JP2005064391A - 光学部材の冷却方法、冷却装置、露光装置、及び、デバイスの製造方法 - Google Patents

光学部材の冷却方法、冷却装置、露光装置、及び、デバイスの製造方法 Download PDF

Info

Publication number
JP2005064391A
JP2005064391A JP2003295566A JP2003295566A JP2005064391A JP 2005064391 A JP2005064391 A JP 2005064391A JP 2003295566 A JP2003295566 A JP 2003295566A JP 2003295566 A JP2003295566 A JP 2003295566A JP 2005064391 A JP2005064391 A JP 2005064391A
Authority
JP
Japan
Prior art keywords
cooling
optical member
exposure
wafer
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295566A
Other languages
English (en)
Other versions
JP4262031B2 (ja
JP2005064391A5 (ja
Inventor
Takayuki Hasegawa
隆行 長谷川
Akira Miyake
明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003295566A priority Critical patent/JP4262031B2/ja
Publication of JP2005064391A publication Critical patent/JP2005064391A/ja
Publication of JP2005064391A5 publication Critical patent/JP2005064391A5/ja
Application granted granted Critical
Publication of JP4262031B2 publication Critical patent/JP4262031B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】
光学部材を、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させずに効率よくかつ充分に冷却することができ、高精度に回路パターンを露光転写することができてウエハの不良率を低減し、また高性能のウエハを作成することができる光学部材の冷却方法を提供すること。
【解決手段】
この光学部材の冷却方法はEUV光2eが照射される反射ミラー3aを冷却するための冷却方法であって、非露光時に反射ミラー3aを冷却するために所定の密閉空間26aにエタノール27が充填された蓄熱体26を冷却し、露光時に蓄熱体26を冷却しないことを特徴とする方法である。
【選択図】 図3

Description

本発明は例えばレチクル・ウエハ・反射ミラー等の光学部材を冷却する冷却方法に係り、より具体的には半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド、その他のマイクロデバイスを製造するための露光装置、例えばEUV光(極紫外光)等の真空紫外光を用いて露光を行う露光装置に用いられる光学部材を冷却する冷却方法、冷却装置、露光装置、及び、その露光装置を用いたデバイス製造方法に関する。
従来、半導体メモリや論理回路などの微細な半導体素子を製造するための焼付け(リソグラフィ)方法として、紫外光を用いた縮小投影露光が行われている。この縮小投影露光においては、転写できる最小寸法は転写に用いる光の波長に比例し、投影光学系の開口数に反比例する。このため、より微細な回路パターンを転写するために使用する光の短波長化が進められ、水銀ランプi線(波長365nm)、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)と、使用される紫外光(紫外線)の波長は短くなってきている。
しかし、半導体素子は急速に微細化しており、紫外光を用いたリソグラフィでは転写可能な寸法に限界が出てきている。そこで0.1μm以下の微細な回路パターンの焼付けを効率よく行うために、紫外線よりもさらに波長が短い10nm〜15nm程度の波長の極紫外光(EUV光)を用いた縮小投影露光装置が開発されている。
EUV光の波長領域においては物質による光の吸収率が増大する。例えば、可視光や紫外光の波長領域で一般によく用いられるような光の透過や屈折を利用するレンズ光学系をEUV光を光源とする光学系として用いると、光学系内でEUV光が吸収されてしまい充分な光強度が得られない等の様々な問題が生じる。
したがって、EUV光を光源とする露光装置では、その光学系として一般に反射光学系が用いられる。この場合、回路パターンが形成された露光投影原版としてのレチクル(マスク)においても、透過型レチクルではなく反射型レチクルが一般に用いられる。この反射型レチクルは、反射ミラー上に吸収体によって転写すべきパターンを形成したものである。
EUV光を用いた露光装置を構成する反射型光学素子としては、多層膜ミラーと斜入射全反射ミラーとが用いられる。斜入射ミラーにおいては、EUV光の波長領域では屈折率の実部は1より僅かに小さいので、入射角を小さくして反射面に近い角度から斜めにEUV光を入射する斜入射で用いて反射効率を向上させる。通常、反射面から数度以内の角度の斜入射では数10%以上の高い反射率が得られる。しかし光学設計上の自由度が小さく、この斜入射全反射ミラーを露光装置の投影光学系に用いることは難しい。
入射角の比較的大きな直入射に近い入射角で用いるEUV光用のミラーとしては、光学定数の異なる2種類の物質を交互に積層した多層膜ミラーが用いられることが多い。この多層膜ミラーは、精密な面形状に研磨されたガラス基板の表面に例えば厚さ2nmのモリブデン層と厚さ5nmのシリコン層とが交互に20〜60層対程度積層されたものである。ここで2種類の物質の層(モリブデン層、シリコン層)の厚さを加えたものを膜周期とよぶ。上記の例では膜周期は2nm+5nm=7nmとなる。
このような多層膜反射ミラーにEUV光を入射すると、入射EUV光のうち特定の波長のものが反射される。入射角をθ、EUV光の波長をλ、膜周期をdとすると近似的にはブラッグの式、2×d×cosθ=λ、の関係を満足するようなλを中心とした狭いバンド幅(波長幅)のEUV光だけが効率よく反射される。このときのバンド幅は0.6nm〜1nm程度である。反射されるEUV光の反射率は最大でも0.7程度であり、反射されなかったEUV光は多層膜中あるいは基板中に吸収され、そのエネルギーの大部分が熱に変換される。
多層膜反射ミラーは可視光用のミラーに比べて光の損失が大きいので、多層膜反射ミラーをリソグラフィのための露光装置の光学系として用いる際には、ミラーの枚数を最小限に抑えることが望ましい。少ない枚数のミラーで広い露光領域を実現するためには、光軸から一定の距離だけ離れた細い円弧状領域(リングフィールド)の光だけを用いて、レチクルとウエハを同時に走査して広い面積を転写する走査露光(スキャン露光)による方法が行われる。したがって、露光光源にEUV光を用いた露光装置(EUV露光装置)においては、一般に走査露光(スキャン露光)による方法が用いられる。
多層膜反射ミラーで反射されるEUV光の反射率は最大で0.7程度であり、反射されなかった残りの光は多層膜中又はミラー基板中で吸収されて、そのエネルギーの大部分が熱に変換される。このため、反射ミラー・レチクル・ウエハ等の光学部材にEUV光を照射した場合、EUV光が吸収されてその光学部材が発熱する。同様の理由によって、レチクルチャック・ウエハチャック(以下、これらを総称してチャックという)においても露光光としてのEUV光を吸収して発熱する場合がある。
EUV光は、ガスによって強く吸収される性質を有する。例えば、気圧10Paの空気中を波長13nmのEUV露光装置光が1m伝播すると、その50%が空気中に吸収されてしまう。ガスによる吸収を避けるためには、EUV露光装置光が伝播する空間は少なくとも10-1Pa以下、望ましくは10-3Pa以下となっている必要がある。さらにEUV露光装置においては、EUV光が照射される光学部材が配置された空間に炭化水素等の炭素を含む分子が残留していた場合、光の照射によって光学部材表面に炭素が次第に付着し、この付着した炭素がEUV光を吸収するために反射率が低下してしまうという問題がある。この炭素付着を防止するためには、EUV光が照射される光学部材が配置される空間の気圧は少なくとも10-4Pa以下、望ましくは10-6Pa以下となっている必要がある。したがって、EUV露光装置においては、略真空環境下に反射ミラー等の光学系、レチクル、ウエハ等が配置されている。そのため、光学部材やチャック等において発生した熱は、周囲環境下に対流熱伝達によって放熱されることが殆どなく、それらの内部に滞留する。
また、チャックは光学部材の平面性を矯正する機能を必要とし、高剛性であることが求められる。走査露光においてステージ上でチャックを移動させる必要があることから、軽量であることも求められる。さらに、熱による形状変化が小さいことが必要であることから、線膨張係数が低いことも求められる。これらの要求から、チャックにはSiC(シリコンカーバイド),SiN(窒化ケイ素),AlN(窒化アルミニウム)等のセラミックス材料が用いられている。
特開平10−70058
しかしながら、EUV露光装置に用いられるチャックでは、静電吸着力を充分に確保する観点から必ずしも理想的な低熱膨張材を選定できるという訳ではない。上述のセラミックス材料も比較的低線膨張係数であるものの、その係数値は1〜10ppm程度である。
例えば、0.01℃の温度上昇の場合、ウエハチャックの半径が150mm、その線膨張係数が3ppmであるとすると熱膨張による位置ずれが4.5nmとなる。EUV露光装置のウエハチャックに要求される位置精度は数nmであるため、熱膨張によって4.5nmの位置ずれが生じると問題となってしまう。
また、投影光学系の反射面の面形状は高精度であることが必要とされる。投影光学系を構成するミラーの枚数をn、EUV光の波長をλとすると、許容される反射面形状の形状誤差σ(rms値)は、マレシャルの式σ=λ/(28×√n)で与えられる。例えば、ミラー枚数n=4枚、EUV光の波長λ=13nmの場合は、許容形状誤差σ=0.23nmとなる。投影光学系を構成する光学部材の温度が上昇して許容形状誤差を超える面形状の乱れを生じると、投影光学系の結像性能を充分に発揮することができず、解像度の低下やコントラストの低下等を招き、微細なパターンの露光転写が困難となる。
光学部材やチャックは真空中に配置されており、対流熱伝達による周囲環境への放熱冷却は期待できないので、レチクルチャック・ウエハチャック・ミラーホルダ等の保持手段を介してレチクル・ウエハ・反射ミラー等の光学部材を冷却する必要がある。従来、ウエハ・レチクル・反射ミラー等の光学部材は、一定温度の冷却水を循環する冷却手段を設けたレチクルチャック・ウエハチャック・ミラーホルダ等の保持手段に保持されることにより、EUV光の吸収によって光学部材に発生した熱が保持手段を介して放熱され、光学部材の温度上昇を低減させるようになっている。
図11は従来の光学部材の冷却方法を用いた水冷ウエハステージ101の概略図である。この水冷ウエハステージ101は、リニアモータを用いており、露光装置のウエハステージとして用いられる。Y軸リニアモータ102は、電機子ユニットと磁極ユニットとからなる。磁極ユニットは、図中Y軸に対して磁極が交互に異なるように所定間隔で配置された磁石103を用いて構成されている。電機子ユニットは、電流を流すためのコイル104を用いて構成されている。このコイル104を流れる電流と磁石103の磁束との相互作用によって生じるローレンツ力を利用して電機子ユニットが固定子として、磁極ユニットが可動子として機能し、粗動ステージ105をY軸方向へ移動させるようになっている。同様に図示しないX軸リニアモータによって、X軸方向にも粗動ステージ105を移動させるようになっている。
粗動ステージ105上に配置された微動ステージ106は、図中Z軸方向に剛性の低いバネで支持されており、Z軸方向へ可動するリニアモータによって粗動ステージ105に対するZ軸方向への微小な位置決めがなされる。さらに、水冷機構として冷却水循環装置によってウエハチャック107内に形成された流路に水を流す構成としている。微動ステージ106は、粗動ステージ105に対して相対移動する必要があり、また、粗動ステージ105はこの水冷ウエハステージ101全体を覆う真空容器108に対して相対移動する必要がある。したがって、冷却水を循環させるための配管109は、冷却水循環装置110と粗動ステージ105との間、粗動ステージ105と微動ステージ106との間においてフレキシブルに構成されている。この冷却水循環装置110は、一般に真空内で駆動が困難な構成であるので、真空容器108外に配置される。また、レチクルにおけるレチクルチャック・レチクルステージもこの水冷ウエハステージ101と同様の構成とされている。
図12は、従来の光学部材の冷却方法を用いた水冷ミラー121の概略図である。ミラー122は、ピエゾ等のアクチュエータ123を介してミラーホルダ124に保持されている。このアクチュエータ123を駆動することにより、ミラー122の姿勢を制御できるようになっている。ミラーホルダ124は水冷配管125によって冷却される。この水冷配管125は、冷却水循環装置110に接続されており、その冷却水循環装置110から冷却水が供給されるようになっている。
しかしながら、ウエハチャックやレチクルチャックは、剛性の低いバネによってそれぞれ微動ステージに支持されているので、冷却水を流すことによりその流路、配管内で発生する渦や脈動等による振動によってウエハチャック・レチクルチャックの位置安定性が悪化するという問題がある。ミラーの冷却においては、流路、配管内で発生する渦や脈動等による振動によってミラーの位置安定性が悪化するのを防止するために、ミラー内に流路を形成して冷却水を通すのではなく、ミラーホルダ内に冷却水を通している。しかし、ミラーの姿勢制御のためにミラーホルダとミラーとは離間して配置され、接触部分が小さく構成されているのでミラーの冷却が充分に行えないという問題もある。熱歪によるミラー反射面形状の変化を生じてしまったり、ミラーホルダの冷却に伴う振動がミラーに伝達してしまい、ミラーの位置安定性が悪化するという問題もある。
冷却水の代わりにヘリウム等の伝熱ガスを用い、その伝熱ガスを配管中に循環させて冷却を行う方法も考えられる。露光光の吸収に伴う発熱を効率よく冷却し、温度上昇を低減して微動ステージを装置基準温度23℃に制御するためには、より低い温度のガスをチャックの配管内に流すことが必要となる。しかしながら、ガスは熱容量が小さく、配管温度が高い場合は微動ステージやチャックに到達するまでにガスの温度が上昇してしまい充分な冷却能力を発揮することができないという問題がある。
本発明は上記の事情に鑑みて為されたもので、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させることなくウエハ・レチクル・反射ミラー等の光学部材を効率よく、かつ充分に冷却することができ、その結果、高精度に回路パターンを露光転写することができてウエハの不良率を低減し、また高性能のウエハを作成することができる光学部材の冷却方法、冷却装置、その冷却装置を備えた露光装置、及び、露光装置を用いたデバイス製造方法を提供することを例示的目的とする。
上記目的を達成するために、本発明の一側面としての光学部材の冷却方法は、露光光源光が照射される光学部材を冷却するための光学部材の冷却方法であって、非露光時には光学部材を冷却するために所定の密閉空間に冷媒が充填された蓄熱体を冷却し、露光時には蓄熱体を冷却しないことを特徴とする。
本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。
以上説明したように、本発明によれば、ウエハ・レチクル・反射ミラー等の光学部材を、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させずに効率よくかつ充分に冷却することができる。その結果、高精度に回路パターンを露光転写することができてウエハの不良率を低減し、また高性能のウエハを作成することができる。密閉空間に充填された相変化可能な冷媒を用いて蓄熱を行うので、少ない体積の冷媒でより多くの熱を蓄積することができる。密閉空間内の圧力を制御し、その圧力変動を低減させた場合には、蓄熱体が相変化する際の所定温度を一定に保つことができる。
[実施の形態1]
以下、本発明の実施の形態を図面に基づきつつ説明する。図1は、本発明の実施の形態1に係る光学部材の冷却方法を用いた露光装置1の露光部全体の構成を模式的に示す概略図である。この露光装置1は、露光光源にEUV光2eを用いた走査露光方式の縮小投影露光装置であり、EUV光(露光光源光)2eを発する光源としてのEUV光源2・照明光学系3・反射型レチクル(以下、単にレチクルという。)4・レチクルステージ5・レチクルチャック9・投影光学系6・位置測定装置としてのレチクル用レーザ干渉計7a及びウエハ用レーザ干渉計7b・ウエハ12・ウエハ微動ステージ(以下、ウエハステージという。)13・ウエハチャック14・アライメント検出手段15・フォーカス位置検出手段16・真空系17等を有して大略構成される。
EUV光源2としては、例えばレーザプラズマ光源2aが用いられる。このレーザプラズマ光源2aは、励起用パルスレーザ2b、集光レンズ2c、ターゲット供給装置2dを有して大略構成される。このレーザプラズマ光源2aは、真空容器中のターゲット材に励起用パルスレーザ2bによって高強度のパルスレーザ光を照射し、高温のプラズマを発生させ、そこから放射される例えば波長13nm程度のEUV光2eを利用するものである。
ターゲット材としては金属薄膜・不活性ガス・液滴等が用いられ、ガスジェット等のターゲット供給装置2dによって真空容器内に供給される。励起用パルスレーザ2bのレーザ照射の繰り返し周波数が高い方が、放射されるEUV光2eの平均強度が高くなり、通常励起用パルスレーザ2bは数kHzの繰り返し周波数で運転される。
照明光学系3は、EUV光源2からのEUV光2eを露光原版としてのレチクル4に導くためのものであり、複数の反射ミラー3a・オプティカルインテグレータ3b等を有して大略構成される。EUV光2eが照射されるので、反射ミラー3aとしては多層膜反射ミラーや斜入射ミラーが用いられる。
初段の集光ミラー3a’はEUV光源2から略等方的に放射されるEUV光2eを集光するためのものである。また照明光学系3におけるレチクル4と共役な位置には、レチクル4の表面にEUV光2eが照明される領域を円弧状に制限するためのアパーチャ3cが設けられている。
レチクル4は、ウエハ12に露光すべき回路パターンが表面4aに形成された露光原版である。レチクル4は、ウエハ12上に露光転写すべきパターンを吸収体によってミラー上に多層膜として形成したもので、EUV光2eを反射する部分と吸収する部分との反射光強度の差によって回路パターンの情報を構成している。レチクル4は、保持手段としてのレチクルチャック9に保持されている。この実施の形態においては、このレチクル4は真空中に配置されているので、静電吸着方式のレチクルチャック9が用いられている。レチクルチャック9は、レチクルステージ5上に載置されている。
このレチクルステージ5は、露光の際にレチクル4を副走査方向(X1軸方向)に沿って精密に走査移動させるためのものである。レチクルステージ5としては、例えばサーボモータと精密送り機構とによる精密ステージや、リニアモータ等を用いた高精度走査移動及び高精度位置決め機構が用いられる。また、レチクルステージ5には、X1軸方向(副走査方向)、Y1軸方向(主走査方向)、Z1軸方向(レチクル4の面に垂直な方向)、及び各軸回りの回転方向に微動可能な微動機構(図示せず)が設けられ、レチクル4の精密な位置決めができるようになっている。
レチクルチャック9の位置と姿勢は、レーザ干渉計によって測定される。その位置測定結果に応じて、微動機構によりレチクルステージ5及びレチクルチャック9が移動してレチクル4の高精度な位置調整が行われるようになっているが、詳細は後述する。
投影光学系6は、レチクル4によって反射されたEUV光2eをウエハ12上に導くための光学系であり、複数のミラー6a〜6d及びアパーチャ6eを用いて構成される。この投影光学系6においては、ミラー枚数が少ない方がEUV光2eの利用効率が高いが、収差補正が難しくなる。収差補正に必要なミラー枚数は例えば4枚から6枚程度であり、ミラー6a〜6dの反射面の形状は凸面又は凹面の球面又は非球面である。
ミラー6a〜6dは、低膨張率ガラスやSiC(シリコンカーバイド)等の高剛性、高硬度、低熱膨張率の材料からなる基板表面を研削又は研磨して所定の反射面形状を創成した後、その反射面にモリブデン/シリコン等の多層膜を成膜したものである。前述のブラッグの式から明らかなように、膜周期一定の多層膜反射ミラーにおいてはミラー面内の位置によって光の入射角が異なってしまうと高反射率となるEUV光2eの波長もその位置に応じて異なってしまう。そこでミラー面内で一定波長のEUV光2eが効率よく反射されるために、膜周期が分布を持つように構成される。
ウエハ(被処理体)12はレチクル4からのEUV光2eが照射されてレチクル4表面の回路パターンが表面12aに露光されるもので、ウエハステージ13上に設けられた保持手段としてのウエハチャック14に保持される。ウエハステージ13はレチクルステージ5と同様にX2軸方向(副走査方向)に高速移動する機構を有している。このウエハステージ13とレチクルステージ5とは、露光投影の縮小倍率に比例した速度比で同期して走査する走査移動機構を有している。また、ウエハステージ13にはX2軸方向、Y2軸方向、Z2軸方向、及び各軸回りの回転方向に微動可能な微動機構(図示せず)が設けられ、ウエハ12の精密な位置決めができるようになっている。
ウエハステージ13の位置と姿勢は、レチクルステージ5の場合と同様に、レーザ干渉計によって測定される。その位置測定結果に応じて、微動機構によりウエハステージ13及びウエハチャック14が移動してウエハ12の高精度な位置調整が行われるようになっている。
レチクル4に対してウエハ12の位置決めを行うための構成を図2に基づきつつ説明する。図2は、この露光装置1のレチクル4周辺とウエハ12周辺とを模式的に示す図である。レチクル4の位置はレチクルステージ5上に固定されたレチクルステージミラー5aの位置をレチクル用レーザ干渉計7aで測定することによって得られる。このレチクル用レーザ干渉計7aは、例えば測定光源としてのレーザ光源、検出器としての干渉計を有して構成され、それらは固定手段10aによって露光装置1本体に固定されている。また、ウエハ12の位置はウエハ微動ステージ13上に固定されたウエハステージミラー13aの位置をウエハ用レーザ干渉計7bで測定することによって得られる。このウエハ用レーザ干渉計7bは、例えば測定光源としてのレーザ光源、検出器としての干渉計を有して構成され、それらは固定手段10bによって露光装置1本体に固定されている。
レチクル4の位置とウエハ12の位置との相対位置関係が一定となるように、ウエハ微動ステージ13が駆動制御されて位置調整されるようになっている。ウエハチャック14としては2つの電極14aを有する双極型の静電チャックが用いられ、それによりウエハ12がウエハチャック14に静電吸着されるようになっている。
アライメント検出手段15は、レチクル4の位置と投影光学系6の光軸との位置関係、及びウエハ12の位置と投影光学系6の光軸との位置関係を検出するためのものである。その検出結果に基づいて、レチクル4の投影像がウエハ12の所定の位置に一致するようにレチクルステージ5及びウエハ微動ステージ13の位置と角度とが設定されるようになっている。
フォーカス位置検出手段16は、ウエハ表面12aのフォーカス位置(すなわちZ2軸方向位置)を検出するためのもので、ウエハ微動ステージ13の位置及び角度が制御されることにより、露光中のウエハ表面12aが、常に投影光学系6による結像位置に保持されるようになっている。
この露光装置1においては、露光光源としてEUV光源2を用いている。このEUV光2eは、上述のように空気によっても吸収されて光の強度が低下する。したがって、この露光装置1において照明光学系3、レチクル4、レチクルチャック9、投影光学系6、ウエハ12、ウエハチャック14を含み、EUV光2eの光路に相当する部分は、例えば真空ポンプ等の真空系17によって真空中に配されている。
図3は、この露光装置1に用いられるミラー近傍を拡大して示した模式図である。このミラーとしては、照明光学系3の反射ミラー3a、投影光学系6のミラー6a〜6dのいずれのミラーであっても適用可能であるが、本実施の形態1においては、照明光学系3の反射ミラー3aを例として説明する。
反射ミラー3aは保持手段としてのミラーホルダ25に保持されている。このミラーホルダ25は、反射ミラー3aを保持しつつその冷却を行うためのもので、この反射ミラー3aを冷却するための冷却装置24が一体に設けられている。この冷却装置24は、蓄熱体26、冷媒27、冷却水を内部に含む冷却配管28、バルブ29、バルブ制御装置30、圧力計31、ベローズ32、ベローズ制御手段33を有して大略構成される。
蓄熱体26は、熱を蓄積したり放出したりするためのものであり、所定の密閉空間26a内部に所定温度で蒸発する液相としての冷媒(例えばエタノール等)27が充填されたものである。その所定の空間内部のうち、冷媒27が占める空間以外の空間部分には、気相としての冷媒27(例えばエタノール蒸気等)が満たされている。補助冷却手段の一部としての冷却配管28は、蓄熱体26を冷却するための冷却水を内部に通すための配管である。その冷却水の流れはバルブ29によって制御される。反射ミラー3aの冷却状態等に応じてバルブ制御装置(補助冷却手段制御装置)30によってバルブ29が開閉制御されるようになっている。
引用符号31は、冷媒27が充填された密閉空間26aの内部圧力を計測するための圧力計(圧力計測手段)であり、引用符号32は、その内部圧力を一定に保つために密閉空間26aの空間容積を可変させるベローズである。引用符号33は、圧力計31の出力に基づいて、密閉空間26a内部の圧力が一定となるようにベローズ32の容積を制御するベローズ制御手段(空間容積制御手段)である。
次に、この露光装置1の動作について説明する。
レチクル4がレチクルチャック9に保持され、ウエハ12が図示しない搬送系から受け渡されてウエハチャック14に保持され、この露光装置1による露光が開始される。EUV光源2からのEUV光2eが照明光学系3を経てレチクル表面4aに導かれ、その後、投影光学系6を経てウエア表面12aに至り、レチクル表面4a上に形成された回路パターンをウエハ表面12aに転写することによって露光が行われる。
この露光装置1においては、走査露光方式によって回路パターンの露光が行われる。すなわち、アパーチャ3cによってスリット状とされたEUV光2eをレチクル表面4aに照射しつつ、レチクルステージ5とウエハステージ13とを投影光学系6の縮小倍率に比例した速度比で同期させつつそれぞれX1軸方向、X2X軸方向に走査移動を行って露光を行う。露光に際しては、アライメント検出手段15によりレチクル4とウエハ12とのアライメントが調整され、フォーカス位置検出手段16によりウエハ12のフォーカス位置画調整されて、レチクル4上の回路パターンが正確にウエハ12上へと転写されていく。
ウエハ12上で1回のスキャン露光(走査露光)が終わると、ウエハステージ12はX2軸方向,Y2軸方向にステップ移動して次の走査露光開始位置に移動する。そして、レチクルステージ5及びウエハステージ12の走査移動速度が投影光学系6の縮小倍率に比例した速度比となるように、再びそれぞれX1軸方向、X2軸方向への同期走査移動が行われる。
このようにして、レチクル4の縮小投影像がウエハ12上に結像した状態で、レチクル4とウエハ12との同期走査露光が繰り返され、レチクル4上の回路パターン像がウエハ12上に像形成されていく。この一連の動作をステップ・アンド・スキャンといい、このステップ・アンド・スキャンによって、ウエハ全面にレチクルの回路パターンが転写される。
この走査露光において、冷却装置24による反射ミラー3aの冷却が行われる様子を図4に基づいて説明する。図4(a)は、反射ミラー3aにEUV光2eが照射されていない状態(非露光時)における冷却装置24の動作を示し、図4(b)は、反射ミラー3aにEUV光2eが照射されている状態(露光時)における冷却装置24の動作を示す。
図4(a)に示すように、非露光時にはバルブ制御装置30がバルブ29を開き、冷却配管28内に冷却水を通水することにより蓄熱体26内の冷媒27を冷却して蓄熱体26の温度を所定の温度以下に保つ。図4(b)に示すように、露光時にはバルブ制御装置30によってバルブ29が閉じられ、通水による振動等の外乱が露光に影響しないように冷却水を止水している。したがって、蓄熱体26は冷却水によって冷却されない。EUV光2eが反射ミラー3aに照射されることにより反射ミラー3aが高温となり、反射ミラー3aに接触している蓄熱体26にその熱が伝達される。このとき、蓄熱体26内の冷媒27の温度が上昇して気液界面より蒸発が開始される。相変化に伴う蒸発熱の吸熱により冷媒27の熱が奪われて冷媒27の温度は所定の温度以下に保たれる。その結果、反射ミラー3aの温度上昇を所定の範囲内に抑えることができる。
また、冷媒27が蒸発することにより、冷媒27が充填された密閉空間26aの圧力が上昇する。それにより冷媒27の沸点が上昇し、安定して反射ミラー3aの冷却を行うことができなくなる。そこで、この実施の形態1においては、密閉空間26aの圧力を計測する圧力計31の出力に基づいて、ベローズ制御手段33がベローズ32の容積を制御して密閉空間26aの圧力が一定となるように調整する。
蓄熱体26内の冷媒27としてエタノール(COH)を用い、反射ミラー3aを23℃に制御する場合について以下に説明する。量産対応のEUV露光装置の投影光学系ミラーで最も大きいパワーを受けるのはEUV光源直下流側1枚目の反射ミラー3aであり、例えばこの反射ミラー3aは0.96Wのパワーを吸収する。この反射ミラー3aが吸収したパワーが全て熱に変換され、蓄熱体26がその熱を全て蓄熱すると仮定する。このとき、ウエハ12を交換する際にのみ反射ミラー3aを冷却することができるとすると、蓄熱体26は、ウエハ1枚の露光中に照射されるEUV光2eによる総熱量を蓄熱する必要がある。ウエハ1枚の露光時間の合計を30秒とすると、蓄熱体26が吸収すべき熱量は、0.96×30=28.8(J)となる。エタノール(COH)の蒸発熱ΔHは、ΔH=854.8(kJ/kg)であるので、必要な蒸発量は、28.8/854.8=0.033(g)となる。これは、エタノールのモル数に換算すると、0.033/46.069=0.00072(mol)となり、標準状態で0.00072×22.4=0.016(l)=16000(mm)となる。エタノールの23℃における蒸気圧は6998(Pa)であるので、23℃においては、16000×(6998/101308)=231200(mm)の体積となる。これは一辺約62mmの立方体の体積に相当し、ベローズ32程度の容積で圧力制御は可能である。
このように構成することにより、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させずに反射ミラー3aを効率よくかつ充分に冷却することができ、その結果、高精度に回路パターンを露光転写することができてウエハ12の不良率を低減し、また高性能のウエハ12を作成することができる。
次に、図5及び図6を参照して、上述の露光装置1を利用したデバイスの製造方法の実施例を説明する。図5は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)ではデバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)ではシリコンなどの材料を用いてウェハ(被処理体)を製造する。ステップ4(ウェハプロセス)は前工程と呼ばれ、マスクとウェハを用いてリソグラフィ技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
図6は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)ではウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)ではウェハにイオンを打ち込む。ステップ15(レジスト処理)ではウェハに感光剤を塗布する。ステップ16(露光)では、露光装置1によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施例の製造方法によれば従来よりも高品位のデバイスを製造することができる。
なお、本実施の形態1においては、ミラーホルダ25に冷却装置24を設け、反射ミラー3aを冷却する構成について説明したが、光学部材としてはもちろん反射ミラー3aに限られるものでなく、レチクル4、ウエハ12等であってもよい。すなわち、レチクルチャック9に冷却装置24を設け、レチクル4を冷却する構成であってもよいし、ウエハチャック14に冷却装置24を設け、ウエハ12を冷却する構成であってもよい。もちろんミラーホルダ25・レチクルチャック9・ウエハチャック14等の保持手段も光学部材の範疇に属し、これら保持手段の冷却を主目的としてこの冷却装置24を適用しても何ら差し支えない。
また、この露光装置1の光源はEUV光に限られることなく、可視光・紫外光・X線・電子線等露光可能な光源であればいずれでもよいことはもちろんである。すなわち、EUV露光装置に限られることなく、EB露光装置、SRを光源とする等倍露光装置、ArFやF2レーザを光源とする露光装置についても本発明は適用可能である。さらに、この露光装置1の露光方式も本実施の形態にて説明したような走査露光方式(ステップ・アンド・スキャンタイプ)に限られず、ステップ・アンド・リピートタイプの露光方式であってももちろんよい。
また、冷媒27として所定温度で液相と気相との間で相変化可能なエタノールを用いたが、所定温度で固相と液相との間で相変化する冷媒を用い、その融解熱を利用して冷却を行うものであってももちろんよい。
[実施例]
図7に、本実施の形態1において露光装置1で露光を行いつつ反射ミラー3aの冷却を行った際の結果を示す。図に示すように、露光が開始されると反射ミラー3aの温度は若干上昇するものの、蓄熱体26内のエタノールの蒸発が生じて蓄熱体26の温度が所定の温度範囲内に保たれるため、反射ミラー3aの温度は再びその後一定温度となる。
また、露光が開始されると、その熱によりエタノールが蒸発を生じるが、バルブ制御装置30によってバルブ29が閉じられて冷却水の通水が停止されているので、ベローズ32の容積は図に示すように階段状に増加していく。露光が終了すると冷却水が通水されて蓄熱体26の冷却が開始され、蒸発したエタノールが液体に戻り、ベローズ32の容積は初期状態へと戻る。
図7に示すように、この実施の形態1の構成によれば、露光時に反射ミラー3aの熱を蓄熱体26に蓄熱し、非露光時に蓄熱体26を冷却するようにしたので、露光時に反射ミラー3aに振動、位置安定性、形状安定性に影響するような外乱を与えずに、その温度上昇を所定範囲内に抑えることができて、より高精度な露光が可能となることがわかる。
[実施の形態2]
図8に、本発明の実施の形態2に係る光学部材の冷却方法を用いた露光装置の反射ミラー近傍を拡大した図を示す。なお、実施の形態1と同様の構成については、同様の引用符号を付し、その説明を省略する。
図8において、引用符号19は反射ミラー3aの表面温度を計測する温度センサ(温度計測手段)である。この温度センサ19によって反射ミラー3aの温度計測を行いながら、その温度が一定となるようにベローズ32の容積を制御する。密閉空間26a内の圧力を下げることにより冷媒27の沸点が下がり、冷媒27はより多く蒸発するようになる。それにより、冷媒27の温度を低下させることができる。また、ベローズ32の容積を増加させることにより密閉空間26a内の気体(すなわち冷媒27がガス化したもの)が断熱膨張し、気体の温度も低下させることができる。
一方、同様の理由から、密閉空間26a内の圧力を上昇させることにより蓄熱体26の温度を上昇させることも可能である。密閉空間26aの圧力を制御することにより冷媒27の温度制御が可能となり、ひいては反射ミラー3aの温度制御が可能となる。この実施の形態2の構成によれば、反射ミラー3aの温度計測結果に基づきつつ密閉空間26aの圧力を制御することにより、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させずに反射ミラー3aを効率よくかつ充分に冷却することができる。その結果、高精度に回路パターンを露光転写することができてウエハ12の不良率を低減し、また高性能のウエハ12を作成することができる。
[実施の形態3]
図9に、本発明の実施の形態3に係る光学部材の冷却方法を用いた露光装置の反射ミラー近傍を拡大した図を示す。なお、実施の形態1と同様の構成については、同様の引用符号を付し、その説明を省略する。
図9において、引用符号11aはペルチェ素子であり、引用符号11bはペルチェ素子を温度制御するペルチェ制御装置(駆動手段)である。この構成においては、露光時には温度センサ19の計測値に基づきつつペルチェ制御装置11bがペルチェ素子11aの駆動制御を行って反射ミラー3aを冷却し、反射ミラー3aの温度上昇が所定範囲内となるようにされている。ペルチェ素子11aの排熱は蓄熱体26に蓄積されるようになっている。その他の構成及び動作については、実施の形態1と略同様である。
この構成によれば、反射ミラー3aに温度センサ19とペルチェ素子11aとを設け、温度センサ19の計測値に基づきつつペルチェ素子11aの駆動制御を行うことにより、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させずに反射ミラー3aを効率よくかつ充分に冷却することができる。その結果、高精度に回路パターンを露光転写することができてウエハ12の不良率を低減し、また高性能のウエハ12を作成することができる。
[実施の形態4]
図10に、本発明の実施の形態4に係る光学部材の冷却方法を用いた露光装置のウエハ近傍を拡大した図を示す。なお、実施の形態1と同様の構成については、同様の引用符号を付し、その説明を省略する。本実施の形態4は、この発明をウエハの冷却に適用したものである。
図10において、引用符号12はウエハ、引用符号14はウエハチャック、引用符号13はウエハチャック14を載置し、図示しない駆動手段により走査駆動されるウエハステージである。冷却プレート35は、ウエハステージ13の走査移動経路中であってウエハ12を交換する際にウエハステージ13が停止する位置に対応して設けられ、ウエハ12の交換時にはウエハステージ13と接触するようになっている。冷却プレート35内には冷却水が通水されている。蓄熱体26はウエハステージ13に設けられており、ウエハ12の交換時には冷却プレート35と接触するようになっている。
露光中はEUV光2eの吸収による熱が蓄熱体26に蓄積され、ウエハ12の温度が所定温度範囲内となるように制御されている。露光が終了し非露光時となると、ウエハ12交換のためにウエハステージ13が移動し、冷却プレート35と接触する位置で停止する。このとき冷却プレート35によって蓄熱体26が冷却され、蓄熱体26の温度を低下させる。この実施の形態4における蓄熱方法、冷媒27が充填された密閉空間26aの圧力制御、ウエハ12やウエハチャック14の温度制御等については、実施の形態1〜3に記載のいずれの方法を適用することも可能である。
この構成によれば、ウエハステージ13にウエハ12やウエハチャック14の熱を蓄積する蓄熱体26を設けて露光時に生じる熱を蓄積し、ウエハ12の交換時にウエハステージ13及び蓄熱体26が冷却プレート35と接触して蓄熱体26を冷却するので、振動・位置安定性の悪化・面形状の劣化等の外乱を露光に影響させずに反射ミラー3aを効率よくかつ充分に冷却することができる。その結果、高精度に回路パターンを露光転写することができてウエハ12の不良率を低減し、また高性能のウエハ12を作成することができる。
以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。
本発明の実施の形態1に係る光学部材の冷却方法を用いた露光装置の露光部全体の構成を模式的に示す概略図である。 図1に示す露光装置のレチクル周辺とウエハ周辺とを模式的に示す図である。 図1に示す露光装置に用いられるミラー近傍を拡大して示した図である。 走査露光において、冷却装置によるミラーの冷却行われる様子を説明する図であって、(a)は、ミラーに光が照射されていない状態(非露光時)における冷却装置の動作を示し、(b)は、ミラーに光が照射されている状態(露光時)における冷却装置の動作を示す。 図1に示す露光装置による露光工程を有するデバイス製造方法を説明するためのフローチャートである。 図5に示すステップ4の詳細なフローチャートである。 実施の形態1において露光装置で露光を行いつつミラーの冷却を行った際のミラー温度、ベローズ容積の変化を示した図である。 本発明の実施の形態2に係る光学部材の冷却方法を用いた露光装置の反射ミラー近傍を拡大した図である。 本発明の実施の形態3に係る光学部材の冷却方法を用いた露光装置の反射ミラー近傍を拡大した図である。 本発明の実施の形態4に係る光学部材の冷却方法を用いた露光装置のウエハ近傍を拡大した図である。 従来の光学部材の冷却方法を用いた水冷ウエハステージの概略図である。 従来の光学部材の冷却方法を用いた水冷ミラーの概略図である。
符号の説明
1:露光装置
2e:EUV光(露光光源光)
3a:反射ミラー(光学部材)
4:反射型レチクル
5:レチクルステージ
6a,6b,6c,6d:ミラー
9:レチクルチャック
11a;ペルチェ素子
11b:ペルチェ制御装置(駆動手段)
12:ウエハ(被処理体)
13:ウエハ微動ステージ
14:ウエハチャック(保持手段)
19:温度センサ(温度計測手段)
24:冷却装置
25:ミラーホルダ(保持手段)
26:蓄熱体
26a:密閉空間
27:冷媒
28:冷却配管(補助冷却手段の一部)
30:バルブ制御装置(補助冷却手段制御装置)
31:圧力計(圧力計測手段)
32:ベローズ
33:ベローズ制御手段
35:冷却プレート

Claims (15)

  1. 露光光源光が照射される光学部材を冷却するための光学部材の冷却方法であって、
    非露光時には前記光学部材を冷却するために所定の密閉空間に冷媒が充填された蓄熱体を冷却し、露光時には該蓄熱体を冷却しないことを特徴とする光学部材の冷却方法。
  2. 前記冷媒が所定温度において相変化可能であり、かつ前記露光時には前記冷媒の相変化に伴う吸熱により前記光学部材を冷却することを特徴とする請求項1に記載の光学部材の冷却方法。
  3. 前記相変化が、液相と気相との間の相変化であることを特徴とする請求項2に記載の光学部材の冷却方法。
  4. 前記相変化が、固相と液相との間の相変化であることを特徴とする請求項2に記載の光学部材の冷却方法。
  5. 前記密閉空間の空間容積が可変であることを特徴とする請求項1に記載の光学部材の冷却方法。
  6. 前記密閉空間内の圧力を圧力計測手段によって計測しつつその計測値に基づいて該密閉空間の空間容積を制御することを特徴とする請求項5に記載の光学部材の冷却方法。
  7. 前記光学部材の温度を温度計測手段によって計測しつつその計測値に基づいて該密閉空間の空間容積を制御することを特徴とする請求項5に記載の光学部材の冷却方法。
  8. 露光光源光が照射される光学部材を冷却するために所定の密閉空間に所定温度において相変化可能な冷媒が充填されて構成された蓄熱体と、
    該蓄熱体を冷却する補助冷却手段と、
    非露光時に前記補助冷却手段が前記蓄熱体を冷却し、かつ、露光時に前記補助冷却手段が該蓄熱体を冷却しないように該補助冷却手段を制御する補助冷却手段制御装置と、
    を備えたことを特徴とする光学部材の冷却装置。
  9. 前記密閉空間に液相及び気相の前記冷媒が充填されていることを特徴とする請求項8に記載の光学部材の冷却装置。
  10. 前記密閉空間に固相及び液相の前記冷媒が充填されていることを特徴とする請求項8に記載の光学部材の冷却装置。
  11. 前記密閉空間の圧力を計測する圧力計測手段と、該圧力計測手段による計測結果に基づいて該密閉空間の空間容積を制御する容積制御手段とを備えたことを特徴とする請求項8に記載の光学部材の冷却装置。
  12. 前記光学部材の温度を計測する温度計測手段と、該温度計測手段による計測結果に基づいて該密閉空間の空間容積を制御する容積制御手段とを備えたことを特徴とする請求項8に記載の光学部材の冷却装置。
  13. 前記光学部材から吸熱を行うとともに前記蓄熱体に排熱を行うペルチェ素子と、非露光時に前記ペルチェ素子を駆動するとともに露光時に該ペルチェ素子を非駆動とする駆動手段とを備えたことを特徴とする請求項8に記載の光学部材の冷却装置。
  14. 露光光源と、
    該露光光源より発せられた光源光を被処理体に導くための光学部材と、
    該光学部材の冷却装置とを有し、
    該光学部材の冷却装置が、前記露光光源光が照射される光学部材を冷却するために所定の密閉空間に所定温度において相変化可能な冷媒が充填されて構成された蓄熱体と、
    該蓄熱体を冷却する補助冷却手段と、
    非露光時に前記補助冷却手段が前記蓄熱体を冷却し、かつ、露光時に前記補助冷却手段が該蓄熱体を冷却しないように該補助冷却手段を制御する補助冷却手段制御装置と、
    を備えていることを特徴とする露光装置。
  15. 請求項14に記載の露光装置によって前記被処理体を投影露光する工程と、前記投影露光された被処理体に所定のプロセスを行う工程とを有するデバイスの製造方法。
JP2003295566A 2003-08-19 2003-08-19 露光装置及びデバイスの製造方法 Expired - Fee Related JP4262031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295566A JP4262031B2 (ja) 2003-08-19 2003-08-19 露光装置及びデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295566A JP4262031B2 (ja) 2003-08-19 2003-08-19 露光装置及びデバイスの製造方法

Publications (3)

Publication Number Publication Date
JP2005064391A true JP2005064391A (ja) 2005-03-10
JP2005064391A5 JP2005064391A5 (ja) 2006-09-21
JP4262031B2 JP4262031B2 (ja) 2009-05-13

Family

ID=34371768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295566A Expired - Fee Related JP4262031B2 (ja) 2003-08-19 2003-08-19 露光装置及びデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP4262031B2 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027632A (ja) * 2005-07-21 2007-02-01 Nikon Corp 光学装置及び露光装置、並びにデバイス製造方法
WO2007122856A1 (ja) * 2006-04-24 2007-11-01 Nikon Corporation 光学素子冷却装置および露光装置
JP2008292761A (ja) * 2007-05-24 2008-12-04 Canon Inc 露光装置及びデバイス製造方法
WO2008149853A1 (ja) * 2007-06-04 2008-12-11 Nikon Corporation 環境制御装置、ステージ装置、露光装置、及びデバイス製造方法
CN102109786A (zh) * 2009-12-24 2011-06-29 夏普株式会社 图像形成设备
WO2012101080A2 (en) 2011-01-28 2012-08-02 Carl Zeiss Laser Optics Gmbh Optical arrangement for an euv projection exposure apparatus and method for cooling an optical component
JP2012523683A (ja) * 2009-04-13 2012-10-04 エーエスエムエル ネザーランズ ビー.ブイ. 冷却配置を有するディテクタモジュール、および該ディテクタモジュールを含むリソグラフィ装置
JP2013533633A (ja) * 2010-07-30 2013-08-22 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv露光装置
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8817228B2 (en) 2009-04-13 2014-08-26 Asml Netherland B.V. Cooling arrangement and lithographic apparatus comprising a resilient wall creating a gap between a detector module housing and a heat sink of the cooling arrangement
US9207541B2 (en) 2010-09-28 2015-12-08 Carl Zeiss Smt Gmbh Arrangement for mirror temperature measurement and/or thermal actuation of a mirror in a microlithographic projection exposure apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
KR20160100915A (ko) * 2013-12-22 2016-08-24 어플라이드 머티어리얼스, 인코포레이티드 척 어셈블리를 갖는 극자외선 리소그래피 시스템 및 그 제조 방법
US9500957B2 (en) 2011-09-21 2016-11-22 Carl Zeiss Smt Gmbh Arrangement for thermal actuation of a mirror in a microlithographic projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2017156465A (ja) * 2016-02-29 2017-09-07 キヤノン株式会社 駆動装置、リソグラフィ装置、冷却方法、および物品の製造方法
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2020516942A (ja) * 2017-04-11 2020-06-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置および冷却方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391916A (ja) * 1989-09-04 1991-04-17 Canon Inc 露光方法
JPH0485918A (ja) * 1990-07-30 1992-03-18 Canon Inc X線露光装置用ウエハ冷却装置
JPH04168716A (ja) * 1990-11-01 1992-06-16 Canon Inc 露光装置
JPH10125592A (ja) * 1996-10-21 1998-05-15 Nikon Corp 温度制御装置及びその方法
JPH11243052A (ja) * 1997-11-14 1999-09-07 Nikon Corp 露光装置
JP2000048750A (ja) * 1998-07-28 2000-02-18 Nikon Corp 荷電粒子線偏向器及びそれを内蔵する電磁レンズ
JP2000243684A (ja) * 1999-02-18 2000-09-08 Canon Inc 露光装置およびデバイス製造方法
JP2001013297A (ja) * 1999-06-30 2001-01-19 Nikon Corp 反射光学素子および露光装置
JP2003068600A (ja) * 2001-08-22 2003-03-07 Canon Inc 露光装置、および基板チャックの冷却方法
JP2003068626A (ja) * 2001-08-29 2003-03-07 Canon Inc 露光装置内ユニットの輻射冷却方法及び輻射冷却装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391916A (ja) * 1989-09-04 1991-04-17 Canon Inc 露光方法
JPH0485918A (ja) * 1990-07-30 1992-03-18 Canon Inc X線露光装置用ウエハ冷却装置
JPH04168716A (ja) * 1990-11-01 1992-06-16 Canon Inc 露光装置
JPH10125592A (ja) * 1996-10-21 1998-05-15 Nikon Corp 温度制御装置及びその方法
JPH11243052A (ja) * 1997-11-14 1999-09-07 Nikon Corp 露光装置
JP2000048750A (ja) * 1998-07-28 2000-02-18 Nikon Corp 荷電粒子線偏向器及びそれを内蔵する電磁レンズ
JP2000243684A (ja) * 1999-02-18 2000-09-08 Canon Inc 露光装置およびデバイス製造方法
JP2001013297A (ja) * 1999-06-30 2001-01-19 Nikon Corp 反射光学素子および露光装置
JP2003068600A (ja) * 2001-08-22 2003-03-07 Canon Inc 露光装置、および基板チャックの冷却方法
JP2003068626A (ja) * 2001-08-29 2003-03-07 Canon Inc 露光装置内ユニットの輻射冷却方法及び輻射冷却装置

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007027632A (ja) * 2005-07-21 2007-02-01 Nikon Corp 光学装置及び露光装置、並びにデバイス製造方法
JPWO2007122856A1 (ja) * 2006-04-24 2009-09-03 株式会社ニコン 光学素子冷却装置および露光装置
WO2007122856A1 (ja) * 2006-04-24 2007-11-01 Nikon Corporation 光学素子冷却装置および露光装置
JP2008292761A (ja) * 2007-05-24 2008-12-04 Canon Inc 露光装置及びデバイス製造方法
WO2008149853A1 (ja) * 2007-06-04 2008-12-11 Nikon Corporation 環境制御装置、ステージ装置、露光装置、及びデバイス製造方法
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9081309B2 (en) 2009-04-13 2015-07-14 Asml Netherlands B.V. Detector module, cooling arrangement and lithographic apparatus comprising a detector module
US8817228B2 (en) 2009-04-13 2014-08-26 Asml Netherland B.V. Cooling arrangement and lithographic apparatus comprising a resilient wall creating a gap between a detector module housing and a heat sink of the cooling arrangement
JP2012523683A (ja) * 2009-04-13 2012-10-04 エーエスエムエル ネザーランズ ビー.ブイ. 冷却配置を有するディテクタモジュール、および該ディテクタモジュールを含むリソグラフィ装置
JP2011133643A (ja) * 2009-12-24 2011-07-07 Sharp Corp 画像形成装置
CN102109786A (zh) * 2009-12-24 2011-06-29 夏普株式会社 图像形成设备
JP2013533633A (ja) * 2010-07-30 2013-08-22 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv露光装置
US10684551B2 (en) 2010-07-30 2020-06-16 Carl Zeiss Smt Gmbh EUV exposure apparatus with reflective elements having reduced influence of temperature variation
US9746778B2 (en) 2010-07-30 2017-08-29 Carl Zeiss Smt Gmbh EUV exposure apparatus with reflective elements having reduced influence of temperature variation
US10317802B2 (en) 2010-07-30 2019-06-11 Carl Zeiss Smt Gmbh EUV exposure apparatus with reflective elements having reduced influence of temperature variation
US9316929B2 (en) 2010-07-30 2016-04-19 Carl Zeiss Smt Gmbh EUV exposure apparatus with reflective elements having reduced influence of temperature variation
US10031423B2 (en) 2010-07-30 2018-07-24 Carl Zeiss Smt Gmbh EUV exposure apparatus with reflective elements having reduced influence of temperature variation
KR20130096231A (ko) * 2010-07-30 2013-08-29 칼 짜이스 에스엠티 게엠베하 Euv 노광 장치
KR101895083B1 (ko) * 2010-07-30 2018-10-18 칼 짜이스 에스엠티 게엠베하 Euv 노광 장치
US9207541B2 (en) 2010-09-28 2015-12-08 Carl Zeiss Smt Gmbh Arrangement for mirror temperature measurement and/or thermal actuation of a mirror in a microlithographic projection exposure apparatus
DE102011010462A1 (de) 2011-01-28 2012-08-02 Carl Zeiss Laser Optics Gmbh Optische Anordnung für eine EUV-Projektionsbelichtungsanlage sowie Verfahren zum Kühlen eines optischen Bauelements
WO2012101080A2 (en) 2011-01-28 2012-08-02 Carl Zeiss Laser Optics Gmbh Optical arrangement for an euv projection exposure apparatus and method for cooling an optical component
WO2012101080A3 (en) * 2011-01-28 2012-11-01 Carl Zeiss Laser Optics Gmbh Optical arrangement for an euv projection exposure apparatus and method for cooling an optical component
US9500957B2 (en) 2011-09-21 2016-11-22 Carl Zeiss Smt Gmbh Arrangement for thermal actuation of a mirror in a microlithographic projection exposure apparatus
KR20160100915A (ko) * 2013-12-22 2016-08-24 어플라이드 머티어리얼스, 인코포레이티드 척 어셈블리를 갖는 극자외선 리소그래피 시스템 및 그 제조 방법
JP2017502321A (ja) * 2013-12-22 2017-01-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated チャックアセンブリを有する極端紫外線リソグラフィーシステム及びその製造方法
US10691013B2 (en) 2013-12-22 2020-06-23 Applied Materials, Inc. Extreme ultraviolet lithography system having chuck assembly and method of manufacturing thereof
KR102340280B1 (ko) * 2013-12-22 2021-12-15 어플라이드 머티어리얼스, 인코포레이티드 척 어셈블리를 갖는 극자외선 리소그래피 시스템 및 그 제조 방법
JP2017156465A (ja) * 2016-02-29 2017-09-07 キヤノン株式会社 駆動装置、リソグラフィ装置、冷却方法、および物品の製造方法
WO2017150243A1 (ja) * 2016-02-29 2017-09-08 キヤノン株式会社 駆動装置、リソグラフィ装置、冷却方法、および物品の製造方法
JP2020516942A (ja) * 2017-04-11 2020-06-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置および冷却方法
JP7155148B2 (ja) 2017-04-11 2022-10-18 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置および冷却方法
US11720034B2 (en) 2017-04-11 2023-08-08 Asml Netherlands B.V. Lithographic apparatus and cooling method

Also Published As

Publication number Publication date
JP4262031B2 (ja) 2009-05-13

Similar Documents

Publication Publication Date Title
JP4262031B2 (ja) 露光装置及びデバイスの製造方法
US6406820B1 (en) Exposure method for a projection optical system
USRE49066E1 (en) Chucks and clamps for holding objects of a lithographic apparatus and methods for controlling a temperature of an object held by a clamp of a lithographic apparatus
US7158209B2 (en) Holding mechanism in exposure apparatus, and device manufacturing method
JP5182557B2 (ja) パターン形成方法及びパターン形成装置、並びにデバイス製造方法
US7212274B2 (en) Cooling system, exposure apparatus having the same, and device manufacturing method
WO1999026278A1 (fr) Dispositif d'exposition, procede de fabrication associe, et procede d'exposition
JP4307130B2 (ja) 露光装置
JP2000286189A (ja) 露光装置および露光方法ならびにデバイス製造方法
JP2000349009A (ja) 露光方法及び装置
JP2006216733A (ja) 露光装置、光学素子の製造方法及びデバイス製造方法
JP2008270802A (ja) 光学装置、多層膜反射鏡、露光装置、及びデバイス製造方法
JP2007005362A (ja) 液浸露光装置
JPWO2008041575A1 (ja) ステージ装置および露光装置
US20090103063A1 (en) Cooling apparatus for optical member, barrel, exposure apparatus, and device manufacturing method
JPH11243052A (ja) 露光装置
JPH11219900A (ja) 露光装置及び露光方法
JP2006261607A (ja) 液浸露光装置、液浸露光方法及びデバイス製造方法。
JP2000286191A (ja) 露光装置および露光方法ならびにデバイス製造方法
JP2005276932A (ja) 露光装置及びデバイス製造方法
JP4018564B2 (ja) 光学系、及びそれを用いた露光装置、デバイスの製造方法
JP2007123332A (ja) ステージ装置、露光装置、デバイスの製造方法
JP4577307B2 (ja) 光学素子、投影光学系及び露光装置
JP2004273926A (ja) 露光装置
JP2006073905A (ja) 光学系及び当該光学系の調整方法、露光装置、並びにデバイス製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees