JP2004503180A - 地上波デジタルtv受信のための周波数領域の等化器 - Google Patents

地上波デジタルtv受信のための周波数領域の等化器 Download PDF

Info

Publication number
JP2004503180A
JP2004503180A JP2002509245A JP2002509245A JP2004503180A JP 2004503180 A JP2004503180 A JP 2004503180A JP 2002509245 A JP2002509245 A JP 2002509245A JP 2002509245 A JP2002509245 A JP 2002509245A JP 2004503180 A JP2004503180 A JP 2004503180A
Authority
JP
Japan
Prior art keywords
frequency domain
inverse channel
diagonal
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002509245A
Other languages
English (en)
Inventor
ダグナチェウ,ビリュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2004503180A publication Critical patent/JP2004503180A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/211Ghost signal cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03382Single of vestigal sideband
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

単一の集積回路のよるマルチスタンダード復調器は、受信信号及び誤差予測値から逆チャネルを予測するための再帰的な最小二乗コスト関数を使用した周波数領域での等化のための適応逆チャネル予測器を含んでいる。対角相関行列を利用して、計算集中型から記憶集中型にシフトして、従来の周波数領域の等化器により必要とされるよりも少ない計算リソースを利用して解は決定される。メモリの必要条件は、従来のOFDMデコーダ内で利用可能なメモリにより十分に満足される。必要とされる計算リソースは、かかるデコーダ内で利用することができるリソースに容易にマッピングすることができる。マルチスタンダード復調器の集積回路の費用対効果を改善することができる。

Description

【0001】
[発明の分野]
本発明は、一般に無線信号の復号時のイコライゼーションに関し、より詳細には、1つの集積回路によるマルチスタンダードでコーダ内での実現に適した方式による、周波数領域のイコライゼーションのための適応逆チャネル予測に関する。
【0002】
[発明の背景]
デジタルテレビジョン(DTV)ブロードキャスティング変調のための2つの異なる標準が地域的に採用されている。米国では、Advanced Television Systems Committee(ATSC)digital television standard(ATSC Document A/53, September 16, 1995)により発表された残留波帯(VSB)変調を採用しており、この変調では8つの離散振幅レベル(8−VSB)を有している。一方、欧州、オーストラリア及び他の地域では、“Digital Video Broadcasting : Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television”ETSI300 744(March 1997) によるDigital Video Broadcasting−Television(DVB−T) coded orthogonal frequency division multiplexing(COFDM)を採用している。
【0003】
図10A及び図10Bは、これら2つの標準について採用されるタイプの集積回路による残留波帯復調器及び直交周波数分割多重(OFDM)復調器の典型的な実現についての比較によるブロック図をそれぞれ示している。
【0004】
チャネルデコーダ1000a及び1000bの両者についてのフロントエンドの殆どは、サンプルレート変換(SRC)、ミキサ、及びフィルタ又はナイキストフィルタユニット1001a及び1001bを含んでおり、これらは同じである。フォワード誤り補正(FEC)ユニット1002a及び1002bもまた同じである。したがって、単一のマルチスタンダードチャネル復号集積回路は、直接ハードウェア共有技術を利用して、結合されたやり方でこれらの部分を実現している。
【0005】
しかし、2つの標準を実現する既存のアルゴリズムについて使用される集積回路領域の殆どは、VSBにおける等化器103、及びOFDMにおける高速フーリエ変換(FFT)、チャネル予測及び補正ユニット1004により占有される。さらに、VSBは計算集中型であり、一方OFDMは記憶集中型である。これらの理由のために、現在のアルゴリズムは、費用対効果の高いやり方において両者の標準についての結合チャネルデコーダを実現することを困難にしている。
【0006】
VSB及びOFDM標準のアルゴリズムレベルの統一化について、2つの可能性が存在し、それぞれの標準を実現する現在のアルゴリズムの変更を要求している。第1に、OFDMについて時間領域の等化器が使用される場合がある。ここでは、この標準のためのチャネル予測及び補正ユニットが時間領域の等化器で置き換えられる。次いで、等化器は、現在のVSB等化器ハードウェアにマッピングされる。しかし、定性的な観察によれば、かかる技術がOFDM標準のパイロットキャリアの有効な利用を困難にしていることを示している。これは、この技術によれば、既存のOFDMアルゴリズムに匹敵する性能にならないことを示している。
【0007】
第2のアプローチでは、等化器の部分がOFDMハードウェアにマッピングされるように、VSBについて周波数領域(FD)での等化器を利用することである。図11に、単一キャリアシステムについて一般化周波数領域の等化器についてのブロック図が示されている。
【0008】
周波数領域の等化器への入力1101で受信された信号は、Mサンプルをオーバラップさせる直並列変換器(S/P)1102によりはじめに処理される。次いで、高速フーリエ変換(FFT)ユニット1103は、デジタルデータストリームを周波数領域に変換し、FFTユニット1103の出力は、予測ユニット1104からの逆チャネル予測器により乗算される。結果的に得られる信号乗算器1105の等化出力は、逆高速フーリエ変換(IFFT)ユニット1106を利用して時間領域に変換され、さらに、Mサンプルを廃棄する並直列(P/S)変換器1107を利用してシリアル信号に変換される。
【0009】
図11に示されるタイプの周波数領域の等化器の実現間での主要な差異は、オーバラップ アンド セーブのパラメータ(すなわち、オーバラッピングパラメータMのサイズ及びFFT/IFFTのサイズN、IFFTの処理は、オーバラッピングサイズがN−1である場合にチャネル補正と結合することができる)、及び逆チャネルが予測されるやり方である。逆チャネルを予測するために提案される技術では、高次の統計量予測器又は適応予測器のいずれかが使用され、後者のアプローチが本発明で採用されることになる。
【0010】
1つの典型的に適応的な周波数領域の等化技術は、図12に示されており、有限長インパルス応答(FIR)フィルタの周波数領域での実現から基本的に導出される。2つのFFT処理は、全体の処理がブロック適応FIRフィルタに同一であるようにチャネル予測ループに挿入される。図12に示される例では、逆チャネル予測器1104内のブロック遅延ユニット1201は、FFTユニット1103の出力を受け、誤差計算ユニット1202は、IFFTユニット1106の出力を受ける。
【0011】
FFTユニット1203は、誤差計算ユニットにより導出された誤差のFFT処理を実行し、ブロック遅延ユニット1201からのブロック遅延の影響下で、誤差の周波数領域変換を最小二乗適応トランスバーサルフィルタ1204に通過させる。フィルタリングされた結果は、逆チャネル予測がカット アンド インサート ゼロ ユニット1206により生成されるように、IFFTユニット1205により時間領域に変換される。次いで、逆チャネル予測は、FFTユニット1207により周波数領域に変換され、信号乗算器1105に供給される。
【0012】
適応逆チャネル予測についてのこのアプローチに対する1つの問題点は、チャネル予測器1104のループ内の2つのFFT処理により導入されるループ遅延によるトラッキング性能の低さである。別の問題点は、2つのFFT処理に関連した集積回路領域のコストである。
【0013】
したがって、当該技術分野において、逆チャネル予測時に必要とされるFFT処理数を低減しつつ、VSBチャネルデコーダの等化器部分を単一の集積回路によるマルチスタンダード チャネル デコーダ内のOFDMハードウェアにマッピングすることができる周波数領域の等化器についての必要が存在する。
【0014】
[発明の概要]
上述した従来技術の問題点を解決するために、本発明の第1の目的は、単一の集積回路によるマルチスタンダード復調器における使用向けの、受信信号及び誤差予測値からの逆チャネル予測において再帰的な最小二乗コスト関数を利用した、周波数領域でのイコライゼーションのための適応逆チャネル予測器を提供することにある。対角相関行列を利用して、従来の周波数領域の等化器により必要とされるよりも少ない計算リソースを利用して解が決定される。メモリの必要条件は、従来のOFDMデコーダ内で利用することができるメモリにより、十分に満足される。これにより、マルチスタンダード復調器の集積回路の費用対効果が改善される。
【0015】
上記内容は、当業者が以下に説明する発明の詳細な記載を良好に理解するように、本発明の特徴及び技術的効果をむしろ広く概略している。本発明の請求項の目的を形成する本発明の追加の特徴及び効果は、以下に記載される。当業者であれば、本発明の同じ目的を達成するための他の構成を変更又は設計のための基本として開示される概念及び特定の実施の形態を容易に利用してもよいことを理解されるであろう。また、当業者であれば、かかる等価な構成が最も広範な構成において本発明の精神及び範囲を逸脱しないことを認識されるであろう。
【0016】
本発明の詳細な記載に進む前に、本明細書を通して使用されるある種の単語又は句の定義を行うことは有効である。単語「含む“include”」及び「備える“comprise”」及びその派生語は、限定することのない包含を意味する。単語「又は」は包括的であり、及び/又はを意味する。句「関連する“associated with”、“associated therewith”」及びその派生句は、含む、含まれる、相互接続する、〜内に含まれる、〜に又は〜と接続する、〜に又は〜と結合する、〜と通信する、〜と協力する、インタリーブする、〜に類似である、〜に又は〜と結合する、有する、〜の特性を有する等である。用語「コントローラ」は、少なくとも1つの動作を制御するいずれかの装置又はシステム又はその一部を意味し、かかる装置は、ハードウェア、ファームウェア、ソフトウェア、又はそれらの少なくとも2つの結合である。
【0017】
なお、特定のコントローラに関連する機能は、ローカル又はリモートに中央化又は分散化されていてもよい。ある種の単語及び句についての定義は、本明細書を通して提供される。当業者であれば、かかる定義は、かかる定義された単語及び句の将来的な使用と同様に、多くの場合に適用することができることを理解されるであろう。
本発明及びその作用効果をより完全に理解するために、添付図面と対応して以下の記載に対して参照がなされる。
【0018】
[発明の実施の形態]
図1〜図9を通して、以下に記載され、本明細書において本発明の原理を記載するために使用される様々な実施の形態は、例示のみであり、本発明の範囲を限定するために解釈されるべきではない。当業者であれば、本発明の原理はいずれか適切に構成された装置で実現されてもよい。
【0019】
図1は、適応逆チャネル予測を使用した周波数領域の等化器を含んだ単一の集積回路によるマルチスタンダードチャネルデコーダが本発明の1実施の形態に従い実現されるシステムを示している。
【0020】
システム100は、例示的な実施の形態ではデジタルテレビジョン受信機である受信機101を含んでいる。このデジタルテレビジョン受信機は、更に詳細に記載される残留波帯(VSB)標準又は符号化された直交周波数分割多重(COFDM)標準のいずれかに従うデジタルテレビジョン信号を復調可能な単一の集積回路によるマルチスタンダード チャネル デコーダ102を含んでいる。デジタルテレビジョン信号は、入力103で受信される。
【0021】
当業者であれば、図1は例示的な実施の形態のデジタルテレビジョン受信機内の全ての構成要素を明示的に示していないことを理解されるであろう。デジタルテレビジョン受信機及びその内部に共通に知られている構成及び動作の多くは、本発明にユニークなものであり、及び/又は本発明の理解に必要とされるものが図示及び記載される。
【0022】
図2は、本発明の1実施の形態によるマルチスタンダード チャネル デコーダにおける使用向けの、適応逆チャネル予測器を使用した周波数領域の等化器をより詳細に示す簡略化されたブロック図である。
【0023】
周波数領域の等化器200は、復号化すべき入力信号202を受信して、MサンプルをオーバラップしてNサンプルを形成するためのオーバラップユニット201を含んでいる。ここで、NはFFTサイズであり、FFTユニット203により周波数領域に変換される。FFTユニット203の出力は、N×N対角行列Xとしてモデル化される。ここで、アレイXの対角成分{X(n,k)}は、FFTユニット203の出力である。下付き(n,k)は、k番目のFFTブロックでのn番目の周波数ビンを言及する。ここで、n=1,...,Nである。
【0024】
FFTの出力は、逆チャネル予測値{G(n,k)}の周波数ビンを含むNサイズの行ベクトルであるGと信号乗算器204により乗算され、周波数領域の等化出力{Y(n,k)}を含むNサイズの行ベクトルであるYが生成される。したがって、周波数領域の等化出力は、以下のように記載される。
=G
本発明において、周波数領域の逆チャネル予測値Gは、周波数領域のデータに適用される(時間領域のRLSシステムのトラッキング性能効果を得るために主に選択される)時間領域での再帰的最小二乗(RLS)コスト関数の変更バージョンを最小にするGの値を見つけることにより得られる。
【数1】
Figure 2004503180
ここで、Eは、E=S−Gにより定義される周波数領域の誤差ベクトルである。Sは、送信されたVSBソース信号(既知であると仮定)の周波数領域での表示を含むNサイズの行ベクトルである。
【数2】
Figure 2004503180
(ここで、上付きは、転置複素共役を示す)。及びλは、忘却要素として知られる正の定数であり、0<λ<1により制約される値を有する。
【0025】
コストジャンクションJの最小値は、以下の偏微分を満足する値Gを見つけることにより識別される。
【数3】
Figure 2004503180
更なる分析を簡略化するために、入力信号Xの相関行列Rが定義される。
【数4】
Figure 2004503180
入力信号Xと所望の信号Sの間での相互相関ベクトルPと共に示すと、以下が得られる。
【数5】
Figure 2004503180
コスト関数J内のこれら2つの相関値を利用して、更なる簡略化の後に、コスト関数Jは以下のように表される。
【数6】
Figure 2004503180
は対角行列であり、Pはベクトルであるので、Gの成分に関する式(1)の偏微分は、以下のようになる。
【数7】
Figure 2004503180
次いで、式G−P=0のセットの解から、Gの最適値が得られ、その解は以下のようになる。
=P −1                 (2)
=λPk−1+S であるので、
【数8】
Figure 2004503180
が誤差Ekの前の予測値であることを仮定すると、Pk−1=Gk−ik−1であるので、相互相関ベクトル
【数9】
Figure 2004503180
は、以下のように示すことができる。
【数10】
Figure 2004503180
式(2)における相互相関ベクトルPについてのこの表現の置き換えは、更なる簡略化により以下のように示される。
【数11】
Figure 2004503180
しかし、Rk−1が適切な定数で初期化される場合、相関行列Rは以下の再帰的な式により記載される。
【数12】
Figure 2004503180
式(3)におけるこの置き換えの使用により、更なる簡略化の後に以下のようになる。
【数13】
Figure 2004503180
【0026】
信号乗算器204からの等化周波数領域出力Yは、時間領域への変換のためにIFFTユニットに入力される。IFFTユニット205の出力は、廃棄ユニット206に通過される。廃棄ユニット206は、Mサンプルを廃棄して、残りのサンプルをトレリスデコーダ(Viterbi)ユニット207に通過する。
【0027】
トレリスデコーダユニット207は、誤差に関する仮決定209と同様に、復号化出力208を生成する。誤差は、IFFTユニット205からの周波数領域の等化出力Yの変換を利用して、時間領域における誤差ユニット210内で計算され、次いで、FFTユニット211により周波数領域に変換される。変換された誤差は、適応逆チャネル予測器212により使用され、逆チャネル予測値Gが計算される。
【0028】
集束状態に依存して、トレイニング系列、ブラインドアルゴリズム、及び/又はトレリスデコーダ207からの仮決定209を利用して、誤差ユニット210により誤差が計算される。適応逆チャネル予測の上記分析は、送信系列又は誤差系列は確率的に既知であることを仮定しており、実際には、送信系列の一部のみが既知であり、誤差系列は既知ではないことがある。
【0029】
したがって、確率的な技法は、等価誤差を得るために使用されなければならない。コンスタント モジュール アルゴリズム(CMA)、デシジョン ディレクテッド技法のような、代用の誤差を得るための他の技法の使用は、式(5)を変更することにより包含される。
=Gk−1+μE −1 k−1                (6)
ここで、μは、適応速度及び平均二乗誤差(MSE)を制御する正の定数である。
【0030】
VSBの場合では、連続するトレイニング系列(トレイニング信号)間の時間距離は、他の技法がトレイニング系列間における誤差を計算するために使用されなければならないように遠く離れている。内部シンボル干渉(ISI)の深刻さに依存して、ブラインドアルゴリズム及びデシジョン ディレクテッド アルゴリズムを使用して、実際の誤差に置き換えられる等価誤差を計算する。
【0031】
また、ブロック遅延ユニット213は、周波数領域の等化器200内に挿入されており、実現に関連する予測器のループ遅延を反映する(すなわち、IFFTユニット205、誤差ユニット210及びFFTユニット211に関連する遅延)。逆チャネル予測値Gは、周波数領域の入力X及び誤差E(及び誤差Eの計算において使用される相関行列R)の遅延されたバージョンを利用して更新される。
【0032】
図3は、本発明の1実施の形態に従う、周波数領域の等化器のための適応逆チャネル予測器をより詳細に示している。図2で示された適応逆チャネル予測器212は、図示のように実現される。相関行列Rが対角行列であるので、逆操作は、対角成分の転置のみを含んでいる。k番目のFFTフレーム内のn番目の周波数ビンを、たとえばGn,k(n=1,...,N)として示すと、式(4)及び(6)についての周波数ビンの更新は、以下のように低減される。
【数14】
Figure 2004503180
ここで、Rn,k、Gn,k及びEn,kは、相関行列R、入力信号X、逆チャネル予測値G、及び誤差Eのそれぞれ対角成分である。
【0033】
図3において示されるように、周波数ビンの更新の式(7)及び(8)は、数個の加算器301及び302、2個の複素乗算器303及び304、及び1個の複素割り算器305を必要とする。また、ブロック遅延213からの遅延された出力Xk−dは、乗算器303と同様に、信号複素共役器306に通過される。
【0034】
また、乗算器303は、割り算器305と同様に、複素共役器306の出力を受ける。乗算器303の出力
【数15】
Figure 2004503180
は、加算器301により、λフィルタ308によるフィルタリングの後に、メモリ307からの相関行列の前の対角成分Rn,k−1に加算され、相関行列の現在の対角成分Rn,kが計算される。
【0035】
相関行列対角成分Rn,kは、メモリ307に記憶され、割り算器305に通過されてX n,k−1 n,kが計算される。次いで、この成分は、乗算器30に通過されて、誤差対角成分En,kと乗算される。この乗算結果は、加算器302に通過される前に、μフィルタ309によりフィルタリングされる。また、加算器302は、メモリ307からの前の逆チャネル予測値の対角成分Gn,k−1を受け、加算器302の出力は、現在の逆チャネル予測対角成分Gn,kであり、この成分は、乗算器204に通過され、メモリ307に記憶される。
【0036】
式(7)及び(8)を利用した、RLSベースの適応逆チャネル予測器212について必要とされる計算リソースは、既存のOFDMアルゴリズムに従来使用されるハードウェアに容易にマッピングされる。λ及びμの値は、過度のMSE及び適応アルゴリズムのトラッキング/集束作用を制御するものであり(相関行列Rが集束及びトラッキングに非常に有効ではあるが)、これらの値の操作がビットシフト及び加算処理のみで実現されるように選択される。
【0037】
図2及び図3に示される周波数領域の等化器の近似的な時間領域の作用は、循環畳み込みを使用したFIRフィルタのFFTによる実現に近似的に等しいフィルタリング部分、及びウィーナ フィルタの解に近似的に集束するブロック時間領域のRLS更新に等価な更新部分を含んでいる。
【数16】
Figure 2004503180
ここで、Hはチャネルの有効な周波数応答であり、σは追加の白色雑音(AWGN)である。
【0038】
図4A及び図4Bは、本発明の1実施の形態に従う、適応逆チャネル予測器を使用した周波数領域の等化器を含むマルチスタンダード チャネル デコーダを示している。図4Aは、チャネルデコーダ104のVSB受信機の部分を示しており、サンプルレート変換(SRC)ユニット401及びフォワード誤差補正(FEC)ユニット402を含んでいる。
【0039】
乗算器403は、キャリア復元(CR)ユニット404の出力同様に、SRCユニット401の出力を受信する。キャリア復元ユニット404は、デジタルシグナルプロセッサ405の制御下で動作し、乗算器403の出力を入力として受ける。また、乗算器403の出力は、二乗根累乗コサイン(SQRC)フィルタユニット406に通過され、その出力は、周波数領域の等化器200、及びSRCユニット401に接続されるタイミング リカバリユニット407により受信される。周波数領域の等化器200の出力は、FECユニット402に通過される。
【0040】
図4Bは、チャネルデコーダ104の符号化された直交周波数分割多重装置(COFDM)の部分を示している。SRCユニット401、FECユニット402及び乗算器403は、COFDMについて再使用される。図示される例では、SRCユニット401及び乗算器403を制御するDSPベースの同期ループ408を使用している。
【0041】
乗算器403の出力は、周波数領域への変換のためにFFTユニット409に通過され、周波数領域の信号は、チャネル予測及び同期検出ユニット410、及び3シンボル ディレイライン411の両者に通過される。ユニット410及び411の出力は、等化器412により受信され、等化器412は、FECユニット402に接続される。また、チャネル予測及び同期検出ユニット410は、DSPベースの同期ループ408に接続される。
【0042】
チャネルデコーダ104のVSB部分内の周波数領域の等化器200は、既存のアルゴリズムを実現する従来のハードウェアの計算集中型の時間領域の等化器を、3つのFFT処理、数ブロックのメモリ(それぞれ1K〜2Kサンプル)、及び数個の算術処理を必要とするメモリ集中型の等化器に切換える。
【0043】
周波数領域の等化器200のメモリ条件は、既存のCOFDMアルゴリズムについての典型的なハードウェア実現内で利用可能なメモリにより十分に満たすことができる。機器構成可能なデータ経路ユニット(図示せず)の助けにより、算術処理もまた、COFDM処理にマッピングすることができ、サポートアーキテクチャの助けにより、可能なCOFDMハードウェアに周波数領域の等化器200の完全なマッピングを行うことができる。
【0044】
図5〜図9は、本発明の1実施の形態に従う、適応逆チャネル予測を使用した周波数領域の等化器についてのシミュレーション結果を示している。周波数領域の等化器200は、2K FFT及びFFT当り1 VSBフィールド(832セグメント)でシミュレーションされ、64のフォワードタップ及び256のフィードバックタップを有し、中央のタップがフォワード等化器の中心に配置されている時間領域のデシジョン フィードバック等化器(DFE)について、結果が比較される。
【0045】
両者の等化器は、トレイニングモードにおいて、1 VSBセグメント(313サンプル)について開始され、次いで、後続するフィールドにおいてGoddart/trainedモードが使用される。トレイニング系列は、VSBフィールド毎(832サンプル)について実現される。シミュレーションは、1200セグメントにわたり実行され、シンボルエラーレート(SER)は、それぞれのセグメントのシンボルエラーの平均により計算される。
【0046】
図5は、静的作用を調査するためのシミュレーションにおいて使用されたチャネルのインパルス応答を示しており、図6は、静的チャネルについてSER曲線をプロットしている。図7は、動的チャネルについてSER曲線をプロットしている。ここでは、1.8マイクロ秒(μs)経路が5ヘルツ(Hz)の正弦波で変調されており、メイン経路以下の最大の振幅セットは10デジベル(dB)であり、信号対雑音比(dB)は20dBである。
【0047】
ブラインド又はトレインモードで誤差が計算された場合に、DFEの結果と本発明の周波数領域の等化器200とを比較して、本発明の周波数領域の等化器は、DFE性能に対して比較的適度な性能を示している。1つの理由は、RLS適応逆チャネル予測器を介して、チャネルの比較的急速なトラッキングである。周波数領域の等化器における誤差がトレリス(Viterbi)デコーダからの仮決定を利用して計算される場合、性能改善はより大幅なものとなる。
【0048】
図8は、National Television Committee(NTSC)の共同チャネルがVSB信号に加わったときのシミュレーション結果をプロットしている。周波数領域の等化器の長いタップの作用により、周波数領域の等化器が良好な性能を示しており、干渉信号の十分な抑圧を可能にしている。
【0049】
図9は、ファー エンド エコーについてのシミュレーション結果を示している。ここでは、DFEの性能は低い。これは主に、DFEのタップ数がファー エンド エコーをカバーするために不十分であるためである。タップ数が増加されなければならないか、又は、クラスタリング アルゴリズムが使用され、時間領域の等化器において、かかるファー エンド エコーを処理しなければならない。
【0050】
単一のキャリアシステムのための周波数領域の等化器の安定性は、集積回路領域の費用対効果、時間領域に比較したマルチパス性能に依存する。COFDMを含むマルチスタンダード復調器について、周波数領域の等化器は、時間領域の等化器と比較して費用対効果の解法となる。本発明の周波数領域の等化器もまた、実際のデシジョン フィードバック等化器に匹敵するマルチパス性能を示し、動的及びマルチパスのような共同チャネル干渉、及びファー エンド エコーのようなケースでは、最高の性能となる。他の潜在的な効果は、プレカーソル経路を処理する柔軟性、及び周波数領域での表現を利用したキャリア/タイミング回復の改善である。
【0051】
COFDM及びVSBの最適なハードウェア共用は、単一キャリアシステムについて周波数領域の等化器を考慮することにおける主要な動機である。他の効果はまた、かかる機器構成を利用することに存在する。殆どの等化器の処理は、メモリ集中型であるので、追加の等化器の処理もまた、重要な追加のハードウェアオーバヘッドなしにCOFDMハードウェアに実現される。かかる追加の処理は、デュアル適応線形フィルタ、複素/実モード処理、及びデュアルチャネル単一キャリア(たとえば、直交振幅変調及び残留波帯)復調を利用した多様性を受け入れることを含む。スケーラブルチャネル復号化アルゴリズムは、最小の追加のハードウェアオーバヘッドを有する既存のCOFDMリソースを利用するものであり、より魅力的なものとなる。
【0052】
本発明をより詳細に説明してきたが、当業者であれば、様々な変更、置き換え及び代替は、その最も広範な構成で本発明の精神及び範囲から逸脱することなしに行うことができることを理解されるであろう。
【図面の簡単な説明】
【図1】本発明の1実施の形態に従う、適応逆チャネル予測を使用した周波数領域の等化器を含んだ単一の集積回路によるマルチスタンダードチャネルデコーダが実現される実現されるシステムを示す図である。
【図2】本発明の1実施の形態に従う、マルチスタンダードチャネルデコーダにおいて使用するための適応逆チャネル予測器を使用した周波数領域の等化器をより詳細に示す簡単な図である。
【図3】本発明の1実施の形態に従う、周波数領域の等化器のための適応逆チャネル予測器をより詳細に示す図である。
【図4A】本発明の1実施の形態による、適応逆チャネル予測器を使用した周波数領域の等化器を使用したマルチスタンダードチャネルデコーダを示す図である。
【図4B】本発明の1実施の形態による、適応逆チャネル予測器を使用した周波数領域の等化器を使用したマルチスタンダードチャネルデコーダを示す図である。
【図5】本発明の1実施の形態による、適応逆チャネル予測を使用した周波数領域の等化器についてのシミュレーション結果を示す図である。
【図6】本発明の1実施の形態による、適応逆チャネル予測を使用した周波数領域の等化器についてのシミュレーション結果を示す図である。
【図7】本発明の1実施の形態による、適応逆チャネル予測を使用した周波数領域の等化器についてのシミュレーション結果を示す図である。
【図8】本発明の1実施の形態による、適応逆チャネル予測を使用した周波数領域の等化器についてのシミュレーション結果を示す図である。
【図9】本発明の1実施の形態による、適応逆チャネル予測を使用した周波数領域の等化器についてのシミュレーション結果を示す図である。
【図10A】残留波帯デコーダのブロック図である。
【図10B】直交周波数分割多重デコーダのブロック図である。
【図11】従来の周波数領域の等化器のハイレベルのブロック図である。
【図12】従来の周波数領域の等化器のハイレベルのブロック図である。

Claims (20)

  1. 単一の集積回路によるマルチスタンダードの復調器における使用向けの、単一キャリア信号を復調するための周波数領域の等化器であって、
    周波数領域の入力信号Xと周波数領域の逆チャネル予測値Gとから等化出力を生成するための信号乗算器と、
    最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算する適応逆チャネル予測器と、
    を備える周波数領域の等化器。
  2. 前記適応逆チャネル予測器は、対角相関行列Rを利用して、前記周波数領域の逆チャネル予測値Gを計算する、
    請求項1記載の周波数領域の等化器。
  3. 前記適応逆チャネル予測器は、メモリ、前記対角相関行列R内の前の対角成分Rn,k−1から前記対角相関行列R内の現在の対角成分Rn,kを計算するために使用される忘却要素λ、前の逆チャネル予測行列成分Gn,k−1を変更して、現在の逆チャネル予測行列成分Gn,k−1を導出するために使用される適応及び誤差制御定数μを使用し、
    前記忘却要素λ、並びに前記適応及び誤差制御定数μについての値は、前記忘却要素λ、又は前記適応及び誤差制御定数μのいずれかによる乗算がビットシフト及び加算処理により実現されるように選択される、
    請求項2記載の周波数領域の等化器。
  4. 前記適応逆チャネル予測器は、
    遅延された前記入力信号Xk−dを受ける複素共役器と、
    前記遅延された入力信号Xk−dと前記複素共役器の出力の両者を受ける信号乗算器と、
    前記信号乗算器の出力と、前記忘却要素λにより乗じられる前記対角相関行列R内の前の対角成分Rn,k−1とを受ける信号加算器とをさらに備え、
    前記信号加算器の出力は、前記対角相関行列R内の前記現在の対角成分Rn,kを含む、
    請求項3記載の周波数領域の等化器。
  5. 前記適応逆チャネル予測器は、
    前記複素共役器の出力と前記信号加算器の出力とを受ける信号割り算器と、
    前記信号割り算器の出力と、周波数領域誤差予測値Eとを受ける第2信号乗算器と、
    前記適応及び誤差制御定数μにより乗算された前記第2信号乗算器の出力と、前記前の逆チャネル予測行列成分Gn,k−1とを受ける第2信号加算器とをさらに備え、
    前記第2信号加算器の出力は、前記現在の逆チャネル予測行列成分Gn,kを含む、請求項4記載の周波数領域の等化器。
  6. 単一集積回路によるマルチスタンダード復調器であって、
    マルチキャリア信号を選択的に復調する第1デコーダと、
    周波数領域の等化器を含み、単一キャリア信号を選択的に復調する第2デコーダと備え、前記周波数領域の等化器は、
    周波数領域の入力信号Xと周波数領域の逆チャネル予測値Gとから等化出力を生成する単一の乗算器と、
    最小二乗コスト関数を使用して、前記周波数領域の逆チャネル予測値Gを計算する適応逆チャネル予測器と、を備える復調器。
  7. 前記適応逆チャネル予測器は、対角相関行列Rを利用して、前記周波数領域の逆チャネル予測値Gを計算する、請求項6記載の復調器。
  8. 前記適応逆チャネル予測器は、メモリ、前記対角相関行列R内の前の対角成分Rn,k−1から前記対角相関行列R内の現在の対角成分Rn,kを計算するために使用される忘却要素λ、及び前の逆チャネル予測行列成分Gn,k−1を変更して、現在の逆チャネル予測行列成分Gn,kを導出するために使用される適応及び誤差制御定数μを使用し、
    前記忘却要素λ、並びに前記適応及び誤差制御定数μについての値は、前記忘却要素λ、又は前記適応及び誤差制御定数μのいずれかによる乗算がビットシフト及び加算処理により実現されるように選択される、請求項7記載の復調器。
  9. 前記適応逆チャネル予測器は、
    遅延された前記入力信号Xk−dを受ける複素共役器と、
    前記遅延された入力信号Xk−dと前記複素共役器の出力の両者を受ける信号乗算器と、
    前記信号乗算器の出力と、前記忘却要素λにより乗じられた前記対角相関行列R内の前の対角成分Rn,k−1とを受ける信号加算器とをさらに備え、
    前記信号加算器の出力は、前記対角相関行列R内の前記現在の対角成分Rn,kを含む、請求項8記載の復調器。
  10. 前記適応逆チャネル予測器は、
    前記複素共役器の出力と前記信号加算器の出力とを受ける信号割り算器と、
    前記信号割り算器の出力と、周波数領域の誤差予測値Eとを受ける第2信号乗算器と、
    前記適応及び誤差制御定数μにより乗算された前記第2信号乗算器の出力と、前記前の逆チャネル予測行列成分Gn,k−1とを受ける第2信号加算器とをさらに備え、
    前記第2信号加算器の出力は、前記現在の逆チャネル予測行列成分Gn,kを含む、請求項9記載の復調器。
  11. 周波数領域の等化器における使用向けの、適応逆チャネル予測の方法であって、
    単一キャリアからの周波数領域の入力信号Xと周波数領域の逆チャネル予測値Gとを乗算して、等化出力を生成するステップと、
    最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算するステップと、を備える方法。
  12. 最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算する前記ステップは、
    対角相関行列Rを利用して、周波数領域の逆チャネル予測値Gを計算するステップ、をさらに備える請求項11記載の方法。
  13. 最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算する前記ステップは、
    前記対角相関行列R内の前の対角成分Rn,k−1、及び前の逆チャネル予測行列成分Gn,k−1をメモリに記憶するステップと、
    忘却要素λを使用して、前記対角相関行列R内の前の対角成分Rn,k−1から現在の対角成分Rn,kを計算するステップと、
    適応及び誤差制御定数μを使用して前の逆チャネル予測行列成分Gn,k−1を変更し、現在の逆チャネル予測行列成分Gn,kを導出するステップとをさらに備え、
    前記忘却要素λ、並びに前記適応及び誤差制御定数μについての値は、前記忘却要素λ、又は前記適応及び誤差制御定数μのいずれかによる乗算がビットシフト及び加算処理により実現されるように選択される、請求項12記載の方法。
  14. 最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算する前記ステップは、
    遅延された前記入力信号Xk−dの複素共役を計算するステップと、
    前記遅延された入力信号Xk−dと複素共役とを乗算するステップと、
    前記遅延された入力信号Xk−dと複素共役とを乗算の結果を、前記忘却要素λにより乗じられた前記対角相関行列R内の前の対角成分Rn,k−1に加算して、前記対角相関行列R内の前記現在の対角要素Rn,kを生成するステップと、
    をさらに備える請求項13記載の方法。
  15. 最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算する前記ステップは、
    前記複素共役を前記対角相関行列R内の現在の対角成分Rn,kにより除算するステップと、
    前記複素共役を前記対角相関行列R内の現在の対角成分Rn,kにより除算した結果を、周波数領域の誤差予測値E、並びに前記適応及び誤差制御定数μで乗算するステップと、
    前記前の逆チャネル予測行列成分Gn,k−1を、前記複素共役を前記対角相関行列R内の現在の対角成分Rn,kにより除算した結果を、周波数領域の誤差予測値E、並びに前記適応及び誤差制御定数μにより乗算した結果に加算して、現在の逆チャネル予測行列成分Gn,kを生成するステップと、
    をさらに備える請求項14記載の方法。
  16. 単一集積回路によるマルチスタンダード復調器であって、
    OFDMデコーダと、
    周波数領域の等化器を含むVSBデコーダとを備え、
    前記VSBデコーダは、
    周波数領域の入力信号Xと周波数領域の逆チャネル予測値Gとから等化出力を生成する信号乗算器と、
    最小二乗コスト関数を利用して、前記周波数領域の逆チャネル予測値Gを計算する適応逆チャネル予測器とを備え、
    前記周波数領域の等化器は、前記OFDMデコーダ向けに使用されるハードウェアを利用する、復調器。
  17. 前記適応逆チャネル予測器は、
    対角相関行列Rと、
    前記対角相関行列R内の前の対角相関成分Rn,k−1から前記対角相関行列R内の現在の対角成分Rn,kを計算するための忘却要素λと、
    前の逆チャネル予測行列成分Gn,k−1を変更して、現在の逆チャネル予測行列成分Gn,kを導出するための適応及び誤差制御定数μと、
    を利用して前記周波数領域の逆チャネル予測値Gを計算し、
    前記忘却要素λ、並びに前記適応及び誤差制御定数μについての値は、前記忘却要素λ、又は前記適応及び誤差制御定数μのいずれかによる乗算が前記OFDMデコーダ向けに使用される前記ハードウェア内でのビットシフト及び加算処理により実現されるように選択される、請求項16記載の復調器。
  18. 前記適応逆チャネル予測器は、前記OFDMデコーダ向けに使用される前記ハードウェア内のメモリを使用して、前記対角相関行列Rについての前記前の対角成分Rn,k−1、及び前記前の逆チャネル予測行列成分Gn,k−1を記憶する、請求項17記載の復調器。
  19. 前記適応逆チャネル予測器は、
    遅延された前記入力信号Xk−dを受ける複素共役器と、
    前記遅延された入力信号Xk−dと前記複素共役器の出力の両者を受ける信号乗算器と、
    前記信号乗算器の出力と、前記忘却要素λにより乗じられた前記対角相関行列R内の前の対角成分Rn,k−1とを受ける信号加算器とをさらに備え、
    前記信号加算器の出力は、前記相関行列R内の前記現在の対角要素Rn,kを含む、請求項18記載の復調器。
  20. 前記適応逆チャネル予測器は、
    前記複素共役器の出力と前記信号加算器の出力とを受ける信号割り算器と、
    前記信号割り算器の出力と、周波数領域の誤差予測値Eとを受ける第2信号乗算器と、
    前記適応及び誤差制御定数μにより乗算された前記第2信号乗算器の出力と、前記前の逆チャネル予測行列成分Gn,k−1とを受ける第2信号加算器とをさらに備え、
    前記第2信号加算器の出力は、前記現在の逆チャネル予測行列成分Gn,kを含む、請求項19記載の復調器。
JP2002509245A 2000-07-07 2001-06-27 地上波デジタルtv受信のための周波数領域の等化器 Withdrawn JP2004503180A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21714300P 2000-07-07 2000-07-07
US09/840,200 US6912258B2 (en) 2000-07-07 2001-04-23 Frequency-domain equalizer for terrestrial digital TV reception
PCT/EP2001/007244 WO2002005505A2 (en) 2000-07-07 2001-06-27 A frequency-domain equalizer for terrestrial digital tv reception.

Publications (1)

Publication Number Publication Date
JP2004503180A true JP2004503180A (ja) 2004-01-29

Family

ID=26911659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002509245A Withdrawn JP2004503180A (ja) 2000-07-07 2001-06-27 地上波デジタルtv受信のための周波数領域の等化器

Country Status (6)

Country Link
US (1) US6912258B2 (ja)
EP (1) EP1236324A2 (ja)
JP (1) JP2004503180A (ja)
KR (1) KR20020032572A (ja)
CN (1) CN1401176A (ja)
WO (1) WO2002005505A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014324A (ja) * 2004-06-22 2006-01-12 Lucent Technol Inc Cdmaシステムにおいて受信器がcdma信号を処理する方法
WO2006077729A1 (ja) * 2005-01-20 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、および無線通信方法
WO2007083502A1 (ja) * 2006-01-23 2007-07-26 Naoki Suehiro 通信方法、マルチパス削減方法及び受信装置
WO2013057856A1 (ja) 2011-10-17 2013-04-25 パナソニック株式会社 適応等化器

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9901491D0 (en) * 1999-01-22 1999-03-17 Univ Bristol Receiver
US6630964B2 (en) * 2000-12-28 2003-10-07 Koninklijke Philips Electronics N.V. Multi-standard channel decoder for real-time digital broadcast reception
US7379508B1 (en) * 2001-04-09 2008-05-27 At&T Corp. Frequency-domain method for joint equalization and decoding of space-time block codes
US7092450B1 (en) * 2001-04-09 2006-08-15 At&T Corp. Frequency-domain method for joint equalization and decoding of space-time block codes
US7010269B2 (en) * 2001-05-07 2006-03-07 Koninklijke Philips Electronics N.V. Pre-equalizer structure based on PN511 sequence for terrestrial DTV reception
EP1421700A4 (en) * 2001-08-10 2008-04-23 Adaptive Networks Inc METHOD AND MECHANISM FOR DIGITAL EQUALIZATION
US20030039226A1 (en) * 2001-08-24 2003-02-27 Kwak Joseph A. Physical layer automatic repeat request (ARQ)
US8238404B2 (en) * 2001-10-23 2012-08-07 Koninklijke Philps Electronics N.V. Method to improve ATSC-VSB transceiver performance employing a time-frequency waveform processor
EP1442569B1 (en) * 2001-10-31 2005-08-17 Koninklijke Philips Electronics N.V. Zf-based adaptive asynchronous receiver
KR100398884B1 (ko) * 2001-11-01 2003-09-19 삼성전자주식회사 다중 전송 경로를 통해 전송된 방송신호의 복원시발생하는 위상에러를 보상할 수 있는 디지털방송 수신기의에러복원장치
CN100477652C (zh) * 2001-11-21 2009-04-08 皇家飞利浦电子股份有限公司 以异步于数据速率的采样速率工作的自适应均衡器
AU2003216690A1 (en) * 2002-04-23 2003-11-10 Koninklijke Philips Electronics N.V. Interference-free lms-based adaptive asynchronous receiver
KR20030097192A (ko) * 2002-06-20 2003-12-31 대한민국(전남대학교총장) 결정 궤환 최소평균자승 등화기를 연동시킨 결정 궤환 패스트 회귀최소자승 등화기
US7212569B1 (en) * 2002-06-28 2007-05-01 At&T Corp. Frequency domain decision feedback equalizer
JP2004032568A (ja) * 2002-06-28 2004-01-29 Hitachi Kokusai Electric Inc 相関検出装置およびフーリエ変換装置
US7633849B1 (en) * 2002-08-13 2009-12-15 National Semiconductor Corporation Coded OFDM system using error control coding and cyclic prefix for channel estimation
CN100556012C (zh) * 2002-08-30 2009-10-28 皇家飞利浦电子股份有限公司 单载波信号的频域均衡
KR100451750B1 (ko) * 2002-10-31 2004-10-08 엘지전자 주식회사 디지털 텔레비전 수신기의 채널 등화 장치
KR100463544B1 (ko) * 2002-12-14 2004-12-29 엘지전자 주식회사 채널 등화 장치 및 이를 이용한 디지털 tv 수신기
JP4344356B2 (ja) * 2003-03-19 2009-10-14 株式会社アドバンテスト 検波装置、方法、プログラム、記録媒体
US7289425B2 (en) * 2003-06-20 2007-10-30 The Aerospace Corporation Parallel orthogonal frequency division multiplexed communication system
KR20050008431A (ko) * 2003-07-15 2005-01-21 삼성전자주식회사 수신 성능이 향상된 디지털 방송 송/수신 시스템 및 그의신호처리방법
US7471736B2 (en) * 2003-09-30 2008-12-30 Alcatel-Lucent Usa Inc. Frequency based modulator compensation
US20080291972A1 (en) * 2004-01-20 2008-11-27 Agency For Science, Technology And Research Method and Transmitter, Receiver and Transceiver Systems for Ultra Widebrand Communication
KR100896684B1 (ko) * 2004-01-27 2009-05-14 삼성전자주식회사 수신 성능이 향상된 디지털 방송 송수신 시스템 및 그의신호처리방법
US8055755B2 (en) * 2004-02-05 2011-11-08 At&T Intellectual Property Ii, L.P. Method for determining VoIP gateway performance and SLAs based upon path measurements
US7321550B2 (en) * 2004-02-17 2008-01-22 Industrial Technology Research Institute Method of equalization in an OFDM system
US8311152B1 (en) * 2004-02-27 2012-11-13 Marvell International Ltd. Adaptive OFDM receiver based on carrier frequency offset
US7686050B2 (en) * 2004-04-06 2010-03-30 Michael Stegmair Device for the detachable fitting of a traction aid to vehicle wheels comprising a rim and a tire with running surfaces
KR100989314B1 (ko) * 2004-04-09 2010-10-25 삼성전자주식회사 디스플레이장치
KR100692596B1 (ko) * 2004-05-06 2007-03-13 삼성전자주식회사 수신 성능이 향상된 디지털 방송 송수신 시스템 및 그의신호처리방법
US7355959B2 (en) * 2004-05-28 2008-04-08 Mitsubishi Electric Research Laboratories, Inc. Interference suppression for OFDM-based UWB communication
JPWO2006006238A1 (ja) * 2004-07-14 2008-04-24 富士通株式会社 マルチキャリア受信方法及びマルチキャリア受信装置
WO2006008793A1 (ja) * 2004-07-16 2006-01-26 Fujitsu Limited シングルキャリア受信機における周波数領域イコライゼーション方法及び装置
CN102035788B (zh) * 2004-08-05 2013-04-03 松下电器产业株式会社 无线发送装置和方法以及无线接收装置和方法
US7388907B2 (en) * 2004-08-09 2008-06-17 Texas Instruments Incorporated Frequency domain equalization
US7483480B2 (en) * 2004-11-24 2009-01-27 Nokia Corporation FFT accelerated iterative MIMO equalizer receiver architecture
KR101025245B1 (ko) * 2005-01-31 2011-03-29 지티이 코포레이션 더블링 샘플링에 근거한 베이스밴드 처리 방법
US7848463B2 (en) * 2005-04-07 2010-12-07 Qualcomm Incorporated Adaptive time-filtering for channel estimation in OFDM system
JP4737747B2 (ja) * 2005-04-25 2011-08-03 パナソニック株式会社 無線通信装置および無線通信方法
CN1933467B (zh) * 2005-09-14 2010-10-06 中国科学院上海微系统与信息技术研究所 宽带单载波/多载波均衡接收装置及其接收方法
JP4264550B2 (ja) * 2005-11-15 2009-05-20 ソニー株式会社 受信装置並びにチャネル推定装置
SG133423A1 (en) * 2005-12-14 2007-07-30 Oki Techno Ct Singapore Pte A method, apraratus and receiver for demapping dual carrier modulated cofdm signals
KR100755820B1 (ko) 2006-01-04 2007-09-05 한국전자통신연구원 셀룰러 시스템의 하향 링크 신호 생성 장치와 셀 탐색 방법및 장치
US7817735B2 (en) * 2006-01-11 2010-10-19 Amicus Wireless Technology Ltd. Device and method of performing channel estimation for OFDM-based wireless communication system
WO2007091779A1 (en) 2006-02-10 2007-08-16 Lg Electronics Inc. Digital broadcasting receiver and method of processing data
KR100742787B1 (ko) * 2006-02-21 2007-07-25 포스데이타 주식회사 디코딩 장치 및 디코딩 방법
WO2007126196A1 (en) 2006-04-29 2007-11-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
US7746924B2 (en) * 2006-05-09 2010-06-29 Hewlett-Packard Development Company, L.P. Determination of filter weights
WO2007136166A1 (en) 2006-05-23 2007-11-29 Lg Electronics Inc. Digital broadcasting system and method of processing data
US8125976B2 (en) * 2006-08-28 2012-02-28 Electronics And Telecommunications Research Institute Apparatus for generating down link signal, and method and apparatus for cell search in cellular system
CN101146076B (zh) * 2006-09-12 2011-07-06 华为技术有限公司 一种基于均匀覆盖的数据传输方法及装置
KR100799922B1 (ko) 2006-09-22 2008-01-31 포스데이타 주식회사 직교 주파수 분할 접속방식을 지원하는 시스템을 위한디코딩 장치 및 방법
AU2007304830B2 (en) * 2006-10-05 2012-09-06 Cohda Wireless Pty Ltd Improving receiver performance in a communication network
US7873104B2 (en) 2006-10-12 2011-01-18 Lg Electronics Inc. Digital television transmitting system and receiving system and method of processing broadcasting data
KR100811892B1 (ko) * 2006-11-17 2008-03-10 한국전자통신연구원 고속 무선 통신 시스템에서의 채널 등화 및 반송파 복원방법 및 수신 장치
US8385397B2 (en) * 2007-01-19 2013-02-26 Techwell Llc Method for determining the step size for an LMS adaptive equalizer for 8VSB
US7616685B2 (en) * 2007-01-19 2009-11-10 Techwell, Inc. Method for channel tracking in an LMS adaptive equalizer for 8VSB
KR101253185B1 (ko) 2007-03-26 2013-04-10 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
KR101285887B1 (ko) 2007-03-26 2013-07-11 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
KR101285888B1 (ko) 2007-03-30 2013-07-11 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
WO2009005326A2 (en) 2007-07-04 2009-01-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
US20090055459A1 (en) * 2007-08-24 2009-02-26 Michael Speth Frequency-domain equalizer
US8059737B2 (en) * 2008-06-23 2011-11-15 Mediatek Inc. OFDM receiver having memory capable of acting in a single-chip mode and a diversity mode
JP2010045672A (ja) * 2008-08-15 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> 信号受信装置及び方法
CN101662576B (zh) * 2008-08-27 2011-07-20 扬智科技股份有限公司 适用于消除同频道干扰的信号处理电路与方法
US20100074346A1 (en) * 2008-09-22 2010-03-25 Acorn Technologies, Inc. Channel estimation in ofdm receivers
FR2936593B1 (fr) * 2008-09-26 2010-10-15 Guilbert Express Sa Generateur d'air chaud
GB201001469D0 (en) * 2010-01-29 2010-03-17 Icera Inc Signal processing in wireless communication receivers
EP2645652A1 (en) * 2012-03-30 2013-10-02 Imec Receiver architecture for block transmission with known symbol padding
DE102012220488A1 (de) * 2012-11-09 2014-05-15 Robert Bosch Gmbh Teilnehmerstation für ein Bussystem und Verfahren zur Verbesserung der Empfangsqualität von Nachrichten bei einer Teilnehmerstation eines Bussystems
US9306718B2 (en) 2013-08-01 2016-04-05 Honeywell International Inc. System and method for mitigating helicopter rotor blockage of communications systems
TWI575901B (zh) * 2015-06-17 2017-03-21 晨星半導體股份有限公司 通道效應消除裝置及通道效應消除方法
TWI627846B (zh) * 2016-03-30 2018-06-21 晨星半導體股份有限公司 等化增強模組、解調變系統以及等化增強方法
CN109981222B (zh) * 2019-03-28 2022-01-07 中国传媒大学 预偏置的有线数字电视校验和的串行产生装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3852395T2 (de) 1988-10-17 1995-05-24 Ibm Adaptiver Entzerrer für Aufzeichnungssysteme unter Verwendung von Partial-Response-Signalisierung.
US5293402A (en) * 1991-05-02 1994-03-08 Bell Communications Research, Inc. Wideband digital equalizers for subscriber loops
JPH04352523A (ja) * 1991-05-30 1992-12-07 Oki Electric Ind Co Ltd データ伝送復調器
US5303263A (en) * 1991-06-25 1994-04-12 Oki Electric Industry Co., Ltd. Transmission channel characteristic equalizer
US5886749A (en) * 1996-12-13 1999-03-23 Cable Television Laboratories, Inc. Demodulation using a time domain guard interval with an overlapped transform
US5779047A (en) * 1997-03-25 1998-07-14 Darrah; Scott A. Water tight steel tool box
US6005894A (en) * 1997-04-04 1999-12-21 Kumar; Derek D. AM-compatible digital broadcasting method and system
EP0912023A1 (en) * 1997-10-27 1999-04-28 Alcatel Demodulation and equalisation of multicarrier signals
US6239657B1 (en) * 1998-03-27 2001-05-29 Rohde & Schwarz Gmbh & Co. Kg Method and device for measuring the distortion of a high-frequency power amplifier and method and means for automatically equalizing a high-frequency power amplifier
US6327314B1 (en) * 1998-04-01 2001-12-04 At&T Corp. Method and apparatus for channel estimation for multicarrier systems
EP0967763B1 (en) 1998-06-29 2004-12-01 Alcatel Multicarrier receiver with per-carrier RLS frequency domain equalisation
WO2000016526A1 (en) 1998-09-15 2000-03-23 Koninklijke Philips Electronics N.V. Transmission system with improved signal conditioning means
US6654429B1 (en) * 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
US6252902B1 (en) * 1999-09-13 2001-06-26 Virata Corporation xDSL modem having DMT symbol boundary detection
US6377636B1 (en) * 1999-11-02 2002-04-23 Iospan Wirless, Inc. Method and wireless communications system using coordinated transmission and training for interference mitigation
US6445342B1 (en) * 2000-06-30 2002-09-03 Motorola, Inc. Method and device for multi-user frequency-domain channel estimation
US6771591B1 (en) * 2000-07-31 2004-08-03 Thomson Licensing S.A. Method and system for processing orthogonal frequency division multiplexed signals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014324A (ja) * 2004-06-22 2006-01-12 Lucent Technol Inc Cdmaシステムにおいて受信器がcdma信号を処理する方法
WO2006077729A1 (ja) * 2005-01-20 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、および無線通信方法
JP4884987B2 (ja) * 2005-01-20 2012-02-29 パナソニック株式会社 送信装置、受信装置、および無線通信方法
US8279953B2 (en) 2005-01-20 2012-10-02 Panasonic Corporation Transmitting apparatus, receiving apparatus, and wireless communication method
WO2007083502A1 (ja) * 2006-01-23 2007-07-26 Naoki Suehiro 通信方法、マルチパス削減方法及び受信装置
WO2013057856A1 (ja) 2011-10-17 2013-04-25 パナソニック株式会社 適応等化器
US9154347B2 (en) 2011-10-17 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Adaptive equalizer
US9191253B2 (en) 2011-10-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Adaptive equalizer

Also Published As

Publication number Publication date
EP1236324A2 (en) 2002-09-04
CN1401176A (zh) 2003-03-05
US20020037058A1 (en) 2002-03-28
US6912258B2 (en) 2005-06-28
WO2002005505A2 (en) 2002-01-17
WO2002005505A3 (en) 2002-07-04
KR20020032572A (ko) 2002-05-03

Similar Documents

Publication Publication Date Title
JP2004503180A (ja) 地上波デジタルtv受信のための周波数領域の等化器
KR100876068B1 (ko) 하이브리드 주파수-시간 영역 등화기
CA2560497C (en) Hybrid domain block equalizer
KR100447201B1 (ko) 채널 등화 장치 및 이를 이용한 디지털 tv 수신기
KR100226698B1 (ko) 직교 주파수 분할 다중화 수신 시스템의 채널 등화 장치
JP5779979B2 (ja) 受信装置、及び、受信方法
JP2008532354A (ja) 向上されたブロック等化を提供する無線通信装置及び関連する方法
JP2008530906A (ja) 過去、現在及び/又は将来の自己相関マトリクスの予測値に基づいてブロック等化を実行する無線通信装置及び関連する方法
WO2010042809A1 (en) Adaptive known signal canceller
US8767844B2 (en) Method and apparatus for multicarrier communications
JP2012095136A (ja) 信号処理装置、信号処理方法、及び、プログラム
US20060146690A1 (en) Methods, circuits and computer program products for estimating frequency domain channel in a DVB-T receiver using transform domain complex filtering
JP2010062643A (ja) 直交周波数分割多重信号の受信装置およびその受信方法
US20140047497A1 (en) Method and system for symbol-rate-independent adaptive equalizer initialization
JP4780161B2 (ja) 受信装置、受信方法、およびプログラム
US7248849B1 (en) Frequency domain training of prefilters for receivers
JP2002344414A (ja) Ofdm復調装置及び方法
JP5881453B2 (ja) 等化装置、受信装置及び等化方法
KR100710294B1 (ko) 채널 등화 장치
KR100602745B1 (ko) 통신 시스템의 등화 장치 및 그에 의한 등화 방법
KR101137322B1 (ko) 디지털 방송 수신기의 채널 등화 장치
KR20060097385A (ko) 다매체 디지털 방송 수신기의 채널 등화 장치
KR20070091999A (ko) 디지털 방송 수신 시스템 및 처리 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090402