JP2010523740A - オルトケイ酸塩からなるpcLED用の発光体の製造方法 - Google Patents

オルトケイ酸塩からなるpcLED用の発光体の製造方法 Download PDF

Info

Publication number
JP2010523740A
JP2010523740A JP2010501391A JP2010501391A JP2010523740A JP 2010523740 A JP2010523740 A JP 2010523740A JP 2010501391 A JP2010501391 A JP 2010501391A JP 2010501391 A JP2010501391 A JP 2010501391A JP 2010523740 A JP2010523740 A JP 2010523740A
Authority
JP
Japan
Prior art keywords
phosphor
light source
sio
light
lighting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010501391A
Other languages
English (en)
Inventor
ヴィンクラー,ホルガー
フォスグレーネ,ティム
ロート,グンドゥラ
テウス,ヴァルター
テウス,シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Litec LLL GmbH
Original Assignee
Merck Patent GmbH
Litec LLL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH, Litec LLL GmbH filed Critical Merck Patent GmbH
Publication of JP2010523740A publication Critical patent/JP2010523740A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

本発明は、式(I) BaSrCaSiO:zEu2+、式中、w+x+y+z=2および0.005<z<0.5が良好に保持される、で表される発光体の製造方法に関する。本発明はまた、照明ユニット、および白色LEDのための、またはいわゆるカラーオンデマンドアプリケーションのためのLED変換発光体としての発光体の使用に関する。

Description

本発明は、ユウロピウム(II)がドープされたオルトケイ酸塩、好ましくはアルカリ土類金属オルトケイ酸塩からなる蛍光体を製造するための湿式化学的方法、および白色LEDまたはいわゆるカラーオンデマンド(colour-on-demand)用途のためのLED変換蛍光体としてのこれらの使用に関する。
カラーオンデマンドの概念は、1種または2種以上の蛍光体を用いるpcLEDによる、ある種の色位置(colour location)の光の発生を意味するものと解釈される。この概念は、例えば、例えば照明された企業ロゴ、商標などのためのある種の企業デザインを作成するために用いられる。
近年では、光学スペクトルのUV光領域または青色光領域における励起に基づく青緑色光、黄緑色ないしオレンジ色光を発する蛍光体は、かつてない重要なものになった。これは、蛍光体を、白色光を発する機材用に用いることができるという事実のためである。特に、セリウムがドープされたガーネット蛍光体(YAG:Ce)が、種々の方向で用いられている(例えばEP 862794、WO 98/12757を参照)。しかし、これらは、これらが560nmより低い発光極大にて十分に高い効率を有するに過ぎないという欠点を有する。
この理由のために、青色ダイオード(450〜490nm)と組み合わせた純粋なYAG:Ce蛍光体を、6000〜8000Kの間の色温度を有し、比較的低い色再現(色再現指数Raについての典型的な値は70〜75である)を有する低温白色光色を発生させるために用いることができるに過ぎない。これにより、応用可能性が大いに限定されることとなる。一方では、一般的に、白色光源を一般的な照明において用いる際のランプの色再現品質についてより高い要求がなされており、他方では、2700〜5000Kの色温度を有するより温暖な色の光が、特にヨーロッパおよび北アメリカにおいて、消費者によって好まれている。
WO 00/33389にはさらに、青色LEDからの光を変換するための発光団として、とりわけ、BaSiO:Eu2+を用いることが開示されている。しかし、蛍光体発光の極大は505nmにおいてであり、これは、このタイプの組み合わせを用いる白色光を発生させることが確実には可能ではないことを意味する。
ケイ酸塩蛍光体は、白色LED用に、先の数年において開発された(WO 02/11214、WO 02/054502を参照)。さらに、これらの蛍光体をガス放電ランプ用に用いることができることが知られている(K.H. Butler "Fluorescent Lamp Phosphors" Pennsylvania Univ. Press, 1980を参照)。加えて、T.L. Barry, J. Electrochem. Soc. 1968, 1181には、(Ca,Sr)SiO:Euの均一であり、固体の二元混合物が体系的に研究されていることが記載されている。これらの蛍光体は、粉末としての酸化物出発物質を混合し、混合物を粉砕し、次に任意に還元雰囲気中で、1500℃までの温度で数日までにわたり炉中で粉砕した粉末をか焼することによって、固体拡散方法(混合して焼く方法)によって調製された。
この結果、形態、粒度分布および基質量中の発光性活性化イオンの分布に関して不均等性を有する蛍光体粉末が生成する。さらに、伝統的な方法により作成されるこれらの蛍光体の形態、粒度分布および他の特性を困難を伴って調節することができるに過ぎず、再現するのは難しい。したがって、これらの粒子は、例えば特に、最適ではなく不均等な形態および粒度分布を有する当該蛍光体によってLEDチップが不均等にコーティングされ、この結果散乱により高度な損失プロセスが発生することなど、多数の欠点を有する。LEDチップの蛍光体コーティングが不均等であるのみならず、LEDからLEDへと再現可能でもないという事実により、これらのLEDを製造する際にさらなる損失が発生する。これにより、バッチ内でも発生するpcLEDsから発光された光の色位置の変動が生じる。
LEDケイ酸塩蛍光体は、YAG:Ce系より高いCRIを得るために、単独で、または青色もしくはUV LED基質用の混合物中に用いられる。しかし、実際には、従来のケイ酸塩蛍光体は、YAG:Ce蛍光体より高い効率性および照度を示さない。加えて、高いバリウム濃度を有するいくつかの蛍光体は、使用中の加水分解感受性についての問題を有することが、報告されている(T.L. Barry, J. Electrochem. Soc. 1968, 1181を参照)。これらの欠陥により、ケイ酸塩蛍光体の効率性が低下する結果となる。
DE 10 2005051063 A1には、精製プロセスにおいて残留した水の大部分を回収するために、非水性有機溶媒、例えばエタノールを用いる湿式化学的方法(湿式粉砕および湿式ふるい分け方法)によって調製された、発光効率が改善されたケイ酸塩をベースとする蛍光体が開示されている。
したがって、本発明の目的は、1つまたは2つ以上の上記の欠点を有せず、暖かい白色光を生じる、白色LED用またはカラーオンデマンドアプリケーション用のアルカリ土類金属オルトケイ酸塩蛍光体を調製するための方法を提供することにある。
驚異的なことに、アルカリ土類金属オルトケイ酸塩蛍光体を湿式化学的方法により調製することによってこの目的が達成され、ここで2つの方法の変法が可能である。
したがって、本発明は、式I
BaSrCaSiO:zEu2+ (I)
式中、
w+x+y+z=2および
0.005<z<0.5である、
で表される蛍光体の製造方法であって、
a)塩類、硝酸塩、シュウ酸塩、水酸化物またはこれらの混合物の形態の、少なくとも2種のアルカリ土類金属およびユウロピウム含有ドーパントおよびケイ素含有化合物を、水、酸または塩基に溶解、懸濁または分散させ、
b)この混合物を、加熱した熱分解反応器中に噴霧し、熱分解により蛍光体前駆体に変換し、
c)その後、熱後処理によって、完成した蛍光体に変換する
ことを特徴とする、前記方法に関する。
ここで、w、x、yまたはzは、0〜2の値を採ることができる。
用いる電気的に加熱された熱分解反応器は、好ましくは噴霧熱分解反応器、例えば高温壁反応器(Merck社内設計)である。本発明の方法を行うために、予め調製した溶液、分散体または懸濁液を、外部から電気的に加熱した管中に、2つの構成部品を有するノズルによって定められた空気/供給比で噴霧する。原理を、図1において図面中に図解する。多孔質金属フィルターの補助により、粉末を高温ガス流から分離する。噴霧注入(spray-in)点の直後に入力される必要エネルギーの減少が、溶媒蒸発の結果としての冷却効果および流れの乱れの少なさにより、この反応器において自動的に達成される。
噴霧熱分解反応器における反応器温度は、600〜1080℃、好ましくは800〜1000℃である。
本発明にしたがって、用いる出発物質の量を基準として0.5〜80%、好ましくは1〜5%の量の無機塩類、例えば塩化物、好ましくは塩化アンモニウム、または硝酸塩もしくは塩素酸塩、の化学的分解反応により、追加のエネルギーを導入する。これらの無機塩類は、融点を降下させるための流動化剤(fluxing agent)として作用し、これを熱後処理の前またはこの間に加える。
用いるアルカリ土類金属出発物質は、好ましくは所望の化学量論的比率の硝酸バリウム、硝酸ストロンチウムおよび/または硝酸カルシウムである。
噴霧熱分解反応器または高温壁反応器の代わりに、脈動反応器(pulsation reactor)もまた熱分解反応器に用い得る。Merckによる特許出願第DE 10 2006027133.5号(出願日:2006年6月12日、参照により全範囲を本出願の文脈中に導入する)には、ガーネット蛍光体をいかにして脈動反応器における特定のプロセス設計により調製することができるかについて詳細に記載されている。本発明の式Iで表される蛍光体を、この脈動反応器プロセスにより同様に調製することができ、ここで出発溶液を、脈動、無炎燃焼によって発生した高温ガス流中に噴霧する。
本発明はさらに、上述の式Iで表される蛍光体を調製するための方法であって、
a)塩類、硝酸塩、シュウ酸塩、水酸化物またはこれらの混合物の形態の少なくとも2種のアルカリ土類金属およびユウロピウム含有ドーパントを、水、酸または塩基に溶解、懸濁または分散させ、
b)ケイ素含有化合物を、高温にて加え、
c)この混合物を、<300℃の温度にて噴霧乾燥し、
d)その後、熱後処理により完成した蛍光体に変換する
ことを特徴とする、前記方法に関する。
このプロセスの変法において用いるアルカリ土類金属出発物質は、好ましくは所望の化学量論的比率の水酸化バリウム、水酸化ストロンチウムおよび/または水酸化カルシウムである。
両方のプロセスの変法において適するケイ素含有化合物は、一般的に無機または有機ケイ素化合物である。本発明において、好ましいのは、二酸化ケイ素またはオルトケイ酸テトラエチルを用いることである。
最後に述べたプロセスの変法において、ケイ素含有化合物をアルカリ土類金属塩類とドーパントとの混合物に、25〜95℃、好ましくは75〜90℃の温度にて加える。これに続いて、GEA Niro噴霧塔(spray tower)において200〜350℃、好ましくは250〜300℃の温度にて噴霧乾燥する。噴霧塔におけるノズル圧力は、1〜3bar、好ましくは2barである。時間の関数としての噴霧溶液の量は、1時間あたり2〜6リットルの反応溶液、好ましくは1時間あたり4リットルである。
用いることができるドーパントは、一般的にすべての所望のユウロピウム塩類であり、硝酸ユウロピウムおよび塩化ユウロピウムが好ましい。ユウロピウムのドーピング濃度が0.5〜50mol%であるのが、さらに好ましい。特に好ましくは2.0〜20mol%である。一般的に、10〜15mol%のユウロピウム濃度において、蛍光体の増大した吸収および結果として増大した光収率またはより大きい明度が生じる。より高いユウロピウム濃度は量子収量を低減し、したがって同様に低下した光収率がもたらされる。
完成した蛍光体を得るための蛍光体前駆体の熱後処理を、高温炉中で、コランダムるつぼ内温度1000〜1400℃にて何時間にもわたり所定量の前駆体をか焼することにより行う。粗製の蛍光体ケークを粉末状にし、洗浄し、ふるい分けする。
前述の熱後処理において、か焼を少なくとも部分的に還元条件下(例えば一酸化炭素、フォーミングガスもしくは水素を用いて、または少なくとも真空もしくは酸素欠乏雰囲気で)で行うのが好ましい。
本発明の蛍光体の粒径は、50nm〜50μm、好ましくは1μm〜25μmである。
他のプロセスの変法において、本発明にしたがって、蛍光体の表面を、例えばピラミッド構造によりさらに構造化するのが好ましい(DE 102006054330.0、Merckを参照。これを、この全範囲において本出願の文脈中に参照により導入する)。これにより、蛍光体からの可能な限り多大な光を組み合わせる(coupled)ことが可能になる。
蛍光体上の構造化された表面は、すでに構造化された好適な材料でその後コーティングすることによって、または、(フォト)リソグラフィープロセス、エッチングプロセスによる、またはエネルギーもしくは材料ビーム(material beam)もしくは機械力の作用を用いる書き込みプロセス(writing process)による以降の段階において、作成される。
他のプロセスの変法において、本発明にしたがって、SiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの物質の組み合わせのナノ粒子、あるいは蛍光体組成物を含む粒子のナノ粒子を担持する粗面を、LEDチップの反対側に作成するのが好ましい。
ここで、粗面は、数百nmまでの粗さを有する。被覆表面は、全反射を低減または防止することができ、本発明の蛍光体からの光をより良好に組み合わせることができるという利点を有する(DE 102006054330.0(Merck)を参照。これを、この全範囲において本出願の文脈中に参照により導入する)。
さらに、本発明の方法により調製される蛍光体が、チップに向いていない表面において屈折率が適合された層を有するのが好ましく、これにより、一次放射線および/または蛍光体素子により発せられる放射線の組み合わせが単純化される。
他のプロセスの変法において、本発明の蛍光体の表面がさらにSiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物の密閉コーティング(closed coating)を備えているのが好ましい。この表面コーティングは、コーティング材料の屈折率の好適な目盛り付けにより、周囲(environment)への屈折率の適合を達成することができるという利点を有する。この場合において、蛍光体の表面における光の散乱は低減され、より大きい比率の光が蛍光体中に差し込み、吸収され、変換され得る。加えて、全体的な内面反射が低減するため、屈折率が適合された表面コーティングは、蛍光体からのより多くの光を組み合わせるのを可能にする。
加えて、蛍光体をカプセル封入しなければならない場合には、密閉層は有利である。これは、周辺の水または他の物質の拡散に対する蛍光体またはその一部の感受性に対処するために必要であり得る。密閉された覆いでカプセル封入することの他の理由は、チップ中で発生する熱からの実際の蛍光体の熱的デカップリング(thermal decoupling)である。この熱により、蛍光体の蛍光収率の低下がもたらされ、また蛍光の色に影響を及ぼし得る。最後に、このタイプのコーティングは、蛍光体において発生する格子振動が周囲に伝播するのを防止することによって、蛍光体の効率の増大を可能にする。
加えて、SiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらのもしくは蛍光体組成物の混合酸化物からなる多孔性表面コーティングを有する蛍光体を当該方法により調製するのが好ましい。これらの多孔性コーティングは、単一層の屈折率をさらに低減する可能性を提供する。全範囲において本出願の文脈中に参照により導入するWO 03/027015に記載されているように、このタイプの多孔性コーティングを、3つの従来の方法により製造することができる:ガラス(例えばソーダ石灰ガラス(US 4019884を参照))のエッチング、多孔質層の適用および多孔質層とエッチングプロセスとの組み合わせ。
他の好ましいプロセスの変法において、好ましくはエポキシまたはシリコーン樹脂からなる、周囲への化学結合を容易にする官能基を担持する表面を有する蛍光体を製造する。これらの官能基は、例えば、オキソ基を介して結合しており、エポキシドおよび/またはシリコーンをベースとするバインダーの成分への結合を形成することができるエステル類または他の誘導体であり得る。このタイプの表面は、蛍光体のバインダー中への均一な混合が容易になるという利点を有する。さらに、したがって、蛍光体/バインダー系のレオロジー的特性およびまたポット寿命を、ある程度調節することができる。混合物の加工は、このように単純化される。
LEDチップに適用される本発明の蛍光体層が好ましくはシリコーンおよび均一な蛍光体粒子の混合物からなり、シリコーンが表面張力を有するため、この蛍光体層は微視的なレベルにおいて不均一であるか、または層の厚さは完全に一定ではない。
本発明はさらに、本発明の方法により調製された、式I
BaSrCaSiO:zEu2+ (I)
式中、
w+x+y+z=2および
0.005<z<0.5である、
で表される蛍光体に関する。この蛍光体は、好ましくは、構造化された表面あるいはSiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの粒子混合酸化物のナノ粒子もしくは蛍光体組成物を含む粒子のナノを担持する粗面を有する。
さらに、式Iで表されるこの蛍光体がSiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物からなる密閉性のまたは多孔性の表面コーティングを有するのが好ましい。
さらに、蛍光体の表面が、好ましくはエポキシまたはシリコーン樹脂を含む周囲への化学結合を容易にする官能基を担持するのが好ましいだろう。
前述のプロセスの補助により、蛍光体粒子のあらゆる所望の外形、例えば球状粒子、薄片および構造化された材料およびセラミックスを製造することができる。
さらに好ましい態様として、薄片形態の蛍光体を、対応するアルカリ土類金属塩類およびユウロピウム塩類から、従来の方法により調製する。調製方法はEP 763573およびDE 102006054331.9に詳細に記載されており、これらを、これらの全範囲において本出願の文脈中に参照により導入する。極めて大きいアスペクト比、原子的に平滑な表面および調整可能な厚さを有する、例えば雲母薄片、SiO薄片、Al薄片、ZrO薄片、ガラス薄片またはTiO薄片の、天然の、または合成により作成された、高度に安定な支持体または基板を、水性分散体または懸濁液における沈殿反応によって蛍光体層でコーティングすることにより、これらの薄片形態の蛍光体を調製することができる。
雲母、ZrO、SiO、Al、ガラスもしくはTiOまたはこれらの混合物以外に、薄片はまた、蛍光体材料自体からなるかまたは材料から構築され得る。薄片自体が単に蛍光体コーティングに対する支持体として作用を奏するに過ぎない場合には、後者は、LEDから一次放射線に対して透明である材料からなるか、または一次放射線を吸収し、このエネルギーを蛍光体層に伝送しなければならない。薄片形態の蛍光体を、樹脂(例えばシリコーンまたはエポキシ樹脂)中に分散させ、この分散体をLEDチップに適用する。
薄片形態の蛍光体を、50nm〜約300μm、好ましくは150nm〜100μmの厚さで、大きい産業的規模で製造することができる。直径はここで、50nm〜20μmである。
これは、一般的に、1:1〜400:1、特に3:1〜100:1のアスペクト比(直径対粒子の厚さの比率)を有する。
薄片の大きさ(長さ×幅)は、配置に依存する。特にこれらが特に小さい寸法を有する場合には、薄片はまた、変換層内に散在する中心部として適する。
LEDチップに面する本発明の薄片形態の蛍光体の表面は、LEDチップにより発せられた一次放射線に関する反射低減作用を有するコーティングを備えていることができる。この結果、一次放射線の後方散乱の低減がもたらされ、本発明の蛍光体素子中へ後者を組み合わせることを増強する。
この目的に適するのは、例えば屈折率が適合されたコーティングであり、以下の厚さd:d=[LEDチップからの一次放射線の波長/(4×蛍光体セラミックの屈折率)]を有しなければならない(例えば、Gerthsen, Physik [Physics], Springer Verlag, 18th Edition, 1995を参照)。このコーティングはまた、フォトニック結晶からなっていてもよく、これはまた、特定の機能を達成するために薄片形態の蛍光体の表面を構造化することを含む。これにより、可能な限り多量の光を蛍光体素子に組み合わせるのが可能になる。
蛍光体素子上の構造化された表面を、構造化されたプレスプレートを有する型を用いて静水圧プレス成形を行い、それにより構造を表面中に浮き彫りにして作成する。目的が、可能な限り薄い蛍光体素子または薄片を作成することにある場合には、構造化された表面が所望される。押圧条件は、当業者に知られている(J. Kriegsmann, Technische keramische Werkstoffe [Industrial Ceramic Materials], 第4章、Deutscher Wirtschaftsdienst, 1998を参照)。用いる押圧温度が、押圧される物質の融点の2/3〜5/6であるのが重要である。
加えて、本発明の蛍光体は、約120nm〜530nm、好ましくは254nm〜約480nmに及ぶ広範囲にわたって励起することができる。したがって、これらの蛍光体は、UVまたは青色発光一次光源、例えばLED、または従来の放電ランプ(例えばHgをベースとする)による励起に適するのみならず、451nmにて青色In3+線を用いるもののような光源にも適する。
本発明はさらに、発光極大が120nm〜530nm、好ましくは254nm〜約480nmの範囲内にある少なくとも1つの一次光源を有する照明ユニットに関し、ここで一次放射線は、本発明の蛍光体により、より長い波長の放射線に部分的に、または完全に変換される。
本発明において、用語「照明ユニット」は、以下の構成要素または成分を包含する:
・紫外線または青色光を発光するための少なくとも1つの一次光源、
・一次光源と直接的にまたは間接的に接触して位置する少なくとも1つの変換蛍光体、
・任意に、照明ユニットをカプセル封入するための透明な密封樹脂(例えばエポキシまたはシリコーン樹脂)、
・任意に、一次光源が搭載され、電気エネルギーを一次光源に供給するための少なくとも2つの電気的接続を有する、支持素子、
・任意に、二次的な光学配置、例えばレンズ、鏡、プリズムまたはフォトニック結晶。
この照明ユニットは、好ましくは白色光を発するか、または特定の色位置(カラーオンデマンドの原理)を有する光を発する。本発明の照明ユニットの好ましい態様を、図4〜15に記載する。
本発明の照明ユニットの好ましい態様において、光源は発光性窒化インジウムアルミニウムガリウム、特に式InGaAlNで表され、式中、0≦i、0≦j、0≦kおよびi+j+k=1であるものである。
このタイプの光源の可能な形態は、当業者に知られている。これらは、種々の構造を有する発光LEDチップであり得る。
本発明の照明ユニットの他の好ましい態様において、光源は、ZnO、TCO(透明な導電性酸化物)、ZnSeもしくはSiCをベースとする発光配置または有機発光層(OLED)をベースとする配置である。
本発明の照明ユニットの他の好ましい態様において、光源は、エレクトロルミネセンスおよび/またはフォトルミネセンスを示す源である。光源はさらに、またプラズマまたは放電源であってもよい。
本発明の蛍光体を、樹脂(例えばエポキシもしくはシリコーン樹脂)中に分散させるか、または好適な大きさの比率を前提として、一次光源上に直接配置するか、または用途に依存して、一時光源から遠隔させて配置することができる(後者の配置はまた、「遠隔蛍光体技術」を含む)。遠隔蛍光体技術の利点は、当業者に知られており、例えば以下の刊行物中で明らかにされている:Japanese Journ. of Appl. Phys. Vol 44, No. 21 (2005). L649-L651。
他の態様において、蛍光体と一次光源との間の照明ユニットの光学的連結が、光伝導性配置により達成されるのが好ましい。これにより、一次光源が中央位置に設置され、光伝導性装置、例えば光伝導性繊維により蛍光体に光学的に連結することが可能になる。このようにして、照明の願望と整合し、単に1種のまたは種々の蛍光体(配置して光スクリーンを形成してもよい)および、一次光源に結合する1種または2種以上の光伝導体からなるランプを達成することができる。このようにして、強力な一次光源を、電気設備に好ましい位置に配置し、任意の所望の位置において光伝導体に結合する蛍光体を含むランプを、さらに電気的配線を施さず、代わりに単に光伝導体を据えることのみにより設置することが可能である。
さらに、真空UV(<200nm)および/またはUV領域において光を発する一次光源が、本発明の蛍光体と組み合わせて、少なくとも10nmの半値幅を有する発光帯を有するのが、本発明において好ましい。
本発明はさらに、本発明の蛍光体を、発光ダイオードからの青色または近UV発光を部分的に、または完全に変換するために用いることに関する。
本発明の蛍光体を、さらに好ましくは、青色または近UV発光を視覚可能な白色放射線に変換するために用いる。本発明の蛍光体を、さらに好ましくは、「カラーオンデマンド」概念に従って一次放射線を特定の色位置に変換するために用いる。
本発明はさらに、例えば硫化亜鉛またはMn2+、CuもしくはAgがドープされた硫化亜鉛をエミッタとして用いた、黄緑色領域において発光するエレクトロルミネセントフィルム(また発光フィルムまたは光フィルムとして知られている)などのエレクトロルミネセント材料において本発明の蛍光体を用いることに関する。エレクトロルミネセントフィルムの適用の領域は、例えば広告、液晶ディスプレイ画面(LCディスプレイ)および薄膜トランジスタ(TFT)ディスプレイにおけるディスプレイバックライト、字光式(self-illuminating)車両ナンバープレート、床の図形(耐圧壊性(crush-resistant)および滑り止め積層体と組み合わせて)、例えば自動車、列車、船舶および航空機におけるディスプレイおよび/または制御素子、あるいはまた屋内電気器具、園芸機材、測定器具またはスポーツおよびレジャー機材である。
以下の例は、本発明を例示することを意図する。しかし、これらを、いかなる方法によっても限定的であると考慮するべきではない。組成物において用いることができるすべての化合物または構成成分は、知られており、商業的に入手できるか、または既知の方法によって合成することができる。例において示す温度は、常に℃で示す。さらに、記載およびまた例の両方において、組成物中の構成成分の添加量は、常に合計100%まで加えられる。示す百分率のデータは、常にこの所定の関係にあると見なすべきである。しかし、これらは通常常に、示す部分量または合計量の重量に関する。

例1:蛍光体Ba0.345Sr1.6Eu0.055SiOの高温壁反応器中での調製
90.162gの硝酸バリウム(Merck KGaAからの分析的等級)、338.605gの硝酸ストロンチウム(Merck KGaAからの分析的等級)、60.084gの高度に分散した二酸化ケイ素(特別に純粋な等級、Ph Eur, NF, E 551, Merck KGaA)、13.373gの塩化アンモニウム(Merck KGaAからの分析的等級)および24.528gの硝酸ユウロピウム六水和物(分析的等級ACS、Treibacher Industrie AG)を、5lの脱イオン水に溶解または懸濁させる。次に、反応溶液を、2つの構成部品を有するノズルによって、1.5mの長さを有する高温壁反応器中に噴霧する。蛍光体粒子を、焼結した金属高温ガスフィルターによって、高温ガス流から分離する。
代替的に、用いるケイ素源をオルトケイ酸テトラエチル(TEOS)とすることもできる。本例において、上記の二酸化ケイ素は、208.33gのTEOS(合成等級、Merck KGaA)と置き換えられる。反応溶液へのその可溶性を増大させるために、一部の溶媒水を、エタノールと置き換えることができる。しかし、TEOSまたは溶媒としてエタノールを用いるにあたり、追加のエネルギーがこの系中に投入され、これには加熱パラメーターの補正が必要であり得ることを、考慮しなければならない。
高温壁反応器の設定:
温度:800℃
ノズル圧力:3bar(N)、向流原理
ノズル直径:1mm
処理量:1.4dmの溶液/時
焼結金属フィルターカートリッジにおける分離:Δp=50mbar
収量:250g(理論的収量:279g)
例2:蛍光体Ba0.345Sr1.6Eu0.055SiOの噴霧乾燥機中での調製
275.914gの水酸化バリウム八水和物(特別に純粋な等級、Merck KGaA)、1062.480gの水酸化ストロンチウム八水和物(特別に純粋な等級、Merck KGaA)および50.369gの塩化ユウロピウム六水和物(分析的等級ACS、Treibacher Industrie AG)を、20lの反応器中で精密ガラス攪拌機を用いて5lの脱イオン水中に懸濁させ、90℃に加熱する。すべての物質を懸濁させたら、150.0gの高度に分散した二酸化ケイ素(特別に純粋な等級、Ph Eur, NF, E 551, Merck KGaA)を加え、混合物をこの目的のために約5lの脱イオン水で洗浄する。
反応溶液を、その後噴霧乾燥する。
噴霧塔の設定(GEA Niro)
ノズル圧力:2bar
入口温度:250℃
出口温度:68〜70℃
ホースポンプ:25RPM(約4l/時に相当する)
次に、例1および2からの前駆体を、還元フォーミングガス雰囲気中で行う1200℃でのか焼プロセスにおいて、蛍光体に変換する。このために、前駆体を、250mlのコランダムるつぼ中に導入し、1〜10重量%、好ましい態様においては5重量%の塩化アンモニウムで覆い、振盪により圧縮し、その後5時間か焼する。その後、完成した粗製の蛍光体ケークを、モルタルミル(mortar mill)中で粉砕し、次に洗浄し、乾燥し(T=120℃)、ふるい分けする。
本発明を、多数の例示的態様を参照して以下により詳細に説明する。図4〜15は、種々の照明ユニットを記載し、これらはすべて、本発明のオルトケイ酸塩蛍光体を含む:
高温反応器の原理の略図である。本発明の方法を行うために、予め調製した溶液または分散体を、外部から電気的に加熱した管中に、2つの構成部品を有するノズルによって定められた空気/供給比で噴霧する。原理を、図1において略図として図解する。粉末を、多孔質金属フィルターの補助により、高温ガス流から分離する(1=溶液または分散体;2=空気;3=2つの構成部品を有するノズル;4=反応器管;5=ヒーター;6=流れ源)
図2は、蛍光体Ba0.345Sr1.6Eu0.055SiOの励起スペクトルである。 図3は、465nmにおいて励起した際の、蛍光体Ba0.345Sr1.6Eu0.055SiOの発光スペクトルである。
図4は、蛍光体含有コーティングを有する発光ダイオードの線図を示す。構成要素は、放射線源としてのチップ状発光ダイオード(LED)1を含む。発光ダイオードは、カップ形状の反射体中に設置されており、これは、調整フレーム2により保持されている。チップ1は、フラットケーブル7を介して第1の接点6に、および第2の電気的接点6’に直接接続している。本発明の変換蛍光体を含むコーティングは、反射体カップの内側の湾曲に適用されている。蛍光体を、互いに別個に、または混合物の形態で用いる。(部品の符号のリスト:1 発光ダイオード、2 反射体、3 樹脂、4 変換蛍光体、5 ディフューザ(diffuser)、6 電極、7 フラットケーブル)
図5は、白色光用光源(LED)として作用するInGaNタイプのCOB(チップオンボード)パッケージを示す(1=半導体チップ;2,3=電気的接続;4=変換蛍光体;7=ボード)。蛍光体はバインダーレンズ中で分配され、これは同時に二次的な光学素子を表し、レンズとして発光特徴に影響する。
図6は、白色光用光源(LED)として作用するInGaNタイプのCOB(チップオンボード)パッケージを示す(1=半導体チップ;2,3=電気的接続;4=変換蛍光体;7=ボード)。蛍光体は、LEDチップ上に直接分布する薄いバインダー層中に位置する。透明な材料からなる二次的光学素子を、この上に配置することができる。
図7は、白色光用光源(LED)として作用するパッケージの1つのタイプを示す(1=半導体チップ;2,3=電気的接続;4=反射体を有する空洞中の変換蛍光体)。変換蛍光体はバインダー中に分散し、この混合物は空洞を充填する。
図8は、第2のタイプのパッケージを示し、ここで、1=ハウジングプレート;2=電気的接続;3=レンズ;4=半導体チップである。この設計は、フリップチップ設計であるという利点を有し、ここでより大きい比率のチップからの光を、ベース上の透明な基板および反射体によって光源の目的のために用いることができる。加えて、この設計では熱消散が好ましい。
図9は、パッケージを示し、ここで1=ハウジングプレート;2=電気的接続;4=半導体チップであり、レンズの下の空洞は、本発明の変換蛍光体で完全に充填されている。このパッケージは、より多量の変換蛍光体を用いることができるという利点を有する。後者はまた、遠隔の蛍光体として作用することができる。
図10は、SMDパッケージ(表面実装したパッケージ)を示し、ここで1=ハウジング;2,3=電気的接続;4=変換層である。半導体チップは、本発明の蛍光体により完全に覆われている。SMD設計は、小さい物理的形状を有し、したがって従来の光源に収まるという利点を有する。
図11は、T5パッケージを示し、ここで1=変換蛍光体;2=チップ;3,4=電気的接続;5=透明な樹脂を有するレンズである。変換蛍光体は、LEDチップの背面に位置し、これは、蛍光体が金属的接続を介して冷却されるという利点を有する。
図12は、発光ダイオードの線図を示し、ここで1=半導体チップ;2,3=電気的接続;4=変換蛍光体;5=ボンドワイヤであり、ここで蛍光体は、最上部の球体としてバインダー中に適用される。蛍光体/バインダー層のこの形状は、二次的光学素子として作用し、例えば光伝播に影響し得る。
図13は、発光ダイオードの線図を示し、ここで1=半導体チップ;2,3=電気的接続;4=変換蛍光体;5=ボンドワイヤであり、ここで蛍光体を、バインダー中に分散した薄層として適用する。二次的光学素子として作用する他の構成要素、例えばレンズ、をこの層に容易に適用することができる。
図14は、すでにUS-B 6,700,322から原理上知られている他の用途の例を示す。本発明の蛍光体を、ここでOLEDと共に用いる。光源は、実在の有機フィルム30および透明な基材32からなる有機発光ダイオード31である。フィルム30は、特に、例えばPVK:PBD:クマリン(PVK、ポリ(n−ビニルカルバゾール)の略語;PBD、2-(4−ビフェニル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾールの略語)により発生した、青色の一次光を発する。発光は、本発明の蛍光体の層33により形成される被覆層によって、黄色の、二次的に発せられた光に部分的に変換され、一次的におよび二次的に発せられた光の色混合により、全体で白色の発光を生じる。
OLEDは本質的に、発光ポリマーの少なくとも1つの層または2つの電極、これは、例えばITO(酸化スズインジウムの略語)をアノードとしておよび例えばBaまたはCaなどの高度に反応性の金属をカソードとしてなど、それ自体知られている材料からなる、の間のいわゆる小分子からなる。複数の層をまた、しばしば電極間で用い、これは、正孔輸送層として作用するか、または小分子の領域においてはまた電子輸送層として作用する。用いる発光ポリマーは、例えばポリフルオレン類またはポリスピロ材料である。
図15は、WO 2005/061659と同様にインジウム充填および緩衝ガスを含む、水銀非含有ガスフィリング21を有する低圧ランプ20を示し(図式的)、ここで本発明の蛍光体の層22が適用されている。

Claims (27)

  1. 式I
    BaSrCaSiO:zEu2+ (I)
    式中、
    w+x+y+z=2、
    0.005<z<0.5である、
    で表される蛍光体の製造方法であって、
    a)塩類、硝酸塩、シュウ酸塩、水酸化物またはこれらの混合物の形態の、少なくとも2種のアルカリ土類金属およびユウロピウム含有ドーパントおよびケイ素含有化合物を、水、酸または塩基に溶解、懸濁または分散させ、
    b)この混合物を、加熱した熱分解反応器中に噴霧し、熱分解により蛍光体前駆体に変換し、
    c)その後、熱後処理によって、完成した蛍光体に変換する
    ことを特徴とする、前記方法。
  2. 式I
    BaSrCaSiO:zEu2+ (I)
    式中、
    w+x+y+z=2、
    0.005<z<0.5である、
    で表される蛍光体の製造方法であって、
    a)塩類、硝酸塩、シュウ酸塩、水酸化物またはこれらの混合物の形態の少なくとも2種のアルカリ土類金属およびユウロピウム含有ドーパントを、水、酸または塩基に溶解、懸濁または分散させ、
    b)ケイ素含有化合物を、高温にて加え、
    c)この混合物を、<300℃の温度にて噴霧乾燥し、
    d)その後、熱後処理により完成した蛍光体に変換する
    ことを特徴とする、前記方法。
  3. 無機塩を熱後処理の前またはこの間に流動化剤として加えることを特徴とする、請求項1または2に記載の方法。
  4. 塩化物、好ましくは塩化アンモニウム、または硝酸塩または塩素酸塩の群から選択される、発熱反応において分解する無機塩を、用いる出発物質の量を基準として、0.5〜80%、好ましくは1〜5%の量で加えることを特徴とする、請求項3に記載の方法。
  5. 蛍光体の表面をさらに構造化することを特徴とする、請求項1〜4のいずれかに記載の方法。
  6. 蛍光体がさらに、SiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物のナノ粒子、あるいは蛍光体組成物を含む粒子を担持する粗面を備えていることを特徴とする、請求項1〜5のいずれかに記載の方法。
  7. 蛍光体の表面にさらにSiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物の密閉コーティングを施すことを特徴とする、請求項1〜5のいずれかに記載の方法。
  8. 蛍光体の表面にSiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物あるいは蛍光体組成物の多孔質コーティングを施すことを特徴とする、請求項1〜5のいずれかに記載の方法。
  9. 表面がさらに、好ましくはエポキシまたはシリコーン樹脂を含む、周囲への化学結合を容易にする官能基を備えていることを特徴とする、請求項1〜8のいずれかに記載の方法。
  10. 請求項1〜9のいずれかに記載の方法により調製された、式I
    BaSrCaSiO:zEu2+ (I)
    式中、
    w+x+y+z=2、
    0.005<z<0.5である、
    で表される蛍光体。
  11. 構造化された表面を有することを特徴とする、請求項10に記載の蛍光体。
  12. SiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物のナノ粒子、あるいは蛍光体組成物を含む粒子のナノ粒子を担持する粗面を有することを特徴とする、請求項10または11に記載の蛍光体。
  13. SiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物からなる密閉表面コーティングを有することを特徴とする、請求項10または11に記載の蛍光体。
  14. SiO、TiO、Al、ZnO、ZrOおよび/またはYまたはこれらの混合酸化物からなる多孔質表面コーティングを有することを特徴とする、請求項10または11に記載の蛍光体。
  15. 表面が、好ましくはエポキシまたはシリコーン樹脂からなる、周囲との化学結合を容易にする官能基を担持することを特徴とする、請求項10〜14のいずれかに記載の蛍光体。
  16. 発光極大が120〜530nm、好ましくは254nm〜480nmの範囲内にある少なくとも1つの一次光源を有し、ここでこの放射線が、請求項10〜14のいずれかに記載の蛍光体により、より長い波長の放射線に部分的に、または完全に変換される、照明ユニット。
  17. 光源が、発光性インジウムアルミニウムガリウム窒化物、特に式InGaAlNで表され、式中、0≦i、0≦j、0≦kおよびi+j+k=1である発光性インジウムアルミニウムガリウム窒化物、であることを特徴とする、請求項16に記載の照明ユニット。
  18. 光源が、ZnO、TCO(透明な導電性酸化物)、ZnSeまたはSiCをベースとする発光化合物であることを特徴とする、請求項16に記載の照明ユニット。
  19. 光源が、有機発光層をベースとする材料であることを特徴とする、請求項16に記載の照明ユニット。
  20. 光源が、エレクトロルミネセンスおよび/またはフォトルミネセンスを示す源であることを特徴とする、請求項16〜19のいずれかに記載の照明ユニット。
  21. 光源がプラズマまたは放電源であることを特徴とする、請求項16に記載の照明ユニット。
  22. 蛍光体が、一次光源上に直接配置されており、および/またはそこから離間していることを特徴とする、請求項16〜21のいずれかに記載の照明ユニット。
  23. 蛍光体と一次光源との間の光結合を光伝導性配置により達成することを特徴とする、請求項16〜22のいずれかに記載の照明ユニット。
  24. 真空UVおよび/またはUVにおける光および/または可視スペクトルの青色および/または緑色領域を発する一次光源が、請求項10〜14のいずれかに記載の蛍光体と組み合わせて、少なくとも10nmの半値幅を有する発光帯を有することを特徴とする、請求項16〜23のいずれかに記載の照明ユニット。
  25. 請求項10〜15のいずれかに記載の式Iで表される少なくとも1種の蛍光体の、発光ダイオードからの青色または近UV発光を部分的に、または完全に変換するための変換蛍光体としての使用。
  26. 請求項10〜15のいずれかに記載の式Iで表される少なくとも1種の蛍光体の、カラーオンデマンド概念による特定の色点に一次放射線を変換するための変換蛍光体としての使用。
  27. 請求項10〜15のいずれかに記載の式Iで表される少なくとも1種の蛍光体の、青色または近UV発光を可視白色放射線に変換するための使用。
JP2010501391A 2007-04-04 2008-03-05 オルトケイ酸塩からなるpcLED用の発光体の製造方法 Withdrawn JP2010523740A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007016229A DE102007016229A1 (de) 2007-04-04 2007-04-04 Verfahren zur Herstellung von Leuchtstoffen basierend auf Orthosilikaten für pcLEDs
PCT/EP2008/001743 WO2008122332A1 (de) 2007-04-04 2008-03-05 Verfahren zur herstellung von leuchtstoffen bestehend aus orthosilikaten für pcleds

Publications (1)

Publication Number Publication Date
JP2010523740A true JP2010523740A (ja) 2010-07-15

Family

ID=39495642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010501391A Withdrawn JP2010523740A (ja) 2007-04-04 2008-03-05 オルトケイ酸塩からなるpcLED用の発光体の製造方法

Country Status (9)

Country Link
US (1) US20100201250A1 (ja)
EP (1) EP2129741B1 (ja)
JP (1) JP2010523740A (ja)
KR (1) KR20100024385A (ja)
CN (1) CN101652451A (ja)
AT (1) ATE509994T1 (ja)
DE (1) DE102007016229A1 (ja)
TW (1) TW200907026A (ja)
WO (1) WO2008122332A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280471A (ja) * 2007-05-14 2008-11-20 Sony Corp 発光組成物及びこれを用いた光源装置並びにこれを用いた表示装置
JP2011505440A (ja) * 2007-11-22 2011-02-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 表面修飾された蛍光体
JP2012502122A (ja) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 発光素子およびその製造方法
JP2014508818A (ja) * 2010-12-21 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ 高分子含有母材を有する照明装置
JP2015063619A (ja) * 2013-09-25 2015-04-09 三井金属鉱業株式会社 蛍光体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369295B2 (ja) * 2007-11-08 2013-12-18 住友金属鉱山株式会社 表面被覆ストロンチウムシリケート蛍光体粒子及びその製造方法並びに該蛍光体粒子を具備する発光ダイオード
DE102009010705A1 (de) * 2009-02-27 2010-09-02 Merck Patent Gmbh Co-dotierte 2-5-8 Nitride
KR101230039B1 (ko) 2009-07-01 2013-02-05 성균관대학교산학협력단 실리케이트계 산화물 형광체 및 상기의 분말 제조 방법
US8734680B2 (en) 2010-04-13 2014-05-27 Lead Chemical Company, Limited Silicate-based phosphor and manufacturing method of silicate-based phosphor
DE212012000015U1 (de) 2011-03-18 2013-08-05 Merck Patent Gmbh Silicat-Leuchtstoffe
KR101905547B1 (ko) * 2011-12-06 2018-11-30 엘지이노텍 주식회사 형광체 및 형광체 제조방법
CN103375708B (zh) * 2012-04-26 2015-10-28 展晶科技(深圳)有限公司 发光二极管灯源装置
CA2787584A1 (en) 2012-08-22 2014-02-22 Hy-Power Nano Inc. Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size
DE102012109104B4 (de) * 2012-09-26 2021-09-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Beleuchtungseinrichtung, Hinterleuchtung für ein Display oder einen Fernseher und Display oder Fernseher
US9188288B2 (en) * 2012-09-28 2015-11-17 Tsmc Solid State Lighting Ltd. LED emitter with improved white color appearance
KR20220061650A (ko) 2020-11-06 2022-05-13 (주) 엔피피플러스 미네랄 콜로이드 구리 및 소금을 포함하는 항균 및 살균제

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020001626A (ko) * 2000-06-27 2002-01-09 마츠시타 덴끼 산교 가부시키가이샤 세라믹 적층 소자
JP2005226067A (ja) * 2004-01-16 2005-08-25 Mitsubishi Chemicals Corp 蛍光体、及びそれを用いた発光装置、照明装置、ならびに画像表示装置
JP2007500776A (ja) * 2003-05-17 2007-01-18 フォスファーテック コーポレーション シリケート蛍光りん光物質を有する発光装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586635A (en) * 1968-05-02 1971-06-22 Grace W R & Co Process for the preparation of metal silicate phosphors
US4079884A (en) 1976-07-21 1978-03-21 Gerald Michael Sherman Energy-conserving flue damper
JP3242561B2 (ja) 1995-09-14 2001-12-25 メルク・ジヤパン株式会社 薄片状酸化アルミニウム、真珠光沢顔料及びその製造方法
DE19638667C2 (de) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
DE69834559T3 (de) * 1997-02-24 2011-05-05 Cabot Corp., Boston Sauerstoffhaltige Phosphorpulver, Verfahren zur Herstellung von Phosphorpulvern und Vorrichtung hiermit
ATE278749T1 (de) * 1997-03-26 2004-10-15 Zhiguo Xiao Langnachleuchtender silikatphosphor und verfahren zu dessen herstellung
US6429583B1 (en) 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
US6700322B1 (en) 2000-01-27 2004-03-02 General Electric Company Light source with organic layer and photoluminescent layer
DE10036940A1 (de) 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lumineszenz-Konversions-LED
AT410266B (de) 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh Lichtquelle mit einem lichtemittierenden element
JP4440639B2 (ja) 2001-09-21 2010-03-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 耐摩耗性SiO2反射防止層を製造するための新規な混成ゾル
KR100458126B1 (ko) 2002-01-11 2004-11-20 한국화학연구원 장파장 자외선용 녹색 형광체 및 그의 제조 방법
DE10360546A1 (de) 2003-12-22 2005-07-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Leuchtstoff und Lichtquelle mit derartigem Leuchtstoff
EP1715023B1 (en) 2004-01-16 2012-10-24 Mitsubishi Chemical Corporation Phosphor and including the same, light emitting apparatus, illuminating apparatus and image display
CN1957060B (zh) * 2004-03-19 2011-05-18 中部吉利斯德股份有限公司 铝酸盐类荧光体及其制法
JP4524607B2 (ja) 2004-10-26 2010-08-18 豊田合成株式会社 改善されたシリケート系蛍光体及びそれを用いたledランプ
DE102006027133A1 (de) 2006-06-12 2007-12-13 Merck Patent Gmbh Verfahren zur Herstellung von Granat-Leuchtstoffen in einem Pulsationsreaktor
DE102006054331A1 (de) 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffkörper basierend auf plättchenförmigen Substraten
DE102006054330A1 (de) 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffplättchen für LEDs aus strukturierten Folien

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020001626A (ko) * 2000-06-27 2002-01-09 마츠시타 덴끼 산교 가부시키가이샤 세라믹 적층 소자
JP2007500776A (ja) * 2003-05-17 2007-01-18 フォスファーテック コーポレーション シリケート蛍光りん光物質を有する発光装置
JP2005226067A (ja) * 2004-01-16 2005-08-25 Mitsubishi Chemicals Corp 蛍光体、及びそれを用いた発光装置、照明装置、ならびに画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN5010004074; KANG H S: MATERIALS SCIENCE AND ENGINEERING B V121 N1-2, 20050725, P81-85, ELSEVIER SEQUOIA *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280471A (ja) * 2007-05-14 2008-11-20 Sony Corp 発光組成物及びこれを用いた光源装置並びにこれを用いた表示装置
JP2011505440A (ja) * 2007-11-22 2011-02-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 表面修飾された蛍光体
US9139763B2 (en) 2007-11-22 2015-09-22 Merck Patent Gmbh Surface-modified phosphors
JP2012502122A (ja) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 発光素子およびその製造方法
JP2014508818A (ja) * 2010-12-21 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ 高分子含有母材を有する照明装置
JP2015063619A (ja) * 2013-09-25 2015-04-09 三井金属鉱業株式会社 蛍光体

Also Published As

Publication number Publication date
DE102007016229A1 (de) 2008-10-09
US20100201250A1 (en) 2010-08-12
WO2008122332A1 (de) 2008-10-16
KR20100024385A (ko) 2010-03-05
CN101652451A (zh) 2010-02-17
ATE509994T1 (de) 2011-06-15
TW200907026A (en) 2009-02-16
EP2129741A1 (de) 2009-12-09
EP2129741B1 (de) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5313173B2 (ja) pcLEDのためのドープしたガーネット製の発光団
JP2010523740A (ja) オルトケイ酸塩からなるpcLED用の発光体の製造方法
JP5819967B2 (ja) ケイリン酸蛍光物質
JP5611960B2 (ja) pcLEDのための赤方偏移を有するドープされたガーネット蛍光物質
JP2010523739A (ja) オルトケイ酸塩をベースとするpcLED用の発光体の製造方法
TWI547545B (zh) 磷光體
JP2012519216A (ja) ジルコニウムおよびハフニウムで同時ドープされたニトリドシリケート
JP6393307B2 (ja) マグネシウムアルモシリケートに基づいた蛍光体
JP6243438B2 (ja) Eu賦活発光物質
JP5662330B2 (ja) 同時ドープされた1−1−2窒化物
JP2013539449A (ja) アルミネート発光物質
JP2009540022A (ja) ライン発光蛍光体の製造方法
JP2012532819A (ja) 同時ドープされたシリコン酸化窒化物
JP5912121B2 (ja) Mn賦活蛍光物質
JP2010155891A (ja) 窒化物赤色蛍光体及びこれを利用する白色発光ダイオード
JP5808746B2 (ja) Sm−活性化アルミン酸塩およびホウ酸塩蛍光物質
JP2017518412A (ja) 変換蛍光体

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130724