JP2004501517A - 集積回路をテスト及びパッケージングするためのシステム - Google Patents

集積回路をテスト及びパッケージングするためのシステム Download PDF

Info

Publication number
JP2004501517A
JP2004501517A JP2002504502A JP2002504502A JP2004501517A JP 2004501517 A JP2004501517 A JP 2004501517A JP 2002504502 A JP2002504502 A JP 2002504502A JP 2002504502 A JP2002504502 A JP 2002504502A JP 2004501517 A JP2004501517 A JP 2004501517A
Authority
JP
Japan
Prior art keywords
substrate
spring
integrated circuit
stress
contactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002504502A
Other languages
English (en)
Other versions
JP2004501517A5 (ja
Inventor
モック サミー
チョン フュ チュン
Original Assignee
ナノネクサス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノネクサス インコーポレイテッド filed Critical ナノネクサス インコーポレイテッド
Publication of JP2004501517A publication Critical patent/JP2004501517A/ja
Publication of JP2004501517A5 publication Critical patent/JP2004501517A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06727Cantilever beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

一般的には、複数の応力金属層を基板上に形成し、次にそれを制御可能にパターン形成し、一部を基板から解放して構成される、応力金属ばねの実施態様を数例開示する。通常、成形された応力金属ばねには、有効回旋角度が形成され、ループ状のばね構造が画定される。形成されたばねは、チップスケール半導体パッケージ、高密度インターポーザコネクタ、及びプローブ接触器を始めとして、多種多様な相互接続システムに対し、高ピッチのコンプライアンスのある電気接続部を提供する。応力金属ばね接点を有する1つ又はそれ以上の基板を備え、コンプライアンスのあるウェーハキャリア上の1つ又はそれ以上の分離済みの集積回路の間に接続を確立する、大量並列インターフェース集積回路試験組立体の実施態様も数例開示する。

Description

【0001】
(発明の属する技術分野)
本発明は、集積回路(IC)パッケージ及びウェーハ設計に関し、更には相互接続と試験とバーンインの構造及び工程の分野に関する。より厳密には、本発明は、写真製版パターン形ばね接点、及び集積回路の試験又はバーンインに使用するため、及び多数の信号を電子システム又はサブシステム間において相互接続するための、写真製版パターン形ばね接点を有する増強型システム相互接続組立体の改良に関する。
【0002】
(発明の背景)
集積回路は、通常、パッケージされる前のウェーハ形態で試験(ウェーハソート)される。ウェーハソート時には、たとえ1枚のウェーハに同じ集積回路が数百個更には数千個配置されていようとも、集積回路は一度に1つ又は数個ずつ試験される。パッケージされた集積回路は、必要があれば、再度試験され、バーンインされる。
【0003】
集積回路をウェーハ上で個々のダイスにダイシングする前は、集積回路はウェーハ上に正確に配置
(構成)されているが、パッケージング及び試験に備えて集積回路をダイシングし個々のダイスに分離した後は、パッケージされたダイスは個別に取り扱われるので、取り扱い時には並行性を失ってしまう。
【0004】
ウェーハレベルでの並行試験は、個数に限りがあり、又、多数の相互接続部を管理するのは困難を伴い、且つこれまで試験を受けるウェーハに近接して配置することのできる電子部品の数には限度があったため、これまでのところピンカウントが少ないデバイスに限られている。
【0005】
ウェーハ形態にある間にICにバーンインを施すという試みもなされてきた。しかしながら、ウェーハレベルでのバーンインは、試験中のコネクタとシリコンウェーハの間の熱膨張の不整合など多くの問題に悩まされている。多数個の扇状に広がるトレースがピンやソケットコネクタに接続されている大面積基板のような従来の基板は、通常、試験中のIC、試験用電子部品、及びパワー管理用電子部品、の間で接続が成立するように実装されている。
【0006】
半導体ウェーハ上の集積回路の密度は、半導体デバイスのスケーリングのせいで増加を続けており、シリコンの単位面積あたりのゲート数及びメモリビット数は益々増加している。また、より大型の半導体ウェーハの使用(例:呼び直径が8インチ又は12インチのこともしばしばである)は通例となってきた。しかしながら、半導体試験費用は時間が経るにつれ不均衡に増加してきており、各集積回路デバイスに掛る総製造費用において大きなパーセンテージを占めるようになってきた。
【0007】
更に、チップスケールパッケージング(CSP)及び他の形態の小フットプリントパッケージにおける進歩が、試験及びバーンインに関しては、しばしば従来のパッケージされたICハンドラを時代遅れにしてしまうこともある。
【0008】
ある種の従来型の大表面積基板集積回路(IC)テストボードでは、通常、テストボードと集積回路ウェーハとの電気接点がタングステン針プローブにより設けられている。しかしながら、タングステン針プローブ技術は、ピンカウントが多く、パッドピッチが狭く、且つクロック周波数が高い進化した半導体の相互接続の必要条件を満たすことができない。
【0009】
種々の出現技術により種々のプロービング用途のばねプローブが提供されているが、殆どのプローブは、ピッチの制限、ピンカウントの制限、フレキシビリティレベルの変化、プローブチップの幾何学的形状の制限、材料の制限および高い製造コスト等の固有の制限を有している。
【0010】
K.Banerji, A. Suppelsa. およびW. Mullen III等による「非平面領域を備えた選択的に解放可能な導電性ランナ/基板組立体(Selectively Releasing Conductive Runner and Substrate Assembly Having Non−Planar Areas)」の名称に係る米国特許第5,166,774号(1992年11月24日付)には、「基板に接着される複数の導電性ランナであって、少なくとも幾つかの導電性ランナの一部に基板が設けられた非平面領域を有し、所定応力を受けると基板から導電性ランナを選択的に解放する構成の導電性ランナ」を有するランナ/基板組立体が開示されている。
【0011】
A. Suppelsa, W. Mullen IIIおよびG. Urbish等による「導電性ランナ/基板組立体の選択的解放(Selectively Releasing Conductive Runner and Substrate Assembly)」の名称に係る米国特許第5,280,139号(1994年1月18日付)には、「基板に接着される複数の導電性ランナであって、少なくとも幾つかの導電性ランナの一部が基板への弱い接着性を有し、所定応力を受けると基板から導電性ランナを選択的に解放する構成の導電性ランナ」を有するランナ/基板組立体が開示されている。
【0012】
D. Pedderによる「ベアダイ試験(Bare Die Testing)」の名称に係る米国特許第5,786,701号(1998年7月28日付)には、「導電性材料からなるマイクロバンプが多層相互接続構造の相互接続トレース端末上に置かれ、これらの端末が、試験すべきダイ上の接点パッドのパターンに一致するパターンに分散されている構成の試験ステーションを有し、ウェーハから分離する前のマイクロバンプを用いたダイの試験を容易にするため、相互接続構造への(および相互接続からの)他の接続部が低い輪郭を有している」構成のベアダイ段階での集積回路(IC)の試験装置が開示されている。
【0013】
D. Grabbe, I. KorsunskyおよびR. Ringler等による「表面実装電気コネクタ(Surface Mount Electrical Connector)」の名称に係る米国特許第5,152,695号(1992年10月6日付)には、電子デバイス間の回路を電気的に接続するコネクタであって、「該コネクタから斜め外方に延びた片持ち形ばねアームを備えているプラットホームを有し、ばねアームが隆起接点面を備えており、一実施形態では、アームの幾何学的形状が撓み時に複合払拭を行う」ように構成されたコネクタが開示されている。
【0014】
H. Iwasaki, H. MatunagaおよびT. Ohkubo等による「多接点集積回路チップパッケージを試験するための部分置換可能デバイス(Partly Replaceable Device for Testing a Multi−Contact Integrated Circuit Chip Package)」の名称に係る米国特許第5,847,572号(1998年12月8日付)には、「各側縁部に1組のリードピンが設けられた集積回路(IC)チップを試験する試験装置が、ソケットベースと、接点支持部材およびソケット接点番号を備えた接点ユニットと、弾性絶縁シートおよび導電性部材を備えた異方性導電性シート組立体とを有している。異方性導電性シート組立体は、接点ユニットのソケット接点部材の1つと接触する各導電性部材を保持するように構成されている。この試験装置はまた、ソケットベースに対して着脱可能に取り付けられる接点リテーナであって、ソケット接点部材を異方性シート組立体と接触させて、ソケット接点部材と異方性導電性シート組立体の導電性部材との間の電気的導通を確立する接点リテーナを有している。ソケット接点部材の一部が疲労した場合には、各接点ユニットを新しい接点ユニットに置換することにより試験デバイスのメインテナンスを行うことができる。また、ICチップのリードピンは、ソケット接点部材の一部および異方性導電性シート組立体の導電性部材により形成される最短経路で試験回路ボードに電気的に接続される。」旨が開示されている。
【0015】
W. Bergによる「回路ボードへの基板構造の取付け方法(Method of Mounting a Substrate Structure to a Circuit Board)」の名称に係る米国特許第4,758,9278号(1988年7月19日付)には、「接点パッドを備えた基板構造が回路ボードに取り付けられ、該回路ボードがこの主面で露出された導電性材料からなるパッドを有しかつ回路ボードの接点パッドに対する所定位置にある整合構造を有している。基板構造には、該基板構造の接点パッドに電気的に接続されかつ片持ち支持態様で基板構造から突出するリード線が設けられている。整合要素は板部分および該板部分の周りに分散配置されている整合構造を有し、該整合構造は回路ボードの整合構造と係合でき、係合したときは回路ボードの基本面に対して平行に移動しないように整合要素を維持する。基板構造は整合要素の板部分に取り付けられ、これによりリード線が回路ボードの整合構造に対して所定位置に維持される。クランプ部材は、回路ボードの接点パッドと電気的に導通する押圧接触状態にリード線を維持する。」旨が開示されている。
【0016】
D. Sama, P. Palanisamy, J. HeamおよびD. Schwarz等による「制御形粘着性導体(Controlled Adhesion Conductor)」の名称に係る米国特許第5,121,298号(1992年6月9日付)には、「調節可能な粘着性導電性パターンを印刷回路ボード上に印刷するのに有効な配合物として、微細に粉砕された銅粉、遮断剤およびバインダがある。バインダは、層が熱応力に応答して基板を持ち上げることができるように、基板への燒結後に形成される銅層の調節可能な接着力を付与するように設計されている。また、バインダは、銅粒子間に優れた凝集性を促進して銅層に優れた機械的強度を付与し、銅層が壊れることなく持ち上がることができるように機能する。」旨が開示されている。
【0017】
R. Muellerによる「薄膜電熱デバイス(Thin−Film Electrothermal Device)」の名称に係る米国特許第4,423,401号(1983年12月27日付)には、「薄膜多層技術は、低抵抗金属−金属接点および優れたオン/オフ特性をもつマイクロミニチュア電子機械スイッチを作るのに使用される。電熱的に付勢されるスイッチは、薄膜回路を作るのに使用される方法と互換性のある方法を用いて、慣用ハイブリッド回路基板上に作られる。好ましい形態では、このようなスイッチは、金属(例えばニッケル)加熱要素が接合される硬質絶縁材(例えば窒化シリコン)の弾性的に曲り得るストリップからなる片持ち支持形アクチュエータ部材を有している。片持ち支持形部材の自由端には金属接点が支持されており、該接点は、加熱要素に供給される電流により部材の曲げを制御することにより、下に横たわる固定接点と係合(または離脱)される。」旨が開示されている。
【0018】
S. IbrahimおよびJ. Elsnerによる「多層セラミックパッケージ(Multi−Layer Ceramic Package)」の名称に係る米国特許第4,320,438号(1982年3月16日付)には、「多層パッケージでは、複数のセラミック層の各々が導電性パターンを有し、またパッケージの内部キャビティが設けられていて、該キャビティ内では、単一のチップまたはチップ配列を形成すべく相互接続された複数のチップが接合されている。チップまたはチップ配列は、異なる層レベルで短いワイヤボンドを介して金属化された導電性パターンに接続され、各積層レベルは特定導電性パターンを有している。それぞれの積層上の導電性パターンは、金属化材料が充填されたトンネル形貫通孔を介してまたは縁部が形成された金属被覆により相互接続され、これにより、導電性パターンは最終的に、金属化ボード上に取り付けられたセラミックパッケージの下面で多数のパッドに接続される。これにより高部品密度が達成されるが、接続リード線は、「互い違い」にすなわち全体的に異なるパッケージレベルで接続されるので、10ミル間隔および10ミルサイズのワイヤボンドランドを維持できる。このため、ワイヤボンドが互いに干渉することなくかなり高い部品密度が得られるが、この干渉ファクタは、多層セラミックパッケージ内に高部品密度網を達成する上で前の制限ファクタとなる。」旨が開示されている。
【0019】
F.McQuadeおよびJ. Landerによる「集積回路を試験するためのプローブ組立体(Probe Assembly for Testing Integrated Circuit)」の名称に係る米国特許第5,416,429号(1995年5月16日)には、「中央開口を備えた絶縁材料からなるプローブカードと、該プローブカードに取り付けられる小さい開口を備えた矩形フレームと、4つの別々のプローブとを有し、各プローブが導電性接地平面シートを備えた可撓性積層部材を備え、接地平面に接着される接着性誘電膜と、該誘電膜上のばね合金銅からなるプローブウイングトレースとを更に有している、集積回路を試験するためのプローブ組立体。各プローブウイングは、中央開口内に延びている片持ち支持形板ばねを有し、かつ前記プローブウイングトレースのそれぞれの終端部により形成された一群の個々の整合プローブフィンガに終端している。プローブフィンガは、実質的に直線に沿って配置されておりかつ試験すべきICの縁部に沿うそれぞれの接点パッドの間隔に一致する間隔を隔てている。4つの各クランプは、1つの板ばね部分の調節可能な拘束部材を形成するため、それぞれのプローブウイングの板ばね部分と接触する片持ち支持形部分を有している。それぞれのプローブウイングの各ばねクランプによる影響を受ける圧力拘束部材を別々に調節するための4つの別々のばねクランプ調節手段が設けられている。別々のばねクランプ調節手段はばね押圧形プラットホームを有し、各プラットホームは3つのねじおよびばね座金を介してフレーム部材に取り付けられている。これにより、ばねクランプは任意の所望の方向に移動されかつ配向されて、各プローブウイング上でのプローブフィンガの位置の整合を達成する。」旨が開示されている。
【0020】
D. Pedderによる「ベア集積回路デバイスを試験する構造(Structure for Testing Bare Integrated Circuit Devices)」の名称に係る欧州特許出願EP 0 731 368 A2(1996年2月14日付出願)(米国特許第5,764,070号(1998年6月9日))には、試験すべきベアICまたはウェーハへの接続を行う試験プローブ構造であって、「多層印刷回路プローブアームを有し、該プローブアームは、その先端部に、必要な接続を行うべく下面に1列のマイクロバンプを備えたMCM−D形基板を支持している。プローブアームは小さい角度でデバイスまたはウェーハの表面に支持されており、MCM−D形基板には、試験を受けるデバイスとのインターフェースを行う必要な受動部品が形成されている。試験を受けるデバイスの各側面に1つずつ使用されるこのような4つのプローブが設けられている。」構成を有する試験プローブ構造が開示されている。
【0021】
B. Eldridge, G. Grube, I. KhandrosおよびG. Mathieuによる「半導体デバイスへの弾性接点構造の取付け方法(Method of Mounting Resilient Contact Structure to Semiconductor Devices)」の名称に係る米国特許第5,829,128号(1998年11月3日付)、「電子部品間の一時的接続を行なう方法(Method of Making Temporary Connections Between Electronic Components)」の名称に係る米国特許第5,832,601号(1998年11月10日付)、「接点チップ構造の製造方法(Method of Making Contact Tip Structures)」の名称に係る米国特許第5,864,946号(1999年2月2日付)、「半導体デバイスへのばね要素の取付け技術(Mounting Spring Elements on Semiconductor Devices)」の名称に係る米国特許第5,884,398号(1999年3月23日付)、「半導体デバイスのバーンイン方法(Method of Burning−In Semiconductor Devices)」の名称に係る米国特許第5,878,486号(1999年3月9日付)、および「半導体デバイスの試用方法(Method of Exercising Semiconductor Devices)」の名称に係る米国特許第5,897,326号(1999年4月27日付)には、「弾性接点構造は、ダイが半導体ウェーハから単独化(分離)される前に、半導体ダイのボンドパッドに直接取り付けられる。従って、半導体ダイを、表面に配置された複数のターミナルを備えた回路ボード等に接続することにより、半導体ダイを試用(例えば、試験および/またはバーンイン)することが可能になる。次に、半導体ダイは半導体ウェーハから単独化され、その後に同じ弾性接点構造を使用して半導体ダイと他の電子部品(例えば、配線基板、半導体パッケージ等)との間の相互接続を行うことができる。弾性接点構造として本発明の全金属複合相互接続要素を使用することにより、バーンインは、少なくとも150℃の温度で行うことができかつ60分以内に完了できる。」旨が開示されている。B Eldridge等の上記米国特許に開示された接点チップ構造は弾性接点構造を与えるが、この構造は半導体のボンドパッドに個々に取り付けられるものであるため、複雑でコストが嵩む製造工程を必要とする。その上、接点構造がワイヤから作られるものであるため、接点のチップの幾何学的形状がしばしば制限される。また、このような接点チップ構造は小さいピッチの用途(例えば、一般に、周辺プローブカードの場合の50μm程の間隔または領域配列の場合の75μm程度の間隔)には適合できない。
【0022】
T. Dozier II, B. Eldridge, G. Grube, I. KhandrosおよびG. Mathieu等による「電子部品用ソケットおよび電子部品への接続方法(Sockets for Electronic Components and Methods of Connecting to Electronic Components)」の名称に係る米国特許第5,772,451号(1998年6月30日付)には、「表面実装ソルダ・ダウンソケットは、半導体パッケージ等の電子部品を回路ボードに対して着脱可能に取り付けることを可能にする。複合相互接続要素は、支持基板の頂上に配置される弾性接点構造として使用される。任意の適当な方法では、支持基板の頂部の選択された1つの弾性接点構造は、支持基板を介して、支持基板の底面上の接点構造の1つに接続される。LGA形半導体パッケージを受け入れることを意図した実施形態では、弾性接点構造と半導体パッケージの外部接続点との間に、支持基板の頂面に対してほぼ垂直な接点力により圧力接点が形成される。BGA形半導体パッケージを受け入れることを意図した実施形態では、弾性接点構造と半導体パッケージの外部接続点との間に、支持基板の頂面に対してほぼ平行な接点力により圧力接点が形成される。
【0023】
他の出現技術は、薄膜すなわちマイクロ電子機械システム(micro electronic mechanical system:MEMS)プロセス等のバッチモードプロセスで作られるばねのプローブチップを開示している。
【0024】
D. SmithおよびS. Alimondaによる「写真製版パターン形ばね接点(Photolithographically Patterned Spring Contact)」の名称に係る米国特許第5,613,861号(1997年3月25日付)、米国特許第5,848,685号(1998年12月15日)および国際特許出願PCT/US 96/08018(1996年5月30日出願)には、写真製版パターン形ばね接点が開示されており、また「該ばね接点は、基板上に形成されておりかつ接点パッドを2つのデバイスに電気的に接続する。ばね接点はまた、熱および機械的変動および他の環境ファクタを補償する。ばね接点の固有の応力勾配は、ばねの自由部分を基板から離れるように上方に曲げる。アンカー部分は基板に固定された状態に維持され、かつ基板上の第1接点パッドに電気的に接続される。ばね接点は弾性材料で作られており、かつ自由部分が第2接点パッドと順応的に接触するので、2つの接点パッドと接触する。」旨も開示されている。Smith等の上記米国特許により開示された写真製版パターン形ばねは、多くのICプロービングニーズを満たすことができるが、ばねは小形で、かつ現在の多くのICプローブシステムの信頼性のある作動に必要な平面度順応性(planarity compliance)を取り扱う垂直順応性は殆ど得られない。多くのプロービングシステムの垂直順応性は一般に0.004〜0.010インチ程度であり、これは、しばしばタングステン針プローブの使用を必要とする。
【0025】
インターポーザが相互接続構造として使用されてきたが、従来のインターポーザではピッチ密度と共に試験又はバーンイン環境で共通に見られる高温での長期信頼性にも限度があった。
【0026】
プローブ基板は、はんだ付けされたウェーハをプロービングする場合などに相互接続構造として使用されてきたが、従来のプローブ基板は、しばしば高価であり、及び/又は長いリードタイムを必要とする。コブラプローブのような垂直プローブは、カリフォルニア州サンホセのIBM社から最近市販されるようになった。マイクロスプリング・プローブ組立体はカリフォルニア州リバモアのフォームファクター社から最近市販されている。
【0027】
T.ディステファーノ、J.スミス、及びA.ファラチによる「リード線接合及び変型に備えた固定具及び方法」の名称に係る米国特許第6,080,603号(2000年6月27日)では「シート様微小電子要素を搭載するための方法において、シート様要素は表面および裏面を有する誘電体層を備えており、これがまず伸縮リングに接合される。次に、シート様要素を伸ばすために伸縮リングが加熱される。次に、外径が伸縮リングの内径よりも小さいフレームリングがシート様要素に接合される。複数のリード線が、シート様要素の裏面に形成されるが、このリード線は接合パッドを含んでいる。他の実施態様では、シート様微小電子要素上の接合パッドを微小電子構成要素上の接点に接合するための方法を提供している」旨が開示されている。
【0028】
T.ディステファーノ、及びJ.スミスによる「微小電子ユニットへの接続形成の方法」の名称に係る米国特許第6,044,548号(2000年4月04日)では「微小電子ユニットへ接続を形成する方法は、可撓性誘電体上部シートと、上部シート上に複数のターミナルを有し、複数の導電体の細長い可撓性のリード線がターミナルに接続され、ターミナルから下向きに上部シートから、離れている下端部まで上部シートから並んで伸張している、接続コンポーネントを提供する段階を備えている。接続コンポーネントは、次に、上に接点のアレイがある微小電子ユニットの表面に係合されるとともに、接続コンポーネント及び微小電子ユニットは熱と圧力に曝されて、上部シートから離れたリード線の下端が微小電子ユニット上の接点と接合し、それとの電気接続を形成する」旨が開示されている。
【0029】
M.ベロツ、B.ハーベ、及びC.ピケットによる「格子を用いたリード線形成」の名称に係る米国特許第6,063,648号(2000年5月16日)では「微小電子ユニットを形成するためのコンポーネントは、各種リード線の端部が脆性要素により互いに接続された状態にリード線を散らばらせた格子を備えている。各リード線の一端は上部要素に接続され、各リード線の他方端は下部要素に接続されている。上部及び下部要素が互いに離されると、これにより脆性要素が壊れてリード線を垂直に伸びる配列に向け変形させる。誘電体材料のような流動可能組成物が、離間段階中又はその後に、リード線の周りに射出される。出来上がったユニットを使って、微小電子要素間に永久的又は一時的な接続が形成される」旨が開示されている。
【0030】
K.ギレオ、G.グルーブ及びG.マシューによる「コンプライアンスのある半導体チップ組立体及びそれを作る方法」の名称に係る米国特許第6,020,220号(2000年2月01日)では「半導体チップパッケージ組立体がダイ上の接点パッドに搭載される。コンプライアンスのあるインターポーザ層が、そのダイと誘電体基板配線層の間に配置される。ダイ上の接点は、インターポーザ層の開口を通って伸張するコンプライアンスのある導電体ポリマーにより、コンプライアンスのあるインターポーザ層上のターミナルに接続される。インターポーザ層及び導電性ポリマーにはコンプライアンスがあるので、ダイ上の接点に対する誘電体基板配線層上のターミナルの相対的移動が許容され、熱膨張が異なることにより発生する剪断力が解放される。本配置は、フリップ−チップ型接合により実現されるものと同様のコンパクトにパッケージされた構造を提供するが、熱サイクル損傷に対する抵抗は目立って向上する。更に、パッケージされた構造は、パッケージの標準化を可能にするので、エンドユーザーに関する限り大まかには同一のパッケージ構造となるようにパッケージされるチップを数社で競いながら製造することができる」旨が開示されている。
【0031】
T.ディステファノ、Z.コバック及びJ.スミスによる「半導体チップのパッケージングのための接合可能なコンプライアンスのあるパッド及びそのための方法」の名称に係る米国特許第6,030,856号(2000年2月29日)では「微小電子パッケージを形成するための方法は、導電部分を有する第1及び第2微小電子要素を提供する段階と、接着剤で濡らすことのできる1つ又はそれ以上の中間層を有する弾性要素を微小電子要素間に配置する段階を備えている。弾性要素は、繊維質材料、繊維マトリクス、及び/又はボイド部が、その中間層部分に形成されている。接着剤は、中間層と微小電子要素との間に供給される。接着剤はここで硬化すると同時に、弾性要素と微小電子要素を接合するために中間層と接触した状態に留まる。これで導電性の部品が一緒に結合され、電気的な相互接続を形成する。接着剤で濡らすことのできる1つ又はそれ以上の中間層を含んだ弾性要素から構成される微小電子パッケージも提供される」旨が開示されている。
【0032】
P.ベラール、T.ディステファーノ、J.ジェルスタッド、C.ピケット及びJ.スミスによる「剛性を有するインターポーザを備えた微小電子構成要素」の名称に係る米国特許第6,002,168号(1999年12月14日)では「ハイブリッド回路のような剛性のある基板をプリント回路板のような剛性のある支持基板に搭載するための微小電子構成要素に関して開示している。この微小電子構成要素は、その第1の表面にチップを搭載することのできる剛性のあるインターポーザと、剛性のあるインターポーザ上の接点のパターンと、剛性のあるインターポーザの第2の表面上に重ね置かれる可撓性インターポーザと、可撓性インターポーザ上のターミナルのパターンと、可撓性リード線と、可撓性インターポーザ上に組み付けられるはんだで覆われた銅ボールとを含んでいる。微小電子構成要素は、剛性のあるインターポーザの第1の表面上にソケット組立体を搭載してもよい。微小電子構成要素は剛性のある支持基板上に搭載される」旨が開示されている。
【0033】
B.エルドリッジ、G.グルベ、I.ハンドロス及びG.マシューによる「接点チップ構造を形成する方法」の名称に係る、米国特許第5,864,946号(1999年2月2日)では「弾性接点構造は、ダイが半導体ウェーハから切り離され(分離され)る前に、半導体ダイ上の接合パッドに直接取り付けられる。したがって、半導体ダイに、表面に複数のターミナルが配置された回路板又は類似物を接続することにより、半導体ダイを試用(例えば、試験及び/又はバーンイン)することができる。次に、半導体ダイは半導体ウェーハから切り離され、その後、同じ弾性接点構造を使用して、半導体ダイと他の電子部品(例えば、配線基板、半導体パッケージ等)との間の相互接続を行うことができる。弾性接点構造として本発明の全金属複合相互接続要素を使用することにより、バーンインを少なくとも150℃の温度で行うことができ、60分以内に完了できる」旨が開示されている。
【0034】
B.エルドリッジ、G.グルベ、I.ハンドロス及びG.マシューによる「ウェーハレベルの試験及びバーンイン、及び半導体プロセス」の名称に係る、米国特許第6,032,356号では「弾性接点構造は、ダイが半導体ウェーハから切り離され(分離され)る前に、半導体ダイ上の接合パッドに直接取り付けられる。したがって、半導体ダイに、表面に複数のターミナルが配置された回路板又は類似物を接続することにより、半導体ダイを試用(例えば、試験及び/又はバーンイン)することができる。次に、半導体ダイは半導体ウェーハから切り離され、その後、同じ弾性接点構造を使用して半導体ダイと他の電子構成部品(例えば、配線基板、半導体パッケージ等)との間の相互接続を行うことができる。弾性接点構造として本発明の全金属複合相互接続要素を使用すると、バーンインは少なくとも150℃の温度で行うことができ、60分以内に完了できる」旨が開示されている。
【0035】
D.ハーンブリー、W.ファーンワース及びJ.ウォークによる「半導体ウェーハのための付勢プローブカード及びテストシステム」の名称に係る米国特許第6,078,186号(2000年6月20日)では「半導体ウェーハを試験するためのプローブカード、試験方法及び該プローブを採用した試験システムが提供される。プローブカードは、基板、基板に滑動可能に搭載された相互接続器、相互接続器上の接点を付勢してウェーハ上の接点と電気的に係合させるための付勢機構を含んでいる。付勢機構は、相互接続器への電気経路を提供する、ばね負荷された電気コネクタを含んでおり、付勢力を発生させる。付勢力は、電気コネクタのばね定数、及びプローブカードとウェーハとの間のZ方向オーバードライブ量を選択することにより制御される。プローブカードは、ウェーハに対する相互接続のレベルを設定するレベリング機構も含んでいる」旨が開示されている。
【0036】
追加的なパッケージング段階なしに集積回路上に直に構築でき、かつ現在のIC加工ラインと両立可能な、コンプライアンスのある電気相互接続器を備えたチップスケールパッケージ構造を提供することは有用である。バッチ処理を使って製造できる、コンプライアンスのある高密度電気相互接続器を有するインターポーザ構造を提供することも有用である。更に、バッチ処理を使って製造できる、従来のインターポーザ技術よりも小さい力でコンプライアンスのある高密度電気相互接続器を有するプローブ接触器を提供することは有用である。
【0037】
試験中のデバイスと従来の試験機器との間を往復する際の移動時間は、しばしば高速電子回路の応答時間に対する刺激よりも長くなる。高速試験用電子機器を試験を受けるデバイスの近傍に配置することにより、この移動時間を短縮させると同時にスペース及び費用の拘束条件をも満たす試験インタフェースシステムを提供することは有用である。更には、種々のデバイスを試験する場合に試験構造を変えるために要する費用、複雑性、ツーリング、及びターンアラウンドタイムを最小限にする試験インタフェースシステムを提供することは有用である。このようなシステムの開発は、大きな技術的進化を作り上げることになろう。
【0038】
大量並列試験及び/又はバーンインの用途などで、コンプライアンスのあるウェーハキャリア上に搭載されている1つ又はそれ以上の分離されたデバイスに対して、多くの、数百個の、更には数十万個のパッドでプローブ接点を設け、ウェーハ全体に亘って均一な力を提供しパッドの損傷を最小限にしつつ、パッドが1ミリかそれ以下に近い最小間隔で互いに近接して配置されているような、試験インタフェースシステムを提供することは有用である。試験を受けるデバイスとテスター電子機器との間に相互接続を編成、管理すると同時に、信号の完全性とパワー及び接地の安定性を維持し、確実に、2つ又はそれ以上の隣接するパッドが1つの試験プローブ先端部に接触しないようにする、試験インタフェースシステムを提供することも有用である。更には、望ましくは試験を受けるデバイスに一様なコンプライアンスを与える試験構造体を提供することも有用である。このようなシステムの開発は更なる技術進歩を構成することとなる。
【0039】
更には、望ましくは、試験用電子機器と試験を受けるデバイスとの間に断熱状態を設けつつ、広い温度範囲に亘ってコンプライアンスのあるウェーハキャリア上の1つ又はそれ以上のデバイスに対して、多くの、数百個の、更には数十万個のパッドに連続接点を提供する試験システムを提供することは有用である。更には、試験システムと試験を受けるデバイスに対して別々に熱制御を行うためのシステムを提供することも有用である。
【0040】
何れかのダイにパワー対接地短絡がある場合はこれを素早く検知して、試験用電子機器の損傷が起きる前に、パワー対接地短絡が検知されたダイから電力を遮断するために使用できる試験インタフェースシステムを提供することも有用である。更に、多くの、数百個の、更には数十万個のパッドとの接点が確実に形成されていること、及び各信号ラインの自己インダクタンス及び自己キャパシタンスが試験信号の完全性に悪影響を及ぼすような値を超えていないことを保証し、複数の信号ラインの対の間の相互インダクタンス及び相互キャパシタンス、並びに信号ラインと電力又は接地ラインとの間の相互コンダクタンス及び相互キャパシタンスが試験信号の完全性に悪影響を及ぼすような値を超えていないことを保証するために、各接点が接点抵抗規定内にあることを検知できる試験インタフェース構造を提供することは有用である。また、多くの、数百個の、更には数十万個の試験を受けるダイに対して、並行して、刺激及び応答検知と分析を提供し、望ましくは、判定に不合格のダイに対して、他の全てのダイの試験を継続しながらこれと並行して、診断的な試験を行う試験インタフェース構造を提供することは有用である。
【0041】
更には、周期的に停止させてプローブインタフェース構造を試験及び/又は掃除する必要性がなく、多くの、数百個の、更には数十万個のパッドに対して、確実に且つ反復的に接点を確立できる大型アレイインタフェースシステムを提供することは有用である。
【0042】
相互接続構造体内にばねプローブを使用して、ピンカウントを増やし、ピッチを狭くし、費用効率のよい製造及びカスタマイズ可能なばね先端を提供する、コンピュータシステム同士のような電気構成要素同士の間の大量並列相互接続のためのシステムを提供するのも有用である。このような方法及び装置の開発は大きな技術的進歩を作り出すこととなろう。
【0043】
(発明の概要)
応力金属ばねの実施態様を数例開示しているが、これらは、一般的に言えば、基板上に複数の応力金属層を確立し、それらの層を制御可能にパターン形成して部分的に基板から解放することにより構成されている。代表的には、形成された応力金属ばねには有効回旋角度が作り出され、ループ状のばね構造を形成している。形成されたばねは、チップスケール半導体パッケージ、高密度インターポーザコネクタ、及びプローブ接触器を始めとして、多種多様な相互接続構造に備えた高ピッチのコンプライアンスのある電気接点を提供する。大量並列インタフェース集積回路試験組立体についても幾つかの実施態様を開示しているが、これらは応力金属ばね接点を有する1つ又はそれ以上の基板を備え、コンプライアンスのあるウェーハキャリア上の1つ又はそれ以上の分離された集積回路同士の間に接続を確立し、基板を介してコンプライアンスのあるウェーハキャリア上の集積回路に電気的に接続されている1つ又はそれ以上の試験モジュールを使用する。大量並列インタフェース組立体は、密なパッドピッチとコンプライアンスを提供し、多数のICの並行試験又はバーンインを可能にしていることが望ましい。幾つかの好適な実施態様では、大量並列インタフェース組立体構造は、分離できる標準電気コネクタ要素を含んでいるので、組立体製造費用を低減し製造時間を短縮できる。これら大量並列インタフェース構造及び組立体は、コンプライアンスのあるキャリアに取り付けられた分離済みの集積回路デバイスの高速テストを可能にし、試験用電子機器が試験を受ける集積回路デバイスの近傍に配置できるようにしている。大量並列インタフェース組立体の好適な実施態様は、試験を受けるウェーハとの熱膨張整合を提供し、システムの電子機器のための熱経路を提供する。別の大量並列インタフェース構造は、ネットワーク内でコンピュータ同士を相互接続するため、又は他の電子回路を相互接続するため等、多種多様な回路において使用することのできる大量並列接続のインタフェースを提供する。
【0044】
(発明を実施するための最良の形態)
図1は、基板16から解放する前の写真製版パターン形ばね14a〜14nの線形配列12を示す平面図である。導電性ばね14a〜14nは、一般に、半導体工業分野で広く知られている低エネルギおよび高エネルギプラズマ蒸着法およびその後の写真製版パターニング法により形成される蒸着金属の連続層により基板層16上に形成される。連続層は異なる固有応力レベルを有している。次に、基板16のリリース領域18がアンダーカットエッチングにより加工され、これにより、リリース領域18上に位置するばね接点14a〜14nが基板16から解放され、かつ蒸着金属層間の固有応力の結果として基板16から離れる方向に広がる(すなわち曲る)。蒸着金属トレースの固定領域15(図3および図4)が基板16に固定された状態に維持され、かつ一般にばね接点14a〜14nからのルーチング(すなわち扇状の広がりの形成)に使用される。図2は、基板16からの解放後の写真製版パターン形ばね14a〜14nの線形配列12を示す斜視図である。ばね接点14a〜14nは、一般に0.001インチ程度の微細ピッチ20をもつ高密度配列に形成できる。
【0045】
図3は、パターン形ばね14が基板16のリリース領域18aから、平らなアンカー領域15から離れる方向に解放された後の写真製版パターン形ばね14を示す側面図26aであり、ばね14は、短い長さ28a(この長さは、第1有効ばね角度30aを定めるべく形成される)と、ばね半径31aと、ばね高さ32aとを有している。図4は、パターン形ばね14が基板16のリリース領域18bから解放された後の第2写真製版パターン形ばね14を示す側面図26bであり、ばね14は、長いばね長さ28b(この長さは、大きい第2有効ばね角度30bを定めるべく形成される)と、ばね半径31bと、ばね高さ32bとを有している。形成されるばねチップ14の有効幾何学的形状は、意図した用途に基いて高度の注文に応じることが可能である。その上、ばねチップは、一般に、多くの用途に使用することを可能にする可撓性を有している。
【0046】
パターン型ばねプローブ14は、ばね間ピッチ20のような非常に小さいばねを得ることができ、これにより多数のばねプローブ14を集積回路デバイス44(図58、図59)上のパワーパッドまたは接地パッドと接触させるのに使用でき、従って電流可搬能力を向上できる。その上に、ばねプローブ14の配列12(図1)を備えた大量並列相互接続組立体278(例:図55の278a)の場合には、多数のばねプローブ14を、試験を受ける集積回路デバイス(DUT)44(図58、図59)のようなIC基板48(図9)上のI/Oパッド47のプロービングに使用できる。試験を受ける集積回路デバイス44(図55)へのばね接点14の係合後に、全てのばねプローブ接点14の導通性を確認できるため、試験手順の開始前に、大量並列インタフェース組立体78とコンプライアンスのあるキャリア115上のデバイス44(図55)との間の完全な電気的接触を確保できる。
【0047】
ミニチュアばねの改善された構造   図5は、ばねの分離前の、相互入組み形ばねチップパターンを有する対向写真製版ばね34a、34bを示す第1斜視図である。図6は、ばねの分離後の、相互入組み形対向写真製版ばね34a、34bを示す斜視図である。相互入組み形写真製版ばね34a、34bの各々は、複数のばね接点24を有している。ばね接点が集積回路デバイス44のパワートレースまたは接地トレース46またはポッド47への接続に使用される場合には、接点に最大電気抵抗が発生する。従って、複数の接点24を備えた相互入組み形ばね接点34は、ばね接点34とトレース46またはパッド47との間の抵抗を本質的に低下させる。上記のように、多数の相互入組み形プローブばね34は、集積回路デバイス44の高品質電気コネクタまたは試験中に集積回路デバイス44のプロービングを行うプローブカード組立体60(図13)等の多くの用途に使用できる。
【0048】
図7は、試験を受ける集積回路デバイス(DUT)44上の単一トレース46と接触している対向相互入組み形写真製版ばね対34a、34bを示す斜視図である。相互入組み形ばね接点対34a、34bは、複数の接点24を備えた両ばね34a、34bが同じトレース46に接触することを可能にする。図5に示すように、基板16で両ばね34a、34bの間にジグザグギャップ38が形成されると、各ばね34a、34bに多数のチップ(先端部)24が確立される。相互入組み形ばねプローブ34a、34bが基板16から解放される前は、相互入組み形接点24が、オーバーラップする相互入組み領域36内に位置している。相互入組み形ばねプローブ34a、34bが基板16から分離されると、相互入組み形ばね接点24は、両ばね34a、34b間に形成される接点領域40内で互いに近接した状態に維持される。次に、相互入組み形ばね接点対34a、34bは、両相互入組み形ばねプローブ34a、34bが、例えば試験を受けるデバイス44の同じトレース46に接触するように配置され、これにより高い信頼性が得られる。その上、各相互入組み形ばね34a、34bは多数のばね接点24を有しているので、トレース46との接触が増大すると同時に、多数の接点24間の過熱または電流アーキングが最小になる。
【0049】
図8は、ばね14が基板16から解放される前の、平行および対向単接点写真製版ばね14を示す平面図である。相互入組み形ばね34a、34bについて前述したように、平行ばね14は、多数ばねのばねチップ24がデバイス44の単一トレース46と接触するようにして配置することもできる。その上、対向ばねプローブ14は、ばねチップ24がリリース領域18を横切って基板16から解放されると、ばねチップ24が互いに近接して配置されるように互いにオーバーラップさせることができる。図9は、ばね14が基板16から解放された後の、平行および対向単接点写真製版ばね14を示す平面図であり、ばね14が集積回路デバイス44上の単一パッド47と接触している状態を示すものである。
【0050】
図10は、ショルダ54から延びている接点52を備えたショルダ接点形写真製版ばね50を示す正面図である。図11は、集積回路デバイス上のトレース46と接触しているショルダ接点形写真製版ばね50を示す部分側断面図である。図12は、多ショルダ接点形写真製版ばね50を示す斜視図である。一般に、単接点ばねプローブ14は、単一の鋭いプローブチップ24がしばしばトレース46またはパッド47上に存在する酸化物層内に突き刺さるので、集積回路デバイス22上の導電性トレース46との良好な物理的接触が得られる。しかしながら、薄くて比較的柔軟なトレース46またはパッド47を備えた半導体ウェーハ92または集積回路デバイスの場合には、単一の長いプローブチップ24が、トレース46の深さを超えて、例えばIC基板48または他の回路中に突き刺さることもある。
【0051】
ショルダ接点形写真製版ばね50は1つ以上の接点52並びにショルダ54を有し、これにより接点52が所望深さに突き刺さってトレース46との良好な電気的接触が得られると同時に、ばね50がデバイス44またはウェーハ92内に深く突き刺さり過ぎないように、ショルダ54がこれを防止する。
【0052】
プローブばね50の幾何学的形状は写真製版スクリーニングおよびエッチングプロセスにより高度に制御できるので、ショルダ接点形写真製版ばね50の詳細な幾何学的形状が容易に達成される。
【0053】
図13は、超高周波ばねプローブ基板16の部分断面図56である。ばねプローブ61と、基板16の上、又はこれを貫通する関係の導電体60、68、64とがインピーダンス整合している必要のある実施態様では、1つ又はそれ以上の導電基準面58a、58b、58c、58d、及びビア65a、65b、65cが基板16の中、又は上に追加されているのが望ましい。基板16は、交替接地基準トレース62a、62bも含んでおり、これ等は基準面58a、58b、58cと接続されており、遮蔽された同軸伝送線環境63を効果的に提供する。又、インピーダンス制御面58a、58b、58c、58dは、図13に示すように平面に限定されるわけではない。
【0054】
絶縁層66は、プローブばね61の固定領域上のようなプローブばね61の一部の上に、しかしその先端部24(図2)を覆うことなく、そして、ばねプローブ61をビア68に接続するトレース60上に堆積される。導電層58dは、絶縁層66上に堆積され、同軸の制御された低インピーダンス接続部を提供する。導電材58と誘電材66の交替層は、プローブばね61の直ぐ近傍にデカップリングコンデンサを必要とするような実施態様では、基板16内に一体化されているのが望ましい。シリコンのような導電材の基板16では、薄い酸化物層57を基板16と導電基準面58cの間に堆積して、それによって、ばねプローブ61と接地面58a及び58bとの間に高キャパシタンス構造59を形成するのが望ましい。又、受動部品69(例:代表的にはコンデンサ、抵抗器、及び/又はインダクタ)又は能動部品デバイス69のような1つ又はそれ以上の組立部品は、基板の表面62a、62bの何れかに一体化されているのが望ましい。
【0055】
ばねプローブ61の固定部分15は、通常、基板16を横切って比較的短い距離だけ伸張している。基板16の表面上に位置するトレース60は、ばねプローブ61の固定部分15と電気的に接続されており、ばねプローブ61をビア68に接続している。トレースは、ばねプローブ61とは異なる材料で構成されていてもよく、高い導電率を有する(例えば銅か金のような)金属で構成されているのが望ましい。
【0056】
図14は基板16の部分平面図であり、複数の分布扇状トレース60が、基板16のプローブ表面62a上の、複数のばねプローブ61と複数のビア接点70の間に画定されている。先に述べたように、ばねプローブ61は、写真製版形成ばね61であるのが望ましいが、現在は約0.001インチのピッチで形成されている。トレース60は、プローブ表面62a上に、接点区域70に接続して経路付けされ、基板16の表面に亘ってマトリクス状に配置されているのが望ましい。図14に示す基板16では、ビア接点区域70は、プローブ表面第1分布ピッチ74a、及びプローブ表面第2分布ピッチ74bで配置されている。
【0057】
集積回路デバイス44のサイズと設計が益々小さく且つ複雑になるにつれ、小型ばねプローブ先端61で形成される細かなピッチ20(図2)が益々重要になる。更に、集積回路44と、必要な試験組立体の両方が小型になるため、ウェーハ104上に位置する1つ又はそれ以上の集積回路44と、多数のばねプローブ61を含む基板16との間の平坦度の差が重要になってくる。
【0058】
図14に示すように、下部スタンドオフ75は、例えば、基板16が試験を受けるウェーハ104を損傷するのを防ぎ、或いはばねプローブ先端24が最適な接触角で作動するようにセットするために、基板16のプローブ表面62a上に設けるのが望ましい。下部スタンドオフ75は、ポリアミドのような比較的軟らかな材料で作り、試験を受ける半導体ウェーハ104を損傷しないようにするのが望ましい。加えて、更に、半導体ウェーハ104の能動回路44を損傷しないように、スタンドオフ75は、大量並列インタフェース組立体78が半導体ウェーハ104上のデバイス44と整列したときには、スタンドオフ75が、能動デバイス44又は試験構造体のない半導体ウェーハ104上の鋸目136と整列するように配置されているのが望ましい。更に、下部スタンドオフ75の高さは、ばねプローブ61a−61nの最大圧縮量を制限し、ばねプローブ61a−61nが損傷するのを防ぐように、選定されていることが望ましい。
【0059】
基板16は、基板16のプローブ表面62aが試験を受けるウェーハ104と正確に整列するように、好ましくはプローブ表面62a上に、通常、1つ又はそれ以上の整列マーク77(図14)を含んでいる。
チップスケール半導体パッケージ
図15は、ICパッド82に接続され、上部基板表面85a上に配設されている応力金属ばね84を有しているチップスケール集積回路パッケージのダイ領域80の、上部基板表面85aから解放される前の平面配置図78である。平面配置図78では、応力金属ばね84は、それぞればね接点領域86を有しており、このばね接点領域86は、解放前にはIC表面第1扇状ピッチ87及びIC表面第2扇状ピッチ88で配設されているのが望ましい。図16は、ICパッド82に接続され、基板表面85aから伸張している応力金属ばね84を有している集積回路ダイ領域80の、上部基板表面85aから解放された後の平面配置図90である。上部基板表面85aから解放される間に、各応力金属ばね84は各解放領域18から伸張して、接点領域86(図15)が有効ばね角度30(図3、図4)だけ回転し、各応力金属ばね84がばね接触面92を好適に形成するようになる。基板表面85aから解放後、各ばね接触面92は、ばね接点第1扇状ピッチ94及びばね接点第2扇状ピッチ96で配設されているのが望ましい。
【0060】
図17は、ICパッド82に接続され、基板ばね表面85aから伸張しているループ状の応力金属ばね84を有するチップスケール集積回路パッケージ100の部分破断図であり、応力金属ばね84の一部は、電気絶縁材で構成されている支持基盤106内に埋め込まれている。支持基盤106は、通常、各ばね84を支持するポリマー基板で構成されている。チップスケール集積回路パッケージ100の実施態様の中には、支持基盤106がコンプライアンスのあるポリマー、即ちエラストマであるものもある。
【0061】
支持基盤106は、機械的保護を提供し、ばね84に機械的支持、即ち強度を付加し、集積回路ダイ領域80を不動態化し、アッセンブリに機械的強度を付与する。
【0062】
集積回路デバイス上に構築されたばね84と支持基板106の組み合わせは、共に集積回路パッケージ100を形成し、パッケージ100は、通常はエポキシ又ははんだを使って、プリント回路板216に取り付けることができる。支持基板106は、プリント配線板へのチップの取り付けに機械的強度を提供し、ばね84上でのはんだ又はエポキシの濡れの量を制御する。コンプライアンスのあるばね84は、コンプライアンスのある接続部を形成し、ダイ領域80とプリント板216の間の熱膨張差に対処する。
【0063】
図17に示すばね84は、応力金属ばね84であるのが望ましいが、代わりに支持基板106を使って、多種多様なチップスケール接点84の支持を形成することもできる。支持基板106は、ばね84に強度を付加し、一般的に、ばね84の取り扱い及び使用時の頑強さを改善し、破損するのを防ぐ。
【0064】
図17に示すように、ばね84は、集積回路102と、支持基板106の外表面を越えて伸張するループ状のばね接点領域92との間に導電経路を形成する。図15、16、32、33及び34に示すように、ループ状のばね接点領域92は、試験、バーンイン、或いは後続のデバイス操作に関し、電気的接続に対する寸法的許容差を提供できるように、接点区域が強化された形状となっていているのが望ましい。
【0065】
図24、43及び51に示すように、応力金属ばね84、152には、ニッケル、ニッケル合金、銀、ロジウム、パラジウム、コバルト、金合金のような1つ又はそれ以上のメッキ金属コーティングを、ダイ領域80からの解放後に施しておくのが望ましい。メッキ金属コーティング166を行えば、ばね84の強度を上げ、取り扱い及び使用時のばねの頑強さを改良することができる。メッキ金属コーティング166を使って、ばね84の全体的電気抵抗を低減することもできる。実施態様の中には、ロジウムのような硬い金属を使って、機械的摩耗及びプリント回路板パッドからのゴミの付着に対する抵抗力を作り出しているものもある。又、メッキ金属コーティング166を行えば、ばね84と回路板上のパッドとの間に高い接触力を作り出し、電気接触抵抗を低減することもできる。応力金属ばね84、152の実施態様の中には、例えばニッケル合金で第1金属メッキ層166を形成した後、例えば金又はロジウムで第2メッキ層166を形成し、ばね強度を上げると共に、接点性能を改良しているものもある。
【0066】
応力金属ばね84、152にはメッキ金属コーティング166を施すのが望ましいが、ばね84、152に必要な強度の大部分はメッキ166で形成することができ、応力金属層17a−17n(図13)は、メッキの施されていないばね84、152に比べ、それほど大きな強度を必要としない。従って、メッキの施された応力ばねの実施態様の中には、応力金属層17a−17n(図13)を、メッキ前の構造上の形状を定めるためだけに用い、それによって応力金属層17a−17nに必要なプロセス、即ち冶金学的パラメータを緩和しているものもある。
【0067】
メッキ金属コーティング166がばねを十分に強化している応力ばね84、152の実施態様では、支持基板106は、ポリアミド又は通常のモールド材のような比較的硬いポリマー材106で構成して、剛性のあるICパッケージを形成し、プリント回路板216に直接表面取り付けが行えるようにしている。過酷な環境下で使用されるチップスケールパッケージ集積回路デバイス100では、更に、メッキ金属ばねコーティング166とポリマー欠肉217(図54)を組み合わせて設けるのが望ましい。
【0068】
又、境界層161(図26、図46)を応力金属ばね84、152上に使い、境界層161を、第1層、即ち解放領域18と接する層として最初に確立するのが望ましい。基板表面85aからの解放後、応力金属ばね84は有効角30だけループを描き、境界層161が、180度を超える有効角を有するばね84、152において、接点領域92の外側層となる。境界層161は、金、ロジウム、パラジウムのような高導電率の非腐食性金属で構成されるのが望ましい。ある実施態様では、境界層161は、ばね84の一部に選択的に設け、例えば、ばね84の接触区域92上のはんだの濡れ具合を制御するように、基板表面85a上にパターン化するのが望ましい。
【0069】
図17に示すように、応力金属ばね84は、前縁155が支持基板106内に伸び戻ってきて、ばね84の凸型アーチに沿ってループ状ばね接点領域92を形成するように、通常180度を超える有効角30を有しているのが望ましい。図16に示すチップスケールパッケージ半導体100は、大きな有効ばね角30を有しているが、支持基板106と1つ又はそれ以上のメッキ層166を使って、多種多様なチップスケールパッケージ接触ばね84を補強することができる。ばね84、152は、大きい力を必要とするか、又はプリント回路板216上の小さなパッドと接触する必要のある場合、有効角30は一般的に90度未満であるのが望ましい。
チップスケール半導体パッケージの製作
チップスケール半導体パッケージ100は、バッチ処理法を使って効率的に製作することができる。通常、チタニウム又はシリコンの窒素酸化物のような解放層18が、先ず、ウェーハダイ領域80上に製作される。次に、図13の層17a、17bのような応力の制御された1つ又はそれ以上の金属層17が、解放層18上に堆積される。チップスケール半導体パッケージ100のある実施態様では、応力金属層17は、初期応力勾配を有する、同じか、又は類似の堆積金属で構成されている。
【0070】
チップスケール半導体パッケージ100のある実施態様では、応力金属スプリングは、先に述べたように、或いは米国特許第5、848,685号、同第5,613,861号、同第3,842,189号に開示されているように、写真製版ばねに従って構築されており、これら特許を参考文献としてここに援用する。
【0071】
次に、通常、従来型写真製版及びエッチング処理を使って、応力金属層17がパターン化され、ばねと相互接続トレースが形成される。ポリイミド、酸化物又は窒化物のような誘電性解放ウィンドウが、応力金属層17が制御下でエッチングされた後、形成される。解放ウィンドウは、ばね金属が基板表面85aから解放される区域18に設けられ、ばね84が形成される。応力金属ばね84が、基板ダイ領域80から制御下で解放された後、ばね84には、メッキ166を施して、ばね定数を調整し、或いは応力金属ばね84の強度を上げるのが望ましい。先に述べたように、応力金属ばね84の露出接点部92は、金又は他の材料でメッキして、例えば次のIC回路組立プロセスで容易にはんだ付けできるようにするのが望ましい。又、応力金属堆積前に、応力金属ばね84上に障壁金属161を形成することもできる。
【0072】
次に、ばね84が解放され望ましくはメッキが施された後、通常、ウェーハ104上に支持基板層106が設けられる。支持基板は、通常、ポリマーで構成され、集積回路デバイスに対し保護層として機能する。チップスケール半導体パッケージ100のある実施態様では、支持基板106は、応力金属ばね84の接点部92が露出するように、所望の厚さまで制御下で形成される。最初に支持基板106がばね構造体84全体を覆って形成される、チップスケール半導体パッケージ100の別の実施態様では、次に、支持基板106をエッチングし、ばね84の頭部接点領域92を露出させる。エッチングする支持基板106には、フォトマスクを使って、応力金属ばね84の接点部92の露出領域の位置と形状を正確に画定するのが望ましい。
チップスケール半導体パッケージの利点
チップスケール集積回路パッケージ100は、チップスケールパッケージの製作において、プロセスを単純化し、処理段階の数を低減する。チップスケール集積回路パッケージ100は、集積回路デバイスのような半導体アッセンブリのバッチ処理製造法と似たバッチ処理技術を使って、容易に製作することができる。
【0073】
更に、チップスケール集積回路パッケージ100は、圧力によって、プリント回路板216のような板への直接の一時的接点を形成することができ、ソケット又は媒介接続部の必要を排除することができる。この一時的な接点は、プローブ接点としても機能できるので、プローブ接点を、プリント回路板216上の単純なパッド配列に減らすことができる。
コンプライアンスのあるウェーハチップキャリア
図18は、半導体ウェーハ104上の集積回路ダイ領域80の側面図110である。各集積回路ダイ領域80は、接点パッド又は応力金属ばね84のような接点47を有している。鋸目114は、集積回路ダイ領域80の間に設けられている。ある好適な実施態様では、集積回路ダイ領域80は、上記のように、応力金属ばね接点84と支持基板106を有するチップスケール半導体パッケージ100である。
【0074】
図19は、ウェーハ104がコンプライアンスのあるウェーハキャリア基板115に接着取り付けされている、集積回路ダイ領域80を有する半導体ウェーハ104の側面図112である。コンプライアンスのある基板115は、第1面116aと、その逆側の第2面116bを有している。第1面116aは接着層を含んでいて、後に続くIC分離及び処理に備えて、ウェーハ104を容易に取り付けられるようになっている。通常、支持部118もコンプライアンスのある基板115に取り付けられている。
【0075】
図20は、コンプライアンスのあるキャリア基板115に取り付けられている半導体ウェーハ104上の集積回路の分離部122を示している。半導体処理工業では既知であるように、通常、鋸を使って、各集積回路44及びダイ領域80相互の間に、鋸目114に沿って分離部122を形成する。
【0076】
コンプライアンスのあるウェーハキャリア基板115は、通常、日本の日東電工からRISTON、部品番号1004R−9.0として、或いは、カリフォルニア州ムーアパークのUltronシステムズ社から供給されている材料のような、コンプライアンスのあるポリマー材で構成されている。後に述べるが、コンプライアンスのあるウェーハキャリア基板115は、ある好適な実施態様では、熱伝導性及び/又は導電性である。
【0077】
図21は、コンプライアンスのあるウェーハキャリア115上の、分離された集積回路44、100の側面図である。コンプライアンスのあるウェーハキャリア115は、例えば切り離された後など、ウェーハ分離122の後、集積回路ダイス44、100を一緒に適所に保持し、ウェーハ104から分離されたダイス44、100の全てを、後端組立、試験、バーンインを通してグループとして取り扱えるようにする。
【0078】
コンプライアンスのあるウェーハキャリア115を使用しているので、組立、ウェーハレベルの試験、及びバーンイン処理を一括して行うことができ、平行試験及び取り扱いの簡素化という処理の速さの面で利点が生じる。
【0079】
従来型のウェーハレベルの試験及びバーンインでは、集積回路ダイス44は、時には、パッケージング及びウェーハからの切り離し前にバーンインされ、試験される。しかし、従来型のウェーハレベルでの事前切り離し法で共通して直面する問題点は、シリコンウェーハと、ウェーハ上の集積回路ダイとシステムの電子部品との間の接続に必要な接続器システムとの間の熱膨張の差異に対処するのが面倒なことである。又、パッケージング、切り離し、取り扱いによって生じる欠陥は、そのようなプロセスでは排除できない。
【0080】
上記のように、応力金属ばねチップスケールパッケージ100をコンプライアンスのあるキャリア115と組み合わせて上手に用いれば、キャリアに取り付けられている試験を受けるデバイス100とは熱膨張係数の異なる安価なプリント配線板材料282を使用して、試験及びバーンインの間ダイを接触させることができる。又、後に説明するように、図55に示す大量並列インタフェース組立体278aのような大量並列インタフェース組立体278の各種の実施態様で、多種多様な、キャリアに取り付けられた集積回路44、100と接続することができる。
【0081】
従って、チップスケールパッケージ100及び/又は大量並列インタフェース組立体278を上手に用いれば、パッケージング及び切り離し122後に、集積回路ダイス44、100の試験及びバーンを行い、ダイを大量並列処理で正確な取り扱いのために適所に保持しながら、組立、切り離し、取り扱いに起因する欠陥を検出することができる。
【0082】
好適なチップスケールパッケージ100を用いる実施態様では、能動表面85a上に処理され、好ましくは部分的に包み込まれている106応力金属ばね84を有する半導体ウェーハ104が、コンプライアンスのある転写印刷ウェーハキャリア115に取り付けられている。コンプライアンスのあるキャリア115のある実施態様では、キャリア115は、半導体処理工業ではウェーハを切り離すのに何処でも使われている、従来型の「ブルー」テープキャリアに似ている。
【0083】
次に、取り付けられたウェーハ104は、普通は標準的なICダイシング及び分割プロセスを使って、キャリア115を切り離すことなく、個々のダイ44、100に切り離される122。キャリアテープ115は、パッケージされたダイス100を、それぞれの相対位置に、あたかもそれらがウェーハ104上にあるかのように保持する。大量並列試験組立体278(図55、57、68、70、71)のような接点固定具132は、通常はプリント配線板282を含め、集積回路44、100を試験するために接続するための、接続部及び関連電子部品を備えている。接点固定具132の接続部は、接点固定具132をコンプライアンスのあるキャリア115上のDUTデバイス44、100に押し付けると、試験されるデバイス44、100上のばねリード線84のような接続部47と噛み合うように設計されている。
【0084】
図21に示すように、圧力板サポート134は、プリント配線板282と同じ熱膨張係数(TCE)を有する材料で作るのが望ましいが、この圧力板サポート134が、コンプライアンスのあるキャリア115の背面116bを支持する。試験中及び/又はバーンイン処理中、IC接点固定具132は、圧力板サポート134に関し固定的に取り付けられ136、サンドイッチ構造130を形成し、組み付けられた集積回路ダイ44、100とコンプライアンスのあるキャリア115を適所に保持する。圧力板サポート134もコンプライアンスのあるのある材料で構成し、圧力板サポート134とキャリアが組み付けられたダイ44、100とがシステム板282に容易に馴染むようになっているのが望ましい。
【0085】
このサンドイッチ構造130の温度が試験及びバーンイン温度にまで上昇すると、シリコンダイ領域80よりも熱膨張係数の大きなプリント回路板282は、シリコンダイ領域80よりも早く伸びる。しかし、各集積回路ダイ44、100は互いに切り離され122ており、コンプライアンスのある柔軟なキャリア115で連結されているだけなので、集積回路ダイ44、100と、プリント配線板282と、圧力板サポート134との間の摩擦は、集積回路ダイ44、100をプリント配線板282に沿って引っ張るように働く。従って、切り離されている集積回路ダイ44、100がそれぞれ比較的独立して動くため、集積回路44、100とプリント配線板282との間でパッドの整列は維持される。
【0086】
コンプライアンスのあるキャリア115に取り付けられている、切り離し済みの集積回路ダイ44、100は、コンプライアンスのあるキャリア115上で位置を保持しながら、互いに相対的に動くことができる。従って、切り離された集積回路ダイ44、100は、IC接点固定具132との十分な接続を維持しながら「ウェーハ」アッセンブリとして取り扱い、処理することができる。
【0087】
従って、プリント配線板282及び圧力板サポート134は、IC基板104と膨張係数TCEが同じ材料で構成する必要はない。コンプライアンスのあるキャリアに取り付けられたダイス44、100は、システム板282及びサポート構造体134と共に動けるので、ダイス44、100は、IC接点固定具132内で、システム板282と電気的接触を維持し続けることができる。更に、ダイス44、100はパッケージング及び切り離し後に試験されるので、ダイスに掛けられるバーンイン及び試験で、組立に起因してダイス44、100に発生する欠陥を検出することができる。
【0088】
図21に示すように、温度コントローラ144をサンドイッチ構造体130に取り付け、試験及び/又はバーンイン処理の間、加熱、冷却できるようにするのが望ましい。コンプライアンスのあるウェーハキャリア115のある実施態様では、キャリア115は熱伝導材で構成され、試験及び/又はバーンインの間、温度制御面として機能し、集積回路の裏側が温度コントローラ144と熱的に接触して、コンプライアンスのあるテープ層115を通して加熱、冷却できるようになっている。
【0089】
又、キャリア115は、導電材で構成し、切り離されて取り付けられている集積回路ダイス80の裏面に電気的接続部を形成しているのが望ましい。
応力金属ばねインターポーザ
図22は、インターポーザ基板154の第1面156aから第2面へ伸びる1つ又はそれ以上のばね152を備える、応力金属ばねインターポーザ151aの部分断面図である。ばね152は、通常、インターポーザ基板154の第1面から伸張する接点パッド158も含んでいる。応力金属ばねインターポーザ151は、超高密度のコンプライアンスのあるスルー接点を形成し、極端な温度範囲に亘って高密度の接続を提供する。
【0090】
機械的構造法によって製作されるポゴピン、ばね、ワイヤ等のような従来型のインターポーザは、ピッチに限界があり、それが接続密度を制限し、大きな接続力を必要とする。
【0091】
応力金属ばねインターポーザ151は、薄膜応力金属を使って薄膜ばねの密な配列を形成し、ポリマー材で構成された基板154によって一緒に保持される。電気的接続は、導電ばね152によって、ポリマーシートの一方側156aから他方側156bへと形成される。
【0092】
2つの面156a、156bの間の高密度接続は、従って、各面を、応力ばねを埋め込んだポリマーシートの片側に向けて押し付けることによって作り出すことができる。ばね152の各端には、違う接点材用のような、異なる先端形状を設けることもできる。
【0093】
応力金属ばねインターポーザ151のある実施態様では、応力金属ばねは、米国特許第3,842,189号、及び/又は同第3,842,189号に従って作られており、両特許を参考文献としてここに援用する。
【0094】
ばねインターポーザ152は、多種多様な形状及び材料を用いて作ることができる。例えば、図23は、第2表面接点領域に158にバンプ162を設けた応力金属ばねインターポーザ151bの側断面図160である。図24は、メッキを施された応力金属ばねインターポーザ151cの側断面図164である。ばね152は、応力ばね84と同様に、製作中にばねが有効ばね角30(図3)を形成するように、初期応力のレベルが異なる金属の層17(図13)で構成されているが望ましい。
【0095】
図25は、第1表面接点領域に充填バンプ159を有し、部分的にポリマーインターポーザ層154を越えて伸張するループ状の応力金属ばね152が、ループ状の応力金属ばねの接点区域92とポリマー層154の上面156bとの間に中空の接点領域157を形成している、応力金属ばねインターポーザ151dの側断面図である。
【0096】
図26は、インターポーザ層が複数のポリマー層154a、154bで構成されている応力金属ばねインターポーザ151eの側断面図である。又、更に、ループ状の応力金属ばねは境界層161も備えている。応力金属ばね84、152のある実施態様では、境界層161は、高い導電性及び/又は耐腐食性を有する金属で構成されている。境界層161は、応力ばねの強度を上げるためにも使われる。
【0097】
図27は、応力金属ばね152の有効ばね角が90度より少なく、インターポーザ基板154が応力金属ばね152に強度及び/又は保護を加えている、応力金属ばねインターポーザ151fの側断面図である。
ループ状応力金属ばねに関する前縁及び接点形状
応力金属チップスケールパッケージ100、応力金属インターポーザ151、或いは、図41の接触器196aのような応力金属接触器196等で使われるループ状応力金属ばね152は、多種多様な前縁及び接点区域形状を有するように形成することができる。
ループ状の応力金属ばねの前縁端部詳細
図28は、ループ状の応力金属ばね84、152の角形の前縁端部155aの部分図である。図29は、ループ状の応力金属ばね84、152の先の尖った前縁端部155bの部分図である。図30は、更に、保持溝157が設けられた、ループ状の応力金属ばね84、152の先の尖った前縁端部155cの部分図である。図31は、更に、保持突起163が設けられた、ループ状の応力金属ばね84、152の先の尖った前縁端部155dの部分図である。
【0098】
有効角の大きいループ状の応力金属ばね84、152の前縁端部155は、通常、接点そのものには使われないので、様々な形状に形成することができる。前縁端部155の所望の形状は、通常、基板から浮いている間の非平面ばね152の形状を制御するために選定され、即ち、ばね先端形状は、応力金属ばね152が正しい方向に持ち上がるのを支援する。ある実施態様では、前縁端部155の形状は、ループばねプローブを、例えば溝157又は突起163等で支持基板154内に係留する目的で選定される。
接点区域構造
図32はループ状応力金属ばね152の接点区域の平面図であり、ポリマー層106、154の外表面156bを越えて伸張している接点区域92は、横に広い矩形の接点領域92aを備えている。図33はループ状応力金属ばね152の接点区域92bの平面図であるが、ポリマー層106、154の外表面156bを越えて伸張している接点区域92bは、横に広い八角形の接点領域92bを備えている。図34はループ状応力金属ばねの接点区域96cの平面図であり、接点区域92cは横に広いダイヤモンド状の接点領域92cを備えている。応力金属ばね84、152は、普通、例えば図13の17a、17bのような写真製版により形成された層で構成されているので、形成される接点区域92は様々な幾何学形状を有し、相互接続構造体に対して寸法公差を提供できるようになっている。
応力金属ばねインターポーザ製作工程
図35は応力金属ばねインターポーザ製作工程の第1段階170を示す図であるが、この段階では犠牲基板172が準備される。ばね152が接点パッド158、159を含んでいる応力金属ばねインターポーザ151の実施態様では、犠牲基板172はパッド形成構造174を含んでいる。犠牲基板172はアルミニウム又はシリコンのようなエッチング可能な多種多様な材料から製作することができる。以下に説明するように、犠牲基板172は、ばねインターポーザ151の製作において一時的な基板として使用され、最終的には、通常、エッチング処理によって除去される。
【0099】
図36は、応力金属ばねインターポーザ製作工程の第2段階176を示す図であり、この段階で、応力金属層17のような1つ又はそれ以上の応力金属ばね層178が犠牲基板172上に形成され、ばね解放領域18は制御可能に形成される。ばね152が接点パッド158を含んでいる応力金属ばねインターポーザ151の実施態様の中には、ばね152の連続層17がパッド形成構造174内に直接形成される例もある。ばね152が接点パッド158を含んでいる応力金属ばねインターポーザ151の別の実施態様では、個別の接点パッド159(図26、図27)が、例えば、充填研磨処理によりパッド形成構造174内に形成され、ばね152の連続層17は個別接点パッド158を覆うように形成される。
【0100】
図37は、応力金属ばねインターポーザ製作工程の第3段階180を示す図であり、この段階で、犠牲基板172から伸張する応力金属ばね152の非平面部分が、解放領域18から解放される際に制御可能に形成される。金属層17にに働いている初期応力により、有効ばね角度30を有するばねが形成される。図37に示す実施態様では、有効ばね角度は180度よりも大きく、例えば270度であり、ばね152は凸型の接点表面92(図39)を有する。
【0101】
尖った接点先端部24を備えたばね152を始めとして、様々なばね形状及び浮き上がり方が使用でき、様々な角度30で接点パッド表面に向かう。ばね152は、コンプライアンスを維持しながら、2つの異なる表面の間に超高密度の接続性を提供する。最初に、基板材料172上に所望の接点形状を形成することにより、接点表面上に多様な接点形状を製作することができる。
【0102】
図37に示す応力金属ばね152は、通常、成形済みの非平面ばね152に施されるメッキ層166(図24)を備えているのが望ましく、メッキは、エラストマー154のような支持基板154の形成前に行い、メッキ166を応力金属ばね152の非平面部分に施す。メッキ166は、ばねの強化、導電率の向上、及び/又は腐食防護としても使用できる。
【0103】
図38は、応力金属ばねインターポーザ製作工程の第4段階182を示す図であり、この段階では、インターポーザ基板184が犠牲基板172の上に形成されるが、通常、応力金属ばね152を覆って形成される。
【0104】
図39は、応力金属ばねインターポーザ製作工程の第5段階186を示す図であり、この段階では、応力金属ばね152の上部接点部分92にアクセスするために、エッチング等により、形成されたインターポーザ基板184の外側部分が除去され188、輪郭付けされたインターポーザ基板154が形成される。
【0105】
図40は、応力金属ばねインターポーザ製作工程の第6段階190を示す図であり、この段階では、犠牲層172が、エッチング等によりインターポーザ基板154から除去され192、応力金属ばね152の下部接点部分158が露出する。
【0106】
ばねインターポーザ151は多種多様な用途に合わせて形成することができ、高密度インタフェース、例えば50−100ミクロンのインタフェースを提供するために使用することができる。ばねインターポーザ151は、所望の用途に基づいて、正方形、長方形、円形など、様々な接点区域形状寸法92を持つように製作できる。
【0107】
又、ばねインポーザ151の実施態様では、有効ばね角度30が180度未満である例もあるが、この場合、ばねは電気接続を確立するために接点先端部24を有している。又、ばねインターポーザ151の実施態様の中には、平面状の下部接点領域158を有することが望ましい例もある。上記のように、導電率、耐腐食性、又ははんだ付け適性等の特性が向上した金属(例えば、金、ロジウム、又はパラジウム)等の境界層161を、境界層161が接点表面92を提供できるように、応力金属層の下部層として形成することも望ましい。
【0108】
ばねインターポーザ151の別の実施態様では、インターポーザ基板154、184は、複数のインターポーザ層154a及び154b(図26)を備えている。ポリイミドのような比較的剛性のある電気絶縁性材料で構成される第1の薄層154aは、インターポーザ151の寸法制御、取扱性及び取付性を高め、一方、通常、比較的剛性の低い電気絶縁性エラストマーで構成される第2のインターポーザ層154bは、ばね152の支持とコンプライアンスを増強する。複合インターポーザ構造154を有するばねインターポーザ151の実施態様では、薄い半剛性層154aが1つ又はそれ以上の開口部を備えることも望ましい。
応力金属ばね接触器
図41は、接点区域92がエラストマー支持基板154から伸張している応力金属ばね接触器196aの側断面図194であり、接点区域92は、ウェーハ基板198を貫通して伸びるビア200に電気的に接続されている。図42は、支持基板154から伸張しているバンプ型接点区域162を有する応力金属ばね接触器196bの側断面図である。図43は、支持基板154から伸張しているメッキの施された接点区域92を有するメッキ付き応力金属ばね接触器196cの側断面図である。図44は、接触器基板198から伸張している接点区域92を有するメッキ付き応力金属ばね接触器196dの側断面図である。
【0109】
図45は、部分的にポリマー層を越えて伸張し、応力金属ばね152の接点区域92と支持基板154の上表面156bとの間に中空領域157を画定している、ループ状の応力金属ばね152を有する応力金属ばね接触器196eの側断面図である。図46は、支持層が複数のポリマー層154a、154bを備えている応力金属ばね接触器196fの側断面図である。図47は、応力金属ばね152が、更に、金、ロジウム又はパラジウム等の境界層161を備え、有効ばね角度30が90度未満である、応力金属ばね接触器196gの側断面図である。
【0110】
図54に示すように、応力金属ばね接触器196ばね構造は、例えばフリップチップデバイス上のはんだバンプと一時的接点を設けるために、バンプ型ウェーハ上のはんだボール220をプロービングするために使用することができる。
【0111】
IBMから市販されているコブラプローブ及びフォームファクター社から市販されているマイクロスプリングのような従来の垂直プローブは、高価で且つリードタイムが長い。応力金属ばね接触器196は、バッチ処理方式を使って製作できるので、接触器の費用を低減しターンアラウンドタイムを短縮できる。
応力金属ばね接触器製作工程
図48は応力金属ばね接触器製作工程の第1段階202を示す図であり、この段階では、ビア200を有するばねプローブ接触器基板198が準備される。
【0112】
図49は応力金属ばね接触器製作工程の第2段階204を示す図であり、この段階では、1つ又はそれ以上の応力金属ばね178がばねプローブ接触器基板198上に設置されるが、各ばね178は、レベルの異なる初期応力を有する複数の層17で構成されている。図50は応力金属ばね接触器製作工程の第3段階206を示す図であり、この段階では、接触器基板から伸張している応力金属層の非平面部分152が制御可能に形成される。
【0113】
図51は応力金属ばね接触器製作工程の第4段階208を示す図であり、この段階では、接触器基板から伸張しているプローブばね152の成形済みの非平面部分が好適にメッキされる166。メッキ層166は、通常、メッキ166が応力金属152の非平面部分に施されるように、エラストマー支持層154、184の形成前に、成形済みのばね152に施される。メッキ166は、ばね強化、導電率向上、及び/又は耐腐食性が必要な接触器実施態様に使用されるのが望ましい。
【0114】
図52は応力金属ばね接触器製作工程の第5段階210を示す図であり、この段階では、第2の基板184が、接触器198から伸張しているプローブばね152の成形済みの非平面部分を覆って形成される。図53は応力金属ばね接触器製作工程の第6段階212を示す図であり、この段階では、応力金属ばね152の上部接点部分92にアクセスするために、形成された第2の基板184の外側部分が除去され214、輪郭付けられた基板154が確立される。
【0115】
図54は、支持基板154から伸張しているばねプローブ接点区域92を有するプローブばね接触器196の側断面図214であるが、コンプライアンスのある応力金属ばね接触器リード線152とプリント配線板(PWB)216との間に、はんだボール接点220及び配線板接点218を介して接続が確立されている。
コンプライアンスのあるウェーハキャリアの試験及びバーンインのための大量並列インタフェース組立体
図55は、コンプライアンスのあるキャリア115上の分離済みの集積回路デバイス44,100への接続のための中間システム板282を有する大量並列試験組立体278aの部分拡大断面図である。図56は、大量並列インタフェース組立体278aの部分斜視図310である。図57は、中間システム板282を有する大量並列試験組立体278aの部分拡大断面図320であり、システム板282に亘る段状のピッチと分布、及び電気コネクタ319a−319nのパッドマトリクス288(図55)を有する可撓性回路290が示されている。図55及び図57に示すように、インタフェース組立体278aは、IC分離122(図20、21)により分離されている1つ又はそれ以上の集積回路44を有する、コンプライアンスのあるウェーハキャリア115に対して位置づけられる。図21及び図55に示す試験構造によって、コンプライアンスのあるキャリア115に搭載されている分離済みの集積回路デバイス44、100についての試験及びバーンインが並行して行えるようになる。チップスケールパッケージ型デバイス44、100は、コンプライアンスのあるキャリア115によって互いに緩やかに保持されており、システムトランスフォーマ板282と接触する。これらデバイスは、図示のように、標準試験器に、電子機器のセットを介し、分離済みの集積回路デバイス44、100と試験器との間の接続部の数を最小限にして接続することができる。
【0116】
大量並列インタフェース組立体278aは、コンプライアンスのあるキャリア115上に配置された各集積回路デバイス44、100それぞれと電気的相互接続を設け、典型的な集積回路試験環境において効果的に働く。インタフェース組立体278aは、ピンカウントが非常に多く、ピッチが密で、周波数が高いことを必要とする用途に、容易に使用できる。又、インタフェース組立体278aは、コンプライアンスのあるキャリア115上の、試験を受ける1つ又はそれ以上の集積回路デバイス44に対し、全トレース46(図7)及び入出力パッド47(図7、図9)に電気接点を提供する。
【0117】
システム板282の下面上の導電パッド284a−284nは、導電パッド284a−284nが、キャリアに搭載された集積回路デバイス44、100上の応力金属ばね84の接点領域92のような電気接点47と整列するように、パッドピッチ324(図57)で配置されるのが一般的である。
【0118】
ここで、システム板282の下面上の導電パッド284a−284nは、通常はシステム板のピッチ326で配置されている導電経路286a−286nに繋がっている。1つ又はそれ以上の接続領域332内に配置されている導電性接続部328a−328nは、システム板282の上表面に配置されており、導電経路286a−286nと繋がっている。導電性接続部328a−328nは、通常、各試験用電子機器モジュール292a−292k(図55)の可撓性回路パッドマトリクスピッチ334と整列しているシステム板パッドマトリクスピッチ320で、接続領域332内に配置されるのが一般的である。
【0119】
システム板マトリクスピッチ320は、通常、導電接続部328a−328nが、可撓性回路パッドマトリクスピッチ334を有する複数のパッドマトリクス288(図56)内に配置されているのが一般的である可撓性回路290上に配置された可撓性回路電気コネクタ319a−319nと整列するように選定される。
【0120】
試験用電子機器モジュール292a−292kは、大量並列インタフェース試験組立体278a−278dの殆どの実施態様にとって、基本的な構造ブロックである。試験用電子機器モジュール292a−292kは、並列に取り付けられ(例えば、図55に示すように)モジュール292a−292kの配列を形成するが、各モジュールは、コンプライアンスのあるキャリア115上の、又はウェーハ形態104の集積回路デバイス44、100の1つ又はそれ以上の列(図58、図59)に対して、又は試験用電子機器モジュール292a−292kがそれに沿って取り付けられる列339又はダイ44の一部に対して、電子部品の支持機能を提供する。
【0121】
図56は大量並列インタフェース組立体278aの部分斜視図310であり、試験用電子機器モジュール292がフレーム302に取り付けられている。図示されている各試験用電子機器モジュール292は、電気接続部319のパッドマトリクス288を有する好適な可撓性回路290と、1つ又はそれ以上のパワー制御モジュール300を含んでいる。各試験用電子機器モジュール292用の可撓性回路290は、1つ又はそれ以上の母線298a−298h上に取り付けられており、フレーム302を通って下向きに伸びている。母線298a−298hは、絶縁された締結具312等によりフレーム302に取り付けられており、これにより実質的に剛性の高い構造を提供している。フレーム302は、システム整列ピン314に対するフレーム、及びフレーム302をウェーハチャック306(図56)又は圧力板サポート134(図21)に対して締結するための手段316に加えて、試験用モジュール整列ガイド318を含んでいることが望ましい。組立体310は、試験用電子機器モジュール292a−292kを保持するための他の手段、例えばカードケージ(図示せず)をフレーム302の下方に配置するなどして備えるのが望ましい。
【0122】
キャリアに搭載されている分離済みの集積回路デバイス44、100は、システム板282にインタフェースしているが、これにより試験器の電子機器に対して、集積回路デバイス44、100の接点ピッチよりも粗いピッチで、標準的インタフェースが提供される。システム板282は、セラミック、高密度プリント配線板、シリコン、ガラス、又はエポキシガラス等、多種多様な材料で構成することができる。各試験用電子機器モジュール292a−292nは、膜即ち可撓性回路290を介してシステム板282に取り付けられる。
【0123】
試験用電子機器モジュール292a−292kとシステム板282との間の接点319、328は、はんだ、圧接、又はばねプローブを使って実現される。ばねプローブ319、328を使用する実施態様では、ばねプローブの先端部は、単点ばね14、交互配置ばね34、ショルダポイントばね50等、寸法形状が多様であり、通常は薄膜又はMEMS処理方法を使って製作され、製造コストの低減、均質性の管理強化、微小パッドピッチ20、及び大きなピンカウントの実現を図っている。ある実施態様では、接点部319、328が、上記のように、又は本願に参考文献として援用している米国特許第5,848,685号又は米国特許第5,613,861号の何れかに開示されているように、写真製版ばねとして構成されている。
【0124】
図55に示す構成は、切り替え可能なパワーモジュール300とピン電子機器カード294からシステム板282までの入出力信号トレース348(図62、図63)を介して電力を供給する。この構成は可撓性回路即ち膜90内の経路の輻輳を緩和する。
【0125】
インタフェース組立体278aにより、キャリアに搭載された集積回路デバイス44、100とシステム板282のインピーダンスが制御された環境との間の電気的離間距離が非常に短くなるので、インタフェース組立体278aが高周波数の用途に使用できるようになる。
【0126】
図58は、ウェーハ104上の集積回路ダイ44、回路基板16、及び矩形システム板282の拡大層平面図であり、中間基板16は、インタフェース組立体278を、ウェーハ104全体、即ち、分離されずにコンプライアンスのあるキャリア115上に搭載されている集積回路に接続する必要のある試験システムの実施態様で一般的に使用される。シリコンで構成するのが望ましい基板16(試験を受ける集積回路ダイ44の熱膨張係数(TCE)に整合するように選定されることが望ましい)では、シリコン基板16は、ウェーハ104と同様のプロセスで、例えば基板16を円形のウェーハ基板16から製作するように、製作するのが望ましい。
【0127】
図58に示すように、各々複数のパッド47を有しているデバイス44は、ウェーハ104上に形成され、通常、一連の行337と列339でウェーハ104に亘って群在し、各行337及び各列339の間には鋸目114が設けられている。セラミック材で構成するのが好ましい基板16では、シリコン基板16は、1つ又はそれ以上の矩形セラミック基板16から製作するのが望ましい。基板16は、基板16のコネクタ表面に配置された1つ又はそれ以上の上部スタンドオフのような移動制限機構を含んでいて、システム板282に対し基板の垂直方向の移動を制限するようにしてもよい。
【0128】
図59は、システム板282に直接接続することのできる、コンプライアンスのあるキャリア115上の分離済みの集積回路ダイ44、100の拡大層平面図である。先に述べたように、キャリアに取り付けられた分離済みの集積回路ダイ44、100は、通常、システム板282と圧力板サポート134(図21)との間に取り付けられる。
【0129】
図58及び図59のシステム板282に示すように、システム板282の上面に配置される導電接続部328a−328nは、可撓性回路接触器319(図57)に接続するために、通常、1つ又はそれ以上の接続領域332内に配置されるが、同じ数の1つ又はそれ以上のパッドマトリクス288(図56)内に配置されるのが望ましい。
【0130】
大量並列インタフェース組立体278のある好適な実施態様では、各試験用電子機器モジュール292(例えば292a)が、他の試験用電子機器モジュール(例えば292b−292k)と同一であり、これによって構成要素の数が同じ(ひいては同一の試験容量を有する)になっている。大量並列インタフェース組立体278のある実施態様では、同じ数のデバイス44を各試験用電子機器モジュール292a−292kに繋いでいる。
【0131】
大量並列インタフェース組立体278の別の実施態様では、ウェーハキャリア115上の試験を受けるデバイス44の外側列339の場合など、個数の異なるデバイス44が、試験用電子機器モジュール292(例えば292a)に繋がれる。試験用構成要素の個数が同じである複数の標準化された試験用電子機器モジュール292a−292kでは、接続されているデバイス44の数より容量の大きい試験用電子機器モジュール292を使用してもよいが、通常、使われていない試験回路294については試験用電子機器モジュール292をプログラムして試験を回避するようにするか、又はシステム制御430(図75)を介して接続される。
【0132】
図60は、ポリアミド層344a及び対向する導電体層346a及び346bを有する可撓性回路構造342aの1つの実施態様の部分断面図である。図61は、誘電性可撓性回路膜構造342b及び対向する導電層346a及び346bを備えた可撓性回路290の別の実施態様の部分断面図である。可撓性回路290のある実施態様では、可撓性回路膜構造342が元々柔軟性を持っている。可撓性回路290の別の実施態様では、可撓性回路構造342は、一方又は双方の導電層が実質的に配置される領域は剛性を有している。導電層346a、346bを調整しながら除去すると、可撓性回路290に導電経路を形成する領域を設けながら望みの可撓性を得ることができる。
【0133】
図62は可撓性膜回路構造の部分斜視図であり、可撓性領域290aが試験カード構造294a上に形成されている。図63は、別の可撓性回路構造の部分斜視図であり、可撓性回路390bが、取り付け具350(例えば締結具、熱かしめ、微細溶接、又は接着剤を含むがこれらに限定されない)により試験カード構造294bに取り付けられている。
【0134】
各電子機器モジュール292a−292kに群在している試験用電子機器294a、294bは、試験を受ける1つ又はそれ以上のデバイス44に刺激を加えて応答を検知する。試験用電子機器294a、294bは、高密度相互接続(HDI)基板342a、342b上に、又は可撓性回路290に接続されている標準的なプリント配線板294a上に構築される。試験電子カード294a、294bは、制御及び応答電子機器(例えば、図75の試験用電子機器440)と共に配置される。各試験用電子機器モジュール292(例292a)は、後端の電子機器及びコンピュータインタフェースリンク296に(例えば、通常、並列又は直列リンクで)接続される。代わりに、試験器電子機器モジュール292a−292kの信号ピンは、例えば外部試験ハードウェア等との電気接続を簡素化するために、花輪状に直列に接続することもできる。試験ベクトル及びセットアップ情報は、システムコンピュータ及び制御電子機器(例えば図75の外部パターン生成器など)からリンク296を介してピンエレクトロニクスに送られる。
【0135】
各試験用電子機器モジュール292a−292kの中では、試験用電子機器カード294が可撓性回路/膜290に接続される。試験用電子機器カード294は、例えばエッチングされた薄膜基板等の上に可撓性回路290と一体的な構造体として製作し、基板の部分をエッチングして可撓性膜回路290を形成するのが望ましい。試験用電子機器モジュールの別の実施態様では、別々の試験用電子機器カード基板294が、代表的にははんだ、ワイヤボンド、又はコネクタにより、可撓性回路に接続される。
【0136】
図64は、試験用電子機器モジュール292の可撓性回路領域290の1つの実施態様を示す部分断面図であるが、このモジュール292は、可撓性回路290に亘って、パワー制御モジュール300と1つ又はそれ以上の母線298との間に熱伝導性の経路354を含んでいることが望ましい。母線298a−298hは、通常は別々に複数の外部電源434a−434h(図75)に電気的に接続されており、これら母線は絶縁体352で互いに電気的に絶縁されている。絶縁体352は、母線298a−298hとは別の層であってもよいし、又は母線298a−298h上の電気的に絶縁された層352であってもよい。
【0137】
図65は、試験用電子機器モジュール292の可撓性回路領域290の別の実施態様の部分断面図であり、1つ又はそれ以上のパワー制御モジュール300a−300hが可撓性回路290の内表面に取り付けられ、複数の母線298a−298hと熱接触状態に配置されている。
【0138】
図66は試験用電子機器モジュール292の可撓性回路領域290の第2の別の実施態様の部分断面図であり、パワー制御モジュール300は可撓性回路300の外表面に電気的に接続されている。パワー制御アクセス領域356は、可撓性回路領域290により画定され、パワー制御モジュール300が、母線298(例えば母線298b)と密な熱接触状態に配置されているのが望ましい。
【0139】
1つ又はそれ以上の電力及び接地母線298a−298hを使用して、試験を受けるデバイス44全てに電力が配給されるようになっている。パワー制御モジュール300は、通常、試験を受けるデバイス44毎に、デカプリングキャパシタ、切り替え制御回路、及びレギュレータを備えており、図64、図65、又は図66に示すように、可撓性回路290上に取り付けられるのが望ましい。
【0140】
試験用電子機器モジュール292a−292kの実施態様の中には、可撓性回路構造290を備えているものがある一方、可撓性回路構造290により提供される独特なインタフェース構造を他の適切なインタフェース設計により実現することもできる。図67は試験用電子機器モジュール292の1つの代替実施態様の斜視図であり、統合されたモジュールベース357がパッドマトリクス平面領域358上に電気接点319のパッドマトリクス288を提供している。1つ又はそれ以上のパワー制御モジュール300は、パワー制御モジュール(PCM)トレース349を介して、パッドマトリクス288上に配置された電気接点319に、そして1つ又はそれ以上の母線298a−298hに電気的に接続されている。パワー制御モジュール300も、1つ又はそれ以上の母線298a−298hと熱接触状態に配置されていることが望ましい。信号トレース348(図62、図63)も、パッドマトリクス288上に配置された電気接点319に接続されている。信号トレース348は、リンク及び構成要素平面領域359に亘って伸張し、試験用電子機器294に接続されるか、そうでなければリンク296まで伸張している。
【0141】
試験用電子機器モジュール292の各種実施態様では、1つ又はそれ以上の母線298が、パワー制御モジュール300に対して電力及び熱シンク経路を提供する。試験を受けるデバイス44のための電力は、通常、別個のレイル母線298を介して提供されるが、代わりに、パワー制御モジュール300と同じレイル母線298を共用してもよい。パワーレイル母線298は、可撓性回路290及びシステム板282及び/又は試験用電子機器カード294a−294kのために機械的サポートを提供することが望ましい。試験用電子機器モジュール292a−292kの実施態様の中には、パワー制御モジュール回路300が連続走査経路内で接続され、試験を受けるデバイス44に個別のパワー及び接地制御を提供する例もある。
別の大量並列試験組立体
図68は、中間システム板282を有する別の大量並列試験組立体278bの部分破断組立図であり、可撓性ばねプローブ360がシステム板282の下面339a(図57)上に配置されている。大量並列試験組立体278bの構造及び特徴は、この他に関しては図55に示す大量並列試験組立体278aと同じである。システム板のばねプローブ360を使用して、システム板282とキャリアに搭載された集積回路デバイス44、100との間に平面コンプライアンスを提供し、広い範囲の温度に関して高品質の電気接続を提供することができる。
【0142】
図69は別のインタフェース組立体278cの部分断面図であり、大型格子配列(LGA)インターポーザコネクタ362が、基板16とシステム板282との間に配置されている。LGAインターポーザコネクタ362は、基板16上の電気接続部64a−64nとシステム板282の下面上の複数の導電パッド284a−284nとの間に複数の導電体164a−164nを提供する。ある実施態様では、LGAインターポーザコネクタ362は、ペンシルベニア州ハリスバーグのAMP社により製造されたAMPIFLEXコネクタである。別の実施態様では、インターポーザコネクタ362は、ウィスコンシン州オークレアのW.L.ゴア・アンド・アソシエーツ社により製造されたGOREMATEである。別の実施態様では、ポゴピンインターポーザ362を使用して、システム板上の対向している導電パッド284a−284nを基板16上の電気接続部64a−64nに接続している。
【0143】
図70は基本的な大量並列試験組立体278dの部分破断組立図であり、基板16は、下部プローブ表面62a上にばねプローブ61a−61nを有し、ばねプローブ61a−61nと基板16の上面62b上に配置された導電体64a−64nの間を接続しているビア68a−68nを有しており、基板16は試験用電子機器モジュール292a−292kに直接接続される。図71は基本的な大量並列試験組立体278bの一部拡大断面図であり、基板16に亘る段状のピッチ及び分布、及び電気接触器319のパッドマトリクス288を有する試験用電子機器モジュール292を示している。
【0144】
図72は、別の大量並列インタフェース組立体378eの部分断面図370であり、基本的なクランプ構造372の1つの実施態様を示している。インタフェース組立体378eは、通常バーンイン試験しか考慮していないので、試験用電子機器294は小型モジュール374にパッケージされている。モジュール374は。システム板282に直接取り付けられ、バーンイン試験に使用されるのが望ましく、この場合、試験用電子機器モジュール292a−292k(例えば図55に示す)よりも試験用電子機器の数は通常はるかに少なくてすむ。図72に示すクランプ構造372は、ウェーハレベルの大量並列インタフェース組立体278にも使用できる。
【0145】
図71に示す大量並列インタフェース組立体378eでは、インターポーザ基板16を、厚さ10ミルのガラス板のような薄い基板16から製作し、基板16にはわずかに屈曲性があり、ウェーハ104上の集積回路ダイ44の表面と馴染んで、ウェーハとインターポーザ基板16との間の非平面性又は反りを許容できるようになっているのが望ましい。
【0146】
インターポーザ基板16の周辺部周りのシール380は、気密室382を形成するのが望ましい。空気圧がシステム板282とインターポーザ基板16との間に加えられることが望ましい。加えられた圧力384は、ウェーハ104上の集積回路ダイ44を試験用電子機器374、294から熱的に隔離する。集積回路ダイ44は、一般的にはバーンイン試験中は高い温度(例えば、摂氏125度乃至160度)で作動することが要求されるが、試験用電子機器294はより低い温度(例えば、摂氏75度以下)で作動することが望ましい。
【0147】
図72のウェーハチャック306bのようなウェーハチャック306は、ウェーハ温度制御システム392を含んでいることが望ましく、ウェーハ温度制御システム392は、ウェーハ加熱システム394及び/又はウェーハ冷却システム396を備え、試験を受けるウェーハ104に対して温度制御を行えるようになっていることが望ましい。ウェーハ熱制御システム392は、普通はシステムコントローラ432(図75)にリンクされている試験システム温度コントローラ388により制御されるのが望ましい。
【0148】
試験用電子機器374、294は、1つ又はそれ以上の冷却室376内に配置されることが望ましい。冷却システム390は、冷却室376内の試験用電子機器374、294の作動温度を制御するために使用されることが望ましく、試験システム温度コントローラ388により制御されることが望ましい。
【0149】
真空トラック408(図73)を有するウェーハ搭載用真空回路386は、ウェーハチャック30内に組み込まれ、真空吸引を行ってウェーハ104を定位置に保持し、基板コネクタ16とウェーハ104の間の平面性を向上させることが望ましい。
試験システムの機構
本試験システムは、ウェーハの整列を行う整列セットアップ、冷却ユニット、及び試験器電子機器から形成されている。整列サブシステムと冷却ユニットは、当該技術分野で既知の技術を使って構築することができる。
システム整列
図73は、大量並列試験組立体400と、ウェーハ104の整列の器材及び手順を示す第1の部分拡大断面図である。試験組立体400は、キャリアリング402を含んでおり、キャリアリングは、整列ピン406のような1つ又はそれ以上の整列機構を含んでおり、それによってキャリアリング402をシステム板282に整列させるようになっているのが望ましい。システム板282は、整列穴426(図74)のような連携整列機構を有しているのが望ましい。
【0150】
基板16は、例えば(環状のKAPTONテープ)のような可撓性テープ404でキャリアリング402に脱着可能に取り付けられており、基板16のコネクタ面62b上の(例えば図71に示すような)電気接続部64a−64nは、整列ピン406と整列し、基板16のコネクタ面62b上の電気接続部64a−64nが、システム板282の下面上の導電パッド284a−284n(図57)と整列するようになっている。
【0151】
ウェーハチャック306は、ウェーハ搭載用真空回路386を含んでおり、ウェーハ搭載面409上に1つ又はそれ以上のウェーハ搭載穴408を有しているのが望ましい。ウェーハ搭載用真空回路386は真空源410に接続可能で、ウェーハ搭載真空回路バルブ412によって密閉される。試験されるウェーハ304は、ウェーハチャック306上に置かれ、ウェーハ搭載穴408を通して掛けられる真空によって適所に保持される。
【0152】
ウェーハチャック306に取り付けられることになる、キャリアリング402に取り付けられている基板16は、ウェーハ104上に制御可能に配置され、ウェーハチャック306に掛けられる真空によって適所に保持される。次に、基板16及び集積回路ダイ44は、例えば修正されたウェーハプローブシステム416内のルックアップ/ルックダウンカメラ414によって正確に整列され、基板16のプローブ表面62a(図57)上のプローブばね61a−61nが、集積回路ダイ44上のダイパッド47と整列される。整列は、通常、ばねチップ24(図2)又は基板16上に印刷されている整列マーク77(図14)を見ることにより達成される。
【0153】
ウェーハチャック306も、1つ又はそれ以上のキャリアリング真空穴420を有するキャリアリング真空回路418を含んでいるのが望ましい。キャリアリング真空回路418も、真空源410に接続可能であり、キャリアリング真空回路バルブ422により密閉される。基板16と試験される集積回路ダイ44とが正確に整列されると、ルックアップ/ルックダウンカメラ414が外され、キャリアリング402がウェーハチャック304上に制御可能に移動され、これで基板16がウェーハ104上に正確に配置され、基板16のプローブ表面62aのプローブばね61a−61nが、集積回路ダイ44上のダイパッド47と接触することになる。キャリアリング402は、キャリアリング真空穴420を通して掛けられる真空により適所に保持される。
【0154】
次に、ウェーハ搭載真空回路バルブ412とキャリアリング真空回路バルブ422を閉じて、ウェーハ搭載真空回路406とキャリアリング真空回路418に掛けられた真空を維持し、試験組立体全体が、システム板282及び試験用電子機器モジュール292a−292kに取り付けるためのユニットとして操作できるようになる。ウェーハ搭載真空回路406及びキャリアリング真空回路418の別の実施態様では、両真空回路406、418に密閉可能な真空を掛けるために1つのバルブが用いられている。真空回路バルブ412及び422が閉じられた後での真空状態維持機能を高めるために、回路406、418はそれぞれ、真空レベルを長時間維持するように働く真空室を備えているのが望ましい。
【0155】
図74は、大量並列試験組立体と、整列器材及び手順424を示す第2の部分拡大断面図であり、大量並列試験組立体278は、1つのシステムに組み立てられ、ウェーハ試験に用いられる。先に述べたように、システム板282は、整列穴426のような、キャリアリング及び/又はウェーハチャック306への整列426のための手段を含んでいるのが望ましい。試験用電子機器モジュール292a−292k及びフレーム302に取り付けられているシステム板282は、キャリアリング402の上に配置され、整列ピン406が整列穴426に嵌る。通常は、取り付けのための手段428が、例えばフレーム302とウェーハチャック306又はキャリアリング402との間に備えられており、これで組立体の構造が完成する。
【0156】
普通は、精密な手段(例えば光学的整列)を使って、微細なピッチプローブばね61a−61nを、試験される集積回路ダイ44上の微細なピッチパッド47に整列させるが、キャリアリング402とシステム板282との間(例えば、整列ピン406と穴426との間)に設けられている機械的整列は、一般的に、分布配置されている電気接続部64a−64nとパッド284a−284nには十分であり、これらは大型の機構であるのが望ましく、それぞれに粗いピッチ322、324を有しているのが望ましい。又、パッドマトリックス上の可撓性回路ピッチ334は比較的大きい(例えば1mmのオーダー)ので、試験用電子機器モジュール292a−292kとシステムカード282との間の整列を、同様な従来型機械的整列技術を使って比較的容易に行えるようにする。
試験器の電子機器
図75は、大量並列インタフェース試験システム278の試験回路430の部分概略ブロック線図である。試験器電子機器430は、これに限定されるわけではないが、制御コンピュータ、パワーサブシステム、試験用電子機器モジュール292a−292k、DCパラメータ及び計測システム436、438及び制御電子機器で構成されている。
【0157】
図75に示すように、試験用電子機器モジュール292は、通常、例えば、これに限定はされないが、試験を受けるデバイス44、100の列339のようなコンプライアンスのあるキャリア115上に取り付けられている、試験される1つ又はそれ以上の集積回路ダイ44,100のグループ464に接続される。
【0158】
試験用電子機器モジュール292a−292kは、それぞれ、試験を受けるデバイス(DUT)44、100へ刺激信号450を送り、応答454をモニターし、試験を受けるデバイスの合格又は不合格情報458を試験器のメモリー内に記憶するか、又は試験を受けるデバイスの合格又は不合格情報458をシステムコントローラー432へ送る。
【0159】
例えば、メモリーの試験では、試験用電子機器モジュール292は、メモリー試験器の全ての重要な機能を有している。この中には、同じ試験用電子機器モジュール292に並行に接続されている、試験を受けるメモリーデバイス44、100を駆動するためのハードウェアパターン生成器446が含まれている。試験用電子機器モジュール292内の応答検知及び失敗検知回路は、試験を受けるデバイス44、100それぞれの失敗位置を必要に応じて記録する。
【0160】
試験用電子機器モジュール292は、再構成可能でプログラム可能なソフトウェアであり、特定のDUT設計又は試験機能に対して試験用電子機器モジュール292を構成することができるのが望ましい。例えば、追加の試験特性を提供するために、内蔵型自己試験(BIST)エンジンを試験用電子機器モジュール292に一体化することもできる。
【0161】
更に、各試験用電子機器モジュール292は、目的のDUTピン47を、試験用電子機器モジュール292内のデジタル試験電子機器か、あるいは、1つ又はそれ以上のDC測定サブシステム438へ送るために、出力信号454のアナログ測定を実行するアナログ多重化機能を提供する。
サンプル試験シーケンス
キャリアに取り付けられた試験される集積回路ダイ44、100が搭載され、整列され、係合された後、システムコントローラ432は、DCパラメータユニット436へ制御可能に接続されている、試験されるように選択されたピン47を除く、試験を受けるデバイス(DUT)44、100に対する全てのパワー及び接地ピン47を接地に接続するよう、全てのパワー制御モジュール300へ制御信号を送る。電源434a−434hは、パワー母線298a−298hと切断されている。選択されたデバイス44、100のパワーピンの完全性は、次にDCパラメータユニット436によって決定される。
【0162】
次に、リレー又は半導体スイッチ435経由でパワーレール298a―298hに接続されているDCパラメータユニット436は、パワー接地短絡をチェックするようにプログラムされている。試験を受ける全デバイスの全てのパワーピンに、同じシーケンスが繰り返される。
【0163】
試験電子機器カード294によって、同じ試験が、DUTの入力及び出力ピン47に実行され、選択された試験を受けるデバイス44、100の短絡及び開路を決定する。通常、試験を受けるデバイス44、100に対する開接続は、当該技術で一般的に行われている、試験を受けるデバイス44、100の入力及び出力ピン47における寄生ダイオードが欠落していることによって検知される。
【0164】
セットアップ試験が完了すると、開路又は短絡に関して、各デバイスピン47の接続の完全性と状態が決定される。ウェーハキャリア115上の、1つ又はそれ以上の試験を受けるデバイス44、100で測定された開路が膨大な数である場合、それは、元々欠陥があるウェーハ104によるものか、システムセットアップによるものか、或いは、1つ又はそれ以上の欠陥のある試験を受けるデバイス44、100によるものかである。
【0165】
試験回路430は、この他の診断障害に対しても、診断能力を提供するのが望ましい。短絡は、適切なビット制御パターンでパワー制御モジュール300及びピン試験用電子機器モジュール292内を走査することにより、パワー母線298及びピン試験用電子機器294から遮断することができる。
【0166】
次に、試験される残りのデバイス44、100は、電力を与えて並列で試験することができる。デバイス44、100を試験するときに、短絡が試験を受けるデバイス内に展開される場合は、特定の試験を受けるデバイス44、100が切断されるように、短絡検知及び報告回路が、各パワー制御モジュール300内に組み立てられるのが望ましい。これに限定されるわけではないが、過渡的デバイス電流試験回路のような別の機構が、例えば、追加試験の適用範囲を提供するために、パワー制御モジュール300内に含まれているのが望ましい。
パワーピン試験
システムコントローラ432は、1つ又はそれ以上の試験を受けるデバイス44、100へのパワー接続を選択的に切り替える。電源434a−434hをターンオフ(切断)して、試験を受けるデバイス44、100は、DCパラメータユニット436を使って開路及び短絡に関して試験される。
I/Oピン試験
同様に、試験を受けるデバイス44、100上の入出力ピン47は、システムコントローラ432によって、漏洩、開路、短絡について試験可能である。
デバイス機能試験
パワーピン試験及びI/Oピン試験の試験結果(例えば電力のために)不合格となった試験を受けているデバイス44、100については何れも、不合格となったデバイス44、100の入出力ピン47が、通常、試験器の共通のリソースから隔離される。パワーピン試験及びI/Oピン試験に合格した残りの試験を受けているデバイス44、100には、次に、電力が供給され、その後、並列で試験される。
機能試験
刺激ユニット448とパターン生成器446は、試験を受けるデバイス44、100への入力パターン450を生成する。DUT応答454は、応答ブロック456内で捕捉され、応答ブロックは、試験を受けるデバイス44、100の出力を、パターン生成器446又は刺激ユニット448からの期待値と比較する。パターン生成器446は、通常メモリー試験で用いられ、デバイスの刺激450及び期待される応答454を示す真理値表は、論理デバイス試験用の刺激ユニット448のパターンメモリー内に記憶することができる。不合格マップ又はログ458は、各ダイ44、100毎に維持される。図75は、パターン生成及び刺激/応答システム構成に関する機能のある実施態様を概略的に示したものであるが、当該分野で一般的に実行されているような、試験を受けるデバイス44の試験要件を満たす別のパターン生成及び刺激/反応システム構成を適宜使用してもよい。
別のインターフェース実施態様
図76は、大量並列インターフェース組立体470aの部分破断アッセンブリ図であり、複数のインターフェースモジュール472a−472jが、システム相互接続板486aに電気的に接続されている。各インターフェースモジュール472(例えば472a)は、導電体319のパッドマトリックス288を含んでおり、それぞれプローブばねインターポーザー476に電気的に接続されている。
【0167】
各プローブばねインターポーザ476は、下面ばねプローブ480を含んでおり、下面ばねプローブはビア482によって上面ばねプローブ484と電気的に接続されている。先に述べたように、上面ばねプローブ484と同様に、下面ばねプローブ480は、単点ばね14、交互配置ばね34、ショルダポイントばね50等のように様々な先端形状を有していてもよく、製造コストを下げ、均一性を良好に保ち、パッドピッチ20微細にし、ピンカウントを大きくするために、通常は、薄膜又はMEMS処理法を使って基板16上に作製される。ある実施態様では、可撓性接続部下面ばねプローブ480及び/又は上面ばねプローブ484は、先に述べたように、又は米国特許番号第5,848,685号、又は同第5,613,861号で開示されているように、写真製版ばねによって作られており、両特許は参考文献としてここに援用する。
【0168】
プローブばねインターポーザ476は、各インターフェースモジュール472a−472jとシステム相互接続板468aとの間に電気的接続を形成する。システム相互接続板486aは、上面電気接触器490、ビア491、上面相互接続構造体492及び下面相互接続構造体492、494を有しており、各インターフェースモジュール472上の1つ又はそれ以上のパッドが、通常一緒に接続されている。更に、システム相互接続板486aは、1つ又はそれ以上のインターフェースモジュール472と電気的に接続される電気構成部品を含んでいるのが望ましい。各インターフェースモジュール472は、システム相互接続板486aに電気的接続を提供するリンク296を含んでおり、更に、インターフェースモジュール回路498を含んでいるのが望ましい。
【0169】
図77は、別の大量並列インターフェース組立体470bの部分破断アッセンブリ図であり、複数のインターフェースモジュール472a−472jが、システム板インターポーザ500を通して、システム相互接続板486bと電気的に接続されており、先に述べたように、システム相互接続板は可撓性プローブばね64a−64nを含んでいる。システム板インターポーザ500は、相互接続構造体502及び/又は1つ又はそれ以上のインターフェースモジュール472と電気的に接続される電気構成部品504を含んでいるのが望ましい。
【0170】
大量並列インターフェース組立体470a、470bは、それぞれ、複数の相互接続される構成体の間に汎用且つ頑強なインターフェースを提供する。大量並列インターフェース組立体470aを用いると、頑強な大量並列インターフェース、例えば、同じ構成要素の間に複雑な並列接続を簡単に形成できる。好適なインターフェース実施態様では、大量並列インターフェース組立体470a、470bは、モジュール特定電子回路498又は共通回路496も含んでいる。
【0171】
図78は、大量並列インターフェース組立体470を用いる、複数のコンピュータシステム508a−508hの間の接続部の、概略ブロック線図506である。図79は、大量並列インターフェース組立体470を用いる、複数の電子回路512a−512nの間の接続部の概略ブロック線図510である。
システムの利点
大量並列インターフェース組立体278a−278dは、試験システムと、ウェーハキャリア115上に配置されていると多数のデバイス44、100との間に信号及び電力の相互接続部を提供し、一方、集積回路44、100とそれに続くアッセンブリ層(例えば、システム板282及び試験用電子機器モジュール292a―292k上のパッドマトリックス288)との間に平面コンプライアンスを提供する。
【0172】
又、大量並列インターフェース組立体278a−278dは、システム板282と、一般的に可撓性回路290を含み、垂直にパッケージされている試験用電子機器モジュール292a―292kとを組み合わせて用いることにより、試験用電子機器モジュール292a―292kと試験を受けるデバイス44、100との間に、電力及び入出力信号用の短い電気経路を提供する。
【0173】
更に、大量並列インターフェース組立体278a−278dは、試験用電子機器モジュール292a―292kと、試験を受けるデバイス44、100との間に電力及び入出力信号用の短い電気経路を提供する(従って往復通過時間が減少する)一方で、試験用電子機器294と試験を受けるデバイス44、100との間に断熱状態を形成して、試験を受けるデバイス44、100を広い温度範囲に亘って制御可能に作動させられるようにし、一方では、試験用電子機器モジュール292a―292kが、感熱性の構成要素から(例えば母線298a−298hを通して)の熱伝達を強化し、望ましくは試験モジュールの温度制御を強化する。
【0174】
先に述べたように、大量並列試験インターフェース組立体278を用いると、何れかのダイでパワー接地短絡が生じたのを検知し、試験用電子機器が損傷を受ける前に、パワー接地短絡が検知されたダイから電力を遮断することができる。加えて、大量並列試験インターフェース組立体278と関係の試験システムを用いれば、多くの、数百個の、更には数十万個のパッドとの接触が確実になされていることを検知し、各接触が接触抵抗の規格内であるかどうかを検知し、各信号線の自己インダクタンス及び自己キャパシタンスが試験信号の完全性に悪影響を与える値を下回っていることを確認することができる。
【0175】
更に、大量並列試験インターフェース組立体278と関係の試験システムを用いれば、一対の信号線の間の、及び信号線と電力又は接地線との間の、相互インダクタンス及び相互キャパシタンスが、試験信号の完全性に悪影響を与える値を下回っているかどうかを検知することができる。
【0176】
又、大量並列試験インターフェース組立体278は、刺激及び応答を検知し、多くの、数百個の、更には数十万個の試験を受けるダイの分析を並列で行い、更には、不合格ダイへの診断検査を、他の全てのダイの試験を平行して継続しながら好適に行う。
【0177】
更に、大量並列試験インターフェース組立体278は、プローブインターフェース構造体16を定期的に停止させ、検査及び/又は清掃する必要なしに、多くの、数百個の、更には数十万個のパッド47との接触を確実に、且つ繰り返して確立できる。
【0178】
更に、大量並列試験インターフェース組立体278は、信号の完全性と電力及び接地の安定性を維持しながら、試験を受けるデバイス44と試験器電子機器430との間の相互接続を本来的に構成及び管理し、確実に、2つ又はそれ以上の隣接するパッド47が1つの試験プローブ先端に接触しないようにする。
【0179】
開示されている大量並列試験インターフェース組立体は、ここでは、集積回路試験、コンピュータネットワーク及び回路接続に関連づけて記載しているが、本組立体及び技術は、電子部品又はデバイス、バーンインデバイス及びMEMSデバイス、又は、必要ならその何れかの組み合わせの中の集積回路と基板との間の相互接続のような、多種多様なデバイス及び回路で実行することができる。
【0180】
従って、本発明は、特定の好適な実施態様を参照しながら詳細に説明してきたが、本発明の関係する技術分野において一般的な技術を有する当業者には、特許請求の範囲に述べる本発明の精神及び範囲を逸脱することなく、様々な修正及び強化を加えうることを理解頂けるであろう。
【図面の簡単な説明】
【図1】
基板から解放する前の写真製版パターン形ばねの線形配列を示す平面図である。
【図2】
基板から解放した後の写真製版パターン形ばねの線形配列を示す斜視図である。
【図3】
短い長さのばねが基板から解放された後の第1有効半径および高さを備えた短い長さの第1写真製版パターン形ばねを示す側面図である。
【図4】
長い長さのばねが基板から解放された後の大きい第2有効半径および高さを備えた長い長さの第2写真製版パターン形ばねを示す側面図である。
【図5】
ばねが基板から解放される前の相互入組み形ばねチップパターンを備えた対向写真製版ばねを示す斜視図である。
【図6】
ばねが基板から解放された後の相互入組み形ばねチップパターンを備えた対向写真製版ばねを示す斜視図である。
【図7】
集積回路デバイス上の単一トレースと対比して相互入組み形多接点写真製版プローブばねの対向対を示す平面図である。
【図8】
ばねが基板から解放される前の対向単接点写真製版プローブばねを示す平面図である。
【図9】
集積回路デバイス上の単一パッドと対比してばねが基板から解放された後の平行および対向単接点写真製版プローブばねを示す平面図である。
【図10】
ショルダ/接点形写真製版プローブばねを示す正面図である。
【図11】
集積回路デバイス上のトレースと対比してショルダ/接点形写真製版ばねを示す部分側断面図である。
【図12】
多ショルダ/接点形写真製版プローブばねを示す斜視図である。
【図13】
制御されたインピーダンス及び集積コンポーネントを提供する多層ばねプローブ基板を示す部分断面図である。
【図14】
複数のトレース分布領域が基板のプローブ表面上の複数のばねプローブと複数のビア接点との間に形成されている基板を示す部分平面図である。
【図15】
基板表面から解放される前の、IC基板表面上に配置された状態の、ICパッドに接続された応力金属ばねを有する集積回路を示す平面配置図である。
【図16】
ICパッドに接続され基板表面から伸長している応力金属ばねを有する集積回路を示す平面配置図である。
【図17】
ICパッドに接続され基板表面から伸長しているループ状の応力金属ばねを有する集積回路の部分破断図であり、応力金属ばねの一部は支持基板内に埋め込まれている状態を示している。
【図18】
半導体ウェーハ上の集積回路デバイスを示す側面図である。
【図19】
コンプライアンスのあるウェーハキャリア基板に搭載された、集積回路デバイスを有する半導体ウェーハの側面図である。
【図20】
コンプライアンスのあるウェーハキャリア基板に搭載された半導体ウェーハの角集積回路同士の間の分離を示す側面図である。
【図21】
試験用固定具に取り付けられているコンプライアンスのあるウェーハキャリア基板上の分離された集積回路を示す側面図である。
【図22】
応力金属ばねインターポーザの側断面図である。
【図23】
第2表面接点領域上にバンプが形成された応力金属ばねインターポーザの側断面図である。
【図24】
メッキの施された応力金属ばねインターポーザの側断面図である。
【図25】
第1表面接点領域上に充填されたバンプを有する応力金属ばねインターポーザと、部分的にポリマーインターポーザ層を越えて伸張しているループ状応力金属ばねの側断面図である。
【図26】
インターポーザ層が複数のポリマー層を備えている応力金属ばねインターポーザの側断面図である。
【図27】
有効ばね角度が90度未満である応力金属ばねインターポーザの側断面図である。
【図28】
ループ状応力金属ばねの角形の前縁の部分図である。
【図29】
ループ状応力金属ばねの先の尖った前縁の部分図である。
【図30】
保持溝を更に備えている、ループ状応力金属ばねの先の尖った前縁の部分図である。
【図31】
保持遠きを更に備えている、ループ状応力金属ばねの先の尖った前縁の部分図である。
【図32】
接点区域が拡張された四角形の接点領域を備えている、ループ状応力金属ばねの接点区域の平面図である。
【図33】
接点区域が拡張された八角形の接点領域を備えている、ループ状応力金属ばねの接点区域の平面図である。
【図34】
接点区域が拡張されたダイヤモンド状の接点領域を備えている、ループ状応力金属ばねの接点区域の平面図である。
【図35】
犠牲基板が提供される、応力金属ばねインターポーザ構成工程の最初の段階を示す図である。
【図36】
1つ又はそれ以上の応力金属ばね層が犠牲基板上に確立される、応力金属ばねインターポーザ構成工程の第2の段階を示す図である。
【図37】
犠牲基板から伸張している応力金属ばねの非平面部分が、制御可能に形成される、応力金属ばねインターポーザ構成工程の第3の段階を示す図である。
【図38】
インターポーザ基板が、犠牲基板の上に、応力金属ばねを覆って形成されている、応力金属ばねインターポーザ構成工程の第4の段階を示す図である。
【図39】
応力金属ばねの上部接点部分にアクセスするために、形成されたインターポーザ基板の外側部分が除去される、応力金属ばねインターポーザ構成工程の第5の段階を示す図である。
【図40】
犠牲基板がインターポーザ基板から除去され、応力金属ばねの下部接点部分が露出する、応力金属ばねインターポーザ構成工程の第6の段階を示す図である。
【図41】
接点区域がエラストマー基板から伸張している応力金属ばね接触器の側断面図である。
【図42】
バンプされた接点区域がエラストマー基板から伸張している、応力金属ばね接触器の側断面図である。
【図43】
接点区域がエラストマー基板から伸張している、メッキの施された応力金属ばね接触器の側断面図である。
【図44】
接点区域が接触器基板から伸張している、メッキの施された応力金属ばね接触器の側断面図である。
【図45】
部分的にポリマー層を越えて伸張しているループ状応力金属ばねを有する応力金属ばね接触器の側断面図である。
【図46】
支持層が複数のポリマー層を備えている、応力金属ばね接触器の側断面図である。
【図47】
応力金属ばねの有効ばね角度が90度未満である、応力金属ばね接触器の側断面図である。
【図48】
ビアを有する接触器基板が設けられる、応力金属ばね接触器構成工程の第1の段階を示す図である。
【図49】
1つ又はそれ以上の応力金属ばね層が接触器基板上に確立される、応力金属ばね接触器構成工程の第2の段階を示す図である。
【図50】
接触器基板から伸張している応力金属ばねの非平面部分が制御可能に形成される、応力金属ばね接触器構成工程の第3の段階を示す図である。
【図51】
接触器基板から伸張している応力金属ばねの、形成された非平面部分が制御可能にメッキされる、応力金属ばね接触器構成工程の好ましい第4の段階を示す図である。
【図52】
第2の基板が、接触器基板から伸張している応力金属ばねの、形成された非平面部分を覆って確立される、応力金属ばね接触器構成工程の第5の段階を示す図である。
【図53】
応力金属ばねの上部接点部分にアクセスするために、第2基板の外側部分が除去される、応力金属ばね接触器構成工程の第6の段階を示す図である。
【図54】
応力金属ばね接触器とプリント配線板の間にはんだボール接点を介して接続が確立されている、ばねプローブ接点区域が接触器基板から伸張している応力金属ばね接触器の側断面図である。
【図55】
試験用電子機器が、キャリアに搭載された試験を受ける集積回路デバイスに近接して配置されている大量並列試験組立体の部分破断組立図である。
【図56】
大量並列相互接続組立体の部分斜視図である。
【図57】
中間システム板を有する大量並列試験組立体の部分拡大断面図であって、コンプライアンスのあるキャリア上の集積回路ダイ、システム板、及びパッドマトリクスを有する柔軟性のある回路に亘る段状のピッチと分布を示している。
【図58】
ウェーハ上の集積回路デバイス、円形基板、及びシステム板の拡大層平面図である。
【図59】
システム板に直接接続可能な、キャリアに搭載された集積回路デバイスの拡大層平面図である。
【図60】
可撓性回路構造のある実施態様の部分断面図である。
【図61】
可撓性回路膜構造を備えている、可撓性回路の別の実施態様を示す部分断面図である。
【図62】
可撓性膜回路構造の部分斜視図であり、可撓性領域は電子試験カード構造の伸張として形成されている。
【図63】
可撓性回路が電子試験カード構造に取り付けられている、別の可撓性回路構造の部分斜視図である。
【図64】
可撓性回路がパワー及び接地バス構造の周りに巻き付けられ、可撓性回路を横切りパワーモジュールと母線の間に熱経路を含んでいるのが望ましい、試験用電子機器モジュールの好適な可撓性回路領域のある実施態様の部分断面図である。
【図65】
可撓性回路の内表面上に搭載された複数のパワーモジュールが複数の母線と熱接触状態に置かれている、試験用電子機器モジュールの可撓性回路領域の、別の実施態様の部分断面図である
【図66】
パワーモジュールが可撓性回路の外表面に電気的に接続され、母線と熱接触状態に配置されている、試験用電子機器モジュールの可撓性回路領域の第2の別の実施態様を示す部分断面図である。
【図67】
統合モジュールベースが、第1の平面領域にパッドマトリクスを提供し、パワーモジュールが、パッドマトリクス及び1つ又はそれ以上の母線に電気的に接続され、母線と熱接触状態に配置されている、試験用電子機器モジュールの別の実施態様を示す斜視図である。
【図68】
可撓性ばねプローブがシステム板の下面上に配置されている、中間システム板を有する別の大量並列試験組立体を示す一部破断組立図である。
【図69】
インターポーザ構造が基板とシステム板の間に電気的接続を提供している、中間システム板を有する又別の大量並列試験組立体を示す一部破断組立図である。
【図70】
ばねプローブを有する基板が、試験用電子機器モジュールに直接接続されている、基本的な大量並列試験組立体の部分破断組立図である。
【図71】
基板と、パッドマトリクスを有する可撓性回路とに亘る段状のピッチ及び分布を示す、基本的な大量並列試験組立体の部分拡大断面図である。
【図72】
バーンイン試験モジュールがシステム板に直接接続され、別々の温度制御システムが、試験を受けるウェーハに搭載された集積回路デバイス用と、試験用電子機器モジュール用とに提供されている、大量並列バーンイン試験組立体の一部破断組立図である。
【図73】
大量並列試験組立体及び整列ハードウェア及び手順を示す第1の部分拡大断面図である。
【図74】
大量並列試験組立体及び整列ハードウェア及び手順を示す第2の部分拡大断面図である。
【図75】
大量並列試験システム用の試験回路の部分概略ブロック線図である。
【図76】
複数のインタフェースモジュールが、複数のプローブばねインターポーザ及びシステム相互接続板構造を介して接続されている、大量並列インタフェース組立体の部分破断組立図である。
【図77】
複数のインタフェースモジュールが、システム板及びシステム相互接続板構造を介して接続されている、大量並列インタフェース組立体の部分破断組立図である。
【図78】
大量並列インタフェース組立体を使っている、複数のコンピュータシステム同士の接続を示す概略ブロック線図である。
【図79】
大量並列インタフェース組立体を使っている、複数の電子回路同士の接続を示す概略ブロック線図である。

Claims (111)

  1. 第1の表面及び第2の表面を有する基板と、集積回路と、前記第1の表面上に配置され前記集積回路と電気的に接続されている複数の集積回路接点と、を有する集積回路ダイと、
    前記集積回路接点と電気的に接続された複数の応力金属ばねであって、前記複数の応力金属ばねは、複数の金属層を備え、その内少なくとも2つの金属層は異なる初期応力レベルを有しており、有効回旋角度で前記集積回路の第1の表面から離れるように回旋するループ構造を形成している応力金属ばねと、
    前記複数の応力金属ばねそれぞれの前記ループ構造の一部がポリマー層を越えて伸張するように、前記集積回路の第1の表面と前記複数の応力金属ばねそれぞれの一部とを実質的に覆っているポリマー層と、を備えていることを特徴とする装置。
  2. 前記金属層の内少なくとも2つの金属層は、同じ金属から構成され、初期応力勾配を有していることを特徴とする請求項1に記載の装置。
  3. 前記複数の応力金属ばねのそれぞれは、実質的に前記ループ構造を覆う少なくとも1つのメッキ層を更に備えていることを特徴とする請求項1に記載の装置。
  4. 前記少なくとも1つのメッキ層の少なくとも1つはニッケルを含んでいることを特徴とする請求項3に記載の装置。
  5. 前記少なくとも1つのメッキ層の少なくとも1つはニッケル合金を含んでいることを特徴とする請求項3に記載の装置。
  6. 前記少なくとも1つのメッキ層の少なくとも1つは金を含んでいることを特徴とする請求項3に記載の装置。
  7. 前記少なくとも1つのメッキ層の少なくとも1つは銀を含んでいることを特徴とする請求項3に記載の装置。
  8. 前記少なくとも1つのメッキ層の少なくとも1つはロジウムを含んでいることを特徴とする請求項3に記載の装置。
  9. 前記少なくとも1つのメッキ層の少なくとも1つはパラジウムを含んでいることを特徴とする請求項3に記載の装置。
  10. 前記少なくとも1つのメッキ層の少なくとも1つはコバルトを含んでいることを特徴とする請求項3に記載の装置。
  11. 前記ポリマー層はエラストマーを含んでいることを特徴とする請求項1に記載の装置。
  12. 前記複数の集積回路接点は接点パッドを備えていることを特徴とする請求項1に記載の装置。
  13. 前記有効回旋角度は90度以内であることを特徴とする請求項1に記載の装置。
  14. 前記有効回旋角度は180度より大きいことを特徴とする請求項1に記載の装置。
  15. 前記有効回旋角度は凡そ270度であることを特徴とする請求項1に記載の装置。
  16. 前記集積回路に直接接続され、前記ループ構造上に外側に凸の層を形成している前記複数の応力金属ばねそれぞれの複数の金属層の第1の金属層は境界層であることを特徴とする請求項1に記載の装置。
  17. 前記境界層は金を含んでいることを特徴とする請求項1に記載の装置。
  18. 前記境界層はロジウムを含んでいることを特徴とする請求項1に記載の装置。
  19. 前記境界層はパラジウムを含んでいることを特徴とする請求項1に記載の装置。
  20. 前記ポリマー層を越えて伸張している前記複数の応力金属ばねそれぞれの前記ループ構造の部分は、更に、拡張された接点表面を備えていることを特徴とする請求項1に記載の装置。
  21. 第1の表面及び第2の表面を有するコンプライアンスのあるウェーハキャリアと、
    前記コンプライアンスのあるウェーハキャリアの第1の表面に接着で取り付けられた複数のチップスケールパッケージと、を備え、
    前記複数のチップスケールはそれぞれに、第1の表面及び第2の表面を有する基板と、集積回路デバイスと、前記第1の表面上に配置され前記集積回路デバイスと電気的に接続されている複数の集積回路接点と、を備えている集積回路ダイを備えていることを特徴とする装置。
  22. 前記複数のチップスケールパッケージそれぞれは、
    前記集積回路接点と電気的に接続された複数の応力金属ばねであって、前記複数の応力金属ばねは、複数の金属層を備え、その内少なくとも2つの金属層は異なる初期応力レベルを有しており、前記応力金属ばねは、前記異なる初期応力レベルにより有効回旋角度で前記集積回路の第1の表面から離れるように回旋するループ構造を形成している応力金属ばねと、
    前記複数の応力金属ばねそれぞれの前記ループ構造の一部がポリマー層を越えて伸張するように、前記集積回路の第1の表面と、前記複数の応力金属ばねそれぞれの一部を実質的に覆っているポリマー層と、を更に備えていることを特徴とする請求項21に記載の装置。
  23. 第1の表面及び第2の表面を有する電気的に絶縁された支持基板と、
    前記支持基板の少なくとも前記第1の表面から前記第2の表面に伸張している少なくとも1つの応力金属ばねであって、前記少なくとも1つの応力金属ばねそれぞれは、複数の金属層を備え、少なくともそのうち2つの金属層は異なる初期応力レベルを有し、前記少なくとも1つの応力金属ばねそれぞれは、有効回旋角度で前記支持基板の前記第1の表面から離れるように回旋するループ構造を形成している応力金属ばねと、を備えていることを特徴とするインターポーザ。
  24. 前記支持基板はポリマーを含んでいることを特徴とする請求項23に記載のインターポーザ。
  25. 前記支持基板はエラストマー含んでいることを特徴とする請求項23に記載のインターポーザ。
  26. 前記金属層の内少なくとも2つの金属層は、同じ金属から構成され、初期応力勾配を有していることを特徴とする請求項23に記載のインターポーザ。
  27. 犠牲基板を設ける段階と、
    前記犠牲基板上に複数の金属層を形成する段階であって、前記金属層の内少なくとも2つの金属層は異なる応力レベルを有する、金属層を形成する段階と、
    前記犠牲基板から有効角度で回旋する非平面状のループ構造を形成するために前記複数の金属層の一部を解放する段階と、
    前記犠牲基板と、複数の金属層と、形成された非平面状のループ構造を覆ってポリマー層を形成する段階と、
    形成された非平面状のループ構造の一部を露出させるために、形成された前記ポリマー層の一部を除去する段階と、
    前記犠牲基板を除去する段階と、を備えている工程。
  28. 前記金属層の内少なくとも2つの金属層は同じ金属から構成され、初期応力勾配を有していることを特徴とする請求項27に記載の工程。
  29. 前記形成された複数の金属層の第1の層は境界層を備えていることを特徴とする請求項27に記載の工程。
  30. 前記境界層は金を含んでいることを特徴とする請求項29に記載の工程。
  31. 前記境界層はロジウムを含んでいることを特徴とする請求項29に記載の工程。
  32. 前記境界層はパラジウムを含んでいることを特徴とする請求項29に記載の工程。
  33. 前記非平面状のループ構造を覆って、少なくとも1つのメッキ層を形成する段階を更に備えていることを特徴とする請求項27に記載の工程。
  34. 前記少なくとも1つの形成されたメッキ層の少なくとも1つはニッケルを含んでいることを特徴とする請求項33に記載の工程。
  35. 前記少なくとも1つの形成されたメッキ層の少なくとも1つはニッケル合金を含んでいることを特徴とする請求項33に記載の工程。
  36. 前記少なくとも1つの形成されたメッキ層の少なくとも1つは金を含んでいることを特徴とする請求項33に記載の工程。
  37. 前記少なくとも1つの形成されたメッキ層の少なくとも1つはロジウムを含んでいることを特徴とする請求項33に記載の工程。
  38. 前記少なくとも1つの形成されたメッキ層の少なくとも1つはパラジウムを含んでいることを特徴とする請求項33に記載の工程。
  39. 前記少なくとも1つの形成されたメッキ層の少なくとも1つはコバルトを含んでいることを特徴とする請求項33に記載の工程。
  40. 前記犠牲基板は、更に少なくとも1つの溝を備えていることを特徴とする請求項27に記載の工程。
  41. 前記犠牲基板は、更に溝を備えており、
    前記溝に導電性材料を充填する段階を更に備え、
    前記複数の金属層の一部は前記導電性材料上に形成されることを特徴とする請求項27に記載の工程。
  42. 前記形成されたポリマー層は複数のポリマー層を備えていることを特徴とする請求項27に記載の工程。
  43. 前記有効回旋角度は90度以内であることを特徴とする請求項27に記載の工程。
  44. 前記有効回旋角度は180度より大きいことを特徴とする請求項27に記載の工程。
  45. 前記有効回旋角度は凡そ270度であることを特徴とする請求項27に記載の工程。
  46. 第1の表面及び第2の表面と、前記第1の表面から前記第2の表面に伸張している複数の導電性ビアと、を有する基板と、
    前記ビアに電気的に接続されている複数の応力金属ばねであって、前記複数の応力金属ばねは、複数の金属層を備え、その内少なくとも2つの金属層は異なる初期応力レベルを有しており、前記応力金属ばねは、前記異なる初期応力レベルにより有効回旋角度で前記基板の第1の表面から離れるように回旋するループ状構造を形成している応力金属ばねと、を備え、前記複数の応力金属ばねのそれぞれは、前記ループ状構造を実質的に覆う1次メッキ層を更に備えていることを特徴とする接触器。
  47. 前記1次メッキ層はニッケルを含んでいることを特徴とする請求項46に記載の接触器。
  48. 前記1次メッキ層はニッケル合金を含んでいることを特徴とする請求項46に記載の接触器。
  49. 前記1次メッキ層はコバルトを含んでいることを特徴とする請求項46に記載の接触器。
  50. 前記1次メッキ層を覆う2次メッキ層を更に備えていることを特徴とする請求項46に記載の接触器。
  51. 前記2次メッキ層はロジウムを含んでいることを特徴とする請求項50に記載の接触器。
  52. 前記2次メッキ層は金を含んでいることを特徴とする請求項50に記載の接触器。
  53. 第1の表面及び第2の表面と、前記第1の表面から前記第2の表面に伸張している複数の導電ビアと、を有する基板と、
    前記ビアに電気的に接続されている複数の応力金属ばねであって、前記複数の応力金属ばねは、複数の金属層を備え、その内少なくとも2つの金属層は異なる初期応力レベルを有しており、前記応力金属ばねは、異なる初期応力レベルにより有効回旋角度で前記基板の第1の表面から離れるように回旋するループ状構造を形成している応力金属ばねと、
    前記複数の応力金属ばねそれぞれの前記ループ構造の一部がポリマー層を越えて伸張するように、前記基板の第1の表面と前記複数の応力金属ばねの一部を実質的に覆っているポリマー層と、を備えていることを特徴とする接触器。
  54. 前記金属層の内少なくとも2つの金属層は、同じ金属から構成され、初期応力勾配を有していることを特徴とする請求項53に記載の接触器。
  55. 前記複数の応力金属ばねそれぞれは、前記ループ状構造を実質的に覆う少なくとも1つのメッキ層を更に備えていることを特徴とする請求項53に記載の接触器。
  56. 前記少なくとも1つのメッキ層のうち少なくとも1つはニッケルを含んでいることを特徴とする請求項55に記載の接触器。
  57. 前記少なくとも1つのメッキ層のうち少なくとも1つはニッケル合金を含んでいることを特徴とする請求項55に記載の接触器。
  58. 前記少なくとも1つのメッキ層のうち少なくとも1つは金を含んでいることを特徴とする請求項55に記載の接触器。
  59. 前記少なくとも1つのメッキ層のうち少なくとも1つはロジウムを含んでいることを特徴とする請求項55に記載の接触器。
  60. 前記少なくとも1つのメッキ層のうち少なくとも1つはパラジウムを含んでいることを特徴とする請求項55に記載の接触器。
  61. 前記少なくとも1つのメッキ層のうち少なくとも1つはコバルトを含んでいることを特徴とする請求項55に記載の接触器。
  62. 前記ポリマー層はエラストマーを含んでいることを特徴とする請求項53に記載の接触器。
  63. 前記複数の応力金属ばねそれぞれの、前記ポリマー層から伸張している前記ループ状構造の部分は、接点パッド領域を備えていることを特徴とする請求項53に記載の接触器。
  64. 前記有効回旋角度は90度以内であることを特徴とする請求項53に記載の接触器。
  65. 前記有効回旋角度は180度より大きいことを特徴とする請求項53に記載の接触器。
  66. 前記有効回旋角度は凡そ270度であることを特徴とする請求項53に記載の接触器。
  67. 第1の表面及び第2の表面と、前記第1の表面から前記第2の表面に伸張している導電ビアと、を有する接触器基板を設ける段階と、
    前記接触器基板上に前記ビアと電気的に接触している複数の金属層を形成する段階であって、前記金属層の内の少なくとも2つの金属層は異なる初期応力レベルを有している、金属層を形成する段階と、
    前記異なる初期応力レベルにより有効回旋角度で前記接触器基板から回旋する非平面状のループ構造を形成するために前記複数の金属層の一部を解放する段階と、
    前記接触器基板を覆い、且つ前記形成された非平面状のループ構造を部分的に覆って、支持基板を形成する段階と、を備えていることを特徴とする工程。
  68. 前記接触器基板を覆い、且つ形成された非平面状のループ構造を部分的に覆って、前記支持基板を形成する前記段階は、
    前記接触器基板と、前記複数の金属層と、前記形成された非平面状のループ構造とを覆って支持基板を形成する段階と、
    前記形成された非平面状のループ構造の一部を露出させるために、前記形成された支持基板の一部を除去する段階と、を更に備えていることを特徴とする請求項67に記載の工程。
  69. 前記有効回旋角度は90度以内であることを特徴とする請求項67に記載の工程。
  70. 前記有効回旋角度は180度より大きいことを特徴とする請求項67に記載の工程。
  71. 前記有効回旋角度は凡そ270度であることを特徴とする請求項67に記載の工程。
  72. 前記形成された複数の金属層の第1の層は、境界層を備えていることを特徴とする請求項67に記載の工程。
  73. 前記境界層は金を含んでいることを特徴とする請求項72に記載の工程。
  74. 前記境界層はロジウムを含んでいることを特徴とする請求項72に記載の工程。
  75. 前記境界層はパラジウムを含んでいることを特徴とする請求項72に記載の工程。
  76. 前記非平面状のループ構造を覆って少なくとも1つのメッキされた層を形成する段階を更に備えていることを特徴とする請求項67に記載の工程。
  77. 前記少なくとも1つの形成されたメッキ層の内の少なくとも1つはニッケルを含んでいることを特徴とする請求項76に記載の工程。
  78. 前記少なくとも1つの形成されたメッキ層の内の少なくとも1つはニッケル合金を含んでいることを特徴とする請求項76に記載の工程。
  79. 前記少なくとも1つの形成されたメッキ層の内の少なくとも1つは金を含んでいることを特徴とする請求項76に記載の工程。
  80. 前記少なくとも1つの形成されたメッキ層の内の少なくとも1つはロジウムを含んでいることを特徴とする請求項76に記載の工程。
  81. 前記少なくとも1つの形成されたメッキ層の内の少なくとも1つはパラジウムを含んでいることを特徴とする請求項76に記載の工程。
  82. 前記少なくとも1つの形成されたメッキ層の内の少なくとも1つはコバルトを含んでいることを特徴とする請求項76に記載の工程。
  83. 前記接触器基板は少なくとも1つの溝を更に備えていることを特徴とする請求項67に記載の工程。
  84. 前記接触器基板は更に溝を備えており、
    前記溝に導電性材料を充填する段階を更に備え、
    前記複数の金属層の一部は前記導電性材料上に形成されることを特徴とする請求項67に記載の工程。
  85. 前記形成されたポリマー層は複数のポリマー層を備えていることを特徴とする請求項67に記載の工程。
  86. 第1の表面及び第2の表面を有するコンプライアンスのあるキャリアと、
    下面及び上面を有する少なくとも1つの集積回路デバイスであって、前記下面は前記コンプライアンスのあるキャリアの第1の表面に接着で取り付けられ、前記少なくとも1つの集積回路それぞれは前記上面上に複数の電気接続部を有している集積回路デバイスと、
    最下面及び最上面と、前記最下面と前記最上面の間に伸張している複数の導電体と、を有するシステム板と、
    前記少なくとも1つの集積回路デバイスそれぞれの前記上面上の複数の電気接続部各々と前記システム板の最下面上の導電体各々との間の複数の導電性接続部と、を備えていることを特徴とするシステム。
  87. 前記少なくとも1つの集積回路デバイスそれぞれの上面上の複数の電気接続部は写真製版パターン成形のばねであることを特徴とする請求項86に記載のシステム。
  88. 前記少なくとも1つの集積回路デバイスそれぞれの上面上の複数の電気接続部各々と前記システム板の最下面上の導電体各々との間の前記複数の導電性接続部は、前記少なくとも1つの集積回路デバイスそれぞれの上面上の応力金属ばねであることを特徴とする請求項86に記載のシステム。
  89. 前記少なくとも1つの集積回路デバイスそれぞれの上面上の複数の電気接続部各々と前記システム板の最下面上の導電体各々との間の前記複数の導電性接続部は、前記システム板の最下面上の可撓性ばねプローブであることを特徴とする請求項86に記載のシステム。
  90. 前記システム板の最下面上の可撓性ばねプローブは、写真製版パターン成形ばねであることを特徴とする請求項89に記載のシステム。
  91. 前記システム板に対する前記少なくとも1つの集積回路デバイスそれぞれの垂直移動を制限する移動制限機構を更に備えていることを特徴とする請求項86に記載のシステム。
  92. 圧力板サポートを更に備え、
    前記コンプライアンスのあるキャリアの第2の表面は、前記圧力板サポートに支持されていることを特徴とする請求項86に記載のシステム。
  93. 前記圧力板サポートには、コンプライアンスがあることを特徴とする請求項92に記載のシステム。
  94. 前記コンプライアンスのあるキャリアは、熱伝導性であることを特徴とする請求項86に記載のシステム。
  95. 前記コンプライアンスのあるキャリアは、導電性であることを特徴とする請求項86に記載のシステム。
  96. 平面領域上に複数の導電パッドを有する少なくとも1つのインタフェースモジュールであって、前記導電パッドの内の少なくとも1つは少なくとも1つの相互接続領域に接続され、前記少なくとも1つの相互接続領域の内の少なくとも1つには少なくとも1つのリンクが接続されているインタフェースモジュールと、
    前記少なくとも1つのインタフェースモジュールそれぞれの平面領域上の前記複数の導電パッドが、前記システム板の最上面上の前記複数の導電体の少なくとも1つと接触するように、前記少なくとも1つのインタフェースモジュールそれぞれをシステム板に対して固定保持するための手段と、を更に備えていることを特徴とする請求項86に記載のシステム。
  97. 前記少なくとも1つのインタフェースモジュールそれぞれは、第1の表面及び第2の表面を有する回路を含んでおり、前記複数の導電パッドは、前記第1の表面上に配置されていることを特徴とする請求項96に記載のシステム。
  98. 前記回路は可撓性回路であることを特徴とする請求項97に記載のシステム。
  99. 前記回路は半剛性の回路であることを特徴とする請求項97に記載のシステム。
  100. 前記回路は剛性のある回路であることを特徴とする請求項97に記載のシステム。
  101. 前記少なくとも1つの相互接続領域の内の少なくとも1つと電気的に接続されている少なくとも1つの母線を更に備えていることを特徴とする請求項96に記載のシステム。
  102. 前記少なくとも1つのインタフェースモジュール上に配置されている少なくとも1つのパワー制御モジュールを更に備えており、前記少なくとも1つのパワー制御モジュールは、それぞれ、前記少なくとも1つの母線と前記少なくとも1つの相互接続領域の内の少なくとも1つの領域との間に電気的に接続されているいることを特徴とする請求項101に記載のシステム。
  103. 前記少なくとも1つのパワー制御モジュールは、前記少なくとも1つの母線と熱接触の状態にあることを特徴とする請求項102に記載のシステム。
  104. 前記少なくとも1つの母線上に配置されている少なくとも1つのパワー制御モジュールを更に備えており、前記少なくとも1つのパワー制御モジュールは、それぞれ、前記少なくとも1つの母線と前記少なくとも1つの相互接続領域の内の少なくとも1つの領域との間に電気的に接続されていることを特徴とする請求項101に記載のシステム。
  105. 前記少なくとも1つのパワー制御モジュールは、前記少なくとも1つの母線と熱接触の状態にあることを特徴とする請求項104に記載のシステム。
  106. 第1の表面及び第2の表面を有するコンプライアンスのあるキャリアを設ける段階と、
    少なくとも1つの集積回路デバイスの下面と上面とを備えているウェーハを前記コンプライアンスのあるキャリアの前記第1の表面上に接着で取り付ける段階であって、前記少なくとも1つの集積回路は、それぞれ、前記上面上に複数の電気接続部を有している、ウェーハを取り付ける段階と、
    前記少なくとも1つの集積回路デバイスのそれぞれを、前記少なくとも1つの集積回路デバイスの他のデバイスから分離する段階と、
    最下面及び最上面と、前記最下面と最上面との間に伸張する複数の導電体と、を有するシステム板を設ける段階と、
    前記少なくとも1つの集積回路デバイスそれぞれの前記上面上の複数の電気接続部それぞれと、前記システム板の最下面上の導電体それぞれとの間に、複数の導電性接続部を作り出す段階と、を備えていることを特徴とする工程。
  107. 平面領域上に複数の導電パッドを有する少なくとも1つのインタフェースモジュールを提供する段階であって、前記導電パッドの内の少なくとも1つは少なくとも1つの相互接続領域に接続され、前記少なくとも1つの相互接続領域の内の少なくとも1つには少なくとも1つのリンクが接続されている、インタフェースモジュールを提供する段階と、
    前記少なくとも1つのインタフェースモジュールそれぞれの前記平面領域上の前記複数の導電パッドが、前記システム板の前記最上面上の前記複数の導電体の少なくとも1つに接触するように、前記少なくとも1つのインタフェースモジュールを、システム板に対して固定保持する段階と、を更に備えていることを特徴とする請求項106に記載の工程。
  108. 圧力板サポートを設ける段階と、
    前記コンプライアンスのあるキャリアの第2の表面を、前記圧力板サポート上に支持する段階と、を更に備えていることを特徴とする請求項106に記載の工程。
  109. 前記圧力板サポートはコンプライアンスがあることを特徴とする請求項108に記載の工程。
  110. 前記コンプライアンスのあるキャリアは熱伝導性であることを特徴とする請求項106に記載の工程。
  111. 前記コンプライアンスのあるキャリアは導電性であることを特徴とする請求項106に記載の工程。
JP2002504502A 2000-06-20 2001-06-20 集積回路をテスト及びパッケージングするためのシステム Pending JP2004501517A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21292300P 2000-06-20 2000-06-20
US21372900P 2000-06-22 2000-06-22
PCT/US2001/019792 WO2001098793A2 (en) 2000-06-20 2001-06-20 Systems for testing integraged circuits during burn-in

Publications (2)

Publication Number Publication Date
JP2004501517A true JP2004501517A (ja) 2004-01-15
JP2004501517A5 JP2004501517A5 (ja) 2008-07-24

Family

ID=26907616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002504502A Pending JP2004501517A (ja) 2000-06-20 2001-06-20 集積回路をテスト及びパッケージングするためのシステム

Country Status (8)

Country Link
US (1) US6791171B2 (ja)
EP (1) EP1292834B1 (ja)
JP (1) JP2004501517A (ja)
KR (1) KR20020026585A (ja)
AT (1) ATE311604T1 (ja)
AU (1) AU2001268630A1 (ja)
DE (1) DE60115437T2 (ja)
WO (1) WO2001098793A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095749A (ja) * 2005-09-27 2007-04-12 Alps Electric Co Ltd インターポーザ
JP2008510966A (ja) * 2004-08-19 2008-04-10 フォームファクター, インコーポレイテッド 一度に多数方式でワイヤボンドプローブカードを作製する方法
US7750655B2 (en) 2004-05-24 2010-07-06 Tokyo Electron Limited Multilayer substrate and probe card
JP2012069952A (ja) * 2010-09-22 2012-04-05 Palo Alto Research Center Inc マイクロスプリング接点を有するインターポーザ、ならびにインターポーザを製作する方法および使用する方法
JP2012068249A (ja) * 2010-09-22 2012-04-05 Palo Alto Research Center Inc 積層構造に少なくとも部分的に埋設された微細ばね、および、その製造方法
JP2014071069A (ja) * 2012-10-01 2014-04-21 Japan Electronic Materials Corp 垂直型プローブ
JP2018535101A (ja) * 2015-09-30 2018-11-29 Tdk株式会社 弾性的に取り付けられた、ダンピング部を有するセンサ構成体
KR102478906B1 (ko) * 2022-07-08 2022-12-21 배명철 소자 테스트 소켓 및 그 제조 방법

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331763B1 (en) * 1998-04-15 2001-12-18 Tyco Electronics Corporation Devices and methods for protection of rechargeable elements
US7126220B2 (en) * 2002-03-18 2006-10-24 Nanonexus, Inc. Miniaturized contact spring
US6812718B1 (en) * 1999-05-27 2004-11-02 Nanonexus, Inc. Massively parallel interface for electronic circuits
US6917525B2 (en) * 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US7382142B2 (en) 2000-05-23 2008-06-03 Nanonexus, Inc. High density interconnect system having rapid fabrication cycle
US6888362B2 (en) * 2000-11-09 2005-05-03 Formfactor, Inc. Test head assembly for electronic components with plurality of contoured microelectronic spring contacts
US7952373B2 (en) * 2000-05-23 2011-05-31 Verigy (Singapore) Pte. Ltd. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
US7132841B1 (en) * 2000-06-06 2006-11-07 International Business Machines Corporation Carrier for test, burn-in, and first level packaging
US6690184B1 (en) * 2000-08-31 2004-02-10 Micron Technology, Inc. Air socket for testing integrated circuits
US6564986B1 (en) * 2001-03-08 2003-05-20 Xilinx, Inc. Method and assembly for testing solder joint fractures between integrated circuit package and printed circuit board
AU2003207364A1 (en) * 2002-02-26 2003-09-09 Koninklijke Philips Electronics N.V. Non-volatile memory test structure and method
US7694246B2 (en) * 2002-06-19 2010-04-06 Formfactor, Inc. Test method for yielding a known good die
US7436494B1 (en) 2003-03-28 2008-10-14 Irvine Sensors Corp. Three-dimensional ladar module with alignment reference insert circuitry
US8198576B2 (en) 2003-03-28 2012-06-12 Aprolase Development Co., Llc Three-dimensional LADAR module with alignment reference insert circuitry comprising high density interconnect structure
US20070052084A1 (en) * 2005-08-26 2007-03-08 Kennedy John V High density interconnect assembly comprising stacked electronic module
US7056131B1 (en) 2003-04-11 2006-06-06 Neoconix, Inc. Contact grid array system
US7113408B2 (en) * 2003-06-11 2006-09-26 Neoconix, Inc. Contact grid array formed on a printed circuit board
US20050120553A1 (en) * 2003-12-08 2005-06-09 Brown Dirk D. Method for forming MEMS grid array connector
US7114961B2 (en) 2003-04-11 2006-10-03 Neoconix, Inc. Electrical connector on a flexible carrier
US7758351B2 (en) 2003-04-11 2010-07-20 Neoconix, Inc. Method and system for batch manufacturing of spring elements
US7244125B2 (en) * 2003-12-08 2007-07-17 Neoconix, Inc. Connector for making electrical contact at semiconductor scales
US8584353B2 (en) 2003-04-11 2013-11-19 Neoconix, Inc. Method for fabricating a contact grid array
JP4062168B2 (ja) * 2003-05-19 2008-03-19 ソニー株式会社 端子部材の構造
US7321167B2 (en) * 2003-06-04 2008-01-22 Intel Corporation Flex tape architecture for integrated circuit signal ingress/egress
US6869290B2 (en) * 2003-06-11 2005-03-22 Neoconix, Inc. Circuitized connector for land grid array
US20050024220A1 (en) * 2003-06-12 2005-02-03 Shidla Dale John Built-in circuitry and method to test connectivity to integrated circuit
US6933853B2 (en) * 2003-06-12 2005-08-23 Hewlett-Packard Development Company, L.P. Apparatus and method for detecting and communicating interconnect failures
US7087439B2 (en) * 2003-09-04 2006-08-08 Hewlett-Packard Development Company, L.P. Method and apparatus for thermally assisted testing of integrated circuits
US7093209B2 (en) * 2003-09-16 2006-08-15 Advanced Micro Devices, Inc. Method and apparatus for packaging test integrated circuits
US6973722B2 (en) * 2003-11-17 2005-12-13 Palo Alto Research Center Incorporated Release height adjustment of stressy metal devices by annealing before and after release
TWI309094B (en) 2004-03-19 2009-04-21 Neoconix Inc Electrical connector in a flexible host and method for fabricating the same
US7025601B2 (en) * 2004-03-19 2006-04-11 Neoconix, Inc. Interposer and method for making same
US7400041B2 (en) * 2004-04-26 2008-07-15 Sriram Muthukumar Compliant multi-composition interconnects
US7750487B2 (en) * 2004-08-11 2010-07-06 Intel Corporation Metal-metal bonding of compliant interconnect
US7114959B2 (en) * 2004-08-25 2006-10-03 Intel Corporation Land grid array with socket plate
US7049208B2 (en) 2004-10-11 2006-05-23 Intel Corporation Method of manufacturing of thin based substrate
US7777313B2 (en) * 2005-06-07 2010-08-17 Analog Devices, Inc. Electronic package structures and methods
US7439731B2 (en) * 2005-06-24 2008-10-21 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US8031486B2 (en) * 2005-11-16 2011-10-04 Hamilton Sundstrand Corporation Electrical distribution system and modular high power board contactor therefor
TWI286209B (en) * 2006-01-27 2007-09-01 Mjc Probe Inc Integrated circuit probe card
US7692433B2 (en) * 2006-06-16 2010-04-06 Formfactor, Inc. Sawing tile corners on probe card substrates
KR100782168B1 (ko) * 2006-06-30 2007-12-06 주식회사 엔티에스 전자모듈 검사용 소켓
US7782072B2 (en) * 2006-09-27 2010-08-24 Formfactor, Inc. Single support structure probe group with staggered mounting pattern
WO2008047644A1 (fr) * 2006-10-11 2008-04-24 Zuken Inc. Procédé de traitement d'informations électriques pour un système de conception assistée par ordinateur, dispositif issu de celui-ci, programme et support de stockage lisible par ordinateur
US8130007B2 (en) * 2006-10-16 2012-03-06 Formfactor, Inc. Probe card assembly with carbon nanotube probes having a spring mechanism therein
US8248091B2 (en) 2006-10-20 2012-08-21 Taiwan Semiconductor Manufacturing Co., Ltd. Universal array type probe card design for semiconductor device testing
US7882405B2 (en) * 2007-02-16 2011-02-01 Atmel Corporation Embedded architecture with serial interface for testing flash memories
DE102007010611A1 (de) * 2007-03-02 2008-09-04 Conti Temic Microelectronic Gmbh Kontakteinheit zum elektrischen Kontaktieren eines Bauteils
DE102007010677A1 (de) * 2007-03-02 2008-09-04 Conti Temic Microelectronic Gmbh Kontakteinheit zum elektrischen Kontaktieren eines Bauteils
FR2917236B1 (fr) 2007-06-07 2009-10-23 Commissariat Energie Atomique Procede de realisation de via dans un substrat reconstitue.
JP2009130114A (ja) * 2007-11-22 2009-06-11 Tokyo Electron Ltd 検査装置
US8033012B2 (en) * 2008-03-07 2011-10-11 Taiwan Semiconductor Manufacturing Co., Ltd. Method for fabricating a semiconductor test probe card space transformer
US8310682B2 (en) 2008-03-20 2012-11-13 University Of Utah Research Foundation Apparatus, system and methods for analyzing pressure-sensitive devices
US8257119B2 (en) * 2008-12-19 2012-09-04 Honeywell International Systems and methods for affixing a silicon device to a support structure
US7888951B2 (en) * 2009-02-10 2011-02-15 Qualitau, Inc. Integrated unit for electrical/reliability testing with improved thermal control
US20110042137A1 (en) * 2009-08-18 2011-02-24 Honeywell International Inc. Suspended lead frame electronic package
US8278752B2 (en) 2009-12-23 2012-10-02 Intel Corporation Microelectronic package and method for a compression-based mid-level interconnect
FR2959350B1 (fr) * 2010-04-26 2012-08-31 Commissariat Energie Atomique Procede de fabrication d?un dispositif microelectronique et dispositif microelectronique ainsi fabrique
US8872176B2 (en) 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts
US8257110B2 (en) * 2010-10-07 2012-09-04 Tsmc Solid State Lighting Ltd. Light emitting diode light bar module with electrical connectors formed by injection molding
US8384269B2 (en) * 2010-10-20 2013-02-26 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Electrostatic bonding of a die substrate to a package substrate
US9227835B2 (en) * 2010-11-23 2016-01-05 Honeywell International Inc. Vibration isolation interposer die
US8866708B2 (en) * 2011-01-21 2014-10-21 Peter Sui Lun Fong Light emitting diode switch device and array
KR101149759B1 (ko) * 2011-03-14 2012-06-01 리노공업주식회사 반도체 디바이스의 검사장치
KR101217825B1 (ko) * 2011-03-25 2013-01-02 주식회사 프로텍 Led 칩 정렬 방법 및 led 칩 정렬 장치
US8641428B2 (en) 2011-12-02 2014-02-04 Neoconix, Inc. Electrical connector and method of making it
US9680273B2 (en) 2013-03-15 2017-06-13 Neoconix, Inc Electrical connector with electrical contacts protected by a layer of compressible material and method of making it
TWI503905B (zh) * 2013-05-09 2015-10-11 矽品精密工業股份有限公司 打線結構
US20140361800A1 (en) * 2013-06-05 2014-12-11 Qualcomm Incorporated Method and apparatus for high volume system level testing of logic devices with pop memory
KR101544844B1 (ko) * 2014-02-28 2015-08-20 김형익 와이어드 러버 컨택트 및 그 제조방법
US9591758B2 (en) * 2014-03-27 2017-03-07 Intel Corporation Flexible electronic system with wire bonds
JP2015211162A (ja) * 2014-04-28 2015-11-24 旭硝子株式会社 ガラス部材の製造方法、ガラス部材、およびガラスインターポーザ
US9466560B2 (en) * 2014-05-28 2016-10-11 United Microelectronics Corp. Interposer fabricating process and wafer packaging structure
KR102123882B1 (ko) * 2014-06-02 2020-06-18 (주)케미텍 테스트 장치의 커넥터 시스템에 구비되는 커넥터 어셈블리, 커넥터 서브어셈블리 및 커넥터 핀
ITTO20150229A1 (it) * 2015-04-24 2016-10-24 St Microelectronics Srl Procedimento per produrre bump in componenti elettronici, componente e prodotto informatico corrispondenti
US9726720B2 (en) * 2015-11-02 2017-08-08 Cheng Yun Technology Co., Ltd. Integrated circuit test device and integrated circuit test equipment
CN113196070A (zh) * 2018-08-06 2021-07-30 麦翠斯测试股份有限公司 用于测试半导体装置的设备及方法
TWI681195B (zh) * 2018-11-21 2020-01-01 中華精測科技股份有限公司 探針卡裝置及其調節式探針
DE102019102457B3 (de) 2019-01-31 2020-07-09 Infineon Technologies Ag Prüfvorrichtung mit sammelschienenmechanismus zum testen einer zu testenden vorrichtung
US11248769B2 (en) 2019-04-10 2022-02-15 Peter Sui Lun Fong Optic for touch-sensitive light emitting diode switch
TWI752709B (zh) * 2020-11-03 2022-01-11 中華精測科技股份有限公司 板狀連接器與其雙臂式串接件、及晶圓測試組件
US11940478B2 (en) * 2020-12-07 2024-03-26 Duke University Electronic device characterization systems and methods
US11662366B2 (en) 2021-09-21 2023-05-30 International Business Machines Corporation Wafer probe with elastomer support
US11675010B1 (en) 2021-11-30 2023-06-13 International Business Machines Corporation Compliant wafer probe assembly
CN117405963B (zh) * 2023-12-14 2024-02-13 青岛大志美德电气有限公司 一种具有防护结构的过电压保护器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842189A (en) * 1973-01-08 1974-10-15 Rca Corp Contact array and method of making the same
JPH06181301A (ja) * 1992-12-14 1994-06-28 Fujitsu Ltd 固体撮像素子
JPH08264622A (ja) * 1995-03-22 1996-10-11 Disco Abrasive Syst Ltd アライメント方法及びキーパターン検出方法
JPH0964049A (ja) * 1995-08-30 1997-03-07 Oki Electric Ind Co Ltd チップサイズパッケージ及びその製造方法
WO2001080315A2 (en) * 2000-04-12 2001-10-25 Formfactor, Inc. Shaped springs and methods of fabricating and using shaped springs
JP2003501819A (ja) * 1999-05-27 2003-01-14 ナノネクサス インコーポレイテッド 電子回路のための大規模並列処理インターフェース

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035046A (en) * 1976-01-15 1977-07-12 Amp Incorporated Miniature electrical connector for parallel panel members
US4320438A (en) 1980-05-15 1982-03-16 Cts Corporation Multi-layer ceramic package
US4423401A (en) 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
US5917707A (en) * 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US6043563A (en) 1997-05-06 2000-03-28 Formfactor, Inc. Electronic components with terminals and spring contact elements extending from areas which are remote from the terminals
US5829128A (en) 1993-11-16 1998-11-03 Formfactor, Inc. Method of mounting resilient contact structures to semiconductor devices
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US4758927A (en) 1987-01-21 1988-07-19 Tektronix, Inc. Method of mounting a substrate structure to a circuit board
US5121298A (en) 1988-08-16 1992-06-09 Delco Electronics Corporation Controlled adhesion conductor
WO1991013533A1 (en) 1990-03-01 1991-09-05 Motorola, Inc. Selectively releasing conductive runner and substrate assembly
US5166774A (en) 1990-10-05 1992-11-24 Motorola, Inc. Selectively releasing conductive runner and substrate assembly having non-planar areas
US5152695A (en) 1991-10-10 1992-10-06 Amp Incorporated Surface mount electrical connector
US6054756A (en) 1992-07-24 2000-04-25 Tessera, Inc. Connection components with frangible leads and bus
FR2704690B1 (fr) * 1993-04-27 1995-06-23 Thomson Csf Procédé d'encapsulation de pastilles semi-conductrices, dispositif obtenu par ce procédé et application à l'interconnexion de pastilles en trois dimensions.
US5786701A (en) 1993-07-02 1998-07-28 Mitel Semiconductor Limited Bare die testing
US5385477A (en) 1993-07-30 1995-01-31 Ck Technologies, Inc. Contactor with elastomer encapsulated probes
US5548091A (en) 1993-10-26 1996-08-20 Tessera, Inc. Semiconductor chip connection components with adhesives and methods for bonding to the chip
US5820014A (en) 1993-11-16 1998-10-13 Form Factor, Inc. Solder preforms
US5983493A (en) 1993-11-16 1999-11-16 Formfactor, Inc. Method of temporarily, then permanently, connecting to a semiconductor device
US5878486A (en) 1993-11-16 1999-03-09 Formfactor, Inc. Method of burning-in semiconductor devices
US5806181A (en) 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US5884398A (en) 1993-11-16 1999-03-23 Form Factor, Inc. Mounting spring elements on semiconductor devices
US6023103A (en) 1994-11-15 2000-02-08 Formfactor, Inc. Chip-scale carrier for semiconductor devices including mounted spring contacts
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US6064213A (en) 1993-11-16 2000-05-16 Formfactor, Inc. Wafer-level burn-in and test
US5897326A (en) 1993-11-16 1999-04-27 Eldridge; Benjamin N. Method of exercising semiconductor devices
US5772451A (en) 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
US5912046A (en) 1993-11-16 1999-06-15 Form Factor, Inc. Method and apparatus for applying a layer of flowable coating material to a surface of an electronic component
US6029344A (en) 1993-11-16 2000-02-29 Formfactor, Inc. Composite interconnection element for microelectronic components, and method of making same
US5455390A (en) 1994-02-01 1995-10-03 Tessera, Inc. Microelectronics unit mounting with multiple lead bonding
US5416429A (en) 1994-05-23 1995-05-16 Wentworth Laboratories, Inc. Probe assembly for testing integrated circuits
US5706174A (en) 1994-07-07 1998-01-06 Tessera, Inc. Compliant microelectrionic mounting device
US5518964A (en) * 1994-07-07 1996-05-21 Tessera, Inc. Microelectronic mounting with multiple lead deformation and bonding
US5532612A (en) 1994-07-19 1996-07-02 Liang; Louis H. Methods and apparatus for test and burn-in of integrated circuit devices
MY112945A (en) 1994-12-20 2001-10-31 Ibm Electronic devices comprising dielectric foamed polymers
US6046076A (en) 1994-12-29 2000-04-04 Tessera, Inc. Vacuum dispense method for dispensing an encapsulant and machine therefor
GB9503953D0 (en) 1995-02-28 1995-04-19 Plessey Semiconductors Ltd An mcm-d probe tip
JP3212063B2 (ja) 1995-03-08 2001-09-25 日本電信電話株式会社 光レセプタクル
US5998864A (en) 1995-05-26 1999-12-07 Formfactor, Inc. Stacking semiconductor devices, particularly memory chips
US6042712A (en) 1995-05-26 2000-03-28 Formfactor, Inc. Apparatus for controlling plating over a face of a substrate
US5613861A (en) 1995-06-07 1997-03-25 Xerox Corporation Photolithographically patterned spring contact
US6007349A (en) 1996-01-04 1999-12-28 Tessera, Inc. Flexible contact post and post socket and associated methods therefor
JP2908747B2 (ja) 1996-01-10 1999-06-21 三菱電機株式会社 Icソケット
US5977629A (en) * 1996-01-24 1999-11-02 Micron Technology, Inc. Condensed memory matrix
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US6001671A (en) 1996-04-18 1999-12-14 Tessera, Inc. Methods for manufacturing a semiconductor package having a sacrificial layer
US6030856A (en) 1996-06-10 2000-02-29 Tessera, Inc. Bondable compliant pads for packaging of a semiconductor chip and method therefor
US5994222A (en) 1996-06-24 1999-11-30 Tessera, Inc Method of making chip mountings and assemblies
US6020220A (en) 1996-07-09 2000-02-01 Tessera, Inc. Compliant semiconductor chip assemblies and methods of making same
US6050829A (en) 1996-08-28 2000-04-18 Formfactor, Inc. Making discrete power connections to a space transformer of a probe card assembly
US6075289A (en) 1996-10-24 2000-06-13 Tessera, Inc. Thermally enhanced packaged semiconductor assemblies
US6081035A (en) 1996-10-24 2000-06-27 Tessera, Inc. Microelectronic bond ribbon design
US6054337A (en) 1996-12-13 2000-04-25 Tessera, Inc. Method of making a compliant multichip package
US6049972A (en) 1997-03-04 2000-04-18 Tessera, Inc. Universal unit strip/carrier frame assembly and methods
US5994781A (en) 1997-05-30 1999-11-30 Tessera, Inc. Semiconductor chip package with dual layer terminal and lead structure
AU8280398A (en) 1997-06-30 1999-01-19 Formfactor, Inc. Sockets for semiconductor devices with spring contact elements
US6045396A (en) 1997-09-12 2000-04-04 Trw Inc. Flex cable connector for cryogenic application
US6245444B1 (en) * 1997-10-02 2001-06-12 New Jersey Institute Of Technology Micromachined element and method of fabrication thereof
US6080605A (en) 1998-10-06 2000-06-27 Tessera, Inc. Methods of encapsulating a semiconductor chip using a settable encapsulant
US6002168A (en) 1997-11-25 1999-12-14 Tessera, Inc. Microelectronic component with rigid interposer
US5944537A (en) * 1997-12-15 1999-08-31 Xerox Corporation Photolithographically patterned spring contact and apparatus and methods for electrically contacting devices
US6078186A (en) 1997-12-31 2000-06-20 Micron Technology, Inc. Force applying probe card and test system for semiconductor wafers
US6080932A (en) 1998-04-14 2000-06-27 Tessera, Inc. Semiconductor package assemblies with moisture vents
JP3536728B2 (ja) * 1998-07-31 2004-06-14 セイコーエプソン株式会社 半導体装置及びテープキャリア並びにそれらの製造方法、回路基板、電子機器並びにテープキャリア製造装置
US6063648A (en) 1998-10-29 2000-05-16 Tessera, Inc. Lead formation usings grids
US6784541B2 (en) * 2000-01-27 2004-08-31 Hitachi, Ltd. Semiconductor module and mounting method for same
JP2001044226A (ja) * 1999-07-27 2001-02-16 Mitsubishi Electric Corp 半導体装置の製造方法および半導体装置
US6827584B2 (en) 1999-12-28 2004-12-07 Formfactor, Inc. Interconnect for microelectronic structures with enhanced spring characteristics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842189A (en) * 1973-01-08 1974-10-15 Rca Corp Contact array and method of making the same
JPH06181301A (ja) * 1992-12-14 1994-06-28 Fujitsu Ltd 固体撮像素子
JPH08264622A (ja) * 1995-03-22 1996-10-11 Disco Abrasive Syst Ltd アライメント方法及びキーパターン検出方法
JPH0964049A (ja) * 1995-08-30 1997-03-07 Oki Electric Ind Co Ltd チップサイズパッケージ及びその製造方法
JP2003501819A (ja) * 1999-05-27 2003-01-14 ナノネクサス インコーポレイテッド 電子回路のための大規模並列処理インターフェース
WO2001080315A2 (en) * 2000-04-12 2001-10-25 Formfactor, Inc. Shaped springs and methods of fabricating and using shaped springs

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750655B2 (en) 2004-05-24 2010-07-06 Tokyo Electron Limited Multilayer substrate and probe card
JP2008510966A (ja) * 2004-08-19 2008-04-10 フォームファクター, インコーポレイテッド 一度に多数方式でワイヤボンドプローブカードを作製する方法
JP2007095749A (ja) * 2005-09-27 2007-04-12 Alps Electric Co Ltd インターポーザ
JP4599265B2 (ja) * 2005-09-27 2010-12-15 アルプス電気株式会社 インターポーザ
JP2012069952A (ja) * 2010-09-22 2012-04-05 Palo Alto Research Center Inc マイクロスプリング接点を有するインターポーザ、ならびにインターポーザを製作する方法および使用する方法
JP2012068249A (ja) * 2010-09-22 2012-04-05 Palo Alto Research Center Inc 積層構造に少なくとも部分的に埋設された微細ばね、および、その製造方法
KR101750713B1 (ko) 2010-09-22 2017-06-27 팔로 알토 리서치 센터 인코포레이티드 마이크로스프링 접점을 갖는 인터포저 및 그 제조 및 사용 방법
JP2014071069A (ja) * 2012-10-01 2014-04-21 Japan Electronic Materials Corp 垂直型プローブ
JP2018535101A (ja) * 2015-09-30 2018-11-29 Tdk株式会社 弾性的に取り付けられた、ダンピング部を有するセンサ構成体
US10683201B2 (en) 2015-09-30 2020-06-16 Tdk Corporation Resiliently mounted sensor system with damping
KR102478906B1 (ko) * 2022-07-08 2022-12-21 배명철 소자 테스트 소켓 및 그 제조 방법

Also Published As

Publication number Publication date
US20020171133A1 (en) 2002-11-21
EP1292834B1 (en) 2005-11-30
DE60115437D1 (de) 2006-01-05
WO2001098793A3 (en) 2002-07-25
US6791171B2 (en) 2004-09-14
WO2001098793A2 (en) 2001-12-27
EP1292834A2 (en) 2003-03-19
AU2001268630A1 (en) 2002-01-02
DE60115437T2 (de) 2006-07-27
KR20020026585A (ko) 2002-04-10
ATE311604T1 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
JP2004501517A (ja) 集積回路をテスト及びパッケージングするためのシステム
US7621761B2 (en) Systems for testing and packaging integrated circuits
US7772860B2 (en) Massively parallel interface for electronic circuit
US7349223B2 (en) Enhanced compliant probe card systems having improved planarity
US6917525B2 (en) Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US7578057B2 (en) Method of fabricating segmented contactor
EP1183604A2 (en) Test interface for electronic circuirts
KR100707044B1 (ko) 집적회로 웨이퍼 프로브카드 조립체의 구조물 및 그 제조방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111021