JP2004285859A - 酸素センサの劣化判定装置 - Google Patents

酸素センサの劣化判定装置 Download PDF

Info

Publication number
JP2004285859A
JP2004285859A JP2003076625A JP2003076625A JP2004285859A JP 2004285859 A JP2004285859 A JP 2004285859A JP 2003076625 A JP2003076625 A JP 2003076625A JP 2003076625 A JP2003076625 A JP 2003076625A JP 2004285859 A JP2004285859 A JP 2004285859A
Authority
JP
Japan
Prior art keywords
oxygen sensor
fuel ratio
air
output
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076625A
Other languages
English (en)
Inventor
Kazuhiro Yamada
一博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003076625A priority Critical patent/JP2004285859A/ja
Priority to US10/792,800 priority patent/US7063081B2/en
Publication of JP2004285859A publication Critical patent/JP2004285859A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2461Learning of the air-fuel ratio control by learning a value and then controlling another value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】酸素センサの劣化判定をより適切に行うことのできる酸素センサの劣化判定装置を提供する。
【解決手段】この酸素センサの劣化判定装置は、酸素センサ44の出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うとともに、酸素センサ44の出力結果に対する空燃比補正係数の応答性を可変設定するエンジン10に適用されて、酸素センサ44の出力の反転周期に基づいて酸素センサ44の劣化の有無を判定する。そして、酸素センサ44の出力結果に対する空燃比補正係数の応答性の設定に応じて、劣化の有無の判定に係る劣化判定値を可変設定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うエンジンに適用されて、酸素センサの劣化の有無を判定する装置に関する。
【0002】
【従来の技術】
周知のように、多くのエンジンでは、排気系に排気中の酸素濃度を検出する酸素センサを設け、その出力に基づき空燃比フィードバック制御が行われている。こうしたエンジンでは、酸素センサの出力によって空燃比が目標空燃比よりもリッチであることが検出されたときには、燃料噴射量を減量補正し、空燃比が目標空燃比よりもリーンであることが検出されたときには、燃料噴射量を増量補正することで、空燃比を目標空燃比に制御している。こうした燃料噴射量の補正は一般に、酸素センサ出力によってリーン/リッチ反転が確認されたときに空燃比補正係数を一時に所定量増減させるスキップ補正と、酸素センサの出力がリーンまたはリッチを示している期間、空燃比補正係数を徐々に増減させる積分補正とで行われている。
【0003】
こうした空燃比フィードバック制御に用いられる酸素センサは、熱劣化などによって、その内部抵抗や起電力、応答時間等の特性が変化することがあり、その特性変化により、空燃比制御の精度を低下させることがある。そのため、上記のような空燃比フィードバック制御を行うエンジンの多くでは、そうした精度悪化を未然に防ぐため、酸素センサの劣化の有無の判定が行われている。
【0004】
従来、そうした酸素センサの劣化判定は、酸素センサ出力のリーン/リッチの反転周期が所定の劣化判定値以上となったとき、応答性の低下有りと判定することで行われている(例えば、特許文献1参照)。ここで、酸素センサ出力のリーン/リッチの反転周期とは、酸素センサ出力がリーンとなってからリッチとなるまでの時間、及びリッチとなってからリーンとなるまでの時間の双方を指している。
【0005】
また従来には、そうした酸素センサの反転周期に基づく劣化判定に際し、吸入空気量の積算値に応じて劣化判定値を可変設定する酸素センサの劣化判定装置も提案されている(特許文献2参照)。この劣化判定装置によれば、吸入空気量に応じた吸排気の流速変化に起因した酸素センサの反転周期の変化に拘わらず、適切な劣化判定を行うことができる。
【0006】
【特許文献1】
特開平6−50200号公報
【特許文献2】
特開平11−166438号公報
【0007】
【発明が解決しようとする課題】
ところで、空燃比フィードバック制御においては、酸素センサ出力のリーン/リッチ反転に対する上記空燃比補正係数の応答性を、状況に応じて可変設定することがある。そうした応答性の可変設定は、上記積分補正時の空燃比補正係数の増減率である積分補正量や、上記スキップ補正時の空燃比補正係数の増減量であるスキップ補正量を変更することでなされている。例えば、積分補正量やスキップ補正量を小さくすれば、酸素センサ出力のリーン/リッチ反転に対応した空燃比補正係数の変化度合いが小さくなり、その応答性が低下するようになる。
【0008】
また、そうした上記空燃比補正係数の積分補正量やスキップ補正量を、リッチ時とリーン時とでそれぞれ異なった値に設定して、上記応答性をそれぞれ異ならせることで、空燃比補正係数のフィードバック中心を調整することがある。例えば、リーンからリッチへの酸素センサ出力の反転がなされたときのスキップ補正量、及び酸素センサ出力がリッチであるときの積分補正量を小さくしてリッチ時の空燃比補正係数の応答性を、リーン時よりも低くすれば、空燃比補正係数のフィードバック中心は、その目標空燃比に相当する値よりもリッチ側に偏倚するようになる。
【0009】
こうして上記空燃比補正係数の応答性を変更すれば、酸素センサ自体の応答性とは関係なく、その出力の反転周期が変化する。例えば、積分補正量やスキップ補正量を小さくして、空燃比補正係数の応答性を低下させれば、酸素センサ自体の応答性が良好であっても、酸素センサの出力の反転周期は大きくなる。
【0010】
このように酸素センサ出力の反転周期は、同センサの劣化や吸入空気量以外に、空燃比補正係数の応答性の設定によっても変化する。しかし、上記従来の判定態様では、そうした空燃比補正係数の応答性による反転周期の変化には、適切に対応することができず、誤判定が生じるおそれがある。
【0011】
本発明はこうした実情に鑑みてなされたものであり、酸素センサの劣化判定をより適切に行うことのできる酸素センサの劣化判定装置を提供することにある。
【0012】
【課題を解決するための手段】
以下、上記課題を解決するための手段及びその作用効果について記載する。
請求項1に記載の発明は、酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うとともに、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性を可変設定するエンジンに適用されて、前記酸素センサの出力の反転周期に基づいて該酸素センサの劣化の有無を判定する装置であって、前記酸素センサの出力結果に対する空燃比補正係数の応答性の設定に応じて、前記劣化の有無の判定に係る劣化判定値を可変設定することを要旨とする。
【0013】
上記構成によれば、酸素センサの出力結果に対する空燃比補正係数の応答性が変更されると、それに応じて劣化判定値も変更されるようになる。これにより、上記空燃比補正係数の応答性の変化に起因した酸素センサ出力の反転周期の変化に対応して劣化判定値を適宜調整することが可能となる。したがって、酸素センサの劣化判定をより適切に行うことができる。
【0014】
請求項2に記載の発明は、請求項1に記載の酸素センサの劣化判定装置において、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性の設定は、空燃比補正係数の積分補正量を変更することで行われ、前記劣化判定値は、その積分補正量に基づいて可変設定されることを要旨とする。
【0015】
酸素センサの出力結果に対する空燃比補正係数の応答性は、その積分補正量を変更することで変化させることができる。よって、そうした積分補正量に基づいて劣化判定値を設定することで、空燃比補正係数の応答性の変化に起因した酸素センサ出力の反転周期の変化に対応した適切な劣化判定値を設定することができる。
【0016】
請求項3に記載の発明は、請求項1又は2に記載の酸素センサの劣化判定装置において、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性の設定は、空燃比補正係数のスキップ補正量を変更することで行われ、前記劣化判定値は、そのスキップ補正量に基づいて可変設定されることを要旨とする。
【0017】
酸素センサの出力結果に対する空燃比補正係数の応答性は、そのスキップ補正量の変更によっても、変化させることができる。よって、そうしたスキップ補正量に基づいて劣化判定値を設定することで、空燃比補正係数の応答性の変化に起因した酸素センサ出力の反転周期の変化に対応した適切な劣化判定値を設定することができる。
【0018】
請求項4に記載の発明は、請求項1〜3のいずれかに記載の酸素センサの劣化判定装置において、前記劣化判定値は、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性が低いときほど、前記酸素センサの劣化有りと判定するときの前記反転周期が大きくなるように可変設定されることを要旨とする。
【0019】
空燃比補正係数の応答性を低下させれば、酸素センサ出力の反転周期は長くなる。そのため、その応答性が低いときほど、酸素センサの劣化有りと判定するときの反転周期が大きくなるように劣化判定値を設定すれば、適切に劣化判定を行うことができる。
【0020】
請求項5に記載の発明は、酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うとともに、前記酸素センサの出力により空燃比が目標空燃比よりもリッチであることが検出されたときと、リーンであることが検出されたときとで、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性を異ならせることで、前記空燃比補正係数のフィードバック中心を調整するエンジンに適用されて、前記酸素センサの出力の反転周期に基づいて該酸素センサの劣化の有無を判定する装置であって、前記空燃比補正係数のフィードバック中心の調整度合いに応じて、前記劣化の有無の判定に係る劣化判定値を可変設定することを要旨とする。
【0021】
上記のように酸素センサの出力により空燃比が目標空燃比よりもリッチであることが検出されたときと、リーンであることが検出されたときとで、酸素センサの出力結果に対する空燃比補正係数の応答性を異ならせることで、空燃比補正係数のフィードバック中心を調整することができる。こうしたフィードバック中心の調整を行えば、酸素センサによって空燃比が目標空燃比よりもリッチであることを示す検出結果が出力されている期間(リッチ期間)と、リーンであることを示す検出結果が出力されている期間(リーン期間)との比率が変化する。そしてそれに合わせて、酸素センサの出力の反転周期も変化するようになる。
【0022】
上記構成では、そうしたフィードバック中心の調整度合いに応じて劣化判定値が可変設定されるため、その調整に起因した酸素センサ出力の反転周期の変化に対応して劣化判定値を適宜調整することが可能となる。したがって、酸素センサの劣化判定をより適切に行うことができる。
【0023】
請求項6に記載の発明は、請求項5に記載の酸素センサの劣化判定装置において、前記劣化判定値は、前記フィードバック中心の調整度合いが大きいときほど、前記酸素センサの劣化有りと判定するときの前記反転周期が大きくなるように可変設定されることを要旨とする。
【0024】
フィードバック中心を大きく調整すれば、その分、酸素センサ出力のリッチ期間とリーン期間との差が大きくなり、その反転周期の変化も大きくなる。そのため、フィードバック中心の調整度合いが大きいときほど、酸素センサの劣化有りと判定するときの反転周期が大きくなるように劣化判定値を設定すれば、適切に劣化判定を行うことができる。
【0025】
請求項7に記載の発明は、酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うエンジンに適用され、前記空燃比フィードバック制御の目標空燃比に相当する値を跨いで前記空燃比補正係数が変化した時点から、空燃比が前記目標空燃比よりもリッチにある状態とリーンにある状態とが切り替わったことが前記酸素センサの出力に基づき検出されるまでの時間を測定するとともに、その測定された時間に基づき前記酸素センサの劣化の有無を判定することを要旨とする。
【0026】
空燃比フィードバック制御と併せ実施される制御として、空燃比補正係数の推移に基づいて空燃比学習値を学習する学習制御が行われることがある。こうした学習制御において、空燃比学習値の学習が適切になされていれば、空燃比フィードバック制御の目標空燃比に相当する空燃比補正係数の値を把握することができる。
【0027】
このように目標空燃比に相当する空燃比補正係数の値が把握されている場合には、空燃比補正係数がその目標空燃比に相当する値を跨いで変化した時点に、実際の空燃比がリーン/リッチ反転したと推定することができる。そして、その時点から酸素センサの出力がリーン/リッチ反転するまでの時間が、酸素センサの応答遅れ時間であると見積もることができる。
【0028】
一方、空燃比補正係数のフィードバック中心が目標空燃比に相当する値から偏倚された状態となっていると、酸素センサ出力のリッチ期間とリーン期間との比率に偏りが生じ、その反転周期が変化する。その点、上記構成によれば、そうしたフィードバック中心の偏倚が反転周期に与える影響分を除いた酸素センサの応答遅れ時間に基づき劣化判定が行われるため、酸素センサの劣化判定をより適切に行うことができる。
【0029】
請求項8に記載の発明は、請求項7に記載の酸素センサの劣化判定装置において、前記劣化の有無の判定は、空燃比のリッチからリーンへの切り替わりに係る前記時間と、リーンからリッチへの切り替わりに係る前記時間との和に基づき行われることを要旨とする。
【0030】
上記構成では、次の時間(A)、(B)の和に基づいて劣化判定が行われる。
(A)目標空燃比に相当する値を跨いで空燃比補正係数がリッチからリーンに変化した時点から、酸素センサの出力により、空燃比がその目標空燃比よりもリッチにある状態からリーンにある状態へと切り替わったことが検出されるまでの時間。
【0031】
(B)目標空燃比に相当する値を跨いで空燃比補正係数がリーンからリッチに変化した時点から、酸素センサの出力により、空燃比がその目標空燃比よりもリーンにある状態からリッチにある状態へと切り替わったことが検出されるまでの時間。
【0032】
そのため、酸素センサのリーンからリッチへの反転時の応答遅れ時間、及びリッチからリーンへの反転時の応答遅れ時間を双方同時に評価して判定を行うことができ、更に適切に劣化判定を行うことができる。
【0033】
【発明の実施の形態】
(第1の実施形態)
以下、本発明にかかる酸素センサの劣化判定装置を具体化した第1の実施形態について、図1〜図5を参照して説明する。
【0034】
図1は、本実施形態にかかる酸素センサの劣化判定装置並びに同装置が適用される車両用エンジン等の概略構成を示している。同図1に示されるように、エンジン10には吸気通路20が接続されている。この吸気通路20には、スロットルモータ22によって開閉駆動されるスロットルバルブ24が設けられている。そして、吸気通路20を通じてエンジン10に供給される吸入空気は、このスロットルバルブ24の開度に基づいて調量される。また、吸気通路20のエンジン10近傍には、燃料を噴射するインジェクタ26が設けられている。
【0035】
一方、エンジン10に接続される排気通路30には、三元触媒32が配設されている。この三元触媒32によって、排気に含まれるHC(炭化水素)、CO(一酸化炭素)、及びNOx(窒素酸化物)がそれぞれ浄化される。
【0036】
さらに、エンジン10には、その運転状態を検出するための各種センサが設けられている。例えば、エンジン10のクランクシャフト近傍にはエンジン回転速度信号NEを検出する回転速度センサ41が設けられている。また、スロットルバルブ24の近傍には、スロットルバルブ開度TAを検出してこれを目標開度にフィードバック制御するためのスロットルセンサ42が設けられている。さらに、このスロットルバルブ24の上流には、吸気通路20を通過する吸入空気量QAを検出するエアフロメータ43が取付けられている。また、排気通路30において、三元触媒32の上流側および下流側には、それぞれの酸素濃度信号ODU、ODDを検出する上流側の酸素センサ44、下流側の酸素センサ45が設けられている。これら各センサ41〜45の検出信号は、エンジンの各種制御を実行する電子制御装置50に入力される。
【0037】
この電子制御装置50は、演算ユニット(CPU)をはじめ、各種制御プログラムや演算用マップ、制御の実行に際して算出されるデータ等を記憶保持するメモリを備えている。電子制御装置50は、各種センサ41〜45等によって検出されるエンジン10の運転状態等に基づいて、排気の酸素濃度に応じた空燃比フィードバック制御や、アイドル運転時における回転速度制御等を実行する。
【0038】
また、本実施形態におけるエンジン10では、電子制御装置50は下式(1)に基づいて上記インジェクタ26による燃料噴射時間τfinを算出する。
τfin=τbase+KG+FAF …(1)
上式(1)において、「τbase」は基本燃料噴射時間であり、具体的には吸入空気と燃料の混合比である空燃比が理論空燃比(ストイキ)となるように、エンジン回転速度と吸入空気量QAとに基づいて決定される。
【0039】
また、「KG」は燃料噴射時間の学習補正量であり、エンジン10の運転状態に応じて空燃比がストイキ相当となるように設定される。すなわち、燃料噴射量(時間)を補正するための学習が完了した後は、空燃比フィードバック制御におけるフィードバック中心は基本的にはストイキ相当値に一致することとなる。なお、この燃料噴射量補正の学習は、エンジン負荷等により区分けされたエンジン運転領域毎に行われている。
【0040】
また、「FAF」は、上記酸素センサ44、45の出力に基づいて算出される空燃比補正係数であり、空燃比フィードバック制御中は酸素センサ44、45の出力に基づいて上記エンジン10に供給される混合気の空燃比が目標空燃比に一致するように設定される。より詳しくは、この空燃比補正係数FAFは、下式(2)に基づいて繰り返し設定される。
FAF←FAF+RS+KI …(2)
上式(2)の「RS」は、スキップ補正量である。スキップ補正量RSは、上流側の酸素センサ44の出力がリーンからリッチへの空燃比の反転を示したときには所定の負の値Rdに設定され、リッチからリーンへの空燃比の反転を示したときには所定の正の値Riに設定される。これにより、上流側の酸素センサ44の出力が反転したとき、空燃比補正係数FAFがスキップ状に増減される。
【0041】
上記各値Rd,Riは、下流側の酸素センサ45の酸素濃度信号ODDから把握される空燃比のリーン・リッチ傾向に応じて、全体的な空燃比をストイキとするように調整される。具体的には、下流側の酸素センサ45の出力によって空燃比が全体的にストイキからリーン側に偏った傾向にあることが検出されたときには、値Riは値Rdに対して相対的に増加され、リーンとなっている期間(リーン期間)に対して、空燃比がリッチとなっている期間(リッチ期間)が相対的に長くされる。また下流側の酸素センサ45の出力によって空燃比が全体的にストイキからリッチ側に偏った傾向にあることが検出されたときには、値Rdは値Riに対して相対的に増加され、リッチ期間に対してリーン期間が相対的に長くされる。すなわち、ここでは、増量補正時のスキップ補正量RSの設定値(値Ri)と減量補正時の同設定値(Rd)とを非対称とすることで、全体的な空燃比の理論空燃比からのずれを補償するようにしている。
【0042】
上式(2)の「KI」は、積分補正量である。積分補正量KIは、上流側の酸素センサ44が、空燃比がリッチであることを示す信号を出力している間は、所定の負の値Kdに設定され、リーンであることを示す信号を出力している間は、所定の正の値Kiに設定される。これにより、空燃比補正係数FAFは、空燃比がリッチであることが示されている期間は、所定時間毎に値Kdずつ除減され、リーンであることが示されている期間は、所定時間毎に値Kiずつ徐増される。よって、これら値Kd,Kiの値が大きいほど、燃料噴射時間τfinの変化速度、すなわち燃料噴射量の変化速度が大きくなる。
【0043】
なお、上記各値Kd,Kiは、吸入空気量QA等に応じて可変設定されており、吸入空気量QAに応じた酸素センサ44の応答性の変化に対して、空燃比制御の適合を図るようにしている。すなわち、吸入空気量QAが少ないときには、排気の流速が低下して、実際の空燃比の変化が酸素センサ44の出力に反映されるまでの時間が長くなる。そのため、吸入空気量QAが少ないときに、空燃比フィードバック中の燃料噴射量の変化速度があまり高く設定されていると、過補正による空燃比のぶれが大きくなる。そこで、ここでは、吸入空気量QAが少ないときには、多いときに比して上記各値Kd,Kiを小さい値に設定することで、空燃比のぶれを抑えるようにしている。
【0044】
以下、本実施形態における酸素センサの劣化判定について、図2〜図5を併せ参照して説明する。
本実施形態では、上流側の酸素センサ44の出力の反転周期を測定し、その測定された反転周期が所定の劣化判定値を上回るとき、同酸素センサ44の劣化有りと判定して、その劣化判定を行っている。酸素センサ44の出力の反転周期の測定は、図2に示す手順で行われる。
【0045】
この一連の処理では、まず、酸素センサの出力が反転したか否かが判定される(ステップ1200)。具体的には、上記酸素センサ44の出力が、リッチ側からリーン側あるいはリーン側からリッチ側に反転したか否かが判定される。すなわち、酸素センサ44の出力が反転した時点を、同酸素センサ44の出力の反転周期を測定する際の起点とするため、その出力が反転したか否かの判定が行われる。
【0046】
この判定処理を通じて、酸素センサの出力が反転した旨判定された場合には(ステップ1200:YES)、酸素センサの出力の反転周期の測定が許可される(ステップ1202)。具体的には、上記判定結果を表すフラグFORの値が「1」に設定される。すなわち、上記酸素センサ44の出力が反転したことから、フラグFORによって上記測定を開始する条件が整ったことが示される。
【0047】
一方、この判定処理を通じて、酸素センサの出力が反転していない旨判定された場合(ステップ1200:NO)には、上記測定の許可は行われない。具体的には、フラグFORの値が「0」に設定された状態で維持され、上記測定を開始する条件が整っていないことが示される。
【0048】
続いて、酸素センサの出力の反転周期の測定が許可された状態か否かが判定される(ステップ1204)。具体的には、上記フラグFORの値が「1」に設定されているか否かが判定される。すなわち、酸素センサ44の出力が反転して上記測定が許可された状態(ステップ1202)、あるいは既に同測定が行われている状態のいずれかであるか否かが判定される。
【0049】
この判定処理を通じて、酸素センサの出力の反転周期の測定が許可された状態でない旨判定された場合には(ステップ1204:NO)、この一連の処理は一旦終了される。
【0050】
一方、この判定処理を通じて、酸素センサの出力の反転周期の測定が許可された状態である旨判定された場合(ステップ1204:YES)には、酸素センサの出力が再び反転したか否かが判定される(ステップ1206)。具体的には、酸素センサ44の出力が、リッチ側からリーン側あるいはリーン側からリッチ側に反転したか否かが判定される。すなわち、酸素センサ44の出力が一度反転した(ステップ1200)後に、同酸素センサ44の出力が再び反転して、リッチ側あるいはリーン側の一周期が終了したか否かが判定される。
【0051】
この判定処理を通じて、酸素センサの出力が再び反転していない旨判定された場合には(ステップ1206:NO)、酸素センサの出力の反転周期の計数が加算される(ステップ1208)。具体的には、上記電子制御装置50に備えられたカウンタをカウントアップすることによって、同カウンタのカウント数に換算された上記酸素センサ44の出力の反転周期TC1が加算される。すなわち、酸素センサ44の出力が再び反転しておらず、リッチ側あるいはリーン側の一周期が未だ終了していないため、同反転周期TC1の測定が継続される。このようにして、酸素センサの出力の反転周期の計数が加算された後、この一連の処理は一旦終了される。
【0052】
一方、この判定処理を通じて、酸素センサの出力が再び反転した旨判定された場合(ステップ1206:YES)には、反転周期の計数が確定される(ステップ1210)。具体的には、上記カウンタのカウントアップが終了し、同カウンタのカウント数に換算された酸素センサ44の出力の反転周期TC1が確定する。すなわち、酸素センサ44の出力が再び反転して、リッチ側あるいはリーン側の一周期が終了したため、反転周期TC1の測定が終了する。
【0053】
このようにして反転周期の計数が確定された後、反転周期の測定の許可が解除され、かつ反転周期の計数が初期化される(ステップ1212)。具体的には、上記フラグFORの値が「0」に設定されるとともに、上記カウンタのカウント数が「0」に戻される。このようにして反転周期の測定の許可が解除され、かつ反転周期の計数が初期化された後、この一連の処理は一旦終了される。
【0054】
一方、本実施形態では、上述のようにスキップ補正量RSを、リーンからリッチへの空燃比の反転時と、リッチからリーンへの空燃比の反転時とでそれぞれ異なった値とすることで、全体的な空燃比の調整を行っている。このような調整がなされると、酸素センサ44の応答性が低下していないにも拘わらず、酸素センサ44の出力の反転周期が長くなり、劣化有りとの誤った判定結果がなされる虞がある。以下、その理由を、図3を参照して説明する。
【0055】
まず、スキップ補正量RSが増量補正時と減量補正時とで対称の場合、換言すれば空燃比フィードバック制御におけるフィードバック中心がストイキ相当値FAFSと一致している場合(フィードバック中心の調整度合いCAが「0」の場合)について説明する。
【0056】
同図3の左側のグラフに示されるように、上記酸素センサ44によって検出される酸素濃度信号ODUがストイキ相当値VSを跨いでリッチ側とリーン側とで変化(酸素センサの出力が反転)すると、空燃比補正係数FAFにスキップ補正量RSが加算される(スキップタイミング)。このため、空燃比補正係数FAFの値は、ストイキ相当値FAFSを跨いで増量補正状態および減量補正状態の一方から他方へと大きく変化する。その結果、酸素濃度信号ODUはリッチ側からリーン側へ、あるいはリーン側からリッチ側へと急激に変化するようになる。このとき、例えば時間T11が、酸素センサ44の出力の反転周期TC1に換算されて計測される。なお、スキップ補正量RSが加算された後は、上記の積分補正量KIにより、空燃比補正係数FAFは徐々に増される。
【0057】
次に、スキップ補正量RSが増量補正時と減量補正時とで非対称の場合、換言すれば空燃比フィードバック制御におけるフィードバック中心がストイキ相当値FAFSからずれている場合(フィードバック中心の調整度合いが「0」でない場合)について説明する。なお、本実施形態において、フィードバック中心の調整度合いCAは、空燃比補正係数FAFの最大値と最小値の中央値をフィードバック中心(同図3に一点鎖線で示す)としたとき、このフィードバック中心とストイキ相当値FAFSとの偏差によって表される。
【0058】
同図3の右側のグラフに示されるように、酸素濃度信号ODUがストイキ相当値VSを跨いでリッチ側とリーン側とで変化すると、空燃比補正係数FAFにスキップ補正量RSが加算される。ところが、スキップ補正量RSに基づくフィードバック中心の調整度合いCAが大きい場合には、酸素センサ44の出力が反転して空燃比補正係数FAFにスキップ補正量RSが加算されても、減量補正状態から増量補正状態へ入れ替わらなくなることがある(時間t11)。
【0059】
その結果、燃料噴射量は減量補正状態が未だ継続することとなるため、酸素濃度信号ODUのリーン側からリッチ側への変化は生じていない。そして、積分補正量KIによって空燃比補正係数FAFの値がストイキ相当値FAFSとなり(時間t12)、さらに燃料噴射量が増量補正状態となるにつれて、酸素濃度信号ODUはリーン側からリッチ側へと徐々に変化することとなる(時間t13)。このとき、例えば時間T12が、酸素センサ44の出力の反転周期TC1に換算されて計測される。
【0060】
このように、フィードバック中心の調整の度合いCAによって、酸素センサ44の出力の反転周期が変動し、この傾向はその調整の度合いCAが大きいほど顕著になる。すなわち、フィードバック中心の調整の度合いCAが大きいほど、酸素センサ44の出力の反転周期は長くなる傾向にある。このため、フィードバック中心の調整の度合いCAが大きいほど、同反転周期に基づく酸素センサ44の劣化判定において誤判定される蓋然性が高くなる。
【0061】
そこで、本実施形態においては、図4に示されるマップを参照して、フィードバック中心の調整度合いCAに基づき劣化判定値TR1を可変設定するようにしている。同図4に示されるように、この劣化判定値TR1は、フィードバック中心の調整度合いCAが大きいほど大きな値に設定される。これは、上述したように、フィードバック中心の調整の度合いCAが大きいほど、酸素センサ44の出力の反転周期が長くなる傾向にあるためである。このため、フィードバック中心の調整の度合いCAが大きくなり、酸素センサの出力の反転周期が長くなったとしても、それに応じた適切な劣化判定値TR1が設定されるようになる。
【0062】
図5に、以上説明した本実施形態の酸素センサ44の劣化判定処理のフローチャートを示す。このフローチャートに示される一連の処理は、上記電子制御装置50により所定の周期をもって繰り返し実行される。
【0063】
同図5に示されるように、この一連の処理では、まず、燃料噴射量補正の学習が完了した状態であるか否かが判定される(ステップ100)。すなわち、現在の運転領域において学習補正量KGが算出されており、空燃比フィードバック制御における空燃比のフィードバック中心が、ストイキ相当値に一致している状態であるか否かが判定される。
【0064】
この判定処理を通じて、燃料噴射量補正の学習が完了した状態である旨判定された場合には(ステップ100:YES)、空燃比フィードバック制御を行っている状態であるか否かが判定される(ステップ110)。具体的には、上記空燃比補正係数FAFに基づいて、燃料噴射量(時間)が制御されている状態であるか否かが判定される。これは、上記酸素センサ44の出力の反転周期に基づいて同酸素センサ44の劣化判定を行う前提として、空燃比のフィードバック制御が行われている必要があるためである。
【0065】
この判定処理を通じて、空燃比フィードバック制御を行っている状態である旨判定された場合には(ステップ110:YES)、上述した処理により酸素センサの出力の反転周期が測定される(ステップ120)。
【0066】
一方、これらの判定処理を通じて、燃料噴射量補正の学習が完了した状態ではない旨判定された場合(ステップ100:NO)又は空燃比フィードバック制御を行っている状態ではない旨判定された場合(ステップ110:NO)には、この一連の処理は一旦終了される。すなわち、酸素センサの劣化判定を行うための前提条件が整っていないものとして、同センサの劣化判定は行われない。
【0067】
このようにして酸素センサの出力の反転周期が測定された後、フィードバック中心の調整度合いに基づき劣化判定値が設定される(ステップ130)。具体的には、上記空燃比補正係数FAFのスキップ補正量RSの設定に基づく、空燃比のフィードバック中心の調整に基づいて劣化判定値が設定される。
【0068】
このようにしてフィードバック中心の調整度合いに基づき劣化判定値が設定された後、劣化判定値よりも酸素センサの出力の反転周期が大きいか否かが判定される(ステップ140)。具体的には、上記劣化判定値TR1よりも上記反転周期TC1が大きいか否かが判定される(TR1<TC1)。すなわち、上記酸素センサ44が劣化してその応答性が低下することにより、劣化判定値TR1よりも上記反転周期TC1が大きくなっているか否かが判定される。
【0069】
この判定処理を通じて、劣化判定値よりも酸素センサの出力の反転周期が大きい旨判定された場合には(ステップ140:YES)、酸素センサの劣化有りと判定される(ステップ150)。具体的には、上記判定結果を表すフラグFOFの値が「1」に設定される。このようにして酸素センサの劣化有りと判定された後、この一連の処理は一旦終了される。
【0070】
一方、この判定処理を通じて、劣化判定値よりも酸素センサの出力の反転周期が大きくない旨判定された場合には(ステップ140:NO)、酸素センサの劣化無しと判定される(ステップ160)。具体的には、上記判定結果を表すフラグFOFの値が「0」に設定される。このようにして酸素センサの劣化無しと判定された後、この一連の処理は一旦終了される。
【0071】
以上説明したように、本実施形態によれば、以下のような効果を得ることができるようになる。
(1)酸素センサ44の出力結果に対する空燃比補正係数FAFの応答性が変更されると、それに応じて劣化判定値TR1も変更されるようになる。これにより、上記空燃比補正係数FAFの応答性の変化に起因した酸素センサ44の出力の反転周期TC1の変化に対応して劣化判定値TR1を適宜調整することが可能となる。したがって、酸素センサ44の劣化判定をより適切に行うことができる。
【0072】
(2)フィードバック中心の調整度合いCAに応じて劣化判定値TR1が可変設定されるため、その調整に起因した酸素センサ44の出力の反転周期TC1の変化に対応して劣化判定値TR1を適宜調整することが可能となる。したがって、酸素センサ44の劣化判定をより適切に行うことができる。
【0073】
(3)フィードバック中心を大きく調整すれば、その分、酸素センサ44の出力のリッチ期間とリーン期間との差が大きくなり、その反転周期TC1の変化も大きくなる。そのため、フィードバック中心の調整度合いCAが大きいときほど、酸素センサ44の劣化有りと判定するときの反転周期が大きくなるように劣化判定値TR1を設定すれば、適切に劣化判定を行うことができる。
【0074】
(第2の実施形態)
以下、本発明にかかる酸素センサの劣化判定装置を具体化した第2の実施形態について、第1の実施形態との相違点を中心に説明する。上述のように、吸入空気量QAによる酸素センサ44の応答性の変化に対応すべく、空燃比補正係数FAFの積分補正量KIの値を吸入空気量QA等に応じて可変設定すれば、その積分補正量KIの設定により酸素センサ44の出力の反転周期にも自ずと変化が生じることとなる。
【0075】
そうした、積分補正量KIと上記酸素センサ44の出力との関係について、図6を参照して説明する。なお、スキップ補正量RSがリッチ側とリーン側とで対称の場合、換言すれば空燃比フィードバック制御におけるフィードバック中心がストイキ相当値FAFSと一致している場合を例にして説明する。
【0076】
同図6に示されるように、積分補正量KIの絶対値が小さい場合(同図6の左側のグラフ)の酸素センサ44の出力が反転するまでの時間T21は、積分補正量KIの絶対値が相対的に大きい場合(同図6の右側のグラフ)の同時間T22よりも長くなる(T21>T22)。すなわち、積分補正量KIの絶対値が小さい場合は、燃料噴射量の変化速度が小さくなり、ひいては排気の酸素濃度の変化速度が小さくなる。逆に、積分補正量KIの絶対値が大きい場合は、燃料噴射量の変化速度が大きくなり、ひいては排気の酸素濃度の変化速度が大きくなる。このため、積分補正量KIの絶対値の大きさによって、酸素センサ44の出力の反転周期TC1が変動することとなり、酸素センサ44の劣化判定が適切に行われなくなるおそれがある。
【0077】
そこで、本実施形態においては、図5のステップ130の処理にて、図7に示されるマップを参照して、積分補正量KIの絶対値に基づき劣化判定値TR2を可変設定するようにしている。同図7に示されるように、この劣化判定値TR2は、積分補正量KIの絶対値が大きいほど小さな値に設定される。これは、積分補正量KIの絶対値が大きいほど、酸素センサ44の出力の反転周期TC1が短くなる傾向にあるためである。このため、積分補正量KIの絶対値が大きくなり、酸素センサ44の出力の反転周期が短くなったとしても、それに応じた適切な劣化判定値TR2が設定されるようになる。
【0078】
以上説明したように、本実施形態によれば、第1の実施形態において(1)に記載した効果を奏することができるのに加え、さらに、
(4)酸素センサ44の出力結果に対する空燃比補正係数FAFの応答性は、その積分補正量KIを変更することで変化させることができる。よって、そうした積分補正量KIに基づいて劣化判定値TR2を設定することで、空燃比補正係数FAFの応答性の変化に起因した酸素センサ44の出力の反転周期TC1の変化に対応した適切な劣化判定値TR2を設定することができる。
【0079】
(第3の実施形態)
以下、本発明にかかる酸素センサの劣化判定装置を具体化した第3の実施形態について、第1の実施形態との相違点を中心に説明する。第1の実施形態では、酸素センサの出力が反転してから再び反転するまでの時間(反転周期)に基づいて判定するようにしていたが、本実施形態では、空燃比補正係数がストイキ相当値を跨いで変化してから酸素センサの出力が反転するまでの時間(酸素センサの応答時間)に基づいて判定するようにしている。
【0080】
本実施形態にかかる酸素センサの劣化判定装置による酸素センサの劣化判定について、図8〜10を参照して詳細に説明する。
まず、酸素センサの応答時間の測定について、図8のフローチャート及び図9のグラフを併せ参照して詳細に説明する。
【0081】
この一連の処理では、まず、空燃比補正係数がストイキ相当値を跨いで変化したか否かが判定される(ステップ1250)。具体的には、上記空燃比補正係数FAFの値が、ストイキ相当値FAFSを跨いで増量補正状態から減量補正状態、あるいは減量補正状態から増量補正状態に変化したか否かが判定される。
【0082】
ここで、図9のグラフを参照して、さらに詳細に説明する。
まず、スキップ補正量RSがリッチ側とリーン側とで対称の場合、換言すれば空燃比フィードバック制御におけるフィードバック中心がストイキ相当値FAFSと一致している場合について説明する(同図9の左側のグラフ)。
【0083】
この場合には、上述したように、空燃比補正係数FAFにスキップ補正量RSが加算されると、空燃比補正係数FAFの値は、ストイキ相当値FAFSを跨いで増量補正状態および減量補正状態の一方から他方へと大きく変化する。このとき、空燃比補正係数がストイキ相当値を跨いで変化した旨判定される。
【0084】
次に、スキップ補正量RSがリッチ側とリーン側とで非対称の場合、換言すれば空燃比フィードバック制御におけるフィードバック中心がストイキ相当値FAFSから偏倚している場合について説明する。
【0085】
この場合には、上述したように、空燃比補正係数FAFにスキップ補正量RSが加算されても、減量補正状態から増量補正状態へ入れ替わらなくなることがある(時間t31)。そして、積分補正量KIによる微調整よって空燃比補正係数FAFの値がストイキ相当値FAFSとなったとき(時間t32)、空燃比補正係数がストイキ相当値を跨いで変化した旨判定される。すなわち、燃料噴射量の補正状態が実際に増量補正状態と減量補正状態とで反転した時点(時間t32)が、上記酸素センサ44の応答時間を測定する際の起点とされる。
【0086】
この判定処理を通じて、空燃比補正係数がストイキ相当値を跨いで変化した旨判定された場合には(ステップ1250:YES)、酸素センサの応答時間の測定が許可される(ステップ1252)。具体的には、上記判定結果を表すフラグFFRの値が「1」に設定される。すなわち、上記空燃比補正係数がストイキ相当値を跨いで変化したことから、フラグFFRによって上記測定を開始する条件が整ったことが示される。
【0087】
一方、この判定処理を通じて、空燃比補正係数がストイキ相当値を跨いで変化していない旨判定された場合(ステップ1250:NO)には、上記測定の許可は行われない。具体的には、フラグFFRの値が「0」に設定された状態で維持され、上記測定を開始する条件が整っていないことが示される。すなわち、図9において時間t31〜t32の間は、酸素センサ44の出力が反転しても、空燃比補正係数FAFが減量補正状態から変化していないため、酸素センサ44の応答時間の測定は許可されない。
【0088】
続いて、酸素センサの応答時間の測定が許可された状態か否かが判定される(ステップ1254)。具体的には、上記フラグFFRの値が「1」に設定されているか否かが判定される。すなわち、空燃比補正係数がストイキ相当値を跨いで変化して上記測定が許可された状態(ステップ1252)、あるいは既に同測定が行われている状態のいずれかであるか否かが判定される。
【0089】
この判定処理を通じて、酸素センサの応答時間の測定が許可された状態でない旨判定された場合には(ステップ1254:NO)、この一連の処理は一旦終了される。
【0090】
一方、この判定処理を通じて、酸素センサの応答時間の測定が許可された状態である旨判定された場合(ステップ1254:YES)には、酸素センサの出力が反転したか否かが判定される(ステップ1256)。具体的には、酸素センサ44の出力が、リッチ側からリーン側あるいはリーン側からリッチ側に反転したか否かが判定される。すなわち、図9に示されるように、空燃比補正係数がストイキ相当値を跨いで変化した後に(時間t32)、燃料噴射量の補正状態の変化、ひいては排気の酸素濃度の変化に応答して、酸素センサ44出力が反転したか否かが判定される。
【0091】
この判定処理を通じて、酸素センサの出力が再び反転していない旨判定された場合には(ステップ1256:NO)、酸素センサの応答時間の計数が加算される(ステップ1258)。具体的には、上記電子制御装置50に備えられたカウンタをカウントアップすることによって、同カウンタのカウント数に換算された上記酸素センサ44の応答時間TC2が測定される。すなわち、図9において時間t32〜t33の間は、酸素センサ44の出力が反転していないため、応答時間TC2の測定が継続される。このようにして、酸素センサの応答時間の計数が加算された後、この一連の処理は一旦終了される。
【0092】
一方、この判定処理を通じて、酸素センサの出力が反転した旨判定された場合(ステップ1256:YES)には、応答時間の計数が確定される(ステップ1260)。具体的には、上記カウンタのカウントアップが終了し、同カウンタのカウント数に換算された酸素センサ44の応答時間TC2が確定する。すなわち、図9において時間t33となり、酸素センサ44の出力が反転したため、例えば時間T33が、酸素センサ44の応答時間TC2に換算されて測定が終了する。なお、同図9の左側のグラフに示す場合には、酸素センサ44の応答時間はその出力の反転周期と等しくなり、例えば時間T31が、酸素センサ44の応答時間TC2に換算されて計測される。
【0093】
このようにして応答時間の計数が確定された後、応答時間の測定の許可が解除され、かつ応答時間の計数が初期化される(ステップ1262)。具体的には、上記フラグFFRの値が「0」に設定されるとともに、上記カウンタのカウント数が「0」に戻される。このようにして応答時間の測定の許可が解除され、かつ応答時間の計数が初期化された後、この一連の処理は一旦終了される。
【0094】
図10は、この酸素センサの劣化判定装置による酸素センサの劣化判定の手順を示すフローチャートである。この図10に示すフローチャートにおいて、先の図5に示すフローチャートと同じ符号を付したステップについては処理内容が同一であるため、その説明を省略する。なお、このフローチャートに示される一連の処理は、上記電子制御装置50により所定の周期をもって繰り返し実行される。
【0095】
同図10に示されるように、空燃比フィードバック制御を行っている状態である旨判定された場合には(ステップ110:YES)、上述した処理により酸素センサの応答時間が測定される(ステップ125)。
【0096】
一方、燃料噴射量補正の学習が完了した状態ではない旨判定された場合(ステップ100:NO)又は空燃比フィードバック制御を行っている状態ではない旨判定された場合(ステップ110:NO)には、この一連の処理は一旦終了される。
【0097】
このようにして酸素センサの応答時間が測定された後、劣化判定値よりも酸素センサの応答時間が大きいか否かが判定される(ステップ145)。具体的には、所定の劣化判定値TR3よりも上記応答時間TC2が大きいか否かが判定される(TR3<TC2)。ここで、劣化判定値TR3は、酸素センサ44が新品の場合の応答時間を基準として、例えばその1.5〜2.0倍の値に設定される。すなわち、劣化判定値TR3は、酸素センサ44の応答時間がこれよりも長くなっていることをもって、同酸素センサ44が劣化していることを判定することのできる値に設定される。
【0098】
以上説明したように、本実施形態によれば、以下のような効果を得ることができるようになる。
(5)フィードバック中心の偏倚が反転周期TC1に与える影響分を除いた酸素センサ44の応答遅れ時間に基づき劣化判定が行われるため、酸素センサ44の劣化判定をより適切に行うことができる。
【0099】
なお、本発明にかかる酸素センサの劣化判定装置は上記の各実施形態に限定されるものではなく、それら各実施形態を適宜変更した、例えば次のような形態として実施することもできる。
【0100】
・第1の実施形態では、空燃比制御のフィードバック中心の調整度合いとして、空燃比補正係数FAFの中央値とストイキ相当値FAFSとの偏差を用いるようにしたが、これに代えて、例えば増加補正時のスキップ補正量RSと減量補正時のスキップ補正量RSとの比を用いるようにしてもよい。すなわち、空燃比制御のフィードバック中心の調整度合いは、ストイキ相当値FAFSからのフィードバック中心の偏倚を表すものであれば、その他のパラメータを用いることもできる。このように、酸素センサ44の出力結果に対する空燃比補正係数FAFの応答性は、そのスキップ補正量RSの変更によっても、変化させることができる。よって、そうしたスキップ補正量RSに基づいて劣化判定値を設定することで、空燃比補正係数FAFの応答性の変化に起因した酸素センサ44の出力の反転周期TC1の変化に対応した適切な劣化判定値を設定することができる。
【0101】
・上記第1〜第3の各実施形態では、酸素センサ44の出力の反転周期あるいは応答時間として、酸素センサ44の出力のリッチ側あるいはリーン側のいずれか一方のみを測定するようにしたが、リッチ側およびリーン側の双方の和を測定するようにしてもよい。また、リッチ側およびリーン側を含め、同反転周期あるいは応答時間を複数測定するようにしてもよい。このような方法によれば、酸素センサ44のリーンからリッチへの反転時の応答遅れ時間、及びリッチからリーンへの反転時の応答遅れ時間を双方同時に評価して判定を行うことができ、更に適切に劣化判定を行うことができる。
【0102】
・第1〜第3の各実施形態では、劣化判定値TR1、TR2、TR3をそのまま判定に使用するようにしたが、これらを吸入空気量に応じて補正するようにしてもよい。すなわち、酸素センサ44の出力の反転周期あるいは応答時間は、吸入空気量によって変化するため、吸入空気量に応じてこれら劣化判定値TR1、TR2、TR3を補正することにより、劣化判定の精度を向上させることができるようになる。
【図面の簡単な説明】
【図1】本発明にかかる酸素センサの劣化判定装置の第1の実施形態についてその概略を示すブロック図。
【図2】同実施形態にかかる酸素センサの出力の反転周期の測定についてその処理手順を示すフローチャート。
【図3】同実施形態の酸素センサの出力および空燃比補正係数の変化を示すタイミングチャート。
【図4】同実施形態のフィードバック中心の調整度合いと酸素センサの劣化判定値との関係を示すマップ。
【図5】同実施形態の酸素センサの劣化判定についてその処理手順を示すフローチャート。
【図6】本発明にかかる酸素センサの劣化判定装置の第2の実施形態について酸素センサの出力および空燃比補正係数の変化を示すタイミングチャート。
【図7】同実施形態の積分補正量の絶対値と酸素センサの劣化判定値との関係を示すマップ。
【図8】本発明にかかる酸素センサの劣化判定装置の第3の実施形態において酸素センサの応答時間の測定についてその処理手順を示すフローチャート。
【図9】同実施形態の酸素センサの出力および空燃比補正係数の変化を示すタイミングチャート。
【図10】同実施形態において酸素センサの劣化判定についてその処理手順を示すフローチャート。
【符号の説明】
10…エンジン、20…吸気通路、22…スロットルモータ、24…スロットルバルブ、26…インジェクタ、30…排気通路、32…三元触媒、41…回転速度センサ、42…スロットルセンサ、43…エアフロメータ、44…酸素センサ、45…酸素センサ、50…電子制御装置。

Claims (8)

  1. 酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うとともに、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性を可変設定するエンジンに適用されて、前記酸素センサの出力の反転周期に基づいて該酸素センサの劣化の有無を判定する装置であって、
    前記酸素センサの出力結果に対する空燃比補正係数の応答性の設定に応じて、前記劣化の有無の判定に係る劣化判定値を可変設定する
    ことを特徴とする酸素センサの劣化判定装置。
  2. 前記酸素センサの出力結果に対する前記空燃比補正係数の応答性の設定は、空燃比補正係数の積分補正量を変更することで行われ、前記劣化判定値は、その積分補正量に基づいて可変設定される請求項1に記載の酸素センサの劣化判定装置。
  3. 前記酸素センサの出力結果に対する前記空燃比補正係数の応答性の設定は、空燃比補正係数のスキップ補正量を変更することで行われ、前記劣化判定値は、そのスキップ補正量に基づいて可変設定される請求項1又は2に記載の酸素センサの劣化判定装置。
  4. 前記劣化判定値は、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性が低いときほど、前記酸素センサの劣化有りと判定するときの前記反転周期が大きくなるように可変設定される請求項1〜3のいずれかに記載の酸素センサの劣化判定装置。
  5. 酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うとともに、前記酸素センサの出力により空燃比が目標空燃比よりもリッチであることが検出されたときと、リーンであることが検出されたときとで、前記酸素センサの出力結果に対する前記空燃比補正係数の応答性を異ならせることで、前記空燃比補正係数のフィードバック中心を調整するエンジンに適用されて、前記酸素センサの出力の反転周期に基づいて該酸素センサの劣化の有無を判定する装置であって、
    前記空燃比補正係数のフィードバック中心の調整度合いに応じて、前記劣化の有無の判定に係る劣化判定値を可変設定する
    ことを特徴とする酸素センサの劣化判定装置。
  6. 前記劣化判定値は、前記フィードバック中心の調整度合いが大きいときほど、前記酸素センサの劣化有りと判定するときの前記反転周期が大きくなるように可変設定される請求項5に記載の酸素センサの劣化判定装置。
  7. 酸素センサの出力に基づいて空燃比補正係数を算出して空燃比フィードバック制御を行うエンジンに適用され、
    前記空燃比フィードバック制御の目標空燃比に相当する値を跨いで前記空燃比補正係数が変化した時点から、空燃比が前記目標空燃比よりもリッチにある状態とリーンにある状態とが切り替わったことが前記酸素センサの出力に基づき検出されるまでの時間を測定するとともに、
    その測定された時間に基づき前記酸素センサの劣化の有無を判定する
    ことを特徴とする酸素センサの劣化判定装置。
  8. 前記劣化の有無の判定は、空燃比のリッチからリーンへの切り替わりに係る前記時間と、リーンからリッチへの切り替わりに係る前記時間との和に基づき行われる請求項7に記載の酸素センサの劣化判定装置。
JP2003076625A 2003-03-19 2003-03-19 酸素センサの劣化判定装置 Pending JP2004285859A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003076625A JP2004285859A (ja) 2003-03-19 2003-03-19 酸素センサの劣化判定装置
US10/792,800 US7063081B2 (en) 2003-03-19 2004-03-05 Deterioration determining apparatus and deterioration determining method for oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076625A JP2004285859A (ja) 2003-03-19 2003-03-19 酸素センサの劣化判定装置

Publications (1)

Publication Number Publication Date
JP2004285859A true JP2004285859A (ja) 2004-10-14

Family

ID=32984814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076625A Pending JP2004285859A (ja) 2003-03-19 2003-03-19 酸素センサの劣化判定装置

Country Status (2)

Country Link
US (1) US7063081B2 (ja)
JP (1) JP2004285859A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074777A (ja) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp 内燃機関の制御装置
JP2016023614A (ja) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 空燃比センサの異常検出方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9925227D0 (en) * 1999-10-25 1999-12-22 Internet Limited Data storage retrieval and access system
US20060196487A1 (en) * 2005-03-01 2006-09-07 Belton David N Fuel control compensation for exhaust sensor response time degradation
JP4647393B2 (ja) * 2005-05-23 2011-03-09 富士重工業株式会社 空燃比センサの異常診断装置
US20070083307A1 (en) * 2005-10-06 2007-04-12 Spx Corporation Method and apparatus for monitoring an oxygen sensor
DE102006005503A1 (de) * 2006-02-07 2007-08-09 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine
DE102006007698B4 (de) * 2006-02-20 2019-03-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine
DE102009054935B4 (de) 2009-12-18 2022-03-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
US9518529B2 (en) * 2013-10-11 2016-12-13 Ford Global Technologies, Llc Methods and systems for an intake oxygen sensor
JP2017002843A (ja) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 内燃機関
CN112282954B (zh) * 2020-11-02 2022-10-28 潍柴动力股份有限公司 氮氧传感器作弊故障检测方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936809B2 (ja) 1990-07-24 1999-08-23 株式会社デンソー 酸素センサーの劣化検出装置
JPH0650200A (ja) 1992-07-31 1994-02-22 Honda Motor Co Ltd 内燃エンジンの酸素センサ劣化検出装置
JP2978960B2 (ja) * 1992-07-31 1999-11-15 本田技研工業株式会社 内燃エンジンの酸素センサ劣化検出装置
JPH08101161A (ja) 1994-09-30 1996-04-16 Suzuki Motor Corp 内燃機関の空燃比センサ劣化判定装置
JPH11166438A (ja) 1997-12-03 1999-06-22 Honda Motor Co Ltd 内燃エンジンの空燃比センサ劣化検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074777A (ja) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp 内燃機関の制御装置
JP2016023614A (ja) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 空燃比センサの異常検出方法

Also Published As

Publication number Publication date
US20040182379A1 (en) 2004-09-23
US7063081B2 (en) 2006-06-20

Similar Documents

Publication Publication Date Title
JP4420288B2 (ja) 内燃機関の気筒別空燃比制御装置
JP2570930B2 (ja) 内燃機関の触媒劣化判別装置
JPH0417747A (ja) 内燃機関の空燃比制御装置
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
JPH04342847A (ja) 内燃機関の空燃比制御装置
JP4941323B2 (ja) 内燃機関の制御装置
JP6611397B2 (ja) 触媒診断装置
JPH03286160A (ja) 内燃機関の触媒劣化検出装置
JPH0726578B2 (ja) 内燃機関の空燃比制御装置
JPH08121152A (ja) 内燃機関の触媒劣化診断装置
JP2004285859A (ja) 酸素センサの劣化判定装置
JP4089537B2 (ja) 空燃比センサの異常検出装置
JPH08100637A (ja) 排気ガス浄化用触媒劣化検査装置
JP2008128080A (ja) 内燃機関の制御装置
JP2007211609A (ja) 内燃機関の気筒別空燃比制御装置
JPS63120835A (ja) 内燃機関の空燃比制御装置
JP2010163904A (ja) 空燃比センサの異常判定装置
JP2013253593A (ja) 内燃機関の気筒別空燃比制御装置
JP3620051B2 (ja) エンジン用触媒劣化検出装置
JP2009092002A (ja) 内燃機関の空燃比制御装置
JP2004324471A (ja) 酸素センサの劣化判定装置
JP2020045814A (ja) 内燃機関の燃料噴射制御装置
JP4525196B2 (ja) 空燃比センサの異常検出装置
JPS60135637A (ja) 内燃エンジンの空燃比フイ−ドバツク制御方法
JP2518254B2 (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729