JP2007123332A - ステージ装置、露光装置、デバイスの製造方法 - Google Patents

ステージ装置、露光装置、デバイスの製造方法 Download PDF

Info

Publication number
JP2007123332A
JP2007123332A JP2005309778A JP2005309778A JP2007123332A JP 2007123332 A JP2007123332 A JP 2007123332A JP 2005309778 A JP2005309778 A JP 2005309778A JP 2005309778 A JP2005309778 A JP 2005309778A JP 2007123332 A JP2007123332 A JP 2007123332A
Authority
JP
Japan
Prior art keywords
stage
mask
substrate
linear scale
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005309778A
Other languages
English (en)
Inventor
Tsuyoshi Inoue
剛志 井上
Akimitsu Ebihara
明光 蛯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005309778A priority Critical patent/JP2007123332A/ja
Publication of JP2007123332A publication Critical patent/JP2007123332A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】省スペースかつ接続ケーブルの断線の虞がない位置検出系を有するステージ装置を提供する。
【解決手段】ステージ装置50は、ベース59と、ベース59に対して所定方向に移動可能な移動テーブル52,54と、ベース59に設けられ所定方向に沿って配置されたリニアスケール81と、移動テーブル52,54とに設けられリニアスケール81と対向するように配置されてリニアスケール81の読取を行う読取ヘッド82と、リニアスケール81に沿って配置された電力供給装置71と、移動テーブル52,54とに設けられ電力供給装置71から読取ヘッド82の作動に用いる電力を非接触で受給する電力受給装置76と、読取ヘッド82がリニアスケール81から読み取った読取情報に基づいて移動ステージ52,54との位置決め制御を行う制御部と、を備える。
【選択図】図2

Description

本発明は、ステージ装置、露光装置、デバイスの製造方法に関する。
半導体素子等を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)や、ステップ・アンド・スキャン方式の走査型投影露光装置(いわゆるスキャニングステッパ)などの逐次移動型の投影露光装置が主流となっている。
このような露光装置においては、リニアスケールによる位置サーボ制御の下で、移動テーブルがベースに対して所定方向に精密移動するステージ装置が複数設けられる(ブラインド装置、マスクステージ、基板ステージ等)。
特開2001−44099号公報(第0032段落)
リニアスケールの設置方法としては、リニアスケールを移動テーブル側、リニアスケールの読取りを行う読取ヘッドをベース側に設けた場合には、長尺のリニアスケールが移動テーブルと共に移動方向に沿って移動するので、リニアスケールが他の部材と干渉しないように十分なスペースを確保する必要がある。特に、移動テーブルの可動範囲が大きい場合には、スペースの確保が困難となる。
一方、リニアスケールをベース側、読取ヘッドを移動テーブル側に設けた場合には、読取ヘッドへの接続ケーブルが移動テーブルの移動に伴って屈曲等を繰り返すため、接続ケーブルの摩耗等による断線発生が問題となる。また、接続ケーブルを通じて移動テーブルに振動が伝わると、移動テーブルの位置決め精度が悪化するという問題がある。
本発明は、上述した事情に鑑みてなされたもので、省スペースかつ接続ケーブルの断線の虞がない位置検出系を有すし、位置決め精度が高いステージ装置を提供することを目的とする。
上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。
第1の発明は、ステージ装置(50)は、ベース(59)と、ベースに対して所定方向に移動可能な移動テーブル(52,54)と、ベースに設けられ所定方向に沿って配置されたリニアスケール(81)と、移動テーブルに設けられリニアスケールと対向するように配置されてリニアスケールの読取を行う読取ヘッド(82)と、リニアスケールに沿って配置された電力供給装置(71)と、移動テーブルに設けられ電力供給装置から読取ヘッドの作動に用いる電力を非接触で受給する電力受給装置(76)と、読取ヘッドがリニアスケールから読み取った読取情報に基づいて移動ステージの位置決め制御を行う制御部(7)と、を備えるようにした。
この発明によれば、リニアスケールが移動テーブルと共に移動することがないので、リニアスケールの移動領域を確保する必要がなくなる。また、読取ヘッドに対する電力供給を非接触に行うので、移動テーブルの移動に伴う電力ケーブルの摩耗による断線等の不具合発生が回避できる。また、ケーブルを通じて移動テーブルに振動が伝わることもない。
また、電力受給部(76)が、読取ヘッド(82)と一体的に形成されるものでは、限られたスペースであっても、電力受給部と読取ヘッドとを設置することが可能となる。
また、読取情報は、電力受給装置(71)と電力供給装置(76)とを介して読取ヘッド(82)から制御部(7)へ非接触で伝送されるものでは、読取ヘッドからの電気信号の送受信を非接触に行うので、移動テーブルの移動に伴う信号ケーブルの摩耗による断線等の不具合発生が回避できる。
また、電力供給装置(71)が、リニアスケール(81)と一体形成されたコイル体(72)を有するものでは、限られたスペースであっても、電力供給装置とリニアスケールとを設置することが可能となる。
第2の発明は、照明光(EL)の照明領域を規制する可動遮光部(50)を有する照明光学系(30)と、マスク(M)を保持するマスクステージ(MST)と、感光基板(P)を保持する基板ステージ(PST)とを備え、照明光によりマスクに形成されたパターン(PA)を照射して、感光基板に投影露光する露光装置(EX)において、可動遮光部、マスクステージ或いは基板ステージのいずれかに、第1の発明のステージ装置を用いるようにした。
この発明によれば、移動テーブルの位置検出系のセンサに対する電力供給と電気信号の送受信が非接触に行われるので、電力ケーブル・信号ケーブルの摩耗による断線等の不具合発生が回避でき、露光装置の保守点検の低減を図ることができる。
第3の発明は、リソグラフィ工程を含むデバイスの製造方法において、リソグラフィ工程において第2の発明の露光装置(EX)を用いるようにした。この発明によれば、高品質・低価格のデバイスを効率よく製造することができる。
本発明によれば以下の効果を得ることができる。
移動テーブルの位置検出系のセンサに対する電力供給とセンサからの電気信号の送受信を非接触に行うので、ケーブル類の断線等の不具合発生が回避でき、高い信頼性を有するステージ装置を実現できる。これにより、露光装置の保守点検の低減を図ることができる。また、ケーブル類を通じて振動が移動テーブルに伝わらないので、移動テーブルの位置決めを高精度に維持することができ、微細なパターンを有するデバイスを効率よく製造することが可能となる。
以下、本発明のステージ装置、露光装置、デバイスの製造方法の実施形態について図を参照して説明する。
図1は、本実施形態に係る露光装置EXを示す概略構成図である。
露光装置EXは、マスクMと基板Pとを走査方向に同期移動しつつマスクMに形成されたパターンPAの像を基板Pに露光する走査型露光装置(所謂スキャニングステッパ)である。
露光装置EXは、マスクMを保持して移動可能なマスクステージMST、基板Pを保持して移動可能な基板ステージPST、マスクステージMSTに保持されているマスクMを露光光ELで照明する照明光学系30、露光光ELで照明されたマスクMのパターンPAの像を基板P上に投影する投影光学系PL、露光装置EX全体の動作を制御する制御装置7等を備えている。
なお、ここでいう基板は半導体ウエハ等の基材上に感光材(レジスト)を塗布したものを含み、マスクは基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。また、本実施形態においては、マスクとして透過型のマスクを用いるが、反射型のマスクを用いることもできる。
以下の説明において、水平面内においてマスクMと基板Pとの同期移動方向(走査方向)をY軸方向、水平面内においてY軸方向と直交する方向をX軸方向(非走査方向)、X軸及びY軸方向に垂直で投影光学系PLの光軸AXと一致する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
また、露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、投影光学系PLの像面側の露光光ELの光路空間Kを液体LQで満たす液浸機構10を備えている。そして、露光装置EXは、少なくともマスクMのパターンPAの像を基板Pに露光している間、液浸機構10を使って、露光光ELの光路空間Kを液体LQで満たす。露光装置EXは、投影光学系PLと光路空間Kに満たされた液体LQとを介してマスクMを通過した露光光ELを基板P上に照射することによって、マスクMのパターンPAの像を基板Pに露光する。
また、本実施形態の露光装置EXは、光路空間Kに満たされた液体LQが、投影光学系PLの投影領域ARを含む基板P上の一部の領域に、投影領域ARよりも大きく且つ基板Pよりも小さい液体LQの液浸領域LRを局所的に形成する局所液浸方式を採用している。本実施形態においては、液体LQとして純水を用いる。
照明光学系30は、露光光ELをレーザビームとして射出する光源装置31、光源装置31より射出された露光光(レーザビーム)ELの断面形状を整形するビーム整形光学系32、通過する露光光ELのエネルギーを調整するエネルギー調整器33、エネルギー調整器33から射出され、ミラー34によってその光路を折り曲げられた露光光ELにより2次光源を形成してマスクM上での露光光ELの照度を均一化するフライアイレンズ等を含むオプティカルインテグレータ35、オプティカルインテグレータ35の光射出面に設けられた開口絞り(σ絞り)36、リレーレンズ系38を構成する第1,第2リレーレンズ38A,38B、マスクM上での露光光ELの照射領域(照明領域)IAを設定するブラインド装置50、コンデンサレンズ40等を備えている。
光源装置31はエキシマレーザ光源によって構成されている。光源装置31から射出される露光光(レーザビーム)ELとしては、KrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。
本実施形態においては、光源装置31としてArFエキシマレーザ光源を用い、露光光ELとしてArFエキシマレーザ光を用いる。なお、光源装置31から射出される露光光EL(レーザビーム)としては、KrFエキシマレーザ光、ArFエキシマレーザ光、及びF2レーザ光のみならず、水銀ランプから射出される輝線(g線、h線、i線)等を用いることもできる。
光源装置31から射出される露光光(レーザビーム)ELは、ビーム整形光学系32に入射する。
ビーム整形光学系32は、光源装置31から射出された露光光ELがオプティカルインテグレータ35に効率良く入射するように、その露光光ELの断面形状を整形するものであって、例えばシリンドリカルレンズやビームエキスパンダ等を備えている。
ビーム整形光学系32を通過した露光光ELは、エネルギー調整器33に入射する。
エネルギー調整器33は、そのエネルギー調整器33から射出される露光光ELのエネルギーを調整するものである。エネルギー調整器33は、回転可能なレボルバ上に配置され、露光光ELに対する透過率が互いに異なる複数のNDフィルタを備えている。エネルギー調整器33は、レボルバを回転して、露光光ELの光路上に配置されるNDフィルタを切り換えることにより、そのエネルギー調整器33から射出される露光光ELのエネルギーを複数段階で調整することができる。
エネルギー調整器33から射出された露光光ELは、ミラー34によってその光路を折り曲げられ、オプティカルインテグレータ35に入射する。
オプティカルインテグレータ35は、マスクM上での露光光ELの照度を均一化するものであって、ミラー34を介して入射された露光光ELから多数の2次光源を形成する。オプティカルインテグレータ35から射出され、開口絞り36を通過した露光光ELは、反射率が小さく透過率が大きいビームスプリッタ37によって2つの方向に分岐される。
ビームスプリッタ37を透過した露光光ELは、第1リレーレンズ38Aを介してブラインド装置50を通過する。
ブラインド装置50は、露光光ELの光路上に設けられ、マスクM上での露光光ELの照射領域(照明領域)IA、及び基板P上での露光光ELの照射領域(投影領域)ARを調整可能である。ブラインド装置50は、マスクMのパターンPAの面に対する共役面近傍に配置されている。
ブラインド装置50は、複数の可動ブレード52,54を組み合わせて構成されており、その可動ブレード52,54を駆動するリニアモータ55,56を備えている。そして、これら可動ブレード52,54によって、露光光ELの光路上に、マスクM上の露光光ELの照射領域(照明領域)IAを設定するための開口50Kが形成される。開口50Kは矩形状であり、マスクM上での露光光ELの照射領域(照明領域)IA及び基板P上での露光光ELの照射領域(投影領域)ARは矩形状に設定される。マスクM上の露光光ELの照射領域(照明領域)IAが設定されることにより、基板P上の露光光ELの照射領域(投影領域)ARも設定される。
制御装置7は、ブラインド装置50のリニアモータ55,56を介して可動ブレード52,54を駆動することにより、開口50Kの大きさを調整することができる。ブラインド装置50の開口50Kの大きさを調整することによって、マスクM上での露光光ELの照射領域(照明領域)IAの大きさ及び基板P上での露光光ELの投影領域(照射領域)ARの大きさを調整することができる。また、制御装置7は、ブラインド装置50のリニアモータ55,56を用いて可動ブレード52,54を駆動することにより、走査方向(Y軸方向)及び非走査方向(X軸方向)のそれぞれに対応する方向での開口50Kの幅及び位置を調整することができる。
このようにして、制御装置7は、走査方向(Y軸方向)及び非走査方向(X軸方向)のそれぞれにおける露光光ELのマスクM上での照射領域(照明領域)IA、及び基板P上での照射領域(投影領域)ARの大きさを調整することができる。
なお、ブラインド装置50の詳細構成については、後述する。
ブラインド装置50を通過した露光光ELは、第2リレーレンズ38B及びコンデンサレンズ40を介して、マスクステージMST上に保持されたマスクM上の矩形状の照明領域IAを均一な照度分布で照明する。
一方、ビームスプリッタ37へ入射した露光光ELのうち、ビームスプリッタ37で反射した露光光ELは、集光レンズ41を介して計測器42で計測される。計測器42は、露光光ELのエネルギーを計測するものであって、例えば光電変換素子などのインテグレータセンサによって構成されている。計測器42の計測信号は制御装置7に出力される。
マスクステージMSTは、マスクテーブル3上にマスクMを保持した状態で、リニアモータ等のアクチュエータを含むマスクステージ駆動装置3Dの駆動により、マスクテーブル3をベース部材3B上でX軸、Y軸、及びθZ方向に移動可能である。
マスクテーブル3(ひいてはマスクM)の位置情報は、レーザ干渉計3Lによって計測される。レーザ干渉計3Lは、マスクテーブル3上に設けられた反射鏡3Kを用いてマスクテーブル3の位置情報を計測する。制御装置7は、レーザ干渉計3Lの計測結果に基づいてマスクステージ駆動装置3Dを駆動し、マスクテーブル3に保持されているマスクMの位置制御を行う。
投影光学系PLは、マスクMのパターンPAの像を所定の投影倍率で基板Pに投影するものであって、複数の光学素子を有しており、それら光学素子は鏡筒PKで保持されている。本実施形態の投影光学系PLは、その投影倍率が例えば1/4、1/5、1/8等の縮小系である。
なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであってもよい。また、投影光学系PLは、倒立像と正立像とのいずれを形成してもよい。
投影光学系PLの複数の光学素子のうち、投影光学系PLの像面に最も近い最終光学素子FLのみが光路空間Kの液体LQと接触する。
基板ステージPSTは、基板テーブル4上の基板ホルダ4Hに基板Pを保持した状態で、基板テーブル4をベース部材5上で6自由度の方向に移動可能である。
基板ホルダ4Hは、基板テーブル4上に設けられた凹部4Rに配置されており、基板テーブル4のうち凹部4R以外の上面4Fは、基板ホルダ4Hに保持された基板Pの表面とほぼ同じ高さ(面一)になるような平坦面となっている。なお、基板ホルダ4Hに保持された基板Pの表面と基板テーブル4の上面4Fとの間に段差があってもよい。
基板テーブル4は、リニアモータ等のアクチュエータを含む基板ステージ駆動装置4Dの駆動により、基板Pを保持した状態で、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6自由度の方向に移動可能である。
基板テーブル4(ひいては基板P)の位置情報はレーザ干渉計4Lによって計測される。レーザ干渉計4Lは基板テーブル4に設けられた反射鏡4Kを用いて基板テーブル4のX軸、Y軸、及びθZ方向に関する位置情報を計測する。また、基板テーブル4に保持されている基板Pの表面の面位置情報(Z軸、θX、及びθY方向に関する位置情報)は、不図示のフォーカス・レベリング検出系によって検出される。制御装置7は、レーザ干渉計4Lの計測結果及びフォーカス・レベリング検出系の検出結果に基づいて基板ステージ駆動装置4Dを駆動し、基板テーブル4に保持されている基板Pの位置制御を行う。
液浸機構10は、露光光ELが通過する投影光学系PLの最終光学素子FLと、その最終光学素子FLと対向する位置に設けられ、基板テーブル4に保持された基板Pとの間の光路空間Kを液体LQで満たす。光路空間Kを満たす液体LQは最終光学素子FLの下面FLAと接触し、露光光ELはその最終光学素子FLの下面FLAを通過する。
液浸機構10は、光路空間Kの近傍に設けられ、光路空間Kに対して液体LQを供給する供給口12及び液体LQを回収する回収口22を有するノズル部材25、供給管13及びノズル部材25の供給口12を介して液体LQを供給する液体供給装置11、ノズル部材25の回収口22及び回収管23を介して液体LQを回収する液体回収装置21等を備えている。
液体LQを供給する供給口12及び液体LQを回収する回収口22は、ノズル部材25のうち、基板Pの表面と対向する下面25Aに設けられている。ノズル部材25の内部には、供給口12と供給管13とを接続する流路、及び回収口22と回収管23とを接続する流路が形成されている。
液体供給装置11及び液体回収装置21の動作は制御装置7に制御される。液体供給装置11は清浄で温度調整された液体LQを送出可能であり、真空系等を含む液体回収装置21は液体LQを回収可能である。制御装置7は、液浸機構10を制御して、液体供給装置11による液体供給動作と液体回収装置21による液体回収動作とを並行して行うことで、光路空間Kを液体LQで満たし、基板P上の一部の領域に液体LQの液浸領域LRを局所的に形成する。
次に、ブラインド装置50の詳細について説明する。図2はブラインド装置50の平面図及び側断面図である。
ブラインド装置50は、互いに間隔をあけて配置され、走査方向であるY軸方向に延在する一対のYガイド51,51、X軸方向に延在し、一端側がYガイド51,51に沿ってそれぞれ移動自在なY可動ブレード52,52、Yガイド51,51のY軸方向両端側に設けられ、X軸方向に延在する一対のXガイド53,53、Y軸方向に延在し、一端側がXガイド53,53に沿ってそれぞれ移動自在なX可動ブレード54,54等を備えており、ブラインドハウジング部59内に収容されて照明系ハウジング30Hに支持されている。
Xガイド53のガイド面には非接触ベアリングであるエアベアリング53Aが設けられており、エアベアリング53AによりX可動ブレード54がXガイド53に対して非接触支持されている。また、X可動ブレード54の一端部にはリニアモータ56の一部を構成する可動子56Aが設けられ、この可動子56Aに対応して、Xガイド53に並ぶ位置にX軸方向に延在する固定子56Bが設けられている。
同様に、Yガイド51のガイド面には非接触ベアリングであるエアベアリング51Aが設けられており、エアベアリング51AによりY可動ブレード52がYガイド51に対して非接触支持されている。そして、Y可動ブレード52の一端部にはリニアモータ55の一部を構成する可動子55Aが設けられ、この可動子55Aに対応して、Yガイド51に並ぶ位置にY軸方向に延在する固定子55Bが設けられている。
なお、リニアモータ55,56の固定子55B,56B及びガイド51,53は、ブラインドハウジング部59の内壁面59Bに固定されている。
リニアモータ55,56は、可動子55A,56Aを磁石ユニットとし固定子55B,56Bをコイルユニットとする所謂ムービングマグネット型リニアモータでもあってもよいし、可動子55A,56Aをコイルユニットとし固定子55B,56Bを磁石ユニットとするムービングコイル型リニアモータであってもよい。
また、ブラインド装置50は、可動ブレード52,54の位置検出を行う可動ブレード位置検出系80を備える。具体的には、ブラインドハウジング部59の内壁面59Tにはリニアスケール81が設けられ、可動ブレード52,54の上面52A,54Aに設けられた読取ヘッド82がリニアスケール81を検出し、制御装置7に出力する。
そして、制御装置7は、リニアモータ55,56を介して可動ブレード52,54を駆動することで、露光光ELが通過する光路を規制する開口50Kの大きさを調整する。また、制御装置7は、走査露光時において、マスクMの位置を検出するレーザ干渉計3Lの検出信号に基づき、マスクMの移動に追従してY可動ブレード52,52を移動し、マスクM上の照明領域を規制するための開口50KをマスクMの移動に追従させる。
なお、走査露光中において、駆動される可動ブレードは主にスキャンブレードであるY可動ブレード52,52であって、非スキャンブレードであるX可動ブレード54,54は、非走査方向(X軸方向)に関するマスクMのパターン形成領域の幅に応じて照明領域の大きさを設定するために、走査露光に先立って駆動されるだけである。したがって、このX可動ブレード54,54を駆動するために、リニアモータを用いずに例えば超音波モータ等の静止保持力を有するアクチュエータを用いるようにしてもよい。また、X可動ブレード54、Y可動ブレード52ともに、2枚のブレードを別々のガイド上で駆動しているが、共通のガイドにリニアモータを配置して2枚のブレードを駆動するように構成してもよい。
図3は、非接触伝送部70の回路構成を示す図である。図4は、非接触伝送部70と可動ブレード位置検出系80の構造を示す模式図である。
読取ヘッド82への電力は、ブラインドハウジング部59側に設けられた電源部60から供給される。この電力供給は、可動ブレード52,54とブラインドハウジング部59との間で非接触に電力及び電気信号の伝送を行う非接触伝送部70を介して行われる。つまり、可動ブレード52,54とブラインドハウジング部59と間においては、電力ケーブル・信号ケーブルを介さずに、非接触に電力及び電気信号の伝送が行われる。
非接触伝送部70は、ブラインドハウジング部59に設けられる一次側伝送部71と可動ブレード52,54に設けられる二次側伝送部76とで構成される。一次側伝送部71は一次コイル72を備え、二次側伝送部76は二次コイル77を備える。そして、一次コイル72と二次コイル77とを磁気的に結合し、一次コイル72から発生する交流磁場で電磁誘導によって二次コイル77に電圧を発生させることで、一次コイル72から二次コイル77に非接触で電力を伝送するようになっている。
また、図3に示すように、二次側伝送部76から一次側伝送部71に向けて電気信号を送信するために、一次側伝送部71には信号受信部73が、二次側伝送部76には信号送信部78が設けられる。信号受信部73と信号送信部78との間では、例えばマイクロ波等により非接触に電気信号の送受信が行われる。マイクロ波等を用いることで、一次コイル72と二次コイル77との距離よりも長い距離を隔てた2点間で電気信号の送受信を行うことができる。
そして、一次コイル72と二次コイル77とを磁気的に結合するために、ブラインドハウジング部59に設けられる一次側伝送部71(一次コイル72)と可動ブレード52,54に設けられる二次側伝送部76(二次コイル77)とは、僅かに離間しつつ対向するように配置されている(図2(b),(c)参照)。
非接触伝送部70と可動ブレード位置検出系80とは、機械的に一体に構成されている。すなわち、図4に示すように、一次側伝送部71の一次コイル72とリニアスケール81とが一体に構成され、更に二次側伝送部76の二次コイル77と読取ヘッド82とが一体に構成されている。
図4(a)に示すように、二次側伝送部76の二次コイル77は、E字形コア79の凹部79Bに形成されている。また、E字形コア79の中央の突起部79Aの先端には、読取ヘッド82が取り付けられる。なお、図4(b)に示すように、二次側伝送部76の二次コイル77をE字形コア79の突起部79Aに形成するようにしてもよい。
一方、一次側伝送部71の一次コイル72は、E字形コア79の2つの凹部79Bに対応する2つの突起部74Aを有するレール形部材74に形成される。レール形部材74は、X方向またはY方向に延在する部材であり、一次コイル72は2つの突起部74Aに沿って長いループ状に形成される。そして、2つの突起部74Aの間の凹部74Bには、リニアスケール81が配置される。
このような構成により、E字形コア79が可動ブレード52,54と共にX方向またはY方向に移動することにより、E字形コア79に設けた読取ヘッド82がブラインドハウジング部59のレール形部材74に設けたリニアスケール81の値を読取ることができる。そして、これと同時に、レール形部材74に設けた一次コイル72からE字形コア79に設けた二次コイル77に対して電力が供給される。
そして、読取ヘッド82により検出された位置情報は、二次側伝送部76の信号受信部73と一次側伝送部71の信号送信部78との間で非接触に送受信され、制御装置7に送られる。そして、制御装置7は、読取ヘッド82からの位置情報に基づいて、リニアモータ55,56を介して可動ブレード52,54を駆動して、開口50Kの大きさ及び位置を制御する。
以上のように、非接触伝送部70と可動ブレード位置検出系80とを一体的に構成したことにより、限られたスペースであって設置することが可能となる。
また、可動ブレード52,54側に読取ヘッド82を設け、ブラインドハウジング部59側にリニアスケール81を設けたので、リニアスケール81の移動領域を確保する必要がなくなる。そして、読取ヘッド82に対する電力供給と読取ヘッド82からの電気信号の送受信を、非接触伝送部70を用いて非接触に行うので、可動ブレード52,54の移動に伴う電力ケーブル・信号ケーブルの摩耗に起因する断線等の不具合発生が回避できる。
上述した実施形態においては、非接触伝送部70をブラインド装置50の可動ブレード位置検出系80に適用する場合について説明したが、他のステージ装置における位置検出系に用いてもよい。
例えば、ベース部材5上で基板テーブル4の移動方向と反対方向に移動するカウンタマス(不図示)が設けられている場合には、カウンタマスの位置計測を行うカウンタマス位置検出系(リニアスケールと読取ヘッド)に上述した非接触伝送部70を適用してもよい。
また、マスクテーブル3の位置計測を行うマスクステージ位置検出系(レーザ干渉計3L,反射鏡3K)や、基板テーブル4の位置計測を行う基板ステージ位置検出系(レーザ干渉計4L,反射鏡4K)に上述した非接触伝送部70を適用してもよい。この場合には、レーザ干渉計3L,4Lを移動体であるマスクテーブル3,基板テーブル4上に設置し、反射鏡3K,4Kをベース部材3B,5に設ける。これにより、例えば、基板テーブル4のY方向の移動範囲が大きい場合であっても、複数のレーザ干渉計4Lの検出結果を引継ぎながらY方向の位置計測を行う必要がなくなり、一つのレーザ干渉計4LでY方向の位置検出を行うことが可能となる。
なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。本発明は、例えば以下のような変更をも含むものとする。
各実施形態の基板としては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置としては、マスクと基板とを同期移動してマスクのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクと基板とを静止した状態でマスクのパターンを一括露光し、基板を順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
また、上述の実施形態においては、投影光学系と基板との間に局所的に液体を満たす露光装置を採用しているが、本発明は、特開平6−124873号公報、特開平10−303114号公報、米国特許第5,825,043号などに開示されているような露光対象の基板の表面全体が液体中に浸かっている状態で露光を行う液浸露光装置にも適用可能である。
露光装置の種類としては、基板に半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスクを用いてもよい。
また、国際公開第2001/035168号パンフレットに開示されているように、干渉縞を基板上に形成することによって、基板上にライン・アンド・スペースパターンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
基板ステージやマスクステージにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。
各ステージの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージに接続し、磁石ユニットと電機子ユニットとの他方をステージの移動面側に設ければよい。
本実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図5に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
本実施形態に係る露光装置を示す概略構成図である。 ブラインド装置の平面図及び側断面図である。 非接触伝送部の回路構成を示す図である。 非接触伝送部と可動ブレード位置検出系の構造を示す模式図である。 マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
7…制御装置(制御部)
30…照明光学系
50…ブラインド装置(ステージ装置、可動遮光部)
52,54…可動ブレード(移動テーブル)
59…ブラインドハウジング部(ベース)
70…非接触伝送部
71…一次側伝送部(電力供給装置)
72…一次コイル(コイル体)
73…信号受信部
76…二次側伝送部(電力受給装置)
77…二次コイル
78…信号送信部
80…可動ブレード位置検出系
81…リニアスケール
82…読取ヘッド
EX…露光装置
EL…露光光(照明光)
M…マスク
PA…パターン
P…基板(感光基板)


Claims (6)

  1. ベースと、
    前記ベースに対して所定方向に移動可能な移動テーブルと、
    前記ベースに設けられ前記所定方向に沿って配置されたリニアスケールと、
    前記移動テーブルに設けられ前記リニアスケールと対向するように配置されて前記リニアスケールの読取を行う読取ヘッドと、
    前記リニアスケールに沿って配置された電力供給装置と、
    前記移動テーブルに設けられ前記電力供給装置から前記読取ヘッドの作動に用いる電力を非接触で受給する電力受給装置と、
    前記読取ヘッドが前記リニアスケールから読み取った読取情報に基づいて前記移動ステージの位置決め制御を行う制御部と、
    を備えることを特徴とするステージ装置。
  2. 前記電力受給部は、前記読取ヘッドと一体的に形成されていることを特徴とする請求項1に記載のステージ装置。
  3. 前記読取情報は、前記電力受給装置と前記電力供給装置とを介して前記読取ヘッドから前記制御部へ非接触で伝送されることを特徴とする請求項1または請求項2に記載のステージ装置。
  4. 前記電力供給装置は、前記リニアスケールと一体形成されたコイル体を有することを特徴とする請求項1から請求項3のうちいずれか一項に記載のステージ装置。
  5. 照明光の照明領域を規制する可動遮光部を有する照明光学系と、
    マスクを保持するマスクステージと、
    感光基板を保持する基板ステージとを備え、
    前記照明光により前記マスクに形成されたパターンを照射して、前記感光基板に投影露光する露光装置において、
    前記可動遮光部、前記マスクステージ或いは前記基板ステージのいずれかに、請求項1から請求項4のうちいずれか一項に記載のステージ装置を用いることを特徴とする露光装置。
  6. リソグラフィ工程を含むデバイスの製造方法において、前記リソグラフィ工程において請求項5に記載の露光装置を用いることを特徴とするデバイスの製造方法。



JP2005309778A 2005-10-25 2005-10-25 ステージ装置、露光装置、デバイスの製造方法 Pending JP2007123332A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309778A JP2007123332A (ja) 2005-10-25 2005-10-25 ステージ装置、露光装置、デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309778A JP2007123332A (ja) 2005-10-25 2005-10-25 ステージ装置、露光装置、デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2007123332A true JP2007123332A (ja) 2007-05-17

Family

ID=38146887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309778A Pending JP2007123332A (ja) 2005-10-25 2005-10-25 ステージ装置、露光装置、デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2007123332A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123334A (ja) * 2005-10-25 2007-05-17 Nikon Corp ステージ装置、露光装置、デバイスの製造方法
JP2009088512A (ja) * 2007-09-27 2009-04-23 Nikon Corp 露光装置
JP2010135596A (ja) * 2008-12-05 2010-06-17 Nikon Corp ステージ装置、露光装置及びデバイス製造方法
EP2818927A3 (en) * 2007-07-18 2015-03-11 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
WO2015162177A1 (de) * 2014-04-25 2015-10-29 Mecatronix Ag Vorrichtung zum halten, positionieren und/oder bewegen eines objekts
KR101915203B1 (ko) 2013-11-20 2018-11-05 한화에어로스페이스 주식회사 작업 기계

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301127A (ja) * 1992-04-28 1993-11-16 Nippon Parusumootaa Kk 部材搬送装置
JPH066993A (ja) * 1992-06-18 1994-01-14 Yaskawa Electric Corp 電動機の無接触給電制御方法、該方法による分離型制御電動機、及び該分離型制御電動機を用いた機械装置
JPH11214482A (ja) * 1998-01-28 1999-08-06 Canon Inc ステージ装置および露光装置ならびにディバイス製造方法
JP2005005295A (ja) * 2003-06-09 2005-01-06 Nikon Corp ステージ装置及び露光装置
WO2005062130A2 (en) * 2003-12-12 2005-07-07 Nikon Corporation Utilities transfer system in a lithography system
JP2005209997A (ja) * 2004-01-26 2005-08-04 Canon Inc 位置決めステージ装置
WO2006042273A1 (en) * 2004-10-09 2006-04-20 Brooks Automation, Inc. Substrate processing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301127A (ja) * 1992-04-28 1993-11-16 Nippon Parusumootaa Kk 部材搬送装置
JPH066993A (ja) * 1992-06-18 1994-01-14 Yaskawa Electric Corp 電動機の無接触給電制御方法、該方法による分離型制御電動機、及び該分離型制御電動機を用いた機械装置
JPH11214482A (ja) * 1998-01-28 1999-08-06 Canon Inc ステージ装置および露光装置ならびにディバイス製造方法
JP2005005295A (ja) * 2003-06-09 2005-01-06 Nikon Corp ステージ装置及び露光装置
WO2005062130A2 (en) * 2003-12-12 2005-07-07 Nikon Corporation Utilities transfer system in a lithography system
JP2007514319A (ja) * 2003-12-12 2007-05-31 株式会社ニコン リソグラフィシステムにおけるユーティリティ輸送システム
JP2005209997A (ja) * 2004-01-26 2005-08-04 Canon Inc 位置決めステージ装置
WO2006042273A1 (en) * 2004-10-09 2006-04-20 Brooks Automation, Inc. Substrate processing apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123334A (ja) * 2005-10-25 2007-05-17 Nikon Corp ステージ装置、露光装置、デバイスの製造方法
US9316917B2 (en) 2007-07-18 2016-04-19 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9804506B2 (en) 2007-07-18 2017-10-31 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9372410B2 (en) 2007-07-18 2016-06-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP2818927A3 (en) * 2007-07-18 2015-03-11 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
EP2818926A3 (en) * 2007-07-18 2015-03-11 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
KR101538245B1 (ko) * 2007-07-18 2015-07-20 가부시키가이샤 니콘 계측 방법, 스테이지 장치, 및 노광 장치
KR101538246B1 (ko) * 2007-07-18 2015-07-20 가부시키가이샤 니콘 계측 방법, 스테이지 장치, 및 노광 장치
EP2933683A1 (en) * 2007-07-18 2015-10-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
JP2013030802A (ja) * 2007-09-27 2013-02-07 Nikon Corp 露光装置
JP2009088512A (ja) * 2007-09-27 2009-04-23 Nikon Corp 露光装置
JP2010135596A (ja) * 2008-12-05 2010-06-17 Nikon Corp ステージ装置、露光装置及びデバイス製造方法
KR101915203B1 (ko) 2013-11-20 2018-11-05 한화에어로스페이스 주식회사 작업 기계
WO2015162177A1 (de) * 2014-04-25 2015-10-29 Mecatronix Ag Vorrichtung zum halten, positionieren und/oder bewegen eines objekts

Similar Documents

Publication Publication Date Title
JP5218049B2 (ja) 露光装置及び露光方法
JP5071894B2 (ja) ステージ装置、パターン形成装置、露光装置、ステージ駆動方法、露光方法、並びにデバイス製造方法
JP5105197B2 (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法
JP5344180B2 (ja) 位置計測システム及び位置計測方法、移動体装置、移動体駆動方法、露光装置及び露光方法、パターン形成装置、並びにデバイス製造方法
JP5024043B2 (ja) 測定システム
JP5040657B2 (ja) 露光装置、露光方法、デバイスの製造方法、デバイス組立方法
JPWO2009078154A1 (ja) 移動体システム、パターン形成装置、露光装置、及び計測装置、並びにデバイス製造方法
JPWO2007077925A1 (ja) パターン形成方法及びパターン形成装置、並びにデバイス製造方法
WO2011040488A1 (ja) 照明光学装置、露光装置及びデバイス製造方法
JP2007123332A (ja) ステージ装置、露光装置、デバイスの製造方法
JP2009170504A (ja) ステージ装置及び露光装置
KR100894190B1 (ko) 노광장치 및 디바이스 제조 방법
JP2007010529A (ja) 計測方法、計測装置、干渉計システム及び露光装置
JPWO2005106930A1 (ja) 露光方法、露光装置及びデバイス製造方法
WO2014136143A1 (ja) 移動体装置及び露光装置、並びにデバイス製造方法
JP5233483B2 (ja) ステージ装置及び露光装置並びにデバイス製造方法
JP2010200452A (ja) モータ装置及びステージ装置並びに露光装置
JP2011115021A (ja) 平面モータ装置及びステージ装置並びに露光装置
JP2010286784A (ja) ステージ装置、露光装置およびデバイス製造方法
JP5182089B2 (ja) 露光装置及びデバイスの製造方法
JP2009049168A (ja) 温度調整構造及びステージ装置並びに露光装置
JP5370106B2 (ja) 干渉計システム、ステージ装置及び露光装置
JP2007123318A (ja) 露光装置及びデバイス製造方法
JP2005166997A (ja) 露光装置及び露光方法、デバイス製造方法
JP2007114550A (ja) ステージ装置、露光装置、デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816