JP2005150320A - 配線基板の製造方法および配線基板 - Google Patents

配線基板の製造方法および配線基板 Download PDF

Info

Publication number
JP2005150320A
JP2005150320A JP2003384530A JP2003384530A JP2005150320A JP 2005150320 A JP2005150320 A JP 2005150320A JP 2003384530 A JP2003384530 A JP 2003384530A JP 2003384530 A JP2003384530 A JP 2003384530A JP 2005150320 A JP2005150320 A JP 2005150320A
Authority
JP
Japan
Prior art keywords
layer
conductor
plating
wiring board
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003384530A
Other languages
English (en)
Inventor
Shinji Yuri
伸治 由利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003384530A priority Critical patent/JP2005150320A/ja
Publication of JP2005150320A publication Critical patent/JP2005150320A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

【課題】 生産コストの高騰を抑制しつつも、部品実装面のコプラナリティを高めることが可能となる、配線基板の製造方法を提供するとともに、ICチップとの接続を確実に行なえる配線基板を提供する。
【解決手段】 配線基板1のうち、コア基板50から最も離れて位置する単位層52,54(ビルドアップ層V2,V12および導体層M3,M13)のみを、転写治具40を用いた転写ビルドアップ法により形成する。
【選択図】 図1

Description

本発明は、配線基板の製造方法および配線基板に関する。
携帯電話、パソコンといった電子機器の小型化、高機能化を進める際の課題の一つに、配線基板上での部品実装密度をどれだけ高くするかということがある。これを受けて近年は、抵抗やコンデンサといった受動素子だけでなく、ICチップについても、フリップチップ実装が主流になりつつある。フリップチップ実装は、パッケージや引出しリードをなくし、ベアチップそのものを基板上に実装した構造を持つものであり、高密度実装を実現する有力な手法である。フリップチップ実装では、接続配線長が短くなるのに加え、ボンディングワイヤによるインダクタ成分を取り除くため、電気的特性の向上も見込まれる。
フリップチップ実装を採用するにあたっては、ICチップと基板とを如何に確実に接続するかが重要である。ICチップと基板との接続信頼性を高めようとするときに避けて通れない問題の一つに、配線基板のコプラナリティに関する問題がある。多層配線基板は、絶縁層と配線パターンとを交互に積層したものであるから、下層の配線パターンが上層に転写され、基板表面に凹凸が生じる。この凹凸が顕著になるほど、フリップチップ実装における接続不良を招き易い。
基板表面のコプラナリティを改善する方法として、下記非特許文献1に記載されている転写法の採用が提案されている。下記非特許文献1に記載された転写法は、SUSなどの金属板上に薄いCuメッキ、パターンメッキを行って配線パターンを形成し、これを絶縁板に転写するというものである。この転写法によると、配線パターンは絶縁層に埋め込まれるとともに3方が樹脂と接着するので、パターンの安定化、基板表面の平滑化が可能である。
高木清 著 「ビルドアップ多層プリント配線板技術」日刊工業新聞社 p75−p76
しかしながら、上記のような転写法を、従来のビルドアップ法に適用するには、工程数の増加が不可避である。工程数の著しい増大は、生産コストの高騰に直結するので好ましくない。
本発明の課題は、生産コストの高騰をなるべく抑制しつつも、部品実装面のコプラナリティを高めることが可能となる、配線基板の製造方法を提供するとともに、ICチップとの接続を確実に行なえる配線基板を提供することにある。
課題を解決するための手段および発明の効果
上記課題を解決するために本発明は、絶縁層と導体層とが交互に積層され、それら絶縁層および導体層からなる単位層のうち、コア基板の一方または両方の主面側に単位層が形成された配線基板の製造方法であって、コア基板上に1以上の単位層が形成された中間積層体を形成する工程を行ない、転写治具上に形成された予備導体層が、絶縁層となる樹脂膜に密着するように、転写治具と中間積層体とを相対接近および圧着させたのち、転写治具と予備導体層とを離間させて、予備導体層を中間積層体側に転写し導体層となす工程を、コア基板から最も離れて位置する単位層を形成するときにのみ行なうことを主要な特徴とする。
上記本発明の方法によると、コア基板から最も離れて位置する単位層、すなわち最上層についてのみ、転写法を適用するようにしたものである。最上層を除いた部分である中間積層体の作製には、従来のビルドアップ法を適用している。このような方法によると、基板表面のコプラナリティを高めつつも、生産コストの高騰を最小限に食い止めることが可能となる。基板表面のコプラナリティの向上に伴い、ソルダーレジスト層の開口深さの均一化、ひいては半田ペースト供給量の均一化を図ることができる。したがって、ICチップと配線基板との接続信頼性の向上を期待できる。また、基板表面のコプラナリティの向上により、半田ペーストの印刷性が向上する効果も望める。したがって、上記本発明の方法は、よりいっそうのC4(Controlled Collapse Chip Connection)狭ピッチ化に適しているといえる。また、超音波接続やACF(Anisotropic Conductive Film)接続のように、ICチップの端子パッドと、配線基板の端子パッドとを直接接合する形態にあっても、配線基板の端子パッド高さの均一化により、ICチップと配線基板との接続信頼性が向上する。
上記した予備導体層は、転写治具上に薄付メッキ層を形成する工程と、薄付メッキ層上にメッキレジストをパターニングする工程と、メッキレジストの非形成領域における薄付メッキ層上に、厚付メッキ層を形成する工程と、転写治具からメッキレジストを除去する工程とを経ることにより形成できる。こうした手順によれば、導体層のパターンの微細化にも対応できる。
また、転写する工程の後に、1層下の単位層の導体層が露出するように、基板積層方向における厚付メッキ層の非形成領域、かつ厚付メッキ層自体が開口周縁部となるビアを、薄付メッキ層と絶縁層とを貫通する形態にて穿孔する工程と、ビアを導体で充填するとともに、導体が充填されてなるフィルドビア上に端子パッドを形成する工程と、予備導体層のうち、薄付メッキ層を除去して導体層を形成する工程と、を行なうことができる。このように、ビアの直上に端子パッドを形成すると、大面積のランドをビアの開口周縁部に設ける必要がないため、狭ピッチ化に有利である。
また、好適な態様において、端子パッドを形成する工程は、ビアの穿孔後、ビアの開口周縁部が露出するようにメッキレジストをパターニングする工程と、ビアの開口周縁部をなす厚付メッキ層を被覆する形態にて、ビアの内面に無電解メッキを施す工程と、ビアに充填される導体と端子パッドとを電解メッキにより連続形成する工程とを含む。このような手順によると、ビア内の導体充填をメッキにより、比較的簡単に行なうことができる。
また、課題を解決するために本発明の配線基板は、絶縁層と導体層とが交互に積層され、それら絶縁層および導体層からなる単位層うち、少なくとも1つの単位層が自立性を有するコア基板により構成され、コア基板の一方または両方の主面側に2以上の単位層が形成された配線基板であって、コア基板から最も離れて位置する単位層の導体層と、その1層下の単位層の導体層とがフィルドビアにて層間接続されており、当該配線基板の積層方向において、フィルドビアの直上には、そのフィルドビアを充填するメッキ導体と同一組成のメッキ導体により端子パッドが形成され、その端子パッドは、導体層の表面よりも積層方向に突出する形態を有し、かつ基板面内方向における導体層の外縁よりも内側に位置していることを特徴とする。
上記本発明の配線基板によると、基板表面に露出する端子パッドが、最上層の導体層の表面よりも積層方向に突出し、かつ、該導体層の外縁よりも内側に位置する形態で形成されている。このような形態の端子パッドは、基板厚さ方向における高さが比較的大きい端子パッドを形成しやすい。端子パッドの厚さが十分に確保されている配線基板は、ICチップとの接続を行い易い。
また、コア基板から最も離れて位置する単位層を構成する絶縁層が表面に露出し、端子パッドはその絶縁層の表面よりも突出する形態で設けられている。すなわち、ソルダーレジスト層が非形成となっている。このような形態を有する端子パッドは、超音波接続用の端子パッド、もしくはACF接続用の端子パッドとして好適である。
なお、本発明の製造方法は、フリップチップ実装用の配線基板の製造に、特に好適としているが、他の実装形態の配線基板にも採用できることはもちろんである。
以下、添付の図面を参照しつつ本発明の実施形態を説明する。
図1は本発明の一実施形態に係る配線基板1の断面構造を模式的に示すものである。該配線基板は、耐熱性樹脂板(たとえばビスマレイミド−トリアジン樹脂板)や、繊維強化樹脂板(たとえばガラス繊維強化エポキシ樹脂)等で構成された板状コア2の両表面に、所定のパターンに配線金属層をなすコア導体層M1,M11がそれぞれ形成される。これらコア導体層M1,M11は板状コア2の表面の大部分を被覆する面導体パターンとして形成され、電源層または接地層として用いられるものである。他方、板状コア2には、ドリル等により穿設されたスルーホール12が形成され、その内壁面にはコア導体層M1,M11を互いに導通させるスルーホール導体30が形成されている。また、スルーホール12は、エポキシ樹脂等の樹脂製穴埋め材31により充填されている。
また、コア導体層M1,M11の上層には、熱硬化性または感光性樹脂組成物6にて構成された第一ビルドアップ層(絶縁層)V1,V11がそれぞれ形成されている。さらに、その表面にはそれぞれ金属配線7,7を有する第一導体層M2,M12がCuメッキにより形成されている。なお、コア導体層M1,M11と第一導体層M2,M12とは、それぞれビア34により層間接続がなされている。同様に、第一導体層M2,M12の上層には、熱硬化性または感光性樹脂組成物6を用いた第二ビルドアップ層(絶縁層)V2,V12がそれぞれ形成されている。その表面には、多数の金属配線8,8と金属端子パッド10,17をそれぞれ有する第二導体層M3,M13が形成されている。これら第一導体層M2,M12と第二導体層M3,M13とは、それぞれビア34により層間接続がなされている。多数の金属パッド10は、配線基板1のほぼ中央部分に正方形状に配列し、チップ搭載部を形成している。
板状コア2とコア導体層M1,M11とは、コア基板50を構成している。そして、第一ビルドアップ層V1と第一導体層M2とが1層の単位層51、第二ビルドアップ層V2と第二導体層M3とが1層の単位層52を構成している。同様に、第一ビルドアップ層V11と第一導体層M12とが1層の単位層53、第二ビルドアップ層V12と第二導体層M13とが1層の単位層54を構成している。そして、それら単位層51〜54がコア基板50上に順次積層された形になっている。コア基板50上には、一方の面側につき複数層の単位層が積層される。
配線基板1において、一方の主面側に形成された金属端子パッド10は、集積回路チップなどをフリップチップ接続するためのパッドとして機能する。他方、反対側の金属端子パッド17は、配線基板1自体をマザーボード等にピングリッドアレイ(PGA)あるいはボールグリッドアレイ(BGA)により接続するための裏面パッドとして利用されるものである。
コア配線パターンM1,M11、第一導体層M2,M12および第二導体層M3,M13の各表面は、上層の樹脂層との密着強度を上げるために表面粗化処理(例えば化学的な処理に基づくもの)が施されている。なお、第二導体層M3については、表面粗化処理を省略することも可能である。図1に示す配線基板1の端子パッド10と、ICチップの端子パッドとの接続には、超音波接続またはACF接続が採用されることを想定しており、ソルダーレジスト層を設けないためである。もちろん、配線基板1の端子パッド10と、ICチップの端子パッドとの接続に半田接続を採用することもでき、その場合にはソルダーレジスト層を設けるので、第二導体層M3は粗化処理される。
本実施形態の配線基板1において、層間接続を取るための各ビア34は、孔内に導体充填されたフィルドビア34とされている。これにより、上下のビア同士を重ねて位置させるスタックドビア構造を採用することが可能となっている。スタックドビア構造によれば、ビアの開口周縁部においてビアランド(ビアパッド)を形成する必要が無くなるため、狭ピッチ化に極めて有利である。フィルドビア34は、Cuメッキまたは導電ペーストを孔内に充填することにより形成される。ただし、前者を採用することにより、フィルドビア34上の端子パッド10についても、孔内へのCuメッキ工程と同一工程にて形成することが可能であり、非常に効率がよい。
図2に示すのは、互いに上下の関係にある単位層51,52のフィルドビア34,34により構成されたスタックドビア構造の拡大断面模式図である。フィルドビア34の孔内には、Cuメッキからなるビア導体340が充填されている。配線基板1の最表面に形成される端子パッド10は、コア基板50から最も離れた位置の単位層52が有するフィルドビア34の真上に形成されている。端子パッド10は、略円柱状の形態を有し、配線基板1の面内方向において、単位層52の導体層M3を構成する金属配線8の外縁よりも内側の領域に形成されている。フィルドビア34の開口周縁部をなす金属配線8は、その一部または全部がビルドアップ層V2に埋没し、3方向でビルドアップ層V2に密着されている。他方、端子パッド10は、ビルドアップ層V2とは非接触とされ、表面CPから台地状に突出している。
フリップチップ実装においては、従来の半田C4に代わり、超音波によるICチップの端子と配線基板の端子パッドとの直接接続や、ACFを用いた接続が採用されつつある。これらの接続方法を採用するにあたり、ICチップと配線基板との接続信頼性を高めるには、図2に示す端子パッド10のように、絶縁層(ビルドアップ層V2)と非接触、かつ適度に嵩高く調整されるもののほうが好都合である。さらに、ICチップと基板表面との隙間へのアンダーフィル材の流れ込み性も良好となることが期待される(ただしACF接続の場合を除く)。
次に、配線基板1の製造方法について説明する。配線基板1は、ビルドアップ配線基板として構成されるものであるが、コア基板50に隣接する単位層51,53と、コア基板50から離れて位置する単位層52,54とは、それぞれ異なるビルドアッププロセスにより形成されている。コア基板50と、コア基板50に隣接する単位層51,53とからなる中間積層体1’(図4の工程5参照)は、以下に簡単に説明するビルドアッププロセスにより作製される。
まず、板状の耐熱性樹脂板(たとえばビスマレイミド−トリアジン樹脂板)または、繊維強化樹脂板(たとえばガラス繊維強化エポキシ樹脂)を板状コア2として、その両表面に銅箔を張り付けた銅張り板(CCL板)にフォトエッチング加工を施し、所定のパターンを有するコア導体層M1,M11を形成する。また、NCドリリングによりスルーホール12が形成される。スルーホール12には、Cuメッキによりスルーホール導体30を形成したのち、エポキシ樹脂等の穴埋め材31が充填される。
コア導体層M1,M11の表面に粗化処理を行った後、エポキシ樹脂からなるフィルムを貼り付けて、第一ビルドアップ層V1,V11を形成する。次に、第一ビルドアップ層V1,V11の所定位置にレーザ光を照射してビア34を形成する。そして、第一ビルドアップ層V1,V11上へのパターンメッキにより導体層M2,M12を形成する。上記パターンメッキにより、ビア34の孔内へのCuメッキ充填も行う。以上のようにして、中間積層体1’(図4の工程5参照)を得ることができる。
なお、ビア34を穿孔するレーザ加工には、エキシマレーザ、炭酸ガスレーザおよびNd:YAGレーザのグループから選ばれる1種のレーザを使用できる。中でも、マイクロメートルオーダーでの微細加工が比較的容易に行える、非線形結晶を用いて高調波を発生させれば紫外領域の光として使用可能、コスト面でエキシマレーザよりも有利、加工面の均一性が高い、ガスレーザに比べて信頼性が高い、などの理由によりNd:YAGレーザは好適である。
一方、コア基板50から最も離れて位置する単位層52,54のみ、以下のような転写ビルドアップ法により形成することができる。これにより、配線基板1の表面凹凸を小さくすることができる。図3に示すように、まず、板状の形態をなす転写治具40の一方の主面側にCuメッキを薄付けする(工程1)。薄付Cuメッキ層41の厚さは、たとえば0.3μm以上2.0μm以下とすることが望ましい。薄付Cuメッキ層41が薄すぎると、転写治具40上に形成した導体パターンを中間積層体1’と合体させる際に、薄付Cuメッキ層41に破断が生じやすくなり、歩留まり低下を招く恐れがある。他方、薄付Cuメッキ層41が厚すぎると、後工程においてエッチング除去しにくくなり、生産性の低下を招く。また、転写治具40としては、安価であること、Cuメッキとの密着性が比較的低いことなどの理由から、ステンレス鋼、Ni−Fe合金などの金属材料で構成されたものや、メラミン樹脂などの樹脂材料からなる硬質な樹脂板などを使用することができる。
次に、薄付Cuメッキ層41上に、たとえば紫外線硬化性ドライフィルムからなるメッキレジスト42を貼着するとともに、フォトリソプロセスによりパターニングする(工程2)。次に、メッキレジスト42の非形成領域における薄付メッキ層41上に、電解Cuメッキにより厚付Cuメッキ層43を形成する(工程3)。次に、転写治具40からメッキレジスト42を除去する。これにより、転写治具40上には、薄付Cuメッキ層41および厚付Cuメッキ層43からなる予備導体層44が形成される。
そして、図4に示すように、予備導体層44を支持した転写治具40については予備導体層44の形成されている面側、中間積層体1’については樹脂膜6が配置された面側が、それぞれ対向面側となるように、両者を相対接近させる(工程5)。中間積層体1’は、前述した手順により、コア基板50上に1層以上の単位層を形成したものであり、上記相対接近に先立って、表面に樹脂膜6が配置(貼着)されている。樹脂膜6は、エポキシ系、ポリイミド系、フェノール系などの熱硬化性樹脂により構成されるものであり、半硬化状態(いわゆるBステージ)となるように加工したフィルム状のものが好適である。なお、樹脂膜6を予備導体層44が形成された転写治具40に貼着しておき、樹脂膜6を介して中間積層体1’と予備導体層44とが積層されるようにしてもよい。
そして、中間積層体1’上の樹脂膜6に予備導体層44が密着するように、転写治具40と中間積層体1’とを圧着させる(工程6)。この工程は、Bステージ状態の樹脂膜6が軟化および硬化の各段階を経るように、加熱しながら行なうことができる。これにより、予備導体層44うち、厚付Cuメッキ層43が樹脂膜6に埋没する形となり、厚付Cuメッキ層43により構成される導体層M3(図1参照)の安定化につながる。なお、予備導体層44には、樹脂膜6との密着性向上のための表面粗化処理を予め施しておくことが望ましい。
上記貼り合わせを十分に行なった後、転写治具40と予備導体層44とを離間させて、予備導体層44を中間積層体1’側に転写する(工程7)。図4に示す実施形態では、転写治具40を用いた単位層の形成は、中間積層体1’の片面づつ行なうようにしているが、両面同時に行なうことも可能である。すなわち、コア基板50を挟んで位置する1対の単位層52,54を形成するために、2つの転写治具40を用いて、同時に中間積層体1’に1対の予備導体層44,44を転写することができる。すると、中間積層体1’を両面側から転写治具40で挟むようにして単位層52,54を形成することとなる。このような手法によると、予備導体層44,44と樹脂膜6との密着性の良化、基板表面のコプラナリティの向上をより期待できる。
ところで、転写治具40と予備導体層44との離間容易性は、ステンレス鋼とCuメッキとの剥離容易性に関連する。すなわち、薄付Cuメッキ層41を形成する前に、転写治具40の主面上に樹脂等を含有する剥離剤を塗布しておくとよい。この剥離剤は、加熱により軟化するものを使用することができる。これにより、転写治具40と中間積層体1’とを相互に加圧および加熱する際に、転写治具40と薄付Cuメッキとの密着性が自然と低下し、両者をスムーズに離間させることができるようになる。そのようにする場合、薄付Cuメッキ層41の形成は、無電解Cuメッキにより行なうことが可能である。また、金属薄板により構成される転写治具40のメッキ層形成面を、予め研磨面としておくことも考え得る。また、転写治具40と予備導体層44との界面に、高圧の流体を吹き付けながら両者を離間させてもよい。また、転写治具40が十分に薄い場合には、転写治具40自体を機械研磨および/または化学エッチングにより、直接除去することも考え得る。
次に、図5に示すように、1層下の単位層51の導体層M2が露出するように、基板積層方向における厚付Cuメッキ層43の非形成領域、かつ厚付Cuメッキ層43自体が開口周縁部となるビア34を、薄付Cuメッキ層41と絶縁層6とを貫通する形態にて穿孔する(工程8)。前述したように、薄付Cuメッキ層41を貫通して形成されるビア34は、レーザ加工により穿孔されたレーザビアとされる。レーザ加工に際し、レーザ照射位置は、中間積層体1’に転写された予備導体層44が有するアライメントマークを使用することができる。このようにすると、対象としている層そのものが有するアライメントマークに基づいてレーザ照射位置が設定されることになり、1層下の導体層に形成されたアライメントマークを見る場合に比べて、高い位置合わせ精度の達成が期待できる。レーザによる穿孔後は、孔内のデスミアを行なう。
予備導体層44に形成されるアライメントマークは、転写治具40に形成された基準マークに基づくものとすることができる。たとえば、図6(a)(b)に示すように、転写治具40の凸状部4kや貫通孔4hを基準マークとして使用することができる。これら凸状部4kや貫通孔4hが、予備導体層44の形成を妨げることにより、図7に示すように、予備導体層44の非形成領域をアライメントマーク4aとして使用することができる。なお、一層下の単位層51に形成されたアライメントマークに基づいてレーザ加工を行なうようにしてもよい。
レーザによるビア34の穿孔後、ビア34の開口周縁部が露出するようにメッキレジスト46をパターニングする。そして、ビア34の開口周縁部をなす厚付メッキ層43に導通させる形態にて、ビア34の内面に無電解Cuメッキを施す(工程9)。次に、ビア34に充填されるメッキ導体340と端子パッド10とを電解Cuメッキにより連続形成する。これにより、ビア34にCuメッキ導体340が充填される。Cuメッキ導体340が充填されてなるフィルドビア34上に、ビア開口よりも大面積の端子パッド10を、その端子パッド10が厚付Cuメッキ層43の外縁よりも内側に位置するように形成する(工程10)。このような手順によれば、ビア34への導体充填と、端子パッド10の形成とを極めて効率良く行なえる。
次に、メッキレジスト46を除去(剥離)するとともに、予備導体層44を構成する薄付Cuメッキ層41をエッチング除去して金属配線8を有する導体層M3を得る。そして、端子パッド10にNi/Auメッキを施すことにより、図1に示した配線基板1を得ることができる。なお、Niメッキを省略してAuメッキを直接施すと、工程数も経るので好適である。特に、配線基板1とICチップとの接合に、超音波接合やACFを採用する場合、端子パッドを構成するCuの拡散を防止する必要性が小さいので、Cuメッキからなる端子パッド10にAuメッキを直接施すことが可能である。
本発明にかかる配線基板の一例を示す断面構造。 端子パッドの部分拡大断面図。 図1の配線基板の製造方法を示す工程説明図。 図3に続く工程説明図。 図4に続く工程説明図。 転写治具に設けられた基準マークを例示する断面模式図。 予備導体層が有するアライメントマークの例を示す模式図。
符号の説明
1 配線基板
1’ 中間積層体
2 板状コア
6 樹脂膜
10 端子パッド
M1,M11 コア導体層
V1,V11,V2,V12 ビルドアップ層
M2,M12,M3,M13 導体層
34 ビア(フィルドビア)
40 転写治具
41 薄付Cuメッキ層
42 メッキレジスト
43 厚付Cuメッキ層
44 予備導体層
50 コア基板
51〜54 単位層
60 Auメッキ層
340 Cuメッキ導体

Claims (6)

  1. 絶縁層と導体層とが交互に積層され、それら絶縁層および導体層からなる単位層のうち、コア基板の一方または両方の主面側に前記単位層が形成された配線基板の製造方法であって、
    前記コア基板上に1以上の前記単位層が形成された中間積層体を形成する工程を行ない、
    転写治具上に形成された予備導体層が、前記絶縁層となる樹脂膜に密着するように、前記転写治具と前記中間積層体とを相対接近および圧着させたのち、前記転写治具と前記予備導体層とを離間させて、前記予備導体層を前記中間積層体側に転写し前記導体層となす工程を、
    前記コア基板から最も離れて位置する前記単位層を形成するときにのみ行なうことを特徴とする配線基板の製造方法。
  2. 前記予備導体層は、転写治具上に薄付メッキ層を形成する工程と、
    前記薄付メッキ層上にメッキレジストをパターニングする工程と、
    前記メッキレジストの非形成領域における前記薄付メッキ層上に、厚付メッキ層を形成する工程と、
    前記転写治具から前記メッキレジストを除去する工程と、
    により形成されたものである請求項1記載の配線基板の製造方法。
  3. 前記転写する工程の後に、1層下の前記単位層の前記導体層が露出するように、基板積層方向における前記厚付メッキ層の非形成領域、かつ前記厚付メッキ層自体が開口周縁部となるビアを、前記薄付メッキ層と前記絶縁層とを貫通する形態にて穿孔する工程と、
    前記ビアを導体で充填するとともに、導体が充填されてなるフィルドビア上に端子パッドを形成する工程と、
    前記予備導体層のうち、前記薄付メッキ層を除去して前記導体層を形成する工程と、
    を行なう請求項2記載の配線基板の製造方法。
  4. 前記端子パッドを形成する工程は、前記ビアの穿孔後、前記ビアの開口周縁部が露出するようにメッキレジストをパターニングする工程と、前記ビアの開口周縁部をなす前記厚付メッキ層の一部を被覆する形態にて、前記ビアの内面に無電解メッキを施す工程と、前記ビアに充填される前記導体と前記端子パッドとを電解メッキにより連続形成する工程と、を含む請求項3記載の配線基板の製造方法。
  5. 絶縁層と導体層とが交互に積層され、それら絶縁層および導体層からなる単位層うち、少なくとも1つの単位層が自立性を有するコア基板により構成され、前記コア基板の一方または両方の主面側に2以上の前記単位層が形成された配線基板であって、前記コア基板から最も離れて位置する前記単位層の前記導体層と、その1層下の前記単位層の前記導体層とがフィルドビアにて層間接続されており、当該配線基板の積層方向において、前記フィルドビアの直上には、そのフィルドビアを充填するメッキ導体と同一組成のメッキ導体により端子パッドが形成され、その端子パッドは、前記導体層の表面よりも前記積層方向に突出する形態を有し、かつ基板面内方向における前記導体層の外縁よりも内側に位置していることを特徴とする配線基板。
  6. 前記コア基板から最も離れて位置する前記単位層を構成する前記絶縁層が表面に露出し、前記端子パッドはその絶縁層の表面よりも突出する形態で設けられている請求項5記載の配線基板。
JP2003384530A 2003-11-14 2003-11-14 配線基板の製造方法および配線基板 Pending JP2005150320A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384530A JP2005150320A (ja) 2003-11-14 2003-11-14 配線基板の製造方法および配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384530A JP2005150320A (ja) 2003-11-14 2003-11-14 配線基板の製造方法および配線基板

Publications (1)

Publication Number Publication Date
JP2005150320A true JP2005150320A (ja) 2005-06-09

Family

ID=34692884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384530A Pending JP2005150320A (ja) 2003-11-14 2003-11-14 配線基板の製造方法および配線基板

Country Status (1)

Country Link
JP (1) JP2005150320A (ja)

Similar Documents

Publication Publication Date Title
JP5238801B2 (ja) プリント配線板及びその製造方法
JP5410660B2 (ja) 配線基板及びその製造方法と電子部品装置及びその製造方法
JP4291279B2 (ja) 可撓性多層回路基板
JP4434315B2 (ja) 多層配線基板の製造方法
JP4876272B2 (ja) 印刷回路基板及びその製造方法
WO2010038489A1 (ja) 電子部品内蔵配線板及びその製造方法
JP2008300636A (ja) プリント配線板及びその製造方法、並びに、このプリント配線板を用いた電子部品収容基板及びその製造方法
KR101281410B1 (ko) 다층 배선기판
JP2016046418A (ja) 電子部品装置及びその製造方法
JP2016063130A (ja) プリント配線板および半導体パッケージ
JP2018032657A (ja) プリント配線板およびプリント配線板の製造方法
JP5261756B1 (ja) 多層配線基板
JP2017084997A (ja) プリント配線板及びその製造方法
JPWO2007069427A1 (ja) 電子部品内蔵モジュールとその製造方法
JP2008124247A (ja) 部品内蔵基板及びその製造方法
JP5007164B2 (ja) 多層配線板及び多層配線板製造方法
JP4939519B2 (ja) 多層回路基板の製造方法
JP5176676B2 (ja) 部品内蔵基板の製造方法
JP2002246536A (ja) 三次元実装パッケージの製造方法、及びその製造用のパッケージモジュール
JP2010283300A (ja) 突起電極付き配線基板及び突起電極付き配線基板の製造方法
JP4282161B2 (ja) 多層プリント配線板及び多層プリント配線板の製造方法
JP2005150320A (ja) 配線基板の製造方法および配線基板
JP5565953B2 (ja) 配線基板およびその製造方法
JP2010067834A (ja) 電子部品内蔵型の2層配線基板の製造方法及び電子部品内蔵型の2層配線基板
JP2008091385A (ja) 多層回路配線板及び半導体装置