JP2005105177A - 蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置 - Google Patents

蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置 Download PDF

Info

Publication number
JP2005105177A
JP2005105177A JP2003342179A JP2003342179A JP2005105177A JP 2005105177 A JP2005105177 A JP 2005105177A JP 2003342179 A JP2003342179 A JP 2003342179A JP 2003342179 A JP2003342179 A JP 2003342179A JP 2005105177 A JP2005105177 A JP 2005105177A
Authority
JP
Japan
Prior art keywords
phosphor particles
light
particles
light emitting
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342179A
Other languages
English (en)
Inventor
Hiroyuki Mori
弘幸 森
Mitsumasa Saito
光正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003342179A priority Critical patent/JP2005105177A/ja
Publication of JP2005105177A publication Critical patent/JP2005105177A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

【課題】 本発明は、樹脂中に高密度に分散でき、均質で高輝度な樹脂レンズを作製することが可能であり、しかも、高純度で化学組成が均一であり、優れた発光特性が得られる蛍光体粒子、及びその蛍光体粒子を安価に製造できる方法、並びに前記蛍光体粒子を用い、優れた発光特性が実現できる発光装置を提供する。
【解決手段】 本発明の蛍光体粒子は、一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce,Pr(ここで0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5)で表され、かつ粒子形状が略球状である構成とする。
【選択図】 図3

Description

本発明は、蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置に関するものである。
白色発光ダイオード(以下、LEDとも言う。)は、発光効率に優れ、かつ発熱が極めて少なく、低消費電力である。このため白熱電球や蛍光灯に代わる白色発光装置として注目され、既に携帯電話のバックライトに使用されている。
白色LEDとしては、GaN系の青色LEDと、波長変換用の蛍光体が分散された封止樹脂(樹脂レンズ)とを備えたものが主に利用されている。この白色LEDでは、青色LEDから青色を発光させ、この青色の発光が樹脂レンズ中を透過するときに、青色の発光の一部を封止樹脂中の蛍光体に吸収させて波長変換して黄色に発光させ、青色光と黄色光とを混色して白色光が得られるようになっている。
前記波長変換用の蛍光体粒子としては、セリウム賦活イットリウム・アルミニウム・ガーネット(YAG)蛍光体又はユーロピウム賦活の硫化ストロンチウムなどが用いられていたが、赤色の成分が弱く、演色性に劣った白色光となる問題があった。
そこで、以下に示されたように、波長変換用の蛍光体粒子として、セリウム賦活YAG蛍光体にプラセオジム,ガドリニウム,ガリウムから選ばれた1種以上が少なくともドープされた蛍光体を備えた発光装置が提案されている。
(1)発光素子として、発光スペクトルが400nm以上、530nm以下の単色性ピーク波長を有するGaN系青色発光素子と、波長変換層として、一般式(RE1−xSm(AlGa1−y12:Ce(0≦x<1,0≦y≦1,REは、Y及び/又はGdである。)で表される蛍光体が分散された封止樹脂(樹脂レンズ)とを備えた発光装置が開示されている(特許文献1御参照。)。
(2)波長変換用の蛍光体粒子として、セリウムで賦活されガドリニウムがドープされたYAG蛍光体(主蛍光体)と、これに三価のプラセオジムがドープされたYAG蛍光体(補助蛍光体)との混合物を用いることによって、赤色領域の発光を改善し、より演色性に優れた白色光が得られる発光装置が開示された(特許文献2御参照。)。
(3)波長変換用の蛍光体粒子として、一般式R12:Ce,Pr(Rは、Y及び/又はGd、MはAl及び/又はGaである。)で表される蛍光体が分散された封止樹脂(樹脂レンズ)とを備えた発光装置が開示されている(特許文献3御参照。)。
特許2927279号公報 特開2000−244021号公報 特開2001−313417号公報
しかしながら、前記(1)乃至(3)にて説明した発光装置で用いられた波長変換用の蛍光体粒子は、従来、原料粉末の混合物を坩堝などの焼成容器にいれて高温で長時間加熱した後、ボールミルなどで微粉砕することにより製造されている。
このような固相反応によって、前述した一般式で示される波長変換用の蛍光体粒子を製造する場合、配合する化学成分が多いため、化学組成の均一性を確保することが困難となる。特に、Gd,Ga,Ce,Prなどの微量成分では、更に均一性を保つのは困難である。このため、均一な化学組成を有する蛍光体を製造することができない場合があった。
これにより、波長変換用の蛍光体粒子では、所望の発光スペクトルが得られ難く、このような蛍光体粒子を備えた白色LEDでは、色ずれが生じて、演色性に劣る場合があった。
また、固相反応で蛍光体粒子を製造すると、不規則形状粒子が凝集した粉末として得られる。このような蛍光体粒子は、分散性が悪く、例えば、エポキシ樹脂などに分散して封止樹脂(樹脂レンズ)とする場合、蛍光体粒子の充填率が不均一となり、輝度にばらつきが生じてしまう。
また、原料粉末の混合物を高温で長時間加熱した後、ボールミルなどで微粉砕する際、蛍光体粒子に物理的な衝撃が加えられるために、粒子内や表面に欠陥が発生して輝度が低下してしまう。
更に、坩堝などの焼成容器に入れて高温で長時間加熱するために、坩堝から不純物が混入してしまう。また、原料粉末の粒度によっては固相反応が十分に進行せずに不純物相が混在する場合があった。このため、純度低下により輝度が低下したり、所望の発光スペクトルが得られず、色ずれが生じてしまう。
また、固相反応によって蛍光体粒子を製造する際、高温で長時間加熱する必要があり、消費エネルギーが大きく、蛍光体粒子の製造コストが高くなってしまう問題があった。
本発明は、上記の問題点を解決するためになされたものであり、粒子形状が略球状であり、各種樹脂中に均一に分散でき、均質な樹脂レンズを作製することが可能である蛍光体粒子、及びその蛍光体粒子を安価に製造できる方法、並びに前記蛍光体粒子を用いて演色性に優れた発光特性が実現できる発光装置を提供することを目的とする。
本発明に係る蛍光体粒子は、一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce,Pr(ここで0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5)で表され、かつ粒子形状が略球状であることを特徴とする。
これにより、優れた分散性,充填性が実現できる。
かかる蛍光体粒子の構成において、前記粒子の粒径が0.1μm以上、3.0μm以下であることを特徹とする。
これにより、更に分散性を向上させることができ、蛍光体粒子を樹脂などに分散させる際に大きなせん断エネルギーを加えなくても均一に、かつ容易に分散させることができる。また、このように均一に分散された蛍光体粒子では、粒子同士がほとんど凝集しておらず、発光素子などからの光を粒子表面全面で受けることができ、効率良く蛍光体粒子を励起させることができる。
本発明に係る蛍光体粒子の製造方法は、Y,Al,Ce,Prの金属イオンを少なくとも含有する原料溶液を霧状に噴霧して液滴を形成し、該液滴を、炉内温度が500℃以上、1500℃以下の加熱炉に導入して1秒間以上、10秒間以下加熱して、前駆体粒子を形成する第一の工程と、前記前駆体粒子を1300℃以上、1600℃以下の加熱温度にて0.5時間以上、5時間以下加熱する第二の工程とを備えたことを特徹とする。
このように、熱分解反応が適用されたことによって、粒子形状が略球状で粒度の揃った蛍光体粒子を製造できる。
本発明に係る発光装置は、発光層が窒化物系化合物半導体からなる発光素子と、該発光素子によって発光された光の一部を吸収して、吸収した光の波長と異なる波長からなる光を発光する波長変換層とを備えた発光装置において、前記波長変換層が、一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce、Pr(ここで0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5)で表され、かつ粒子形状が略球状である蛍光体粒子を含むことを特徴とする。
このように、本発明の蛍光体粒子が用いられたことによって、所望の発光スペクトルが得られるため、演色性に優れた白色光が得られる。
本発明の蛍光体粒子によれば、粒子形状が略球状であるために、分散性に優れ、蛍光体粒子を均一に樹脂中に分散させることができ、輝度にばらつきのない樹脂レンズが実現できる。
本発明の蛍光体粒子の製造方法によれば、高温で長時間加熱する必要が無く、消費エネルギーを抑えることができ、略球状の蛍光体粒子を安価に製造できる。
更に、坩堝などの焼成容器に入れて高温で長時間加熱する必要が無く、坩堝から不純物が混入することがなく、高純度の蛍光体粒子が製造できる。また、原料溶液では、蛍光体粒子となる金属イオンがイオンレベルで均一に混合された状態であり、この原料溶液を熱分解することによって蛍光体粒子を製造するため、化学組成が均一な蛍光体を製造できる。
本発明の発光装置によれば、波長変換層が、本発明の蛍光体粒子を含有してなることによって、発光素子からの発光と波長変換された蛍光とが混色されると、赤色領域の輝度の高い所望の発光スペクトルが得られ、演色性に優れた白色光が得られる。
以下、図面をもとにして、本発明を詳細に説明する。
本発明の蛍光体粒子は、セリウムとプラセオジムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)系の蛍光体であり、一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce,Prで表される。但し、0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5である。
前記化学組成とすることによって、励起スペクトルのピークが420nm以上、520nm以下にあり、波長が470nm以上、480nm以下の励起光によって高効率で励起され、かつ520nm以上、570nm以下に主発光ピークを有し良好な黄色発光を示し、また605nm以上、615nm以下にも発光ピークを有し良好な赤色発光を示す発光スペクトルが得られる。
このため、前記蛍光体粒子では、発光波長が470nm以上、480nm以下の青色LED(LED:Light Emitting Diode)の青色光によって効率良く励起され、かつ蛍光体粒子の発光と前記青色LEDからの青色光とを混色すると、赤色領域の輝度が高く、演色性に優れた白色光が得られる。
また、蛍光体粒子の粒子形状は、略球状である。ここで、略球状とは、粒子を任意の方向から観察したときの粒子像の輪郭に、角ばった部分がほとんどなく平滑で粒子像が略円形であること意味する。
粒子形状が略球状であるため、蛍光体粒子は分散性,充填性に優れる。このため、蛍光体粒子をエポキシ樹脂などの樹脂などに分散する際、蛍光体粒子を樹脂中に均一に分散させることができる。また、充填性に優れるため、蛍光体粒子を高い混合比で樹脂などに分散させることができる。
以上により、蛍光体粒子を均一にかつ高充填で樹脂中に分散させることができ、発光スペクトルや輝度にばらつきがなく均一で、かつ高輝度の樹脂レンズが実現できる。
また、本発明の蛍光体粒子では、粒径が0.1μm以上、3.0μm以下であることが好ましく、更に好ましくは0.5μm以上、2.0μm以下である。これにより、更に蛍光体粒子の分散性を向上させることができる。
蛍光体粒子の粒径が0.1μmより小さい場合、粒子の凝集が多くなり、樹脂などへ蛍光体粒子を分散させる際、大きなせん断エネルギーを必要とし、また粒子表面に格子欠陥が多く存在し発光輝度が小さくなるため好ましくない。また、粒径が3.0μmより大きい場合、励起光が蛍光体粒子によって散乱され光損失となる割合が大きくなり、また、発光した蛍光が他の蛍光体粒子によって散乱、吸収されてしまう割合も大きくなり、光の利用効率が低下するため好ましくない。
ここで、前記蛍光体粒子の粒径とは、粒子の1次粒子径である。この粒径を測定する方法としては、例えば、電子顕微鏡により粒子を観察し、この粒子の直径を測定する方法や、所望の分散媒中に蛍光体粒子を分散させて、1次粒子が分散した状態としてレーザ回折散乱法により測定する方法などが挙げられる。
なお、ほぼ全ての粒子の粒径が、前記した範囲内であれば良く、粒径が前記した範囲外の蛍光体粒子がごく微量、含有されていても、本発明の作用効果を妨げることはない。
また、本発明の蛍光体粒子では、粒度分布の標準偏差が1.0〜1.3であることが好ましい。これにより、粒度が揃っており、更に分散性が向上し、蛍光体粒子を樹脂中に均一に分散させることができる。
ここで、前記粒度分布の標準偏差の測定方法としては、前記した方法により測定された粒径をもとにして粒度分布を求め、この粒度分布を対数正規分布にあてはめて算出する方法などが適用できる。
次に本発明の蛍光体粒子の製造方法について説明する。
まず、製造する蛍光体粒子を構成する金属イオンを含有する原料溶液を用意する。製造する蛍光体粒子は、イットリウム,アルミニウム,セリウム,プラセオジムを少なくとも含有し、更に必要に応じてガドリニウム,ガリウムを含有する組成であり、一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce,Pr(ここで0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5)で表される。
このため、この蛍光体粒子を構成する金属イオン(元素)を、蛍光体粒子の組成比とほぼ同一の混合比で混合することによって、前記原料溶液を作製する。
前記原料溶液を作製するために用いられる化合物としては、前記元素を含有する無機化合物や有機酸塩などが挙げられ、水に可溶であり、しかも、高温に加熱した際に酸化物に分解反応する化合物であれば使用できる。
前記元素を含有する無機化合物としては、例えば、硝酸塩,炭酸塩,塩化物,フッ化物などが使用できる。また、有機酸塩としては、酢酸塩,しゅう酸塩などが使用できる。
特に、硝酸イットリウム、硝酸ガドリニウム、硝酸アルミニウム、硝酸ガリウム、硝酸セリウム、硝酸プラセオジムなどのように、水に可溶であり、かつ加熱により容易に分解する化合物を用いることが好ましく、これにより、蛍光体の合成を容易にすることができる。
また、良好な発光特性を得るためには、キラーセンターとなる鉄やニッケルなどの不純物元素の少ない原料を用いることが好ましい。
前述した原料となる化合物を水に投入して攪拌し十分に溶解する。これにより、所望の金属イオンの溶質濃度Cの原料溶液を作製する。
ここで、前記溶質濃度Cとは、原料溶液1リットルに含有されるイットリウム,ガドリニウム,アルミニウム,ガリウム,セリウム,プラセオジムの合計のモル数を8で除した値であり、原料溶液1リットルから製造される蛍光体粒子((Y1−(w+y+z)Gd(Al1−xGa12:Ce,Pr)のモル数である。
この原料溶液の溶質濃度Cは、超音波噴霧などにより原料溶液を液滴とする際(後述。)、形成する液滴の直径を左右する要因となるため、所望の直径の液滴が形成できるように溶質濃度Cを調整して原料溶液を作製する。
例えば、原料溶液を薄めて溶質濃度Cを薄くすることによって、製造する蛍光体粒子の粒子径に対する液滴直径の比を小さくすることができる。
前記溶質濃度Cは、0.01≦C≦5であることが好ましく、これにより粒径が0.1μm以上、3.0μm以下の蛍光体粒子を製造することができる。
なお、原料溶液中には、前記した金属イオン以外に、少量のフラックスを含有させても構わない。原料溶液中にフラックスを含有することによって、熱分解反応(後述。)の際、比較的低温度で短時間に結晶性の高い蛍光体球状粒子を生成させることができる。
前記フラックスとは、融点を低下させて粒子の結晶性を促進させるものであり、例えば、硫酸リチウムなどのアルカリ金属塩や、フッ化バリウムなどのアルカリ土類金属塩などが用いられる。特にアルカリ金属又はアルカリ土類金属のハロゲン塩が好ましく、これにより比較的、低温度で短時間の加熱によって,結晶性に優れかつ略球状の蛍光体粒子が製造でき、製造に係る消費エネルギーを低減できる。
第一の工程として、前述した原料溶液を液滴とし、熱分解反応炉内に導入して加熱する。
液滴の形成方法としては、様々な噴霧方法を適用することが可能である。例えば、加圧空気で原料溶液を吸い上げながら噴霧して1μm以上、50μm以下の液滴を形成する方法(高圧ノズル法),圧電結晶からの2MHz程度の超音波を利用して4μm以上、10μm以下の液滴を形成する方法(超音波噴霧法),穴径が10μm以上、20μm以下のオリフィスを振動子により振動させこのオリフィスから一定の流量で原料溶液を滴下して5μm以上、50μm以下の液滴を形成する方法,回転している円板上に原料溶液を一定速度で滴下させ遠心力によって円板外周から原料溶液を飛散させて20μm以上、100μm以下の液滴を形成する方法,原料溶液の液面に高い電圧を印加して0.5μm以上、10μm以下の液滴を発生する方法(静電噴霧法)などが採用できる。
本発明では、超音波を利用する噴霧方法(超音波噴霧法)が好ましく、これにより、液滴径の比較的均一な4μm以上、10μm以下の液滴を形成でき、サブミクロンからミクロンオーダーの粒径の揃った球状の蛍光体粒子を製造できる。
前記形成された液滴を、キャリアガスにより熱分解反応炉内に導入して加熱し、熱分解させて前駆体粒子を形成する。
前記熱分解反応炉としては、液滴をキャリアガスと共に炉内に導入できる開口部が備えられた電気炉などが適用できる。
原料溶液中の金属イオン種,混合比,溶質濃度C,キャリアガスの種類,キャリアガス流量,熱分解反応炉内の加熱温度などの製造条件によって熱分解反応の反応速度が左右され、形成される前駆体粒子の粒子の形態及び表面状態が変化する。例えば、製造条件によって、前駆体粒子は、中空の球状,ポーラス(多孔質)粒子,空孔のない粒子,不規則形状の粒子などとして得られるため、前記した製造条件を適宜調整して、所望の前駆体粒子となるようにすることが好ましい。
前記キャリアガスとしては、空気,窒素,アルゴン,水素などが使用でき、特に、窒素,アルゴン,水素などの中性もしくは還元性のガスが好ましく、これによりセリウムとプラセオジムの価数変動を抑え、3価のセリウムとプラセオジムによって賦活された蛍光体粒子を製造でき、これにより輝度の低下や色ずれを抑えることができる。
前記熱分解反応は500℃以上、1500℃以下の加熱温度で1秒間以上、10秒間以下の滞留時間で行う。
熱分解反応温度が500℃よりも低い場合、又は滞留時間が1秒よりも短い場合、反応が十分に進行せず好ましくない。また、熱分解反応温度が1500℃よりも高い場合、又は滞留時間が10秒間よりも長い場合、加熱に係るエネルギーの消費量が多く、製造コストが高くなってしまうため好ましくない。
次に、第二の工程として、生成された前駆体粒子を1300℃以上、1600℃以下の加熱温度で0.5時間以上、5時間以下の滞留時間で熱分解反応炉内にて再加熱し、蛍光体粒子を製造する。これにより、組成が均一であり、かつ球状で粒度が揃い分散性,充填性に優れた蛍光体粒子を製造できる。
再加熱の温度が1300℃よりも低い場合、又は滞留温度が0.5時間よりも短い場合、結晶性が低く、またセリウムとプラセオジムが結晶内に賦活されず、輝度が低下してしまうため好ましくない。
また、再加熱の温度が1600℃よりも高い場合、又は滞留時間が5時間よりも長い場合、凝集体が多数生成して分散性、充填性に劣る蛍光体粒子となり、例えば結着剤などと混合して基板面に塗布し蛍光面を形成する際、緻密な蛍光膜を形成することができず、高輝度の発光特性が得られないため好ましくない。
本発明の蛍光体粒子の製造方法によれば、噴霧熱分解反応を適用したことによって、球状で分散性がよく粒度の揃った蛍光体粒子を製造できる。
また、従来の固相反応による製造方法とは異なり、坩堝などの焼成容器に入れて高温で長時間加熱する必要が無く、坩堝から不純物が混入することがなく、高純度の蛍光体粒子が製造できる。更に、原料溶液では、蛍光体粒子となる金属イオンがイオンレベルで均一に混合された状態であるため、この原料溶液を炉内に噴霧して熱分解することによって蛍光体粒子を製造するため、化学組成が均一な蛍光体粒子を製造できる。
以上により、高輝度で、所望の発光スペクトルを有する蛍光体粒子が製造できる。
また、焼成後にボールミルなどで微粉砕しないため、従来のように物理的な衝撃が加えられて粒子内や表面に欠陥が発生することがほとんど無く、発光強度(輝度)の低下を抑えることができる。
更に、高温で長時間加熱する必要が無く、消費エネルギーを抑えることができ、略球状の蛍光体粒子を安価に製造できる。
次に本発明の発光装置について説明する。
図1は、本発明の発光装置1の一例を示す概略断面図である。この発光装置1は、チップタイプの白色LEDであり、筐体2の凹部に設けられた発光素子(LEDチップ)3と、筐体2の凹部に充填され発光素子3の発光面を被覆するように設けられた波長変換層(封止樹脂)4とから構成されている。
前記発光素子3は、窒化物系化合物半導体であり、具体的にはGaN,GaAlN,InGaN,InGaAlNや、これらに各種不純物がドープされた種々のものなどが挙げられる。
発光素子3の発光スペクトルの主ピークは、470nm以上、480nm以下の青色発光であることが好ましく、これにより蛍光体粒子を効率良く励起させることができる。
前記発光素子3は、例えば半田などにより筐体2に固定され、発光素子3のn側電極とp側電極とがそれぞれ筺体2に設けられた端子金属21に、導電性ワイヤー5によって接続されている。
前記波長変換層4は、封止樹脂(樹脂レンズ)であり、前述した本発明の蛍光体粒子が、エポキシ樹脂などの樹脂に混合、分散されて、成形されたものである。前記樹脂としては、例えばエポキシ樹脂,ポリカーボネート,トランスファーモールド樹脂,シリコーン樹脂,ポリスチレン,アクリル樹脂などが挙げられるが、エポキシ樹脂,アクリル樹脂が好ましい。
この発光装置1では、発光素子3から青色光を発光させると、この青色の発光が波長変換層4中を透過するときに、青色の発光の一部が波長変換層4中の蛍光体粒子に吸収されて波長変換され、黄色の主発光ピークと赤色の発光ピークを有する蛍光が得られるようになっている。このため、蛍光体粒子に吸収されることなく波長変換層4を伝搬した発光素子3からの青色光と、波長変換された黄色と赤色の光とが混色されて出力され、その結果、白色光が得られる。
本発明の発光装置1によれば、波長変換層4が、前述した本発明の蛍光体粒子を含有してなることによって、発光素子3からの青色光によって高効率で励起され、かつ520nm以上、570nm以下に主発光ピークを有し、更に605nm以上、615nm以下にも発光ピークを有する蛍光が得られる。このため、発光素子3からの発光と波長変換された蛍光とが混色されると、赤色領域の輝度が高く、演色性に優れた白色光が得られる。
また、本発明の蛍光体粒子は、分散性に優れるため、均一に樹脂中に分散させることができ、発光スペクトルや輝度が均一で色ずれの発生を抑えることができる。更に、粒子同士がほとんど凝集しておらず、発光素子からの光を粒子表面全面で受けることができ、高効率で発光素子からの発光を波長変換させることができる。このため、波長変換層4中の蛍光体粒子の含有量を低くしても、高輝度の蛍光が得られることになる。
以上により、前記蛍光体粒子の波長変換層4中の含有量は、5重量%以上、10重量%以下の低濃度としても所望の輝度の蛍光が得られ、かつ演色性に優れた白色光となる最適値に調整できる。また、蛍光体粒子の含有量が低濃度であるため、波長変換層4の透明度を高めることができ、蛍光体粒子による光の散乱などによる光の損失を抑えることができ、白色光の輝度を高めることができる。
また、蛍光体粒子は、分散性に優れるため、含有量を高くしても、波長変換層4中に均一に分散させることができる。このため、波長変換層4中の蛍光体粒子の含有量を高くし、かつ波長変換層4の厚さを薄くすることも可能であり、発光素子の小型化、薄型化が実現できる。
なお、発光装置1としては、発光素子3の発光面が波長変換層4によって被覆された構成のように、発光素子3からの光が波長変換層4を透過し、発光の一部が蛍光体粒子によって波長変換され、発光素子3からの発光と波長変換された光とが混色されて出力される構成であればよく、チップタイプに限定されず、マウント・リードとインナー・リードとを備えたリードタイプなどであっても構わない。
以下、本発明を実施例により更に詳細に説明する。
[実施例1]
硝酸イットリウム,硝酸ガドリニウム,硝酸アルミニウム,硝酸セリウム,硝酸プラセオジムを、イットリウム(Y),ガドリニウム(Gd),アルミニウム(Al),セリウム(Ce),プラセオジム(Pr)の各成分の比率が(Y0.4232Gd0.4232AlCe0.1306,Pr0.0230の関係を満たすように水に溶解し、溶質濃度Cが0.3モル/リットルの均質な原料溶液を作製した。
そして、第一の工程として、1.7MHzの振動子が備えられた超音波噴霧器を用いて、原料溶液から液滴を形成し、この液滴を、空気をキャリアガスとして900℃に保持した管状炉内に導入して4秒間熱分解反応を行い、前駆体粒子を生成した。
次に第二の工程として、前記前駆体粒子をマッフル炉中に静置して大気中にて1300℃で5時間再加熱処理して蛍光体粉末を得た。
得られた蛍光体粒子の粉末X線回折パターン(XRDパターン)を測定し結晶層の同定を行った結果、図2に示されたように、良好な結晶性を有する立方晶系のYAG結晶が生成していることがわかった。また、蛍光体粒子の組成分析を行った結果、原料溶液中の金属イオンの混合比とほぼ同一の化学組成であることがわかった。
以上により、得られた蛍光体粒子は、良好な結晶性を有するY0.4232Gd0.4232Al12:Ce0.1306,Pr0.0230であることがわかった。
また、この蛍光体粒子は、図3の走査型電子顕徹鏡(SEM)写真に示されたように、粒径の揃った球状であり、その平均1次粒子径は0.84μmであり、また、全ての粒子の粒径が0.1μm以上、3.0μm以下の範囲内にあり、粒度の揃った粒子であることがわかった。
470nmの紫外線を照射し、発光スペクトルを測定した結果、図4に示されたように波長546nmに発光強度が0.1162の主発光ピーク(P)を有し、良好な黄色発光波長を有することが分かった。また、波長610nmにも発光強度が0.09の発光ピーク(P)を有し、良好な赤色発光波長を有することが分かった。
[実施例2]
実施例1において、第二の工程の再加熱処理温度が1500℃である以外は、実施例1と同一の条件で蛍光体粉末を製造した。
[実施例3]
実施例1において、第二の工程の再加熱処理温度が1600℃である以外は、実施例1と同一の条件で蛍光体粉末を製造した。
[実施例4〜実施例8]
第一の工程の管状炉内温度(熱分解反応の温度)を表1に示された温度とする以外は、実施例2と同一の条件で蛍光体粒子を製造した。
Figure 2005105177
実施例2〜8にて製造された蛍光体粉末は、XRDパターンを測定した結果、良好な結晶性を有することが分かった。また、これら蛍光体粒子は、それぞれ粒径の揃った略球状であり、全ての粒子の粒径が0.1μm以上、3.0μm以下の範囲内であった。
図5は、実施例3にて得られた蛍光体粒子の発光スペクトルを示す図である。実施例1と同様に波長546nm付近の主発光ピーク(P)と、波長610nm付近の発光ピーク(P)を有することが分かった。
また、表1に示されたように、実施例2〜8にて製造された蛍光体粉末は、実施例1と同様に、共に良好な黄色発光(波長546nm付近の主発光ピーク)波長と赤色発光(波長610nm付近の発光ピーク)波長を有することがわかった。
以上のように、第一の工程では、液滴を、炉内温度が500℃以上、1500℃以下の加熱炉に導入して1秒間以上、10秒間以下加熱して前駆体粒子を形成し、かつ第二の工程では、前駆体粒子を1300℃以上、1600℃以下の加熱温度にて0.5時間以上、5時間以下加熱することによって、粒子形状が略球状であり、粒径が0.1μm以上、3.0μm以下であり、良好な黄色波長と赤色波長の蛍光を発光する蛍光体粒子が形成できることが分かった。
[実施例9]
実施例3にて製造された蛍光体粒子とを用いて、以下に示されたようにして発光装置1を形成した。
筐体2の凹部に青色GaN素子(発光素子)3を設置し、発光素子3のn側電極とp側電極とを、それぞれ端子金属21に導電性ワイヤー5によって接続した。
次に、蛍光体粒子の含有量が5重量%となるように、蛍光体粒子とエポキシ樹脂とを連続式混練機(ニーダ)にて混合し、筐体2の凹部に流し込み、発光素子3の発光面がエポキシ樹脂で被覆された状態として、エポキシ樹脂を硬化させた。この蛍光体微粒子を含有するエポキシ樹脂が、波長変換層4となる。
図6は、実施例9の発光装置1の発光スペクトルを示す図である。発光素子3からの青色の発光ピーク(P)と、蛍光体粒子の波長546nm付近の主発光ピーク(P)と、波長610nm付近の発光ピーク(P)とを有し、演色性に優れた高輝度の白色光が得られた。
[比較例1]
酸化イットリウム粉末,酸化アルミニウム粉末,酸化セリウム粉末,酸化プラセオジム粉末,酸化ガドリニウム粉末を、各金属元素のモル比率がY0.4232Gd0.4232AlCe0.1306,Pr0.0230となるように秤量してボールミルにより混合し、原料混合物粉末を作製した。
この原料混合物粉末をマッフル炉内に静置し、大気中にて1600℃で5時間焼成した。
そして、得られた焼成物をビーズミルにて粉砕した。次いで、蒸留水にて洗浄して乾燥させ、蛍光体粒子を製造した。
[比較例2]
比較例1にて製造された蛍光体粒子を用いる以外は、実施例9と同様にして、発光装置を形成した。
図7は、比較例1にて製造された蛍光体粒子の発光スペクトルを示す図である。
波長546nmに発光強度が0.3182の主発光ピーク(P)を有し、また、波長610nmにも発光強度が0.2491の発光ピーク(P)を有し、実施例3で製造された蛍光体粒子とほぼ同等の発光強度を有することが分かった。
しかし、粒子形状は、破片状で不定形であり、また塊状の凝集体となっていた。粒径(1次粒子径)は10〜30μmであった。
このように、固相反応によって蛍光体粒子を製造した場合、粒子形状が略球状とならなかった。
図8は、比較例2の発光装置の発光スペクトルを示す図である。発光素子3からの青色の発光ピーク(P10)と、蛍光体粒子の波長546nm付近の主発光ピーク(P11)と、波長610nm付近の発光ピーク(P12)とを有することが分かった。
比較例1にて製造された蛍光体粒子は、破片状の不定形で塊状の凝集体であるために分散性が悪い。このため、波長変換層中では、蛍光体粒子が不均一であり、また凝集体で存在し、発光素子からの光を粒子表面全面で受けることができず、波長変換効率が低下し、蛍光体粒子の発光の輝度が低下してしまう。
また、蛍光体粒子の凝集体によって、発光素子からの光が大きく散乱、吸収され、光損失となる割合が大きく、発光素子からの発光の輝度も低下してしまう。
以上により、実施例9の発光装置1(図6)に比べて、各発光ピークの相対発光強度が低く、白色光の輝度が低くなってしまう。
本発明の蛍光体粒子は、分散性,充填性に優れ、均一にかつ高充填で樹脂中に分散させることができ、かつ青色光によって効率良く励起されて、黄色の主発光ピークと赤色の発光ピークを有する発光スペクトルが得られる。このため、青色の発光ダイオードが備えられた白色の発光装置に利用でき、これにより、演色性に優れた白色の発光装置が実現できる。このような発光装置は、白熱電球や蛍光灯に代わる発光装置として利用できる。
本発明の発光装置の一例を示す概略断面図である。 実施例1にて製造された蛍光体粒子の粉末X線回折パターンを示す図である。 実施例1にて製造された蛍光体粒子のSEM写真を示す図である。 実施例1にて製造された蛍光体粒子の発光スペクトルを示す図である。 実施例3にて製造された蛍光体粒子の発光スペクトルを示す図である。 実施例9の発光装置の発光スペクトルを示す図である。 比較例1にて製造された蛍光体粒子の発光スペクトルを示す図である。 比較例2の発光装置の発光スペクトルを示す図である。
符号の説明
1‥‥発光装置、3‥‥発光素子、4‥‥波長変換層

Claims (4)

  1. 一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce,Pr(ここで0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5)で表され、かつ粒子形状が略球状であることを特徴とする蛍光体粒子。
  2. 前記粒子の粒径が0.1μm以上、3.0μm以下であることを特徹とする請求項1に記載の蛍光体粒子。
  3. Y,Al,Ce,Prの金属イオンを少なくとも含有する原料溶液を霧状に噴霧して液滴を形成し、該液滴を、炉内温度が500℃以上、1500℃以下の加熱炉に導入して1秒間以上、10秒間以下加熱して、前駆体粒子を形成する第一の工程と、
    前記前駆体粒子を1300℃以上、1600℃以下の加熱温度にて0.5時間以上、5時間以下加熱する第二の工程とを備えたことを特徹とする蛍光体粒子の製造方法。
  4. 発光層が窒化物系化合物半導体からなる発光素子と、該発光素子によって発光された光の一部を吸収して、吸収した光の波長と異なる波長からなる光を発光する波長変換層とを備えた発光装置において、
    前記波長変換層が、一般式(Y1−(w+y+z)Gd(Al1−xGa12:Ce、Pr(ここで0≦w≦0.5,0≦x≦0.5,0<y<0.5,0<z<0.5)で表され、かつ粒子形状が略球状である蛍光体粒子を含むことを特徴とする発光装置。
JP2003342179A 2003-09-30 2003-09-30 蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置 Pending JP2005105177A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342179A JP2005105177A (ja) 2003-09-30 2003-09-30 蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342179A JP2005105177A (ja) 2003-09-30 2003-09-30 蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置

Publications (1)

Publication Number Publication Date
JP2005105177A true JP2005105177A (ja) 2005-04-21

Family

ID=34536553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342179A Pending JP2005105177A (ja) 2003-09-30 2003-09-30 蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置

Country Status (1)

Country Link
JP (1) JP2005105177A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129713A1 (ja) * 2006-05-10 2007-11-15 Denki Kagaku Kogyo Kabushiki Kaisha サイアロン蛍光体及びその製造方法並びにそれを用いた照明器具及び発光素子
JP2007314709A (ja) * 2006-05-29 2007-12-06 Konica Minolta Medical & Graphic Inc 金属酸化物蛍光体、その製造方法、及びそれを用いた放射線用シンチレータプレート
JP2007332324A (ja) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk サイアロン蛍光体とその製造方法、およびそれを用いた発光素子
JP2008024739A (ja) * 2006-07-18 2008-02-07 Hitachi Medical Corp 酸化物蛍光体及び放射線検出器及びx線ct装置
JP2009026873A (ja) * 2007-07-18 2009-02-05 Toshiba Lighting & Technology Corp 発光装置
JP2009540069A (ja) * 2006-06-12 2009-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 脈動反応器におけるフレア用の発光物質の製造方法
JPWO2008093869A1 (ja) * 2007-02-02 2010-05-20 日立金属株式会社 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
WO2012057133A1 (ja) * 2010-10-29 2012-05-03 日立金属株式会社 軟x線検出用多結晶シンチレータ
JP2017149847A (ja) * 2016-02-24 2017-08-31 日亜化学工業株式会社 蛍光体及び発光装置
WO2020013016A1 (ja) * 2018-07-11 2020-01-16 日本特殊陶業株式会社 光波長変換部材及び発光装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676163A (zh) * 2006-05-10 2012-09-19 电气化学工业株式会社 赛隆荧光粉及其制备方法以及使用该荧光粉的照明器具和发光元件
US8685279B2 (en) 2006-05-10 2014-04-01 Denki Kagaku Kogyo Kabushiki Kaisha Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
WO2007129713A1 (ja) * 2006-05-10 2007-11-15 Denki Kagaku Kogyo Kabushiki Kaisha サイアロン蛍光体及びその製造方法並びにそれを用いた照明器具及び発光素子
JP2007314709A (ja) * 2006-05-29 2007-12-06 Konica Minolta Medical & Graphic Inc 金属酸化物蛍光体、その製造方法、及びそれを用いた放射線用シンチレータプレート
JP2009540069A (ja) * 2006-06-12 2009-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 脈動反応器におけるフレア用の発光物質の製造方法
JP2007332324A (ja) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk サイアロン蛍光体とその製造方法、およびそれを用いた発光素子
JP2008024739A (ja) * 2006-07-18 2008-02-07 Hitachi Medical Corp 酸化物蛍光体及び放射線検出器及びx線ct装置
JP5212115B2 (ja) * 2007-02-02 2013-06-19 日立金属株式会社 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
JPWO2008093869A1 (ja) * 2007-02-02 2010-05-20 日立金属株式会社 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
JP2009026873A (ja) * 2007-07-18 2009-02-05 Toshiba Lighting & Technology Corp 発光装置
WO2012057133A1 (ja) * 2010-10-29 2012-05-03 日立金属株式会社 軟x線検出用多結晶シンチレータ
CN102869748A (zh) * 2010-10-29 2013-01-09 日立金属株式会社 软x射线检测用多晶闪烁器
JPWO2012057133A1 (ja) * 2010-10-29 2014-05-12 日立金属株式会社 軟x線検出用多結晶シンチレータ
US8815122B2 (en) 2010-10-29 2014-08-26 Hitachi Metals, Ltd. Polycrystalline scintillator for detecting soft X-rays
JP5633573B2 (ja) * 2010-10-29 2014-12-03 日立金属株式会社 軟x線検出用多結晶シンチレータ
CN102869748B (zh) * 2010-10-29 2015-01-07 日立金属株式会社 软x射线检测用多晶闪烁器及其制造方法
JP2017149847A (ja) * 2016-02-24 2017-08-31 日亜化学工業株式会社 蛍光体及び発光装置
WO2020013016A1 (ja) * 2018-07-11 2020-01-16 日本特殊陶業株式会社 光波長変換部材及び発光装置
JPWO2020013016A1 (ja) * 2018-07-11 2020-07-16 日本特殊陶業株式会社 光波長変換部材及び発光装置
CN112384832A (zh) * 2018-07-11 2021-02-19 日本特殊陶业株式会社 光波长转换构件和发光装置

Similar Documents

Publication Publication Date Title
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
JP5611960B2 (ja) pcLEDのための赤方偏移を有するドープされたガーネット蛍光物質
TWI515284B (zh) 螢光體粒子,其製造方法,及發光二極體
JP4521227B2 (ja) 窒素を含有する蛍光体の製造方法
Kumar et al. Perspective on europium activated fine-grained metal molybdate phosphors for solid state illumination
EP1785464A1 (en) Phosphor, light-emitting device using same, image display and illuminating device
KR20090026338A (ko) 맥동 반응기에서 플레어를 위한 발광 물질의 제조방법
JP2010523740A (ja) オルトケイ酸塩からなるpcLED用の発光体の製造方法
JP2008019407A (ja) 蛍光体の製造方法、蛍光体、半導体発光装置および画像表示装置
KR20110131117A (ko) 알루민산염 형광체, 그 제조 방법 및 발광 소자
JP2015113358A (ja) 蛍光体、蛍光体含有組成物、発光装置、照明装置、画像表示装置、及び蛍光体の製造方法
JP2007169452A (ja) 蛍光体およびその製造方法、並びに発光装置
JP2005105177A (ja) 蛍光体粒子、及びその製造方法、並びに蛍光体粒子を用いた発光装置
US9080104B2 (en) Mn-activated phosphors
KR100458126B1 (ko) 장파장 자외선용 녹색 형광체 및 그의 제조 방법
WO2012050051A1 (ja) マンガン賦活ゲルマン酸塩蛍光体の製造方法
CN101186818A (zh) 蓝紫光或蓝光激发的荧光体及制造方法与封装的白光二极管
JP4148245B2 (ja) 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
KR20110138371A (ko) 적색 형광체, 그의 제조 방법 및 발광 소자
Nair et al. White light-emitting novel nanophosphors for LED applications
KR102473675B1 (ko) 형광체 및 그 제조 방법
JP2008007390A (ja) 複合金属化合物の製造方法
KR100785089B1 (ko) 칼슘 스트론튬 마그네슘 실리케이트계 청색형광체 및 이의제조방법
US9157024B2 (en) Phosphor and light emitting device
KR100668796B1 (ko) 훈타이트계 형광체 및 이를 이용한 백색 발광 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909