号化するために必要なビット数を除いたビットが、第1スペクトル量子化部106、第2スペクトル量子化部107、およびピーク/トーナルフラグの量子化(符号化)に用いることができることを表現したものである。サブバンドエネルギー量子化部102がビット資産の情報を生成するとは限らない。
 ビットリザーバー112は、ピーク/トーナルフラグに用いるビット数を確保する。例えば、本実施形態では、ピーク/トーナルフラグを高周波数域の5サブバンドで送るので、ビットリザーバー112は5ビットを確保する。
 そして、ビットリザーバー112は、ビットリザーバー111から入力されたビット資産からビットリザーバー112で確保されたビット数を除いたビット数を、適応ビット配分部中のビット配分計算部113に出力する。なお、ビットリザーバー111およびビットリザーバー112で確保されたビット数の合計が、第3ビット数となる。また、ピーク/トーナルフラグがゼロであるサブバンドが、第3サブバンドに該当する。
 なお、ビットリザーバー111とビットリザーバー112は順序を入れ替えてもよい。また、本実施形態では、ビットリザーバー111とビットリザーバー112ブロックを分けているが、これを一つのブロックで同時に行ってもよい。あるいは、これらの動作を、ビット配分計算部113の中で行ってもよい。
 ビット配分計算部113は、第1スペクトル量子化部106で量子化するサブバンドへのビット配分を計算する。具体的には、まず、ビットリザーバー112から出力されたビット数を、量子化サブバンドエネルギーを参照して各サブバンドに配分する。配分方法は、従来技術の項で説明した通り、量子化サブバンドエネルギーの大小で聴覚的に重要かどうかを判断し、重要と思われるサブバンドにビット配分を重点的に行う。結果として、量子化サブバンドエネルギーがゼロ、またはゼロ及び所定の値よりも低いサブバンドにビットが配分されない。
 また、配分の際、入力されるピーク/トーナルフラグを参照し、ピーク/トーナルフラグが0のサブバンド(第3サブバンド)はビット配分の対象から外す。つまり、ピーク性が高いサブバンド(ここではピーク/トーナルフラグが1に設定されているサブバンド)のみをビット配分の対象サブバンドとしてビットを配分していく。そして、ビットが配分されるべきサブバンド(第1サブバンド)を特定するとともに各サブバンドに配分されるビット数を合わせて配分ビット情報とし、これをまず量子化モード決定部114に出力する。
 量子化モード決定部114は、ビット配分計算部113から出力された配分ビット情報およびピーク/トーナルフラグを受信する。そして、トーナル性が高い(第1スペクトル量子化部106の量子化対象である)のにビット配分されていない高周波数域サブバンドがある場合は、このサブバンドは第2スペクトル量子化部107で量子化するサブバンド(第4サブバンド)に定義し直し、第2スペクトル量子化部での量子化に必要なビット数(第4のビット数)を配分ビット情報から減算するためにビット配分計算部113に出力する。すなわち、その帯域に第2スペクトル量子化部107で量子化するのに必要なビット数を割り当て、その割り当てたビット数(第4のビット数)を出力する。これに代えて、割り当てたビット数だけ第1スペクトル量子化部106で使えるビット資産から減じて、これをビット配分計算部113に出力してもよい。
 また、量子化モード決定部114は、第2スペクトル量子化部107で量子化するサブバンドを特定し、これを第2スペクトル量子化部107に量子化モードとして出力する。具体的には、トーナリティが低い(ピーク/トーナルフラグが0)である高周波数域サブバンド(第3サブバンド)、およびビットが配分されていない高周波数域サブバンド(第4サブバンド)を、第2スペクトル量子化部107で量子化するサブバンド(第2サブバンド)と定め、量子化モードとして出力する。
 再びビット配分計算部113において、ビットリザーバー112から入力されたビット数(ビット資産)から量子化モード決定部114から受信したビット数(第4のビット数)を減じることによりビット資産を更新し、第1スペクトル量子化部106で量子化するサブバンドへのビット配分を再計算する。更新されたビット資産を量子化モード決定部から受け取る場合は、更新されたビット資産を用いて、第1スペクトル量子化部106で量子化するサブバンドへのビット配分を再計算する。最終的に、第1のビット数は、総ビット数(ビット資産)から、第3のビット数および第4のビット数を減じた値となる。
 そして、再計算後のビット数(第1のビット数)および第1スペクトル量子化部106で量子化するサブバンド(第1サブバンド)の情報を、配分ビット情報として、今度は第1スペクトル量子化部106に出力する。
 なお、第1回目にビット配分計算部113でビット配分を計算した結果、何れのサブバンドもビット配分されているなど再計算の必要がない場合は、直接配分ビット情報を第1スペクトル量子化部106に出力してもよい。
 図3は、実施形態1にかかる音響信号符号化装置100の動作、具体的には、ビット配分部104の動作を示すフロー図である。
 まず、ビット配分部104は、サブバンドエネルギー量子化部102から、量子化サブバンドエネルギーを取得する(S1)。
 次に、ビット配分部104は、高周波数域におけるピーク/トーナルフラグをトーナリティ計算部103から取得する(S2)。
 そして、ビット配分部104は、ピーク/トーナルフラグに基づき、第2スペクトル量子化部107で量子化すべきサブバンド(第3サブバンド)を特定するとともに、ビットリザーバー111およびビットリザーバー112において、第2スペクトル量子化部107で量子化するためのビット(第3のビット数)を確保する(S3)。
 ビット配分部104は、ビット配分計算部113において、量子化サブバンドエネルギーに基づき、第1スペクトル量子化部106の量子化対象となっているサブバンドへ配分するビット数を決定する(S4)。
 ビット配分部104は、量子化モード決定部114において、ビット配分計算部113で決定された高周波数域サブバンドへの配分ビットをチェックし、必要に応じて第2スペクトル量子化部107で量子化すべきサブバンド(第2サブバンド)を再特定し、第1サブバンド量子化部106のためのビット資産を更新する(S5)。
 そして、最後に、ビット配分部104は、再びビット配分計算部113において、更新したビット資産を用いて、第1スペクトル量子化部106へのビット配分(第1のビット数)を再計算する(S6)。
 以上、本実施形態の音響信号符号化装置によれば、全体のビットレートを低減させつつも、高品質な音響信号の符号化を実現することができる。
 特に、図2、図3の構成、および動作によれば、サブバンド幅が特に広くなる高周波数域に、量子化をしない(ビット配分が0となる)サブバンドを発生させることなく、第1量子化部で量子化するサブバンド数を最大とするビット配分を実現できる。したがって、限られたビットレートにおいてベストパフォーマンスを引き出すことができる、適応ビット配分を実現できる。
 (実施形態2)
 図4は、実施形態2にかかる音響信号復号装置200の構成、および動作を示すブロック図である。図4に示す音響信号復号装置200は、分離部201、サブバンドエネルギー復号部202、ビット配分部203、第1スペクトル復号部204、第2スペクトル復号部205、逆正規化部206、周波数―時間変換部207により構成される。また、分離部201には、アンテナAが接続されている。そして、音響信号復号装置200およびアンテナAを合わせて、端末装置または基地局装置を構成する。
 分離部201は、アンテナAで受信された符号化情報を受信し、符号化量子化サブバンドエネルギー、第1符号化情報、第2符号化情報、およびピーク/トーナルフラグを分離する。そして、符号化量子化サブバンドエネルギーはサブバンドエネルギー復号部202、第1符号化情報は第1スペクトル復号部204、第2符号化情報は第2スペクトル復号部205、そしてピーク/トーナルフラグはビット配分部203、へと出力される。
 サブバンドエネルギー復号部202は、符号化量子化サブバンドエネルギーを復号して、復号量子化サブバンドエネルギーを生成し、ビット配分部203および逆正規化部206に出力される。
 ビット配分部203は、サブバンド毎の復号量子化サブバンドエネルギー、およびピーク/トーナルフラグを参照して、第1スペクトル復号部204および第2スペクトル復号部205で割り当てるビットの配分を決定する。具体的には、第1スペクトル復号部204で第1符号化情報を復号した際に割り当てるビット数(第1のビット数)およびビットを割り当てられるサブバンド(第1サブバンド)を決定し、配分ビット情報として出力するとともに、第2スペクトル復号部205で復号される第2符号化情報が復号されるべきサブバンド(第2サブバンド)を特定・選択し、これを第2スペクトル復号部205に量子化モードとして出力する。
 ビット配分部203は、図5で示した通り、符号化装置側で説明したビット配分部104の構成および動作と同じであるので、動作の詳細は符号化装置側のビット配分部104の説明を引用する。
 第1スペクトル復号部204は、配分ビット情報に示された第1のビット数を用いて第1符号化情報を復号して第1復号スペクトルを生成し、第2スペクトル復号部205に出力する。
 第2スペクトル復号部205は、量子化モードで特定されたサブバンドに第1復号スペクトルを用いて第2符号化情報を復号して第2復号スペクトルを生成し、当該第2復号スペクトルと第1復号スペクトルと結合して再生スペクトルを生成し、出力する。
 逆正規化部206は、復号量子化サブバンドエネルギーを参照して再生スペクトルの振幅(ゲイン)を調整し、これを周波数―時間変換部207に出力する。
 周波数―時間変換部207は、周波数領域の再生スペクトルを時間領域の出力音響信号に変換して出力する。周波数―時間変換の例として、周波数―時間で挙げた変換の逆変換が挙げられる。
 以上、本実施形態の音響信号復号装置によれば、全体のビットレートを低減させつつも、高品質な音響信号の復号を実現することができる。
 (総括)
 以上、実施形態1、2で本開示の音響信号符号化装置および音響信号復号装置を説明した。本開示の符号化装置および復号装置は、システムボードや半導体素子に代表されるような半完成品や部品レベルの形態でもよいし、端末装置や基地局装置のような完成品レベルの形態も含む概念である。本開示の符号化装置および復号装置が半完成品や部品レベルの形態の場合は、アンテナ、DA/ADコンバータ、増幅部、スピーカ、およびマイク等と組み合わせることにより完成品レベルの形態となる。
 なお、図1、図2、図4、図5のブロック図は、専用に設計されたハードウェアの構成および動作(方法)を表すとともに、汎用のハードウェアに本開示の動作(方法)を実行するためのプログラムをインストールしてプロセッサで実行することにより実現する場合も含む。汎用のハードウェアたる電子計算機として、例えばパーソナルコンピュータ、スマートフォンなどの各種携帯情報端末、および携帯電話などが挙げられる。
 また、専用に設計されたハードウェアは、携帯電話や固定電話などの完成品レベル(コンシューマエレクトロニクス)に限らず、システムボードや半導体素子など、半完成品や部品レベルをも含むものである。
 本開示にかかる音響信号符号化装置および音響信号復号装置は、音響信号の記録、伝送、再生に関係する機部に応用が可能である。
 100 音響信号符号化装置
 101 時間―周波数変換部
 102 サブバンドエネルギー量子化部
 103 トーナリティ計算部
 104 ビット配分部
 105 正規化部
 106 第1スペクトル量子化部
 107 第2スペクトル量子化部
 108 多重化部
 111 ビットリザーバー
 112 ビットリザーバー
 113 ビット配分計算部
 114 量子化モード決定部
 200 音響信号復号装置
 201 分離部
 202 サブバンドエネルギー復号部
 203 ビット配分部
 204 第1スペクトル復号部
 205 第2スペクトル復号部
 206 逆正規化部
 207 周波数―時間変換部
 211 ビットリザーバー
 212 ビットリザーバー
 213 ビット配分計算部
 214 量子化モード決定部

Claims (14)

  1.  入力音響信号を周波数領域に変換してスペクトルを生成し、前記スペクトルを所定の周波数帯域毎のサブバンドに分割してサブバンドスペクトルを出力する時間周波数変換部と、
     前記サブバンド毎に量子化サブバンドエネルギーを求めるサブバンドエネルギー量子化部と、
     前記サブバンドスペクトルのトーナル性を分析して分析結果を出力するトーナリティ計算部と、
     前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2量子化部で量子化する第2サブバンドを選択し、第1量子化部で量子化する第1サブバンドに配分される第1のビット数を決定する、ビット配分部と、
     前記第1量子化部及び前記第2量子化部から出力された符号化情報、前記量子化サブバンドエネルギー、および前記トーナル性の分析結果を含む情報を多重化し、出力する多重化部と、を備え、
     前記第1量子化部は、前記第1サブバンドに含まれるサブバンドスペクトルを、前記第1のビット数からなるビットを用いてパルス符号化し、
     前記第2量子化部は、前記第2サブバンドに含まれるサブバンドスペクトルを、ピッチフィルタを用いて符号化する、音響信号符号化装置。
  2.  前記ビット配分部は、
     高周波数域の前記サブバンドから前記第2サブバンドを選択する、
     請求項1に記載の音響信号符号化装置。
  3.  前記ビット配分部は、
     前記トーナル性が所定の閾値より低い前記サブバンドを、前記第2サブバンドとして選択する、
     請求項2に記載の音響信号符号化装置。
  4.  前記ビット配分部は、
     前記量子化サブバンドエネルギーがゼロまたは所定の値より低い前記サブバンドを、前記第2サブバンドとして選択する、
     請求項2に記載の音響信号符号化装置。
  5.  前記ビット配分部は、
     量子化に用いることのできる総ビット数から、前記第2サブバンドに配分される第2のビット数を減じたものを、前記第1のビット数として決定する、
     請求項1に記載の音響信号符号化装置。
  6.  前記ビット配分部は、
     前記総ビット数の中から、前記トーナル性の分析結果に基づいて選択された第3サブバンドに配分される第3のビット数を計算し、
     前記総ビット数から前記第3のビット数を減じたビット数を前記量子化サブバンドエネルギーに基づいて前記第1サブバンドに割り当てた際に、ビットが割り当てられない前記サブバンドを第4サブバンドとして選択し、前記第4サブバンドを前記第2量子化部で符号化する場合に配分される第4のビット数を計算し、
     前記第3サブバンドおよび前記第4サブバンドを前記第2量子化部で量子化する前記第2サブバンドとして新たに選択し、前記総ビット数から前記第3のビット数および前記第4のビット数を減じたビット数を前記第1量子化部で量子化する前記第1サブバンドに配分する前記第1のビット数として決定する、
     請求項5に記載の音響信号符号化装置。
  7.  前記トーナリティ計算部の分析結果は、トーナル性が所定の閾値より高いか否かを示すフラグとして出力される、
     請求項1に記載の音響信号符号化装置。
  8.  音響信号符号化装置から出力された符号化情報を復号する音響信号復号装置であって、
     前記符号化情報を、第1符号化情報、第2符号化情報、サブバンド毎に求められたエネルギーが量子化された量子化サブバンドエネルギー、およびサブバンド毎に計算されるトーナル性の分析結果、に分離する分離部と、
     前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2復号部で復号する前記第2サブバンドを選択し、第1復号部で復号する第1サブバンドに配分される前記第1のビット数を決定するビット配分部と、
     前記第2復号部から出力されるスペクトルを時間領域に変換して出力音響信号を生成し出力する周波数時間変換部と、を備え、
     前記第1復号部は、前記第1符号化情報を、前記第1のビット数からなるビットを用いて復号することにより第1復号スペクトルを生成し、
     前記第2復号部は、前記第2符号化情報を復号して第2復号スペクトルを生成し、前記第2復号スペクトルと前記第1復号スペクトルを用いて復号することにより再生スペクトルを生成する、
     音響信号復号装置。
  9.  請求項1に記載の音響信号符号化装置と、
     前記符号化情報を送信するアンテナと、
     を有する端末装置。
  10.  請求項1に記載の音響信号符号化装置と、
     前記符号化情報を送信するアンテナと、
     を有する基地局装置。
  11.  前記符号化情報を受信して前記分離部に出力するアンテナと、
     請求項8に記載の音響信号復号装置と、
     を有する端末装置。
  12.  前記符号化情報を受信して前記分離部に出力するアンテナと、
     請求項8に記載の音響信号復号装置と、
     を有する基地局装置。
  13.  入力音響信号を周波数領域に変換してスペクトルを生成し、
     前記スペクトルを所定の周波数帯域毎のサブバンドに分割してサブバンドスペクトルを出力し、
     前記サブバンド毎に量子化サブバンドエネルギーを求め、
     前記サブバンドスペクトルのトーナル性を分析して分析結果を出力し、
     前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2サブバンドを選択し、
     第1サブバンドに配分される第1のビット数を決定し、
     前記第1サブバンドに含まれる前記サブバンドスペクトルを、前記第1のビット数からなるビットを用いて符号化して第1符号化情報を生成し、
     前記第2サブバンドに含まれる前記サブバンドスペクトルを、ピッチフィルタを用いて符号化して第2符号化情報を生成し、
     前記第1符号化情報および前記第2符号化情報を多重化して出力する、
     音響信号符号化方法。
  14.  音響信号符号化装置から出力された符号化情報を復号する音響信号復号方法であって、
     前記符号化情報を、第1符号化情報、第2符号化情報、サブバンド毎に求められたエネルギーが量子化された量子化サブバンドエネルギー、およびサブバンド毎に計算されるトーナル性の分析結果、に分離し、
     前記トーナル性の分析結果および前記量子化サブバンドエネルギーに基づき、前記サブバンドの中から第2サブバンドを選択し、
     第1サブバンドに配分される第1のビット数を決定し、
     前記第1符号化情報を、前記第1のビット数からなるビットを用いて復号して第1復号スペクトルを生成し、
     前記第2符号化情報を復号して第2復号スペクトルを生成し、前記第2復号スペクトルと前記第1復号スペクトルを用いて復号して再生スペクトルを生成し、
     前記再生スペクトルを時間領域に変換して出力音響信号を生成し出力する、
     音響信号復号方法。
PCT/JP2015/003358 2014-07-25 2015-07-03 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法 WO2016013164A1 (ja)

Priority Applications (19)

Application Number Priority Date Filing Date Title
EP20176535.1A EP3723086B1 (en) 2014-07-25 2015-07-03 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method
CN201580015301.4A CN106133831B (zh) 2014-07-25 2015-07-03 音响信号编码装置、音响信号解码装置、音响信号编码方法以及音响信号解码方法
AU2015291897A AU2015291897B2 (en) 2014-07-25 2015-07-03 Acoustic signal encoding device, acoustic signal decoding device, method for encoding acoustic signal, and method for decoding acoustic signal
KR1020167024863A KR102165403B1 (ko) 2014-07-25 2015-07-03 음향 신호 부호화 장치, 음향 신호 복호 장치, 음향 신호 부호화 방법 및 음향 신호 복호 방법
EP15824312.1A EP3174050B1 (en) 2014-07-25 2015-07-03 Audio signal coding apparatus, audio signal decoding device, and methods thereof
SG11201701197TA SG11201701197TA (en) 2014-07-25 2015-07-03 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method
BR112017000629-4A BR112017000629B1 (pt) 2014-07-25 2015-07-03 aparelho de codificação de sinal de áudio e método de codificação de sinal de áudio
MX2016015786A MX356371B (es) 2014-07-25 2015-07-03 Dispositivo de codificacion de señal acustica, dispositivo de decodificacion de señal acustica, metodo para codificar una señal acustica y metodo para decodificar una señal acustica.
RU2017102311A RU2669706C2 (ru) 2014-07-25 2015-07-03 Устройство кодирования аудиосигнала, устройство декодирования аудиосигнала, способ кодирования аудиосигнала и способ декодирования аудиосигнала
CA2958429A CA2958429C (en) 2014-07-25 2015-07-03 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method
PL15824312T PL3174050T3 (pl) 2014-07-25 2015-07-03 Urządzenie do kodowania sygnałów audio, urządzenie do dekodowania sygnałów audio i ich sposoby
PL18186595T PL3413307T3 (pl) 2014-07-25 2015-07-03 Urządzenie do kodowania sygnałów audio, urządzenie do dekodowania sygnałów audio i ich sposoby
JP2016535772A JP6717746B2 (ja) 2014-07-25 2015-07-03 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法
ES15824312T ES2707337T3 (es) 2014-07-25 2015-07-03 Aparato de codificación de señal de audio, dispositivo de decodificación de señal de audio y métodos del mismo
EP18186595.7A EP3413307B1 (en) 2014-07-25 2015-07-03 Audio signal coding apparatus, audio signal decoding device, and methods thereof
US15/353,780 US10311879B2 (en) 2014-07-25 2016-11-17 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method
ZA2017/01428A ZA201701428B (en) 2014-07-25 2017-02-24 Acoustic signal encoding device, acoustic signal decoding device, method for encoding acoustic signal, and method for decoding acoustic signal
US16/370,748 US10643623B2 (en) 2014-07-25 2019-03-29 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method
US16/821,784 US11521625B2 (en) 2014-07-25 2020-03-17 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462028805P 2014-07-25 2014-07-25
US62/028,805 2014-07-25
JP2014-219214 2014-10-28
JP2014219214 2014-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/353,780 Continuation US10311879B2 (en) 2014-07-25 2016-11-17 Audio signal coding apparatus, audio signal decoding apparatus, audio signal coding method, and audio signal decoding method

Publications (1)

Publication Number Publication Date
WO2016013164A1 true WO2016013164A1 (ja) 2016-01-28

Family

ID=55162710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003358 WO2016013164A1 (ja) 2014-07-25 2015-07-03 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法

Country Status (13)

Country Link
US (3) US10311879B2 (ja)
EP (3) EP3723086B1 (ja)
JP (1) JP6717746B2 (ja)
KR (1) KR102165403B1 (ja)
CN (2) CN106133831B (ja)
AU (1) AU2015291897B2 (ja)
BR (1) BR112017000629B1 (ja)
CA (1) CA2958429C (ja)
MX (1) MX356371B (ja)
PL (2) PL3174050T3 (ja)
RU (1) RU2669706C2 (ja)
SG (1) SG11201701197TA (ja)
WO (1) WO2016013164A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312278B (zh) 2014-03-03 2023-08-15 三星电子株式会社 用于带宽扩展的高频解码的方法及设备
KR20240046298A (ko) 2014-03-24 2024-04-08 삼성전자주식회사 고대역 부호화방법 및 장치와 고대역 복호화 방법 및 장치
JP6611042B2 (ja) * 2015-12-02 2019-11-27 パナソニックIpマネジメント株式会社 音声信号復号装置及び音声信号復号方法
US10586546B2 (en) 2018-04-26 2020-03-10 Qualcomm Incorporated Inversely enumerated pyramid vector quantizers for efficient rate adaptation in audio coding
US10573331B2 (en) * 2018-05-01 2020-02-25 Qualcomm Incorporated Cooperative pyramid vector quantizers for scalable audio coding
US10734006B2 (en) 2018-06-01 2020-08-04 Qualcomm Incorporated Audio coding based on audio pattern recognition
CA3145047A1 (en) * 2019-07-08 2021-01-14 Voiceage Corporation Method and system for coding metadata in audio streams and for efficient bitrate allocation to audio streams coding
EP3786948A1 (en) * 2019-08-28 2021-03-03 Fraunhofer Gesellschaft zur Förderung der Angewand Time-varying time-frequency tilings using non-uniform orthogonal filterbanks based on mdct analysis/synthesis and tdar
CN113192517B (zh) * 2020-01-13 2024-04-26 华为技术有限公司 一种音频编解码方法和音频编解码设备
CN113808597A (zh) * 2020-05-30 2021-12-17 华为技术有限公司 一种音频编码方法和音频编码装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336233A (ja) * 1994-06-13 1995-12-22 Sony Corp 情報符号化方法及び装置並びに情報復号化方法及び装置
WO2005027095A1 (ja) * 2003-09-16 2005-03-24 Matsushita Electric Industrial Co., Ltd. 符号化装置および復号化装置
JP2005265865A (ja) * 2004-02-16 2005-09-29 Matsushita Electric Ind Co Ltd オーディオ符号化のためのビット割り当て方法及び装置
WO2011086924A1 (ja) * 2010-01-14 2011-07-21 パナソニック株式会社 音声符号化装置および音声符号化方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283413B2 (ja) 1995-11-30 2002-05-20 株式会社日立製作所 符号化復号方法、符号化装置および復号装置
JP3157116B2 (ja) * 1996-03-29 2001-04-16 三菱電機株式会社 音声符号化伝送システム
US7389227B2 (en) * 2000-01-14 2008-06-17 C & S Technology Co., Ltd. High-speed search method for LSP quantizer using split VQ and fixed codebook of G.729 speech encoder
US7333930B2 (en) * 2003-03-14 2008-02-19 Agere Systems Inc. Tonal analysis for perceptual audio coding using a compressed spectral representation
US7844451B2 (en) 2003-09-16 2010-11-30 Panasonic Corporation Spectrum coding/decoding apparatus and method for reducing distortion of two band spectrums
DE102004007184B3 (de) * 2004-02-13 2005-09-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Quantisieren eines Informationssignals
DE102004007200B3 (de) * 2004-02-13 2005-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audiocodierung
JP4168976B2 (ja) * 2004-05-28 2008-10-22 ソニー株式会社 オーディオ信号符号化装置及び方法
US7562021B2 (en) * 2005-07-15 2009-07-14 Microsoft Corporation Modification of codewords in dictionary used for efficient coding of digital media spectral data
KR101412255B1 (ko) * 2006-12-13 2014-08-14 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 부호화 장치, 복호 장치 및 이들의 방법
JP5403949B2 (ja) 2007-03-02 2014-01-29 パナソニック株式会社 符号化装置および符号化方法
KR101355376B1 (ko) * 2007-04-30 2014-01-23 삼성전자주식회사 고주파수 영역 부호화 및 복호화 방법 및 장치
EP2077550B8 (en) * 2008-01-04 2012-03-14 Dolby International AB Audio encoder and decoder
CN101853663B (zh) * 2009-03-30 2012-05-23 华为技术有限公司 比特分配方法、编码装置及解码装置
CN102063905A (zh) * 2009-11-13 2011-05-18 数维科技(北京)有限公司 一种用于音频解码的盲噪声填充方法及其装置
CN102194458B (zh) * 2010-03-02 2013-02-27 中兴通讯股份有限公司 频带复制方法、装置及音频解码方法、系统
US9236063B2 (en) 2010-07-30 2016-01-12 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for dynamic bit allocation
US8660195B2 (en) * 2010-08-10 2014-02-25 Qualcomm Incorporated Using quantized prediction memory during fast recovery coding
EP4220636A1 (en) 2012-11-05 2023-08-02 Panasonic Intellectual Property Corporation of America Speech audio encoding device and speech audio encoding method
CN104838443B (zh) 2012-12-13 2017-09-22 松下电器(美国)知识产权公司 语音声响编码装置、语音声响解码装置、语音声响编码方法及语音声响解码方法
CN105247614B (zh) * 2013-04-05 2019-04-05 杜比国际公司 音频编码器和解码器
EP3217398B1 (en) * 2013-04-05 2019-08-14 Dolby International AB Advanced quantizer
PL3128513T3 (pl) 2014-03-31 2019-11-29 Fraunhofer Ges Forschung Koder, dekoder, sposób kodowania, sposób dekodowania i program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336233A (ja) * 1994-06-13 1995-12-22 Sony Corp 情報符号化方法及び装置並びに情報復号化方法及び装置
WO2005027095A1 (ja) * 2003-09-16 2005-03-24 Matsushita Electric Industrial Co., Ltd. 符号化装置および復号化装置
JP2005265865A (ja) * 2004-02-16 2005-09-29 Matsushita Electric Ind Co Ltd オーディオ符号化のためのビット割り当て方法及び装置
WO2011086924A1 (ja) * 2010-01-14 2011-07-21 パナソニック株式会社 音声符号化装置および音声符号化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3174050A4 *

Also Published As

Publication number Publication date
US20200219518A1 (en) 2020-07-09
RU2669706C2 (ru) 2018-10-15
KR20170035827A (ko) 2017-03-31
MX2016015786A (es) 2017-02-27
PL3413307T3 (pl) 2021-01-11
JP6717746B2 (ja) 2020-07-01
EP3174050A1 (en) 2017-05-31
US20170069328A1 (en) 2017-03-09
BR112017000629B1 (pt) 2021-02-17
PL3174050T3 (pl) 2019-04-30
RU2017102311A (ru) 2018-08-27
JPWO2016013164A1 (ja) 2017-04-27
CA2958429C (en) 2020-03-10
US11521625B2 (en) 2022-12-06
AU2015291897B2 (en) 2019-02-21
CN106133831B (zh) 2021-10-26
EP3723086B1 (en) 2024-09-11
CN114023341A (zh) 2022-02-08
CN106133831A (zh) 2016-11-16
EP3174050B1 (en) 2018-11-14
EP3174050A4 (en) 2017-05-31
US20190228783A1 (en) 2019-07-25
EP3723086A1 (en) 2020-10-14
BR112017000629A2 (pt) 2017-11-14
KR102165403B1 (ko) 2020-10-14
EP3413307A1 (en) 2018-12-12
MX356371B (es) 2018-05-25
SG11201701197TA (en) 2017-03-30
US10311879B2 (en) 2019-06-04
RU2017102311A3 (ja) 2018-08-27
US10643623B2 (en) 2020-05-05
EP3413307B1 (en) 2020-07-15
AU2015291897A1 (en) 2017-03-09
CA2958429A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6717746B2 (ja) 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法
US10685660B2 (en) Voice audio encoding device, voice audio decoding device, voice audio encoding method, and voice audio decoding method
US20220130402A1 (en) Encoding device, decoding device, encoding method, decoding method, and non-transitory computer-readable recording medium
CN111370008B (zh) 解码装置、编码装置、解码方法、编码方法、终端装置、以及基站装置
JP6957444B2 (ja) 音響信号符号化装置、音響信号復号装置、音響信号符号化方法および音響信号復号方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167024863

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015824312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016535772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/015786

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000629

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2958429

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017102311

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015291897

Country of ref document: AU

Date of ref document: 20150703

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017000629

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170112