JP2004363234A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2004363234A
JP2004363234A JP2003157971A JP2003157971A JP2004363234A JP 2004363234 A JP2004363234 A JP 2004363234A JP 2003157971 A JP2003157971 A JP 2003157971A JP 2003157971 A JP2003157971 A JP 2003157971A JP 2004363234 A JP2004363234 A JP 2004363234A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
manufacturing
forming
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157971A
Other languages
English (en)
Inventor
Shigeki Komori
重樹 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2003157971A priority Critical patent/JP2004363234A/ja
Priority to US10/700,770 priority patent/US6844228B2/en
Priority to KR10-2003-0080113A priority patent/KR100525329B1/ko
Publication of JP2004363234A publication Critical patent/JP2004363234A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】抵抗素子の抵抗値を高精度に設定することが可能な、半導体装置の製造方法を得る。
【解決手段】フォトレジスト6は、抵抗素子として機能するポリシリコン膜4Rの上面及び側面を覆って、素子分離絶縁膜2上に形成されている。フォトレジスト6を注入マスクとして用いて、シリコン基板1の上面に対してほぼ垂直な方向から、リン等のn型の不純物7をイオン注入する。ドーズ量は、1013/cmのオーダーである。これにより、トランジスタ形成領域内におけるシリコン基板1の上面内に、MOSFETのLDD領域8が形成される。不純物7は、ポリシリコン膜4G内にも注入される。一方、ポリシリコン膜4Rはフォトレジスト6によって覆われているため、不純物7はポリシリコン膜4R内には注入されない。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
この発明は、半導体装置の製造方法に関し、特に、トランジスタと素子分離絶縁膜上に形成された抵抗素子とを備える半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
LSIは、トランジスタや抵抗素子等によって構成されている。抵抗素子の一つとしては、ポリシリコン膜内に不純物をドープすることによって形成された抵抗素子(本明細書において「ポリシリコン抵抗」と称する)が、広く用いられている。ポリシリコン抵抗では、ポリシリコン膜内に含まれている不純物の量によって抵抗値が定まる。
【0003】
以下、nチャネルMOSFETとポリシリコン抵抗とを備える従来の半導体装置の製造方法について説明する。従来の半導体装置の製造方法は、(a)p型のシリコン基板の上面内に素子分離絶縁膜を形成する工程と、(b)素子形成領域内におけるシリコン基板の上面上に、MOSFETのゲート絶縁膜を形成する工程と、(c)不純物がドープされていない第1のポリシリコン膜を、全面的に形成する工程と、(d)第1のポリシリコン膜をパターニングすることにより、ポリシリコン抵抗として機能する第2のポリシリコン膜を素子分離絶縁膜上に形成するとともに、MOSFETのゲート電極として機能する第3のポリシリコン膜をゲート絶縁膜上に形成する工程と、(e)シリコン基板の上面に対してほぼ垂直な方向(垂直方向)からn型の第1の不純物をイオン注入することにより、MOSFETのLDD領域(「エクステンション領域」とも称されている)を形成する工程と、(f)上記垂直方向に対して傾斜した方向からp型の第2の不純物をイオン注入することにより、MOSFETのポケット領域を形成する工程と、(g)第2のポリシリコン膜の側面にサイドウォールスペーサを形成する工程と、(h)シリコン基板の上面に対してほぼ垂直な方向からn型の第3の不純物をイオン注入することにより、ポリシリコン抵抗の抵抗値を設定すべく第2のポリシリコン膜内に第3の不純物を注入するとともに、MOSFETのソース・ドレイン領域を形成する工程と、(i)シリコン基板内に注入された第1〜第3の不純物を活性化させるための熱処理を行う工程とを備えている。
【0004】
なお、ポリシリコン抵抗の製造方法に関する技術は、例えば下記の特許文献1〜4に開示されている。
【0005】
【特許文献1】
特許第3153921号公報
【特許文献2】
特開昭59−16361号公報
【特許文献3】
特開平6−314770号公報
【特許文献4】
特開平11−251520号公報
【0006】
【発明が解決しようとする課題】
半導体装置の高機能化に伴い、近年では、ディジタル回路とアナログ回路とが搭載されたICチップが広く用いられている。特にアナログ回路においては、抵抗素子はトランジスタのバイアス設定等のために利用されるため、抵抗値が高精度に設定されている必要がある。
【0007】
しかしながら、従来の半導体装置の製造方法によると、第3の不純物のみならず、第1及び第2の不純物も、第2のポリシリコン膜内にイオン注入されてしまう。即ち、第2のポリシリコン膜内に、複数種類の不純物が注入されてしまう。また、第2のポリシリコン膜内に含まれている第1〜第3の不純物の一部が、工程(i)における熱処理によって、第2のポリシリコン膜の外部に拡散(外方拡散)してしまう。しかも、熱処理の際にはウェハ面内で温度差が生じる場合があり、この場合は、不純物が外方拡散する量に関しても、ウェハ面内でばらつきが生じる。
【0008】
このように従来の半導体装置の製造方法によると、ポリシリコン抵抗の抵抗値を所望の値に設定することが困難であり、また、たとえ抵抗素子の寸法が同一であっても、ウェハ面内で抵抗値にばらつきが生じるという問題がある。
【0009】
本発明は、かかる問題を解決するために成されたものであり、抵抗素子の抵抗値を高精度に設定することが可能であり、また、ウェハ面内での抵抗値のばらつきを抑制することが可能な、半導体装置の製造方法を得ることを目的とするものである。
【0010】
【課題を解決するための手段】
本発明に係る半導体装置の製造方法は、(a)半導体基板の主面内に、素子分離絶縁膜を形成する工程と、(b)素子分離絶縁膜によって規定された素子形成領域内において、ゲート絶縁膜を、半導体基板の主面上に形成する工程と、(c)素子分離絶縁膜上及びゲート絶縁膜上に、半導体膜を形成する工程と、(d)半導体膜をパターニングすることにより、抵抗素子を素子分離絶縁膜上に形成するとともに、ゲート電極をゲート絶縁膜上に形成する工程と、(e)抵抗素子を覆って、マスク材を形成する工程と、(f)マスク材を注入マスクとして用いて第1導電型の第1の不純物をイオン注入することにより、素子形成領域内における半導体基板の主面内に、第1のソース・ドレイン領域を形成する工程と、(g)工程(f)よりも後に実行され、抵抗素子の側面にサイドウォールスペーサを形成する工程と、(h)工程(g)よりも後に実行され、第1導電型の第2の不純物をイオン注入することにより、抵抗素子内に第2の不純物を注入するとともに、素子形成領域内における半導体基板の主面内に、第2のソース・ドレイン領域を形成する工程と、(i)第2の不純物を活性化させるための熱処理を行う工程とを備える。
【0011】
【発明の実施の形態】
実施の形態1.
図1〜11は、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。本実施の形態1では、トランジスタとしてnチャネルMOSFETが形成される場合の例について説明する。
【0012】
図1を参照して、まず、周知のトレンチ分離技術によって、p型のシリコン基板1の上面内に、素子分離絶縁膜2を部分的に形成する。シリコン基板1は、抵抗素子が形成される予定の領域(抵抗素子形成領域)と、トランジスタが形成される予定の領域(トランジスタ形成領域)とを有している。抵抗素子形成領域は素子分離領域上にあり、トランジスタ形成領域は素子形成領域上にある。素子分離絶縁膜2は、酸化シリコン(SiO)から成り、抵抗素子形成領域内におけるシリコン基板1の上面内に形成されている。トランジスタ形成領域は、素子分離絶縁膜2によって規定されている。
【0013】
図2を参照して、次に、熱酸化法によって、シリコン酸化膜3を形成する。シリコン酸化膜3は、トランジスタ形成領域内におけるシリコン基板1の上面上に形成されている。
【0014】
図3を参照して、次に、CVD法によって、不純物がドープされていないポリシリコン膜4を形成する。ポリシリコン膜4は、図2に示した構造上に全面的に形成されている。具体的に、ポリシリコン膜4は、素子分離絶縁膜2上及びシリコン酸化膜3上に形成されている。次に、写真製版法によって、所定の開口パターンを有するフォトレジスト5を、ポリシリコン膜4上に形成する。
【0015】
図4を参照して、次に、フォトレジスト5をエッチングマスクとして用いて、異方性ドライエッチング法によって、ポリシリコン膜4を部分的に除去する。これにより、ポリシリコン膜4がパターニングされて、ポリシリコン膜4R,4Gが形成される。ポリシリコン膜4Rは、抵抗素子として機能し、素子分離絶縁膜2上に形成されている。ポリシリコン膜4Gは、MOSFETのゲート電極として機能し、シリコン酸化膜3上に形成されている。ポリシリコン膜4Gとシリコン基板1とによって挟まれている部分のシリコン酸化膜3は、ゲート絶縁膜として機能する。次に、フォトレジスト5を除去する。
【0016】
図5を参照して、次に、写真製版法によって、フォトレジスト6を形成する。フォトレジスト6は、ポリシリコン膜4Rの上面及び側面を覆って、素子分離絶縁膜2上に形成されている。次に、フォトレジスト6を注入マスクとして用いて、シリコン基板1の上面に対してほぼ垂直な方向(垂直方向)から、リン(P)等のn型の不純物7をイオン注入する。ドーズ量は、1013/cmのオーダーである。これにより、トランジスタ形成領域内におけるシリコン基板1の上面内に、MOSFETのLDD領域(第1のソース・ドレイン領域)8が形成される。不純物7は、ポリシリコン膜4G内にも注入される。一方、ポリシリコン膜4Rはフォトレジスト6によって覆われているため、不純物7はポリシリコン膜4R内には注入されない。
【0017】
図6を参照して、次に、フォトレジスト6を注入マスクとして用いて、上記垂直方向に対して傾斜した方向から、ボロン(B)等のp型の不純物9をイオン注入する。ドーズ量は、1014/cmのオーダーである。これにより、トランジスタ形成領域内におけるシリコン基板1の上面内に、MOSFETのポケット領域10が形成される。ポケット領域10は、ポリシリコン膜4Gの端部の下方に形成されている。不純物9は、ポリシリコン膜4Gの側面内にも注入される。一方、ポリシリコン膜4Rはフォトレジスト6によって覆われているため、不純物9はポリシリコン膜4R内には注入されない。
【0018】
図7を参照して、次に、フォトレジスト6を除去する。次に、CVD法によって、シリコン酸化膜11を、図6に示した構造上に全面的に形成する。
【0019】
図8を参照して、次に、異方性ドライエッチング法によって、シリコン酸化膜11をエッチングする。これにより、ポリシリコン膜4Rの側面にサイドウォールスペーサ12Rが形成されるとともに、ポリシリコン膜4Gの側面にサイドウォールスペーサ12Gが形成される。また、シリコン酸化膜3が部分的に除去されることにより、LDD領域8の上面が部分的に露出する。
【0020】
図9を参照して、次に、シリコン基板1の上面に対してほぼ垂直な方向から、ヒ素(As)又はリン等のn型の不純物13をイオン注入する。ドーズ量は、1015/cmのオーダーである。これにより、トランジスタ形成領域内におけるシリコン基板1の上面内に、MOSFETのソース・ドレイン領域(第2のソース・ドレイン領域)14が形成される。ソース・ドレイン領域14は、LDD領域8よりも高濃度であり、また、LDD領域8よりも深く形成されている。不純物13は、ポリシリコン膜4G,4R内にも注入される。次に、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるために、所定の熱処理を行う。
【0021】
図10を参照して、次に、CVD法、写真製版法、及び異方性ドライエッチング法によって、シリコン酸化膜15を形成する。シリコン酸化膜15は、ポリシリコン膜4R及びサイドウォールスペーサ12Rを覆って、素子分離絶縁膜2上に形成されている。
【0022】
図11を参照して、次に、コバルト(Co)等の金属膜を、図10に示した構造上に全面的に形成する。その後、所定の熱処理を行うことにより、コバルトシリサイド層16G,16SDを形成する。コバルトシリサイド層16Gはポリシリコン膜4G上に形成されており、コバルトシリサイド層16SDはソース・ドレイン領域14上に形成されている。シリコン酸化膜15がシリサイドプロテクション膜として機能するため、ポリシリコン膜4R上にはコバルトシリサイド層は形成されない。
【0023】
このように本実施の形態1に係る半導体装置の製造方法によれば、図5,6に示した工程において、ポリシリコン膜4Rはフォトレジスト6によって覆われているため、不純物7,9はポリシリコン膜4R内には注入されない。従って、抵抗素子として機能するポリシリコン膜4R内には、図9に示した工程において、不純物13のみが注入される。即ち、ポリシリコン膜4R内には、一種類の不純物しか注入されない。そのため、導電型が異なる複数種類の不純物が抵抗素子内に注入される従来の半導体装置の製造方法と比較すると、抵抗素子の抵抗値を高精度に設定することが可能となる。
【0024】
実施の形態2.
図12〜18は、本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。まず、上記実施の形態1と同様の方法によって、図2に示した構造を得る。図12を参照して、次に、窒素雰囲気中で所定の熱処理を行うことにより、シリコン酸化膜3と、素子分離絶縁膜2の上面とを窒化する。これにより、シリコン窒化膜20,21が形成される。シリコン窒化膜20はシリコン基板1の上面上に形成されており、シリコン窒化膜21は素子分離絶縁膜2上に形成されている。
【0025】
図13を参照して、次に、上記実施の形態1と同様の方法によって、ポリシリコン膜4R,4G、LDD領域8、及びポケット領域10を形成する。ポリシリコン膜4Rはシリコン窒化膜21上に形成されており、ポリシリコン膜4Gはシリコン窒化膜20上に形成されている。
【0026】
図14を参照して、次に、CVD法によって、シリコン窒化膜22を、図13に示した構造上に全面的に形成する。次に、CVD法によって、シリコン酸化膜23をシリコン窒化膜22上に形成する。
【0027】
図15を参照して、次に、異方性ドライエッチング法によって、シリコン酸化膜23及びシリコン窒化膜20〜22をエッチングする。これにより、ポリシリコン膜4Rの側面にサイドウォールスペーサ26Rが形成されるとともに、ポリシリコン膜4Gの側面にサイドウォールスペーサ26Gが形成される。サイドウォールスペーサ26Rは、シリコン窒化膜24Rとシリコン酸化膜25Rとを有しており、サイドウォールスペーサ26Gは、シリコン窒化膜24Gとシリコン酸化膜25Gとを有している。シリコン窒化膜24Rはポリシリコン膜4Rの側面に形成されており、シリコン窒化膜24Gはポリシリコン膜4Gの側面に形成されている。また、シリコン窒化膜20,21が部分的に除去されることにより、LDD領域8及び素子分離絶縁膜2の各上面が部分的に露出する。
【0028】
図16を参照して、次に、シリコン基板1の上面に対してほぼ垂直な方向から、n型の不純物13をイオン注入する。これにより、MOSFETのソース・ドレイン領域14が形成される。
【0029】
図17を参照して、次に、CVD法によって、シリコン窒化膜を、図16に示した構造上に全面的に形成する。次に、CVD法によって、シリコン酸化膜をシリコン窒化膜上に形成する。次に、写真製版法及び異方性ドライエッチング法によってこれらの膜をパターニングすることにより、シリコン窒化膜27及びシリコン酸化膜28を形成する。シリコン窒化膜27は、ポリシリコン膜4Rの上面及びサイドウォールスペーサ26Rを覆って、素子分離絶縁膜2上に形成されている。次に、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるために、所定の熱処理を行う。
【0030】
図18を参照して、次に、コバルト等の金属膜を、図17に示した構造上に全面的に形成する。その後、所定の熱処理を行うことにより、コバルトシリサイド層16G,16SDを形成する。シリコン窒化膜27及びシリコン酸化膜28がシリサイドプロテクション膜として機能するため、ポリシリコン膜4R上にはコバルトシリサイド層は形成されない。
【0031】
このように本実施の形態2に係る半導体装置の製造方法によれば、図17に示したように、ポリシリコン膜4Rの表面(即ち、底面、側面、及び上面)は、シリコン窒化膜21,24R,27によって覆われている。そして、ポリシリコン膜4Rの表面がシリコン窒化膜21,24R,27によって覆われた状態で、不純物7,9,13を活性化させるための熱処理が行われる。従って、ポリシリコン膜4R内に含まれている不純物13が、この熱処理(及びコバルトシリサイド層16G,16SDを形成するための熱処理)によってポリシリコン膜4Rの外部に拡散することを、シリコン窒化膜21,24R,27の作用によって回避することができる。その結果、抵抗素子の抵抗値をより高精度に設定することが可能であり、また、抵抗素子の抵抗値がウェハ面内でばらつくことを回避することもできる。
【0032】
第1の変形例として、シリコン窒化膜21,24R,27のうち、シリコン窒化膜27のみを形成してもよい。図19,20は、本実施の形態2の第1の変形例に係る半導体装置の製造方法を工程順に示す断面図である。まず、上記実施の形態1と同様の方法によって、図9に示した構造を得る。図19を参照して、次に、図17に示した工程と同様の方法によって、シリコン窒化膜27及びシリコン酸化膜28を形成する。次に、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるために、所定の熱処理を行う。
【0033】
図20を参照して、次に、図18に示した工程と同様の方法によって、コバルトシリサイド層16G,16SDを形成する。
【0034】
本実施の形態2の第1の変形例に係る半導体装置の製造方法によれば、図19に示したように、ポリシリコン膜4Rの上面は、シリコン窒化膜27によって覆われている。そして、ポリシリコン膜4Rの上面がシリコン窒化膜27によって覆われた状態で、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるための熱処理が行われる。従って、ポリシリコン膜4R内に含まれている不純物13が、この熱処理(及びコバルトシリサイド層16G,16SDを形成するための熱処理)によってポリシリコン膜4Rの上面から外部に拡散することを、シリコン窒化膜27の作用によって回避することができる。
【0035】
第2の変形例として、シリコン窒化膜21,24R,27のうち、シリコン窒化膜24Rのみを形成してもよい。図21〜25は、本実施の形態2の第2の変形例に係る半導体装置の製造方法を工程順に示す断面図である。まず、上記実施の形態1と同様の方法によって、図6に示した構造を得る。図21を参照して、次に、フォトレジスト6を除去する。次に、図14に示した工程と同様の方法によって、シリコン窒化膜22及びシリコン酸化膜23を形成する。
【0036】
図22を参照して、次に、図15に示した工程と同様の方法によって、サイドウォールスペーサ26R,26Gを形成する。
【0037】
図23を参照して、次に、図16に示した工程と同様の方法によって、MOSFETのソース・ドレイン領域14を形成する。次に、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるために、所定の熱処理を行う。
【0038】
図24を参照して、次に、図10に示した工程と同様の方法によって、シリコン酸化膜15を形成する。
【0039】
図25を参照して、次に、図11に示した工程と同様の方法によって、コバルトシリサイド層16G,16SDを形成する。
【0040】
本実施の形態2の第2の変形例に係る半導体装置の製造方法によれば、図23に示したように、ポリシリコン膜4Rの側面は、シリコン窒化膜24Rによって覆われている。そして、ポリシリコン膜4Rの側面がシリコン窒化膜24Rによって覆われた状態で、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるための熱処理が行われる。従って、ポリシリコン膜4R内に含まれている不純物13が、この熱処理(及びコバルトシリサイド層16G,16SDを形成するための熱処理)によってポリシリコン膜4Rの側面から外部に拡散することを、シリコン窒化膜24Rの作用によって回避することができる。
【0041】
第3の変形例として、シリコン窒化膜21,24R,27のうち、シリコン窒化膜21のみを形成してもよい。図15に示したサイドウォールスペーサ26R,26Gの代わりに、図8に示したサイドウォールスペーサ12R,12Gを形成する。また、図17に示したシリコン窒化膜27及びシリコン酸化膜28の代わりに、図10に示したシリコン酸化膜15を形成する。これにより、シリコン窒化膜21,24R,27のうち、シリコン窒化膜21のみを形成することができる。
【0042】
本実施の形態2の第3の変形例に係る半導体装置の製造方法によれば、ポリシリコン膜4Rの底面は、シリコン窒化膜21によって覆われている。そして、ポリシリコン膜4Rの底面がシリコン窒化膜21によって覆われた状態で、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるための熱処理が行われる。従って、ポリシリコン膜4R内に含まれている不純物13が、この熱処理(及びコバルトシリサイド層16G,16SDを形成するための熱処理)によってポリシリコン膜4Rの底面から外部に拡散することを、シリコン窒化膜21の作用によって回避することができる。
【0043】
第4の変形例として、シリコン窒化膜21,24R,27のうち、任意の2つを形成してもよい。
【0044】
実施の形態3.
図26〜28は、本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す断面図である。本実施の形態3では、トランジスタとしてpチャネルMOSFETが形成される場合の例について説明する。
【0045】
図1を参照して、まず、周知のトレンチ分離技術によって、n型のシリコン基板1の上面内に、素子分離絶縁膜2を部分的に形成する。
【0046】
図2を参照して、次に、熱酸化法によって、トランジスタ形成領域内におけるシリコン基板1の上面上に、シリコン酸化膜3を形成する。
【0047】
図26を参照して、次に、CVD法によって、不純物がドープされていないシリコンゲルマニウム(SiGe)膜30を、図2に示した構造上に全面的に形成する。次に、CVD法によって、不純物がドープされていないポリシリコン膜31を、シリコンゲルマニウム膜30上に形成する。次に、CVD法によって、不純物がドープされていないシリコンゲルマニウム膜32を、ポリシリコン膜31上に形成する。
【0048】
図27を参照して、次に、写真製版法及び異方性ドライエッチング法によって、シリコンゲルマニウム膜30,32及びポリシリコン膜31をパターニングする。これにより、素子分離絶縁膜2上に抵抗素子33Rが形成されるとともに、シリコン酸化膜3上にゲート電極33Gが形成される。抵抗素子33Rは、シリコンゲルマニウム膜30R、ポリシリコン膜31R、及びシリコンゲルマニウム膜32Rがこの順に積層された構造を有している。同様に、ゲート電極33Gは、シリコンゲルマニウム膜30G、ポリシリコン膜31G、及びシリコンゲルマニウム膜32Gがこの順に積層された構造を有している。
【0049】
次に、図5に示した工程と同様に、フォトレジスト6を注入マスクとして用いて、シリコン基板1の上面に対してほぼ垂直な方向(垂直方向)から、ボロン等のp型の不純物7をイオン注入することにより、LDD領域8を形成する。
【0050】
次に、図6に示した工程と同様に、フォトレジスト6を注入マスクとして用いて、上記垂直方向に対して傾斜した方向からn型の不純物9をイオン注入することにより、ポケット領域10を形成する。
【0051】
次に、図7,8に示した工程と同様に、抵抗素子33Rの側面にサイドウォールスペーサ12Rを形成するとともに、ゲート電極33Gの側面にサイドウォールスペーサ12Gを形成する。
【0052】
次に、図9に示した工程と同様に、シリコン基板1の上面に対してほぼ垂直な方向から、ボロン等のp型の不純物13をイオン注入することにより、ソース・ドレイン領域14を形成する。不純物13は、抵抗素子33R内及びゲート電極33G内にも注入される。次に、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるために、所定の熱処理を行う。
【0053】
次に、図10に示した工程と同様に、抵抗素子33R及びサイドウォールスペーサ12Rを覆って、シリコン酸化膜15を形成する。
【0054】
図28を参照して、次に、コバルト等の金属膜を全面的に形成した後に所定の熱処理を行うことにより、コバルトシリサイド層16G,16SDを形成する。
【0055】
このように本実施の形態3に係る半導体装置の製造方法によれば、図27に示したように、ポリシリコン膜31Rの底面はシリコンゲルマニウム膜30Rによって覆われており、ポリシリコン膜31Rの上面はシリコンゲルマニウム膜32Rによって覆われている。そして、ポリシリコン膜31Rの底面及び上面がシリコンゲルマニウム膜30R,32Rによって覆われた状態で、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるための熱処理が行われる。従って、ポリシリコン膜31R内に含まれているボロン等の不純物13が、この熱処理(及びコバルトシリサイド層16G,16SDを形成するための熱処理)によってポリシリコン膜31Rの底面及び上面から外部に拡散することを、シリコンゲルマニウム膜30R,32Rの作用によって回避することができる。その結果、抵抗素子33Rの抵抗値をより高精度に設定することが可能であり、また、抵抗素子の抵抗値がウェハ面内でばらつくことを抑制することもできる。
【0056】
実施の形態4.
図29,30は、本発明の実施の形態4に係る半導体装置の製造方法を工程順に示す断面図である。まず、上記実施の形態3と同様の方法によって、図27に示した構造を得る。図29を参照して、次に、写真製版法によって、トランジスタ形成領域を覆ってフォトレジスト40を形成する。次に、シリコン基板1の上面の法線方向に対して傾斜した方向から、ゲルマニウム41をイオン注入する。ドーズ量は、1015/cm以上のオーダーである。これにより、抵抗素子33Rの側面内にシリコンゲルマニウム膜42が形成され、その結果、抵抗素子43が得られる。抵抗素子43に関して、ポリシリコン膜31Rの側面は、シリコンゲルマニウム膜42によって覆われている。その後、上記実施の形態3と同様の工程が実行されて、図30に示した構造が得られる。
【0057】
このように本実施の形態4に係る半導体装置の製造方法によれば、図28に示したように、ポリシリコン膜31Rの表面(即ち、底面、上面、及び側面)はシリコンゲルマニウム膜30R,32R,42によって覆われている。そして、ポリシリコン膜31Rの表面がシリコンゲルマニウム膜30R,32R,42によって覆われた状態で、LDD領域8、ポケット領域10、及びソース・ドレイン領域14を活性化させるための熱処理が行われる。従って、ポリシリコン膜31R内に含まれているボロン等の不純物13が、この熱処理(及びコバルトシリサイド層16G,16SDを形成するための熱処理)によってポリシリコン膜31Rから外部に拡散することを、シリコンゲルマニウム膜30R,32R,42の作用によって回避することができる。その結果、抵抗素子43の抵抗値をより高精度に設定することが可能であり、また、抵抗素子の抵抗値がウェハ面内でばらつくことを回避することもできる。
【0058】
変形例として、シリコンゲルマニウム膜30R,32R,42のうち、任意の1つ又は2つを形成してもよい。
【0059】
実施の形態5.
図31〜34は、本発明の実施の形態5に係る半導体装置の製造方法を工程順に示す断面図である。まず、上記実施の形態1と同様の方法によって、図2に示した構造を得る。図31を参照して、次に、CVD法によって、アモルファスシリコン膜50を、図2に示した構造上に全面的に形成する。
【0060】
図32を参照して、次に、レーザアニール法によって、アモルファスシリコン膜50を部分的に単結晶化する。具体的には、アモルファスシリコン膜50のうち抵抗素子を形成する予定の領域を、レーザビーム51によって走査する。レーザビーム51のエネルギーは、200〜1000mJ/cm程度である。これにより、単結晶シリコン膜52が形成される。
【0061】
図33を参照して、次に、写真製版法によって、フォトレジスト5を形成する。フォトレジスト5は、単結晶シリコン膜52上に形成されている。また、フォトレジスト5は、アモルファスシリコン膜50上に部分的に形成されている。次に、フォトレジスト5をエッチングマスクとして用いて、異方性ドライエッチング法によって、アモルファスシリコン膜50を部分的に除去する。これにより、アモルファスシリコン膜50Gが形成される。単結晶シリコン膜52は、抵抗素子として機能し、素子分離絶縁膜2上に形成されている。アモルファスシリコン膜50Gは、MOSFETのゲート電極として機能し、シリコン酸化膜3上に形成されている。その後、上記実施の形態1と同様の工程が実行されて、図34に示した構造が得られる。
【0062】
なお、以上の説明では、上記実施の形態1を基礎として本実施の形態5に係る発明を適用する例について述べたが、本実施の形態5に係る発明は、上記実施の形態2〜4にも適用することができる。
【0063】
このように本実施の形態5に係る半導体装置の製造方法によれば、ポリシリコンから成る抵抗素子ではなく、単結晶シリコンから成る抵抗素子が形成される。ポリシリコン膜内に不純物をドープすることによって抵抗素子を形成する場合には、グレインの粒界面に不純物が偏析することに起因して、抵抗素子の抵抗値が所望の値よりもわずかにずれる場合がある。これに対して、本実施の形態5に係る半導体装置の製造方法によれば、単結晶シリコン膜52内に不純物13を注入することによって抵抗素子が形成されるため、不純物の偏析に起因して抵抗値にずれが生じることを回避できる。従って、抵抗素子の抵抗値をより高精度に設定することが可能となる。
【0064】
実施の形態6.
図35〜38は、本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。まず、上記実施の形態1と同様の方法によって、図2に示した構造を得る。図35を参照して、次に、CVD法によって、アモルファスシリコン膜50を、図2に示した構造上に全面的に形成する。
【0065】
図36を参照して、次に、炉を用いて、低温(800℃以下)かつ長時間(1〜10時間)の熱処理を行うことにより、アモルファスシリコンをポリシリコン化する。これにより、ポリシリコン膜60が形成される。ポリシリコン膜60のグレインサイズは、ポリシリコン膜4のグレインサイズよりも大きく、50〜100nm程度である。
【0066】
図37を参照して、次に、写真製版法によって、フォトレジスト5を形成する。次に、フォトレジスト5をエッチングマスクとして用いて、異方性ドライエッチング法によって、ポリシリコン膜60を部分的に除去する。これにより、ポリシリコン膜60R,60Gが形成される。ポリシリコン膜60Rは、抵抗素子として機能し、素子分離絶縁膜2上に形成されている。ポリシリコン膜60Gは、MOSFETのゲート電極として機能し、シリコン酸化膜3上に形成されている。その後、上記実施の形態1と同様の工程が実行されて、図38に示した構造が得られる。
【0067】
なお、以上の説明では、上記実施の形態1を基礎として本実施の形態6に係る発明を適用する例について述べたが、本実施の形態5に係る発明は、上記実施の形態2〜4にも適用することができる。
【0068】
このように本実施の形態6に係る半導体装置の製造方法によれば、ポリシリコン膜4Rよりもグレインサイズが大きいポリシリコン膜60Rを用いて、抵抗素子が形成される。従って、グレインの粒界面が少なくなるため、粒界面に析出する不純物も少なくなる。その結果、不純物の偏析に起因して抵抗値にずれが生じることを抑制できるため、抵抗素子の抵抗値をより高精度に設定することが可能となる。
【0069】
【発明の効果】
本発明に係る半導体装置の製造方法によれば、抵抗素子の抵抗値を高精度に設定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図2】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図3】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図4】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図5】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図6】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図7】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図8】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図9】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図10】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図11】本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図12】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図13】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図14】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図15】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図16】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図17】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図18】本発明の実施の形態2に係る半導体装置の製造方法を工程順に示す断面図である。
【図19】本発明の実施の形態2の第1の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図20】本発明の実施の形態2の第1の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図21】本発明の実施の形態2の第2の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図22】本発明の実施の形態2の第2の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図23】本発明の実施の形態2の第2の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図24】本発明の実施の形態2の第2の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図25】本発明の実施の形態2の第2の変形例に係る半導体装置の製造方法を工程順に示す断面図である。
【図26】本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す断面図である。
【図27】本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す断面図である。
【図28】本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す断面図である。
【図29】本発明の実施の形態4に係る半導体装置の製造方法を工程順に示す断面図である。
【図30】本発明の実施の形態4に係る半導体装置の製造方法を工程順に示す断面図である。
【図31】本発明の実施の形態5に係る半導体装置の製造方法を工程順に示す断面図である。
【図32】本発明の実施の形態5に係る半導体装置の製造方法を工程順に示す断面図である。
【図33】本発明の実施の形態5に係る半導体装置の製造方法を工程順に示す断面図である。
【図34】本発明の実施の形態5に係る半導体装置の製造方法を工程順に示す断面図である。
【図35】本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【図36】本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【図37】本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【図38】本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【符号の説明】
1 シリコン基板、2 素子分離絶縁膜、3,15,23,25R,25G,28 シリコン酸化膜、4,4R,4G,31,31R,31G,60R,60G ポリシリコン膜、7,9,13 不純物、8 LDD領域、10 ポケット領域、12R,12G,26R,26G サイドウォールスペーサ、14 ソース・ドレイン領域、20〜22,24R,24G,27 シリコン窒化膜、30,30R,30G,32,32R,32G,42 シリコンゲルマニウム膜、33R,43 抵抗素子、33G ゲート電極、41 ゲルマニウム、50,50G,60 アモルファスシリコン膜、51 レーザビーム、52 単結晶シリコン膜。

Claims (11)

  1. (a)半導体基板の主面内に、素子分離絶縁膜を形成する工程と、
    (b)前記素子分離絶縁膜によって規定された素子形成領域内において、ゲート絶縁膜を、前記半導体基板の前記主面上に形成する工程と、
    (c)前記素子分離絶縁膜上及び前記ゲート絶縁膜上に、半導体膜を形成する工程と、
    (d)前記半導体膜をパターニングすることにより、抵抗素子を前記素子分離絶縁膜上に形成するとともに、ゲート電極を前記ゲート絶縁膜上に形成する工程と、
    (e)前記抵抗素子を覆って、マスク材を形成する工程と、
    (f)前記マスク材を注入マスクとして用いて第1導電型の第1の不純物をイオン注入することにより、前記素子形成領域内における前記半導体基板の前記主面内に、第1のソース・ドレイン領域を形成する工程と、
    (g)前記工程(f)よりも後に実行され、前記抵抗素子の側面にサイドウォールスペーサを形成する工程と、
    (h)前記工程(g)よりも後に実行され、前記第1導電型の第2の不純物をイオン注入することにより、前記抵抗素子内に前記第2の不純物を注入するとともに、前記素子形成領域内における前記半導体基板の前記主面内に、第2のソース・ドレイン領域を形成する工程と、
    (i)前記第2の不純物を活性化させるための熱処理を行う工程と
    を備える、半導体装置の製造方法。
  2. (j)前記マスク材を注入マスクとして用いて第2導電型の第3の不純物をイオン注入することにより、前記抵抗素子の端部の下方における前記半導体基板の前記主面内に、ポケット領域を形成する工程をさらに備える、請求項1に記載の半導体装置の製造方法。
  3. (k)前記工程(i)よりも前に実行され、前記抵抗素子の上面上に窒化膜を形成する工程をさらに備える、請求項1又は2に記載の半導体装置の製造方法。
  4. (l)前記工程(i)よりも前に実行され、前記抵抗素子の側面に窒化膜を形成する工程をさらに備える、請求項1〜3のいずれか一つに記載の半導体装置の製造方法。
  5. (m)前記工程(c)よりも前に実行され、前記素子分離絶縁膜の上面を窒化する工程をさらに備える、請求項1〜4のいずれか一つに記載の半導体装置の製造方法。
  6. (n)前記素子分離絶縁膜上及び前記ゲート絶縁膜上に、シリコンゲルマニウム膜を形成する工程をさらに備え、
    前記工程(c)において、前記半導体膜は前記シリコンゲルマニウム膜上に形成される、請求項1又は2に記載の半導体装置の製造方法。
  7. (o)前記半導体膜上にシリコンゲルマニウム膜を形成する工程をさらに備える、請求項1,2,6のいずれか一つに記載の半導体装置の製造方法。
  8. 前記半導体膜はシリコンを含み、
    (p)前記半導体膜の側面内にゲルマニウムをイオン注入する工程をさらに備える、請求項1,2,6,7のいずれか一つに記載の半導体装置の製造方法。
  9. 前記抵抗素子は単結晶シリコン膜である、請求項1〜8のいずれか一つに記載の半導体装置の製造方法。
  10. 前記半導体膜はアモルファスシリコン膜であり、
    (q)前記工程(d)よりも前に実行され、前記抵抗素子に対応する部分の前記アモルファスシリコン膜にレーザビームを照射する工程をさらに備える、請求項9に記載の半導体装置の製造方法。
  11. 前記半導体膜はアモルファスシリコン膜であり、
    (r)前記工程(d)よりも前に実行され、低温かつ長時間の熱処理によって、前記アモルファスシリコン膜をポリシリコン膜化する工程をさらに備える、請求項1〜8のいずれか一つに記載の半導体装置の製造方法。
JP2003157971A 2003-06-03 2003-06-03 半導体装置の製造方法 Pending JP2004363234A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003157971A JP2004363234A (ja) 2003-06-03 2003-06-03 半導体装置の製造方法
US10/700,770 US6844228B2 (en) 2003-06-03 2003-11-05 Manufacturing method of a semiconductor device capable of accurately setting a resistance value of a resistance element
KR10-2003-0080113A KR100525329B1 (ko) 2003-06-03 2003-11-13 반도체 장치의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157971A JP2004363234A (ja) 2003-06-03 2003-06-03 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2004363234A true JP2004363234A (ja) 2004-12-24

Family

ID=33487416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157971A Pending JP2004363234A (ja) 2003-06-03 2003-06-03 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US6844228B2 (ja)
JP (1) JP2004363234A (ja)
KR (1) KR100525329B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081206A (ja) * 2005-09-15 2007-03-29 Renesas Technology Corp 半導体装置およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173438A (ja) * 2004-12-17 2006-06-29 Yamaha Corp Mos型半導体装置の製法
FR2898729B1 (fr) * 2006-03-17 2008-08-01 St Microelectronics Dispositif semi-conducteur et procede d'implantation de dopants dans un canal
US8338245B2 (en) * 2006-12-14 2012-12-25 Globalfoundries Singapore Pte. Ltd. Integrated circuit system employing stress-engineered spacers
US7691718B2 (en) * 2007-12-27 2010-04-06 Intel Corporation Dual layer hard mask for block salicide poly resistor (BSR) patterning
US8298895B1 (en) * 2011-10-31 2012-10-30 International Business Machines Corporation Selective threshold voltage implants for long channel devices
US9379175B2 (en) * 2013-12-26 2016-06-28 Mediatek Inc. Integrated circuits and fabrication methods thereof
CN107068552B (zh) * 2017-05-02 2019-06-07 京东方科技集团股份有限公司 一种多晶硅薄膜的制作方法、薄膜晶体管和阵列基板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169919A (ja) * 1993-12-16 1995-07-04 Nec Corp 半導体装置およびその製造方法
JP2000183177A (ja) * 1998-12-16 2000-06-30 Hitachi Ltd 半導体装置の製造方法
JP2000311958A (ja) * 1999-04-27 2000-11-07 Hitachi Ltd 半導体集積回路装置の製造方法
JP2000349237A (ja) * 1999-06-03 2000-12-15 Sony Corp 半導体装置及びその製造方法
JP2001023927A (ja) * 1999-07-09 2001-01-26 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP2002057296A (ja) * 2000-08-14 2002-02-22 Sony Corp 半導体装置の製造方法
JP2002203947A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 半導体装置とその製造方法
JP2003152100A (ja) * 2001-11-13 2003-05-23 Ricoh Co Ltd 半導体装置
JP2003158195A (ja) * 2001-11-20 2003-05-30 Hitachi Ltd 半導体集積回路装置の製造方法
JP2003158196A (ja) * 2001-11-21 2003-05-30 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916361A (ja) 1982-07-19 1984-01-27 Matsushita Electronics Corp 半導体装置の製造方法
JP3153921B2 (ja) 1991-12-17 2001-04-09 ソニー株式会社 半導体装置の製造方法
JPH06314770A (ja) 1993-04-30 1994-11-08 Sony Corp 半導体抵抗及びその生成方法
JPH11251520A (ja) 1998-03-02 1999-09-17 Ricoh Co Ltd 半導体装置
US6165861A (en) * 1998-09-14 2000-12-26 Taiwan Semiconductor Manufacturing Company Integrated circuit polysilicon resistor having a silicide extension to achieve 100% metal shielding from hydrogen intrusion
JP4845299B2 (ja) * 2001-03-09 2011-12-28 富士通セミコンダクター株式会社 半導体装置の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169919A (ja) * 1993-12-16 1995-07-04 Nec Corp 半導体装置およびその製造方法
JP2000183177A (ja) * 1998-12-16 2000-06-30 Hitachi Ltd 半導体装置の製造方法
JP2000311958A (ja) * 1999-04-27 2000-11-07 Hitachi Ltd 半導体集積回路装置の製造方法
JP2000349237A (ja) * 1999-06-03 2000-12-15 Sony Corp 半導体装置及びその製造方法
JP2001023927A (ja) * 1999-07-09 2001-01-26 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP2002057296A (ja) * 2000-08-14 2002-02-22 Sony Corp 半導体装置の製造方法
JP2002203947A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 半導体装置とその製造方法
JP2003152100A (ja) * 2001-11-13 2003-05-23 Ricoh Co Ltd 半導体装置
JP2003158195A (ja) * 2001-11-20 2003-05-30 Hitachi Ltd 半導体集積回路装置の製造方法
JP2003158196A (ja) * 2001-11-21 2003-05-30 Mitsubishi Electric Corp 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081206A (ja) * 2005-09-15 2007-03-29 Renesas Technology Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
KR100525329B1 (ko) 2005-11-02
KR20040104295A (ko) 2004-12-10
US6844228B2 (en) 2005-01-18
US20040248358A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US7348636B2 (en) CMOS transistor having different PMOS and NMOS gate electrode structures and method of fabrication thereof
US7915131B2 (en) Semiconductor device and method for fabricating the same
US20110275185A1 (en) Method of manufacturing semiconductor device with offset sidewall structure
JP2002033396A (ja) コア・デバイス注入を用いて高特性、高信頼度の入力/出力デバイスおよびアナログと両立する入力/出力およびコア・デバイスの製造法
WO1998008253A1 (en) Dual gate oxide thickness integrated circuit and process for making same
US20070114605A1 (en) Ion implantation of nitrogen into semiconductor substrate prior to oxidation for offset spacer formation
KR100837555B1 (ko) 반도체 소자 및 그 제조 방법
JP2005136351A (ja) 半導体装置及びその製造方法
US8586440B2 (en) Methods for fabricating integrated circuits using non-oxidizing resist removal
TW200414321A (en) Method for fabricating semiconductor device
KR100641993B1 (ko) 고유전율의 절연막을 갖는 씨모스 이미지 센서의 제조 방법
JP2004363234A (ja) 半導体装置の製造方法
CN101409237A (zh) 制造半导体器件的方法
JP2007529891A (ja) 電界効果トランジスタ及び電界効果トランジスタの製造方法
US6184099B1 (en) Low cost deep sub-micron CMOS process
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JPH05206454A (ja) Mis型半導体装置の製造方法
JP2803925B2 (ja) 半導体装置の製造方法
JP2008124489A (ja) 半導体装置の製造方法
JP2953915B2 (ja) 半導体集積回路装置及びその製造方法
JP2578417B2 (ja) 電界効果型トランジスタの製造方法
JP3311082B2 (ja) 半導体装置の製造方法
KR100823451B1 (ko) 반도체 소자 및 이의 제조 방법
JP2004228528A (ja) 半導体装置の製造方法
JPH0878671A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831