JP2010200452A - モータ装置及びステージ装置並びに露光装置 - Google Patents

モータ装置及びステージ装置並びに露光装置 Download PDF

Info

Publication number
JP2010200452A
JP2010200452A JP2009041126A JP2009041126A JP2010200452A JP 2010200452 A JP2010200452 A JP 2010200452A JP 2009041126 A JP2009041126 A JP 2009041126A JP 2009041126 A JP2009041126 A JP 2009041126A JP 2010200452 A JP2010200452 A JP 2010200452A
Authority
JP
Japan
Prior art keywords
coil body
cooling
stage
substrate
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009041126A
Other languages
English (en)
Inventor
Masahiro Totsu
政浩 戸津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009041126A priority Critical patent/JP2010200452A/ja
Publication of JP2010200452A publication Critical patent/JP2010200452A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】環境温度に悪影響を及ぼすことなく所定の駆動特性が得られるモータ装置を提供する。
【解決手段】固定子60と移動子とのいずれか一方にコイル体63が設けられる。コイル体の第1領域を相変化冷却する第1冷却系CL1と、第1冷却系よりも高い冷却能力を有し、コイル体の第2領域をコイル体の温度分布に基づいて冷却する第2冷却系CL2と、を備える。
【選択図】図5

Description

本発明は、モータ装置及びステージ装置並びに露光装置に関するものである。
半導体素子や液晶表示素子等のマイクロデバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、所謂フォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持して2次元移動するマスクステージと基板を支持して2次元移動する基板ステージとを有し、マスク上に形成されたパターンをマスクステージ及び基板ステージを逐次移動しながら投影光学系を介して基板に転写するものである。露光装置としては、基板上にマスクのパターン全体を同時に転写する一括型露光装置と、マスクステージと基板ステージとを同期走査しつつマスクのパターンを連続的に基板上に転写する走査型露光装置との2種類が主に知られている。いずれの露光装置においてもマスクと基板との相対位置を高精度に一致させてマスクパターンの転写を行うことが要求されるため、マスクステージ及び基板ステージの位置決め精度は露光装置の最も重要な性能の一つである。
従来より、上記基板ステージ及びマスクステージ(以下、両者を総称して「ステージ」と称する)の駆動源として、モータ装置であるリニアモータが用いられているが、リニアモータからの発熱は、ステージ位置決め精度の低下などステージ位置決め精度に影響を及ぼす。例えば、リニアモータからの発熱が周囲の部材・装置を熱変形させたり、ステージの位置検出に用いられる光干渉式測長計の光路上における空気温度を変化させて測定値に誤差を生じさせる。
したがって、リニアモータからの発熱が周囲部分に伝達されることを防ぐために、従来より、リニアモータのコイルはハウジング(ジャケット)に収容され、そのハウジング内部に冷媒が供給される(特許文献1参照)。このようなリニアモータは、ハウジング内部に対して冷媒を入れる入口と、ハウジング内部の冷媒を出す出口とを有している。入口から供給されハウジング内部を流れる冷媒は、コイルからの発熱を回収し、出口からハウジング外部に出る。
また、特許文献2には、冷媒が相変化する際の潜熱により効果的にコイル体を冷却する技術が開示されている。
特開2001−25227号公報 特開2005−94993号公報
しかしながら、上述したような従来技術には、以下のような問題が存在する。
近年、スループットを向上させるために、ステージの速度(すなわち加速度)が大きくなっており、それに伴ってリニアモータからの発熱も大きくなる傾向にある。発熱が大きくなった場合には、コイル体の耐熱温度(例えば、コイルを被覆している樹脂材の耐熱温度)を超えた温度になり、所定の駆動特性が得られなくなる虞がある。
そこで、例えば上記の相変化冷却の能力を上げてコイル体を冷却することが考えられるが、コイル体を所定温度に制御しても、冷却能力が上がったことにより、冷媒が接するコイル体以外の部位については所定温度よりも低下する可能性がある。特に、コイル体は固定子、または可動子のいずれに設けられる場合であっても、モータ装置としての駆動効率を考慮して、発磁体との距離を小さくする設計がなされることから、ハウジングの外側に近い位置、すなわち装置内の空間に近い位置に配置されるため、環境温度に悪影響を及ぼす可能性がある。
本発明は、以上のような点を考慮してなされたもので、環境温度に悪影響を及ぼすことなく所定の駆動特性が得られるモータ装置及びステージ装置並びに露光装置を提供することを目的とする。
上記の目的を達成するために本発明は、実施の形態を示す図1ないし図10に対応付けした以下の構成を採用している。
本発明のモータ装置は、固定子(60)と移動子(51)とのいずれか一方にコイル体(63)が設けられたモータ装置(50)であって、コイル体の第1領域を相変化冷却する第1冷却系(CL1)と、前記第1冷却系よりも高い冷却能力を有し、前記コイル体の第2領域を該コイル体の温度分布に基づいて冷却する第2冷却系(CL2)と、を備えるものである。
従って、本発明のモータ装置では、コイル体の発磁体側の第1領域を第1冷却系により環境温度に悪影響を及ぼさない範囲で相変化冷却しつつ、発磁体と逆側の第2領域をコイル体の温度分布に応じて、第1冷却系よりも高い冷却能力をもって耐熱温度以下の温度に冷却することができる。
また、本発明のステージ装置は、先に記載のモータ装置を備えるものである。
従って、本発明のステージ装置では、コイル体及び環境温度に悪影響を及ぼすことなく、所定の駆動特性で移動子の移動速度を大きくしてスループットを向上させることが可能になる。
そして、本発明の露光装置は、先に記載のステージ装置を備えるものである。
従って、本発明の露光装置では、コイル体及び環境温度に悪影響を及ぼすことなく、高いスループットで露光処理を実施することが可能になる。
なお、本発明をわかりやすく説明するために、一実施例を示す図面の符号に対応付けて説明したが、本発明が実施例に限定されるものではないことは言うまでもない。
本発明では、環境温度に悪影響を及ぼすことなく所定の駆動特性を得ることができる。
一実施形態の露光装置の概要構成を示す図である。 基板ステージ装置を示す平面図である。 磁極ユニットの構成を説明するための図である。 固定子周辺の構成を示す断面図である。 第1実施形態に係る第1、第2冷却系の概略構成を示す部分断面図である。 コイル体における位置と温度との関係を示す図である。 第2実施形態に係る第1、第2冷却系の概略構成を示す部分断面図である。 第3実施形態に係る第1、第2冷却系の概略構成を示す部分断面図である。 マイクロデバイスの製造工程の一例を示すフローチャートである。 図9におけるステップS13の詳細工程の一例を示す図である。
以下、本発明のモータ装置及びステージ装置並びに露光装置の実施の形態を、図1ないし図10を参照して説明する。
図1には、一実施形態に係る露光装置100の全体的な構成が概略的に示されている。この露光装置100は、いわゆるステップ・アンド・スキャン露光方式の走査型露光装置である。
(第1実施形態)
この露光装置100は、照明系10、レチクル(マスク)Rを保持するレチクルステージRST、投影光学系PL、基板としてのウエハWをXY平面内でXY2次元方向に駆動する基板ステージ装置30、及びこれらの制御系等を備えている。
前記照明系10は、例えば特開平9−320956号公報に開示されように、光源ユニット、シャッタ、2次光源形成光学系、ビームスプリッタ、集光レンズ系、レチクルブラインド、及び結像レンズ系等(いずれも不図示)から構成され、図1のミラーMへ向けて照度分布のほぼ均一な露光用照明光を射出する。そして、この照明光がミラーMによってその光路が鉛直下方に折り曲げられ、レチクルR上の矩形(あるいは円弧状)の照明領域IARを均一な照度で照明する。。
前記レチクルステージRST上にはレチクルRが、例えば真空吸着により固定されている。また、このレチクルステージRSTは、不図示のレチクルベース上をリニアモータ等で構成されたレチクル駆動部(図示省略)により、所定の走査方向(ここではY軸方向とする)に指定された走査速度で駆動可能となっている。
レチクルステージRST上にはレチクルレーザ干渉計(以下、「レチクル干渉計」という)16からのレーザビームを反射する移動鏡15が固定されており、レチクルステージRSTのステージ移動面内の位置はレチクル干渉計16によって、例えば0.5〜1nm程度の分解能で常時検出される。
レチクル干渉計16からのレチクルステージRSTの位置情報はステージ制御系19及びこれを介して主制御装置20に送られ、ステージ制御系19では主制御装置20からの指示に応じてレチクルステージRSTの位置情報に基づいてレチクル駆動部(図示省略)を介してレチクルステージRSTを駆動する。
前記投影光学系PLは、レチクルステージRSTの図1における下方に配置され、その光軸AX(照明光学系の光軸IXに一致)の方向がZ軸方向とされ、ここでは両側テレセントリックな光学配置となるように光軸AX方向に沿って所定間隔で配置された複数枚のレンズエレメントから成る屈折光学系が使用されている。この投影光学系PLは所定の投影倍率、例えば1/5(あるいは1/4)を有する縮小光学系である。このため、照明系10からの照明光によってレチクルRの照明領域IARが照明されると、このレチクルRを通過した照明光により、投影光学系PLを介してレチクルRの照明領域IAR内の回路パターンの縮小像(部分倒立像)が表面にフォトレジストが塗布されたウエハW上の照明領域IARに共役な露光領域IAに形成される。
前記基板ステージ装置30は、ベース21と、このベース21の上面の上方に数μm程度のクリアランスを介して後述するエアスライダによって浮上支持された基板テーブル18と、この基板テーブル18をXY面内で2次元方向に駆動する駆動装置50とを備えている。駆動装置50としては、ここでは、ベース21の上部に設けられた(埋め込まれた)固定子60と、基板テーブル18の底部(ベース対向面側)に固定された可動子(移動子)51とから成る平面モータが使用されている。また、可動子51とベース21と駆動装置50とによって平面モータ装置が構成されている。以下の説明においては、上記の駆動装置50を、便宜上、平面モータ50と呼ぶものとする。
前記基板テーブル18上に、ウエハWが例えば真空吸着によって固定されている。また、この基板テーブル18上にはウエハレーザ干渉計(以下、「ウエハ干渉計」という)31からのレーザビームを反射する移動鏡27が固定され、外部に配置された前記ウエハ干渉計31により、基板テーブル18のXY面内での位置が例えば0.5〜1nm程度の分解能で常時検出されている。ここで、実際には、図2に示されるように、基板テーブル18上には走査方向であるY軸方向に直交する反射面を有する移動鏡27Yと非走査方向であるX軸方向に直交する反射面を有する移動鏡27Xとが設けられ、ウエハ干渉計31は走査方向に1軸、非走査方向には2軸設けられているが、図1ではこれらが代表的に移動鏡27、ウエハ干渉計31として示されている。基板テーブル18の位置情報(又は速度情報)はステージ制御系19及びこれを介して主制御装置20に送られ、ステージ制御系19では主制御装置20からの指示に応じて前記位置情報(又は速度情報)に基づいて平面モータ50を介して基板テーブル18のXY面内の移動を制御する。
ここで、前記平面モータ50及びその近傍の構成部分を中心として、基板ステージ装置30の構成各部について、図2〜図4に基づいて更に詳述する。図2には、この基板ステージ装置30の平面図が示されている。
図2に示されるように、基板テーブル18は、前記平面モータ50を構成する可動子51の上面(ベース21対向面と反対側の面)にボイスコイルモータ等を含む支持機構32a、32b、32cによって異なる3点で支持されており、XY面に対して傾斜及びZ軸方向の駆動が可能になっている。支持機構32a〜32cは、図1では図示が省略されているが、実際には不図示の駆動機構を介して図1のステージ制御系19によって独立に駆動制御される。
図3(a)には可動子51の底面図(−Z方向からの平面図)が、図3(b)には可動子51の+Y方向からの側面図が示されている。これらの図に示される可動子51は、磁界を発生する永久磁石(発磁体)52N、52S、53N、54N、及び54Sが平面視でマトリクス状となるように、磁石保持部材としての平板状の磁性体部材59の固定子60との対向面(可動子51の底面)上に配列されており、可動子51によって発磁体としての磁極ユニットが構成されている。以下の説明においては、この可動子51を、便宜上、磁極ユニット51とも呼ぶものとする。ここで、永久磁石52N、53N、54Nは、固定子60との対向面がN極面となる磁石であり、また、永久磁石52S、54Sは、固定子60との対向面がS極面となる磁石である。
永久磁石52N、52S、53N、54N、及び54Sの配列にあたっては、X方向又はY方向で隣り合う永久磁石の固定子60に対向する磁極面は互いに逆の極性とされている。
なお、永久磁石52N、52S、53N、54N、54S及び後述するコイル体63の大きさ、配置(配列ピッチ)と、基板テーブル18の駆動特性については国際公開第00/46911号等に詳述されているため、ここではその説明を省略する。
前記固定子60を含む前記ベース21は、その概略縦断面図である図4に示されるように、上面が開口した2段の段付凹部が形成された平面視で矩形状の容器69と、この容器69の下方の段部に上方から結合し、高さ方向の中央部に架設された磁性体材料から成るコイル支持部材としての平板状の磁性体部材62と、上部開口を閉塞する状態で一体的に取り付けられたセラミック等の非磁性非電導体材料からなる平板状部材68とを備えている。
前記磁性体部材62の上面には、図4に示されるように、複数のコイル体63が配置されている。これらの複数のコイル体63によって電機子ユニットとしての平板状コイル群61が構成され、この平板状コイル群61と前記磁性体部材62とによって、前述した平面モータ50の固定子60が構成されている。
コイル体63への電流供給によるコイル体63の発熱に伴うコイル体63、その周辺部材の温度上昇や、コイル体63の周辺雰囲気の揺らぎを防止するため、本実施形態ではコイル体63の冷却を行っている。より詳細には、本実施形態の平面モータ50には、図4及び図5に示すように、コイル体63の第1領域として側面及び上面(平板状部材68と対向する面)を相変化冷却する第1冷却系CL1と、第1冷却系CL1よりも高い冷却能力を有し、コイル体63の第2領域として下面(平板状部材68と逆側で磁性体部材62に支持されている面)を冷却する第2冷却系CL2とが設けられている。
第1冷却系CL1は、容器69内で磁性体部材62と平板状部材68との間に形成された冷却空間CA1に対して、相変化させる冷媒を供給する供給装置70を備えている。相変化冷却に用いる冷媒としては、不活性なものが好ましく、例えばハイドロフルオロエーテル(例えば「ノベックHFE」:住友スリーエム株式会社製)や、フッ素系不活性液体(例えば「フロリナート」:住友スリーエム株式会社製)などが挙げられる。
第2冷却系CL2は、コイル体63の下面に当接する当接部材であるペルチェ素子72と、ペルチェ素子72を介した熱交換によりコイル体63の下面を冷却する熱交換装置73とを備えている。ペルチェ素子72は、磁性体部材に埋設されており、給電装置71の給電により、コイル体63の下面を支持する一方の面から吸熱し他方の面に排熱する。
熱交換装置73は、容器69にペルチェ素子72の他方の面(下面)に臨んで設けられた冷却空間CA2に対して冷媒を供給する供給装置75を備えている。熱交換装置73における冷媒としては特に制限はなく、上述したハイドロフルオロエーテルやフッ素系不活性液体の他に水等、熱交換効率の高い材料が用いられる。
続いて、上記構成の平面モータ50において、コイル体63を冷却する動作について説明する。
まず、第1冷却系CL1においては、供給装置70から相変化冷却用の冷媒が所定圧力で冷却空間CA1に供給される。冷媒の圧力としては、平板状部材68の外側の環境空間温度に応じて設定され、例えば環境空間温度22℃において、冷媒が液相から気相に変化(蒸発)する圧力で供給される。
これにより、平面モータ50の駆動時にコイル体63への通電で生じた熱は、側面及び上面において相変化冷却用冷媒に吸収され、冷媒の相変化(液体→気体)に伴う潜熱により冷却されて所定温度(例えば22℃)が維持される。
一方、第2冷却系CL2においては、供給装置75から冷媒がコイル体63の温度分布に基づく温度で冷却空間CA2に供給される。より詳細には、通電により発熱するコイル体63は、第1、第2冷却系CL1、CL2により表面から冷却されるため、内部温度は表面温度よりも高くなる。コイル体63の内部温度と表面温度とは事前に相寒関係が既知であるため、表面温度を所定温度よりも低く維持することにより、内部温度も所定温度よりも低くすることができる。コイル体63は、巻回されたコイル線が樹脂材で被覆されたものであるため、耐熱温度が低い樹脂材をコイル体63の耐熱温度として、内部温度が耐熱温度であるときのコイル体63の下面の温度を閾値として設定し、この閾値を超えないように、第2冷却系CL2において冷却空間CA2に供給する冷媒温度を調節する。
これにより、平面モータ50の駆動時にコイル体63への通電で生じた熱は、下面においてペルチェ素子72の一方の面で吸熱されて他方の面に排熱され、さらに冷却空間CA2に供給された冷媒に吸熱されることにより、コイル体63は樹脂材の耐熱温度以下(例えば、内部温度で50℃以下、下面の表面温度で5℃以下)に維持される。
図6は、ある駆動特性で基板テーブル18を駆動した際の、コイル体63の厚さ方向における位置と温度との関係を示す図である。
図中、位置T1はコイル体63の下面(ペルチェ素子72に当接している位置)であり、位置T3は、コイル体63の上面(平板状部材68に最も近い位置)であり、図6で破線は第2冷却系CL2を用いずに第1冷却系CL1のみでコイル体63を冷却したときの関係を示し、実線は第1、第2冷却系CL1、CL2の双方を用いて冷却したときの関係である。
この図に示されるように、第1冷却系CL1のみでコイル体63を冷却した場合には、平板状部材68の外側の環境空間温度を所定温度に維持する冷却を行ったために、内部温度が上記耐熱温度Hを超えていたが、第1、第2冷却系CL1、CL2の双方を用いて冷却することにより、内部温度でも耐熱温度Hを超えることが回避された。
以上説明したように、本実施形態では、コイル体63の第1領域(側面及び上面)を第1冷却系CL1で相変化冷却することにより、環境空間温度を所定温度に維持しつつ、コイル体63の第2領域(下面)を第2冷却系CL2でコイル体63の耐熱温度を超えないように冷却して平面モータ50の駆動特性を維持することが可能になる。
また、本実施形態では、コイル体63に当接して吸熱する当接部材としてペルチェ素子72を配設しているため、コイル体63の熱を積極的に排熱することができ、迅速、且つ効果的な冷却を実現することができる。
(第2実施形態)
続いて、平面モータ50の第2実施形態について、図7を参照して説明する。
この図において、図1乃至図6に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
図7に示すように、本実施形態では、コイル体63の下面に当接する当接部材として、一方の面がコイル体63に当接し、他方の面が冷却空間CA2に臨むヒートパイプ72Aが設けられている。
他の構成は、上記第1実施形態と同様である。
本実施形態では、ヒートパイプ72Aがコイル体63の下面から吸熱して、冷却空間CA2に供給された冷媒に排熱することにより、上記第1実施形態と同様の作用・効果が得られることに加えて、ヒートパイプ72Aには通電の必要がないことから、通電時に生じる熱の悪影響を回避できるとともに、磁界に悪影響を及ぼすことも防止可能になる。
(第3実施形態)
続いて、平面モータ50の第3実施形態について、図8を参照して説明する。
この図において、図1乃至図6に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
図8に示すように、本実施形態の第2冷却系CLでは、第1冷却系CL1と同様に、相変化冷却によりコイル体63の下面を冷却する構成としている。
すなわち、本実施形態では、供給装置75から冷却空間CA2に対して、第1冷却系CL1で森用いられる冷媒と同一種類の相変化冷却用冷媒が供給される。
冷却空間CA2に対して供給される冷媒は、コイル体63の内部温度が耐熱温度以下となるときの下面の表面温度で液相から気相に変化(蒸発)する圧力(第1冷却系CL1により冷却空間CA1に供給される冷媒よりも低い圧力)で供給される。
これにより、平面モータ50の駆動時にコイル体63への通電で生じた熱は、下面において磁性体部材62を介した熱交換により、冷媒の相変化(液体→気体)に伴う潜熱により吸熱・冷却され、コイル体63は、上述した樹脂材の耐熱温度以下に維持される。
このように、本実施形態では、上記第1実施形態と同様の作用・効果が得られることに加えて、第1冷却系CL1、第2冷却系CL2で用いる冷媒を同一種とすることができ、冷媒供給系及び回収系の少なくとも一部を共用することが可能になり、材料コスト及び設備コストの低減を実現できる。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、ペルチェ素子72等を用いて能動的にコイル体63の熱を吸熱する構成としたが、これに限定されるものではなく、例えばアルミニウム等の熱伝達(熱伝導)に優れた板材を当接部材として設置し、この当接部材の熱伝導と熱交換装置73のみでコイル体63を冷却する構成としてもよい。
また、上記実施形態では、当接部材としてペルチェ素子72とヒートパイプ72Aをそれぞれ個別に設置する構成を例示したが、これに限定されるものではなく、ペルチェ素子72及びヒートパイプ72Aを双方積層したり、並列して用いる構成としてもよい。
また、上記実施形態では、相変化冷却として冷媒を液相から気相に相変化させて冷却する構成としたが、これに限られず、例えば特開2005−94993に開示されているように、固相及び液相での相変化により冷却する構成であってもよい。
また、上記実施形態では、固定子60にコイル体63が設けられ、移動子である基板テーブル18に永久磁石52、54が設けられる、所謂ムービングマグネット型(MM型)の平面モータ50を例示したが、これとは逆に、固定子60に永久磁石52、54が設けられ、移動子である基板テーブル18にコイル体63が設けられる、所謂ムービングコイル型(MC型)の平面モータ50にも本発明を適用できることは言うまでもない。
さらに、上記実施形態では、移動子がXY平面に沿って2次元的に移動可能な平面モータ50を例示して本発明を説明したが、これに限定されるものではなく、移動子が固定子に対して1次元的(直線的)に移動するリニアモータにも本発明を適用可能である。
なお、また、上記実施形態の基板としては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
また、本発明が適用される露光装置の光源には、KrFエキシマレーザ(248nm)、ArFエキシマレーザ(193nm)、Fレーザ(157nm)等のみならず、g線(436nm)及びi線(365nm)を用いることができる。さらに、投影光学系の倍率は縮小系のみならず等倍および拡大系のいずれでもよい。また、上記実施形態では、屈折型の投影光学系を例示したが、これに限定されるものではない。例えば、反射屈折型や屈折型の光学系でもよい。
また、本発明は、投影光学系と基板との間に局所的に液体を満たし、該液体を介して基板を露光する、所謂液浸露光装置にも適用可能である。液浸露光装置については、国際公開第99/49504号パンフレットに開示されている。さらに、本発明は、特開平6−124873号公報、特開平10−303114号公報、米国特許第5,825,043号などに開示されているような露光対象の基板の表面全体が液体中に浸かっている状態で露光を行う液浸露光装置にも適用可能である。
また、本発明は、ステージユニットが複数(2基)設けられる構成にも適用可能である。また、ステージユニットが複数設けられるのではなく、特開平11−135400号公報や特開2000−164504号公報に開示されているように、基板を保持する基板ステージと基準マークが形成された基準部材や各種の光電センサを搭載して、露光に関する情報を計測する計測ステージとをそれぞれ備えた露光装置にも本発明を適用することができる。
露光装置10としては、マスクとしてのレチクルRと、基板としてのウエハWとを同期移動してマスクのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクと基板とを静止した状態でマスクのパターンを一括露光し、基板を順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
さらに、ステップ・アンド・リピート方式の露光において、第1パターンと基板とをほぼ静止した状態で、投影光学系を用いて第1パターンの縮小像を基板上に転写した後、第2パターンと基板とをほぼ静止した状態で、投影光学系を用いて第2パターンの縮小像を第1パターンと部分的に重ねて基板上に一括露光してもよい(スティッチ方式の一括露光装置)。また、スティッチ方式の露光装置としては、基板上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
上述の各実施形態においては、投影光学系PLを備えた露光装置を例に挙げて説明してきたが、投影光学系PLを用いない露光装置及び露光方法に本発明を適用することができる。このように投影光学系PLを用いない場合であっても、露光光はレンズ等の光学部材を介して基板に照射され、そのような光学部材と基板との間の所定空間に液浸空間が形成される。
露光装置10の種類としては、基板に半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いてもよい。
また、例えば国際公開第2001/035168号パンフレットに開示されているように、干渉縞を基板上に形成することによって、基板上にライン・アンド・スペースパターンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
また、例えば特表2004−519850号公報(対応米国特許第6,611,316号)に開示されているように、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回の走査露光によって基板上の1つのショット領域をほぼ同時に二重露光する露光装置などにも本発明を適用することができる。また、プロキシミティ方式の露光装置、ミラープロジェクション・アライナーなどにも本発明を適用することができる。
以上のように、本願実施形態の露光装置10は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
次に、本発明の実施形態による露光装置及び露光方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図9は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。
まず、ステップS10(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS11(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクル)を製作する。一方、ステップS12(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップS13(ウエハ処理ステップ)において、ステップS10〜ステップS12で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップS14(デバイス組立ステップ)において、ステップS13で処理されたウエハを用いてデバイス組立を行う。このステップS14には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS15(検査ステップ)において、ステップS14で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。
図10は、半導体デバイスの場合におけるステップS13の詳細工程の一例を示す図である。
ステップS21(酸化ステップ)おいては、ウエハの表面を酸化させる。ステップS22(CVDステップ)においては、ウエハ表面に絶縁膜を形成する。ステップS23(電極形成ステップ)においては、ウエハ上に電極を蒸着によって形成する。ステップS24(イオン打込みステップ)においては、ウエハにイオンを打ち込む。以上のステップS21〜ステップS24のそれぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップS25(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップS26(露光ステップ)において、上で説明したリソグラフィシステム(露光装置)及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップS27(現像ステップ)においては露光されたウエハを現像し、ステップS28(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS29(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
また、半導体素子等のマイクロデバイスだけではなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置等で使用されるレチクル又はマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハ等ヘ回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(深紫外)やVUV(真空紫外)光等を用いる露光装置では、一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、蛍石、フッ化マグネシウム、又は水晶等が用いられる。また、プロキシミティ方式のX線露光装置や電子線露光装置等では、透過型マスク(ステンシルマスク、メンブレンマスク)が用いられ、マスク基板としてはシリコンウエハ等が用いられる。なお、このような露光装置は、WO99/34255号、WO99/50712号、WO99/66370号、特開平11−194479号、特開2000−12453号、特開2000−29202号等に開示されている。
50…平面モータ(モータ装置)、 51…可動子(移動子)、 60…固定子、 63…コイル体、 72…ペルチェ素子(当接部材)、 73…熱交換装置、 100…露光装置、 CL1…第1冷却系、 CL2…第2冷却系

Claims (9)

  1. 固定子と移動子とのいずれか一方にコイル体が設けられたモータ装置であって、
    前記コイル体の第1領域を相変化冷却する第1冷却系と、
    前記第1冷却系よりも高い冷却能力を有し、前記コイル体の第2領域を該コイル体の温度分布に基づいて冷却する第2冷却系と、
    を備えるモータ装置。
  2. 前記第2領域の表面温度と、前記コイル体の内部温度との相関関係に基づいて前記第2領域を冷却する請求項1記載のモータ装置。
  3. 前記第2冷却系は、前記コイル体の第2領域に当接する当接部材と、該当接部材を介した熱交換により前記コイル体の第2領域を冷却する熱交換装置とを有する請求項1または2記載のモータ装置。
  4. 前記当接部材がペルチェ素子を有する請求項3記載のモータ装置。
  5. 前記当接部材がヒートパイプを有する請求項3または4記載のモータ装置。
  6. 前記熱交換装置は、第2の相変化冷却により前記当接部材を介して前記コイル体の第2領域を冷却する請求項3から5のいずれか一項に記載のモータ装置。
  7. 前記第1冷却系における相変化冷却と、前記第2の相変化冷却とは、同一種類の冷媒を用いる請求項6記載のモータ装置。
  8. 請求項1から7のいずれか一項に記載のモータ装置を備えるステージ装置。
  9. 請求項8記載のステージ装置を備える露光装置。
JP2009041126A 2009-02-24 2009-02-24 モータ装置及びステージ装置並びに露光装置 Pending JP2010200452A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041126A JP2010200452A (ja) 2009-02-24 2009-02-24 モータ装置及びステージ装置並びに露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041126A JP2010200452A (ja) 2009-02-24 2009-02-24 モータ装置及びステージ装置並びに露光装置

Publications (1)

Publication Number Publication Date
JP2010200452A true JP2010200452A (ja) 2010-09-09

Family

ID=42824572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041126A Pending JP2010200452A (ja) 2009-02-24 2009-02-24 モータ装置及びステージ装置並びに露光装置

Country Status (1)

Country Link
JP (1) JP2010200452A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582927A (zh) * 2017-05-03 2019-12-17 赛峰直升机发动机公司 用于涡轮机启动器/发电机的具有相变材料的电机
JP2020071321A (ja) * 2018-10-30 2020-05-07 キヤノン株式会社 冷却装置、光源装置、露光装置及び物品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493054A (ja) * 1990-08-09 1992-03-25 Toshiba Corp 平型半導体素子
JP2000175434A (ja) * 1998-12-04 2000-06-23 Nikon Corp 平面モータ装置及び露光装置
JP2003219507A (ja) * 2002-01-17 2003-07-31 Toshiba Corp 鉄道車両用電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493054A (ja) * 1990-08-09 1992-03-25 Toshiba Corp 平型半導体素子
JP2000175434A (ja) * 1998-12-04 2000-06-23 Nikon Corp 平面モータ装置及び露光装置
JP2003219507A (ja) * 2002-01-17 2003-07-31 Toshiba Corp 鉄道車両用電力変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582927A (zh) * 2017-05-03 2019-12-17 赛峰直升机发动机公司 用于涡轮机启动器/发电机的具有相变材料的电机
JP2020071321A (ja) * 2018-10-30 2020-05-07 キヤノン株式会社 冷却装置、光源装置、露光装置及び物品の製造方法
JP7202142B2 (ja) 2018-10-30 2023-01-11 キヤノン株式会社 冷却装置、光源装置、露光装置及び物品の製造方法

Similar Documents

Publication Publication Date Title
EP2998983B1 (en) Stage apparatus, exposure apparatus and device fabricating method
JP5182557B2 (ja) パターン形成方法及びパターン形成装置、並びにデバイス製造方法
US7292317B2 (en) Lithographic apparatus and device manufacturing method utilizing substrate stage compensating
JPWO2006006730A1 (ja) 平面モータ装置、ステージ装置、露光装置及びデバイスの製造方法
JP2011082573A (ja) 露光装置及び露光方法、デバイス製造方法
JP2009136065A (ja) 平面モータおよびそれを用いたステージ
JP2007329435A (ja) ステージ装置、露光装置及びデバイス製造方法
WO2011040488A1 (ja) 照明光学装置、露光装置及びデバイス製造方法
JP5455166B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2005276932A (ja) 露光装置及びデバイス製造方法
JP2009037391A (ja) 温度調整装置、露光装置、アクチュエータ装置、保持装置、及びデバイス製造方法
JP2007123332A (ja) ステージ装置、露光装置、デバイスの製造方法
JP2005295762A (ja) ステージ装置および露光装置
JP2010200452A (ja) モータ装置及びステージ装置並びに露光装置
JP2011115021A (ja) 平面モータ装置及びステージ装置並びに露光装置
JP2012033922A (ja) 露光装置及びデバイス製造方法
JP2006054440A (ja) 露光条件の決定方法、及び露光方法、露光装置、並びにデバイス製造方法
JP2010238986A (ja) 露光装置及びデバイスの製造方法
JP2009049168A (ja) 温度調整構造及びステージ装置並びに露光装置
JP2011115022A (ja) シャフトモータ及びステージ装置並びに露光装置
JP2010268604A (ja) モータ装置及びステージ装置並びに露光装置
JP2010021549A (ja) ステージ装置、露光装置、及びデバイス製造方法
JP2014157899A (ja) 駆動装置、露光装置、及びデバイス製造方法
JP2010238985A (ja) 露光装置及びデバイスの製造方法
JP2011014785A (ja) 露光装置及びデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730