JP4941323B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4941323B2
JP4941323B2 JP2008009816A JP2008009816A JP4941323B2 JP 4941323 B2 JP4941323 B2 JP 4941323B2 JP 2008009816 A JP2008009816 A JP 2008009816A JP 2008009816 A JP2008009816 A JP 2008009816A JP 4941323 B2 JP4941323 B2 JP 4941323B2
Authority
JP
Japan
Prior art keywords
catalyst
value
determination
trajectory length
sensor signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008009816A
Other languages
English (en)
Other versions
JP2009167987A (ja
Inventor
紘晶 溝口
徳久 中川
孝彦 藤原
浩一 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008009816A priority Critical patent/JP4941323B2/ja
Publication of JP2009167987A publication Critical patent/JP2009167987A/ja
Application granted granted Critical
Publication of JP4941323B2 publication Critical patent/JP4941323B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、理論空燃比を基準として空燃比を振動させつつ、触媒の劣化判定を行うのに好適に用いられる内燃機関の制御装置に関する。
従来、例えば特許文献1(特開平10−47141号公報)に開示されているように、空燃比を振動させつつ、触媒の劣化判定を行う構成とした内燃機関の制御装置が知られている。この種の従来技術による内燃機関の制御装置は、酸素吸蔵能(OSC)をもつ触媒の上流側にA/Fセンサが設けられている。また、触媒の下流側には、酸素センサが設けられている。
そして、従来技術では、空燃比フィードバック制御を行うことにより、空燃比を矩形状のベース波形に沿って振動させながら、さらに空燃比を、ベース波形よりも短周期かつ小振幅な振動波形をもって振動させる。また、従来技術では、触媒の劣化判定を行うときに、空燃比の振幅及び振動周期を排気ガスの流量(吸入空気量)の増大に応じて小さく設定し、劣化判定中の排気エミッションを改善するようにしている。
特開平10−47141号公報
ところで、上述した従来技術では、空燃比を振動させつつ、触媒の劣化判定を行う構成としている。一般に、触媒の劣化判定時には、空燃比の振幅を大きくすると、触媒全体の酸素吸蔵能が使用される前に、排気ガスが触媒を吹き抜けて酸素センサの位置に達するようになる。このような排気ガスの吹き抜けが生じると、酸素センサの出力によって触媒の性能を正確に把握できなくなるため、劣化判定の精度が低下し易い。
一方、劣化判定時に空燃比の振幅を小さくした場合には、触媒全体の酸素吸蔵能を使用することが可能となる。しかしながら、空燃比の振幅が小さくなると、酸素センサの個体差や劣化等による応答性のばらつきが大きくなる。従って、この場合にも、劣化判定の精度が低下し易くなる。
このため、従来技術では、触媒の劣化判定を行うときに、単に空燃比の振幅等を変更するだけでは、酸素吸蔵能の使用とセンサの応答性とを両立させることができず、判定精度を高めるのが難しいという問題がある。
この発明は、上述のような課題を解決するためになされたもので、触媒の劣化判定を行うときに、排気ガスセンサの応答ばらつきを抑制しつつ、触媒全体の酸素吸蔵能を判定結果に反映させることができ、判定精度や信頼性を向上させることが可能な内燃機関の制御装置を提供することを目的としている。
第1の発明は、内燃機関の排気ガスを浄化する触媒と、
前記触媒の下流側に配置され、排気ガスの空燃比に応じて少なくともリッチ出力及びリーン出力となるセンサ信号を出力する排気ガスセンサと、
前記触媒の上流側における空燃比のリッチ・リーン特性が前記センサ信号の出力に対して逆となるように、理論空燃比を基準として前記空燃比を振動させる空燃比振動手段と、
前記空燃比振動手段が作動することにより、前記センサ信号がリッチ出力とリーン出力との間で反転する毎に、理論空燃比に対する前記空燃比の振幅を大振幅値から小振幅値に向けて複数段階で切換える振幅切換手段と、
前記触媒の劣化状態を判定するために、前記センサ信号の反転周期が反映された判定パラメータを算出する判定パラメータ算出手段と、
前記判定パラメータを劣化判定値と比較することにより、前記触媒が劣化しているか否かを判定する触媒劣化判定手段と、
を備えることを特徴とする。
第2の発明によると、前記振幅切換手段は、前記センサ信号が反転した時点から切換タイミングが到来するまでの間は前記空燃比の振幅を前記大振幅値に保持し、その後に前記振幅を前記小振幅値に切換える構成としている。
第3の発明は、内燃機関の吸入空気量を前記センサ信号が反転した時点から積算することにより、当該積算空気量を排気ガス積算量として算出する排気ガス積算量算出手段と、
劣化した触媒において前記センサ信号が一度反転してから再び反転するまでに必要となる積算空気量に応じて切換判定値を設定する切換判定値設定手段と、を備え、
前記振幅の切換タイミングは、前記排気ガス積算量が前記切換判定値に達した時点である構成としている。
第4の発明は、前記触媒の温度が高くなるにつれて、前記振幅の切換タイミングを遅くする振幅切換可変手段を備える構成としている。
第5の発明は、内燃機関の吸入空気量が増大するにつれて、前記大振幅値と前記小振幅値のうち少なくとも一方の振幅値を減少させる振幅値可変手段を備える構成としている。
第6の発明は、内燃機関の吸入空気量を一定時間にわたって積算することにより、積算空気量を算出する空気量積算手段と、
前記一定時間内に前記センサ信号の信号値が描く軌跡の長さを軌跡長として取得する軌跡長取得手段と、を備え、
前記判定パラメータ算出手段は、前記判定パラメータを前記積算空気量と前記軌跡長との比率として算出する構成としている。
第7の発明は、前記触媒の温度が高くなるにつれて、前記センサ信号の軌跡長を大きな値に補正する温度補正手段を備える構成としている。
第8の発明は、前記一定時間内における前記センサ信号の反転回数を前記判定パラメータに反映させる反映手段を備える構成としている。
第9の発明は、前記触媒の温度が低い状態と高い状態のそれぞれにおいて、前記センサ信号の信号値が描く軌跡の長さを軌跡長として取得する温度別軌跡長取得手段と、
前記低い温度での軌跡長と高い温度での軌跡長とを用いて、温度に対する前記軌跡長の変化状態を取得する軌跡長変化取得手段と、
前記軌跡長変化取得手段により取得した前記軌跡長の変化状態と、内燃機関の燃料が硫黄分を含まないときに取得した前記軌跡長の基準の変化状態とを比較することにより、燃料中に硫黄分が含まれるか否かを判定する硫黄判定手段と、
前記硫黄判定手段により燃料中に硫黄分が含まれると判定したときに、前記判定パラメータと前記劣化判定値とを補正する硫黄補正手段と、
を備える構成としている。
第10の発明は、前記排気ガスセンサが劣化状態に関係なく正常に作動するような吸入空気量を小流量として、吸入空気量が前記小流量となったときに、前記センサ信号の信号値が描く軌跡の長さを基準軌跡長として取得する基準軌跡長取得手段と、
前記排気ガスセンサが劣化している場合に応答遅れが生じるような吸入空気量を大流量として、吸入空気量が前記大流量となり、かつ前記排気ガスセンサが正常な場合の軌跡長を前記基準軌跡長に応じて推定する軌跡長推定手段と、
吸入空気量が前記大流量となったときに、前記センサ信号の実際の軌跡長を取得する実軌跡長取得手段と、
前記軌跡長推定手段により推定した軌跡長と前記実際の軌跡長とを比較することにより、前記排気ガスセンサが劣化しているか否かを判定するセンサ劣化判定手段と、
を備える構成としている。
第11の発明は、正常な触媒が活性化し、かつ劣化触媒が不活性となる温度領域に前記触媒の温度が含まれるときにのみ、前記触媒劣化判定手段の判定動作を許す温度制限手段を備える構成としている。
第12の発明は、前記排気ガスセンサの応答性により制限される許容流量に対して吸入空気量が大きいときに、前記触媒劣化判定手段の判定動作を禁止する流量制限手段を備える構成としている。
第13の発明は、内燃機関の運転状態に応じて前記触媒の温度を推定する触媒温度推定手段を備える構成としている。
第14の発明は、前記センサ信号の信号値が理論空燃比に対応する中心値から乖離するにつれて、当該信号値を大きな値に補正する信号補正手段を備える構成としている。
第1の発明によれば、振幅切換手段は、排気ガスセンサの出力信号(センサ信号)が反転してから最初の段階では、触媒の上流側の空燃比(上流側空燃比)の振幅を大振幅値として適度に大きくすることができる。これにより、センサ信号が反転した当初は、排気ガスセンサの応答性を高めることができ、センサの劣化状態の差による応答性のばらつきを抑えることができる。従って、センサ信号を安定させて信号精度を高めることができる。
また、振幅切換手段は、上流側空燃比を大振幅値で振動させた後に、この振幅を小振幅値として適度に小さくすることができる。この状態では、触媒全体の酸素吸蔵能を確実に使用することができ、酸素吸蔵能が全体的に使用された時点で、センサ信号を反転させることができる。即ち、触媒の酸素吸蔵能に未使用部分があるうちに、排気ガスの吹き抜け現象が生じるのを回避することができる。従って、触媒の劣化状態をセンサ信号の反転周期に対して確実に反映させることができ、劣化判定を精度よく行うことができる。
第2の発明によれば、上流側空燃比を大振幅値から小振幅値へと2段階で切換えることができる。これにより、排気ガスセンサの応答ばらつきを抑制しつつ、触媒全体の酸素吸蔵能を判定結果に反映させることができる。そして、この効果を得るにあたって、空燃比の変化を最低限に抑えることができ、運転性の悪化を回避することができる。
第3の発明によれば、例えば触媒が重度に劣化した場合には、上流側空燃比が大振幅値である期間中に、センサ信号を反転させることができる。この期間は、空燃比が大振幅値で振動しているために排気ガスセンサの応答性が高い期間なので、センサの応答ばらつきの影響を抑制しつつ、触媒の劣化を確実に判定することができる。
また、例えば触媒の劣化が軽度である場合には、大振幅値の期間だけでなく、小振幅値の期間も用いて劣化状態を判定することができ、より厳密な劣化判定を行うことができる。しかも、振幅値を切換えるべきタイミングは、触媒に流入する排気ガスの総量に応じて変化する。従って、排気ガス積算量に応じて振幅値を切換えることにより、内燃機関の運転状態が変化する場合でも、振幅の切換タイミングを適切に設定することができる。
第4の発明によれば、触媒温度が高い場合には、劣化した触媒でも、ある程度活性化した状態となる。このとき、振幅切換可変手段は、触媒の温度が高くなるにつれて、振幅の切換タイミングを遅くすることができる。これにより、触媒の温度が変化しても、この温度変化に応じて振幅の切換タイミングを補正することができる。従って、広い温度範囲において、劣化判定が容易となる適切なタイミングで空燃比の振幅を切換えることができ、振幅の切換タイミングを最適化することができる。
第5の発明によれば、排気ガスの流量が大きい場合には、触媒全体の酸素吸蔵能を使い切らないうちに排気ガスの吹き抜け現象が生じる。このとき、振幅値可変手段は、内燃機関の吸入空気量が増大するにつれて、大振幅値と小振幅値のうち少なくとも一方の振幅値を減少させることができる。これにより、内燃機関の運転状態に応じて排気ガスの流量が変動しても、触媒全体の酸素吸蔵能を安定的に使用して劣化判定を行うことができ、判定精度を高めることができる。
第6の発明によれば、劣化触媒は、触媒の酸素吸蔵能が低下しているので、正常な触媒に比べてセンサ信号の反転周期が短くなり、これに伴ってセンサ信号の軌跡長が長くなる。このため、劣化触媒の判定パラメータは、正常な触媒と比較して大きな値となる。また、排気ガスの流量が増減した場合には、これに応じてセンサ信号の軌跡長も変化するが、両者の比率である判定パラメータは、排気ガスの流量変化に対して一定の値に保持される。従って、判定パラメータを積算空気量と軌跡長との比率として算出することにより、センサ信号の反転周期(触媒の劣化状態)を判定パラメータに反映しつつ、排気ガスの流量変化の影響を判定パラメータから除外することができ、判定精度を高めることができる。
第7の発明によれば、触媒温度が高い場合には、その活性が高まることによりセンサ信号の反転周期が長くなるので、センサ信号の軌跡長は短くなり、正常な触媒と劣化触媒との間で判定パラメータの差異が小さくなる。このとき、温度補正手段は、触媒の温度が高くなるにつれて、センサ信号の軌跡長を大きな値に補正することができる。これにより、正常な触媒と劣化触媒との間で判定パラメータの値を十分に異ならしめることができ、触媒の温度状態に関らず、正確な判定を行うことができる。
第8の発明によれば、反映手段は、センサ信号の反転回数を判定パラメータに反映させることができる。この場合、センサ信号にノイズが乗ることにより軌跡長に誤差が生じたとしても、センサ信号の反転回数は、信号波形の乱れによる影響を受け難い。従って、判定パラメータの耐ノイズ性を向上させることができ、ノイズ等の外乱がある場合でも高い判定精度を実現することができる。
第9の発明によれば、触媒温度に対するセンサ信号の軌跡長の変化率と、燃料中の硫黄分の有無との間には相関がある。従って、この相関を利用することにより、硫黄分の有無を確実に判定することができる。これにより、例えば硫黄分の有無を直接検出する硫黄センサ等を用いなくても、簡単な構成で硫黄分の検出が可能となるので、システムの複雑化やコストアップを避けることができる。そして、燃料中に硫黄分が含まれる場合でも、この硫黄分を検出できるので、硫黄分の存在に応じて判定パラメータと劣化判定値とをそれぞれ適切に補正することができる。従って、硫黄分の有無に関らず、触媒の劣化状態を正確に判定することができる。
第10の発明によれば、吸入空気量が小流量であるときに、正常な排気ガスセンサと劣化した排気ガスセンサの応答性はほぼ同じレベルとなる。このため、軌跡長推定手段は、吸入空気量が小流量であるときの基準軌跡長に応じて推定演算を行うことにより、吸入空気量が大流量であり、かつ排気ガスセンサが正常な場合の軌跡長を推定することができる。一方、実軌跡長取得手段は、吸入空気量が大流量であるときの実際の軌跡長を取得することができる。このため、センサ劣化判定手段は、推定した軌跡長と実際の軌跡長とを比較することにより、排気ガスセンサが劣化しているか否かを判定することができる。
これにより、触媒の劣化判定を行うためのパラメータ(吸入空気量と軌跡長)を用いて、排気ガスセンサの劣化判定を容易に行うことができる。そして、排気ガスセンサの劣化を検出した場合には、例えば排気ガスセンサの応答遅れが生じる領域で触媒の劣化判定を停止する等の適切な処置を行うことができる。従って、排気ガスセンサが劣化したとしても、その影響で触媒の劣化状態が誤判定されるのを回避することができ、信頼性を高めることができる。
第11の発明によれば、温度制限手段は、正常な触媒が活性化し、かつ劣化触媒が不活性となる温度領域であるときにのみ、触媒劣化判定手段の判定動作を許すことができ、それ以外の温度領域では触媒劣化判定手段の判定動作を禁止することができる。これにより、触媒劣化判定手段の作動時には、正常な触媒と劣化触媒との間で判定パラメータの値を大きく異ならしめることができ、劣化判定を正確かつ容易に行うことができる。また、高温領域において、劣化触媒の活性が高まることにより誤判定が生じるのを回避することができる。
第12の発明によれば、流量制限手段は、吸入空気量が大きいときに、触媒劣化判定手段の判定動作を禁止することができる。これにより、排気ガスセンサの応答遅れが生じ易い大流量の領域では、劣化判定を行わずに済むから、センサの応答遅れが原因で触媒の劣化状態が誤判定されるのを未然に防止することができる。
第13の発明によれば、正常な触媒は活性が高いので、反応熱が生じる分だけ劣化触媒よりも温度が上昇し易い。このため、実際の触媒温度に応じて補正を実施すると、この補正は、正常な触媒と劣化触媒との差異を打消すように作用することがある。これに対し、触媒温度推定手段によれば、推定した触媒温度を用いて温度補正を行うことができ、このときに補正のパラメータである温度に触媒自体の劣化状態が反映されるのを回避することができる。従って、触媒の劣化状態に関らず、温度補正を正しく機能させることができ、劣化判定の分解能を十分に確保することができる。
第14の発明によれば、信号補正手段は、センサ信号の信号値が理論空燃比に対応する中心値から乖離するにつれて、当該信号値を大きな値に補正することができる。このため、小さな振幅にノイズが載った場合には、小さなゲインが用いられるので、振幅と共にノイズも減少方向に補正することができる。
また、元々大きな振幅に対しては、大きなゲインが用いられるので、振幅を更に大きく増幅することができる。これにより、ノイズが乗ることにより軌跡長が長くなったセンサ信号と、元々の振幅が大きいために軌跡長が長くなったセンサ信号とを確実に判別することができる。従って、判定パラメータの耐ノイズ性を向上させることができ、高い判定精度を実現することができる。
実施の形態1.
[実施の形態1の構成]
以下、図1乃至図12を参照しつつ、本発明の実施の形態1について説明する。まず、図1は、実施の形態1のシステム構成を説明するための全体構成図を示している。本実施の形態は、車両に動力源として搭載される内燃機関10を備えている。内燃機関10は、吸入空気が気筒内に向けて流入する吸気通路12と、気筒内で生じた排気ガスが流出する排気通路14とを備えている。
吸気通路12には、吸入空気量Gaを検出するエアフローメータ16と、エアフローメータ16の下流側に配置された電子制御式のスロットル弁18とが設けられている。スロットル弁18は、アクセル開度等に応じてスロットルモータ20により開,閉駆動され、その開度に応じて吸入空気量Gaを増減させる。
排気通路14には、排気ガスを浄化する触媒22が設けられている。触媒22は、例えば酸素吸蔵能(OSC)を有する三元触媒により構成され、排気ガス中のNOx、CO及びHCを浄化することができる。触媒22の上流側には、空燃比センサ24が配置されている。空燃比センサ24は、触媒22の上流側における排気ガスの空燃比(以下、上流側空燃比と称す)に対してほぼリニアな信号を出力するセンサである。
触媒22の下流側には、排気ガスセンサとしての酸素センサ26が設けられている。酸素センサ26は、例えば触媒22から流出する排気ガスの空燃比が理論空燃比に対してリッチであるか、或いはリーンであるかを検出する。このため、酸素センサ26から出力されるセンサ信号は、触媒22の下流側における排気ガスの空燃比(以下、下流側空燃比と称す)がリッチであるときにリッチ出力となり、下流側空燃比がリーンであるときにリーン出力となる。
一方、内燃機関10の気筒は、気筒内に向けて燃料を噴射する燃料噴射弁28と、吸気弁30、点火プラグ32、排気弁34等を備えている。また、内燃機関10には、クランク軸36の回転角を検出するクランク角センサ38が設けられている。
さらに、本実施形態のシステムは、ECU(Electronic Control Unit)40を備えている。ECU40は、ROM、RAM等の記憶回路と、タイマ機能とを備えたマイクロコンピュータ等により構成されている。ECU40の入力側には、前述したエアフローメータ16、センサ24,26,38等を含めて各種のセンサが接続されている。また、ECU40の出力側には、スロットルモータ20、燃料噴射弁28、点火プラグ32等を含めて各種のアクチュエータが接続されている。
そして、ECU40は、各センサの出力に応じて必要なアクチュエータを作動させることにより、内燃機関の運転状態を制御することができる。この運転制御は、空燃比フィードバック制御と、後述の触媒劣化判定制御とを含んでいる。
空燃比フィードバック制御は、2つのセンサ24,26の出力を用いて一般的に公知な方向で実施され、上流側空燃比がほぼ理論空燃比となるように制御する。より詳しく述べると、空燃比フィードバック制御は、メインフィードバック制御と、サブフィードバック制御とにより構成されている。メインフィードバック制御は、空燃比センサ24により上流側空燃比を検出しつつ、その出力に応じて燃料噴射量を補正する。サブフィードバック制御は、空燃比センサ24の個体差や経年変化等による変動要因を補償するために、酸素センサ26の出力に応じてメインフィードバック制御を補完する。
[触媒の劣化判定制御]
以下、図2乃至図10を参照しつつ、触媒の劣化判定制御について説明する。この判定制御は、理論空燃比を基準として上流側空燃比を振動させながら、酸素センサ26の出力信号(以下、センサ信号と称す)に基づいて触媒22の劣化状態を判定するものである。図2は、劣化判定制御中における上流側空燃比とセンサ信号の状態を示している。ここで、図2中の実線は劣化が生じていない正常な触媒の特性であり、仮想線は劣化した触媒の特性である。
(基本的な制御)
まず、正常な触媒の特性を参照しつつ、劣化判定時に行われる空燃比の基本的な制御について説明する。図2中の期間aは、ある程度の酸素を吸蔵した触媒22に対して、リッチな排気ガスが流入する状態を示している。リッチな排気ガスが触媒22に流入すると、触媒22に吸蔵されていた酸素が排気ガス中に放出され、排気ガス中のHC,COが触媒22により酸化される。この結果、下流側空燃比はほぼ理論空燃比(ストイキ)に保持され、センサ信号は、直前の出力状態であるリーン出力に保持される。
また、この状態が継続すると、触媒22に吸蔵された酸素が全て放出され、酸素の放出動作が停止する。この結果、触媒22の下流側には、リッチな排気ガスがそのまま流出するようになり、センサ信号は、図2中の期間bに示すように、リッチ出力に反転する。センサ信号が反転すると、上流側空燃比は、リッチ・リーン特性がセンサ信号の出力に対して逆となるように、ECU40によってリーンに切換えられる。このため、触媒22にはリーンな排気ガスが流入するようになる。
この状態では、排気ガス中の酸素が触媒22に吸蔵され、触媒22によりNOxが還元される。この結果、下流側空燃比はストイキとなり、センサ信号はリッチ出力に保持される。さらに、この状態が継続すると、触媒22の酸素吸蔵能が飽和し、触媒22の下流側には、リーンな排気ガスがそのまま流出するようになる。このため、図2中の期間cでは、前述した期間aの場合と同様に、センサ信号がリーン出力に反転し、上流側空燃比がリッチ出力に切換えられる。
このように、触媒の劣化判定制御では、理論空燃比を基準として上流側空燃比を振動させることにより、センサ信号を周期的に反転させる。このときの反転周期は、触媒22の酸素吸蔵能に応じて変化する。即ち、酸素吸蔵能が低下した劣化触媒では、図2中の仮想線に示すように、センサ信号の反転周期が短くなるので、これを利用して後述の判定処理を行うことができる。
(空燃比の振幅切換)
上述した原理によれば、劣化判定を正確に行うためには、少なくとも触媒22の酸素吸蔵能(放出能)が全体的に使用された時点でセンサ信号が反転するように、上流側空燃比の振幅を適切に設定する必要がある。図3は、上流側空燃比の振幅と、触媒の酸素残存量との関係を示すものである。ここで、図3(a)は、例えば上流側空燃比の振幅ΔA/Fを±0.5に設定した場合であり、図3(b)は、振幅ΔA/Fを±0.2に設定した場合である。また、酸素残存量とは、例えばセンサ信号がリーン出力からリッチ出力に切換わった時点(触媒の吸蔵酸素が全て放出されたはずの時点)において、触媒に残存している実際の酸素量である。
この図3に示すように、上流側空燃比の振幅ΔA/Fが大きくなるにつれて、触媒に残存する酸素量は増える傾向がある。即ち、振幅ΔA/Fが大きい場合には、これに対して触媒22の酸素吸蔵能が追従できなくなり、触媒全体の酸素吸蔵(放出)動作が完了していなくても、排気ガスが触媒の下流側に吹き抜けるようになる。
このように、触媒全体の酸素吸蔵能が使用されないうちに排気ガスが下流側に吹き抜ける現象(以下、排気ガスの吹き抜け現象と称す)が生じると、触媒の劣化状態がセンサ信号の反転周期に対して正確に反映されなくなるので、劣化判定の精度が低下する。従って、上流側空燃比の振幅は、例えば触媒全体の酸素吸蔵能が使用されるような小さい値に設定することが好ましい。
しかしながら、上流側空燃比の振幅を小さくすると、酸素センサ26の応答性のばらつきが増大し、判定精度の低下を招く虞れがある。即ち、空燃比の振幅が大きい場合には、経時劣化等により応答性が低下した酸素センサでも、空燃比が極端に変化する分だけ応答性が高くなるので、センサ間の応答性のばらつきは小さくなる。逆に言えば、この応答ばらつきは、空燃比の振幅が小さくなるにつれて増大するので、単に空燃比の振幅を小さくしただけでは、センサ信号の精度が低下することになる。
これらの問題を解決するために、触媒の劣化判定制御では、センサ信号がリッチ出力とリーン出力との間で反転する毎に、上流側空燃比の振幅を大振幅値から小振幅値に向けて複数段階(例えば2段階)で切換える構成としている。より具体的に述べると、上流側空燃比の振幅は、図2に示すように、センサ信号がリッチ出力からリーン出力に反転した時点を基準として、まず大振幅値ΔA1に設定される。
この振幅は、後述の切換タイミングが到来したときに、例えば矩形状の波形をもって大振幅値ΔA1から小振幅値ΔA2へと階段状に減少され、センサ信号が再び反転するまで小振幅値ΔA2に保持される。また、センサ信号がリーン出力からリッチ出力に反転したときにも同様に、上流側空燃比の振幅は、まず大振幅値(−ΔA1)に保持され、その後に小振幅値(−ΔA2)に切換えられる。以下、上流側空燃比の振幅については、リッチ側の大振幅値ΔA1と小振幅値ΔA2とを例に挙げて説明し、リーン側の大振幅値(−ΔA1)と小振幅値(−ΔA2)については、その説明を省略する。
ここで、大振幅値ΔA1は、例えば酸素センサ26の応答ばらつきが十分に小さくなるような大きい値に設定されている。具体例を挙げれば、大振幅値ΔA1は、理論空燃比を基準として±0.5程度の値に設定されている。この場合、大振幅値ΔA1が過大になると、内燃機関の運転中に空燃比が大きく振動して運転性を悪化させる虞れがある。このため、大振幅値ΔA1の最大値は、運転性が悪化しない程度の大きさに制限されている。
一方、小振幅値ΔA2は、少なくとも大振幅値ΔA1よりも小さな値に設定されており、好ましくは、前述した排気ガスの吹き抜けが生じることなく触媒全体の酸素吸蔵能が使用されるような小さい値に設定されている。具体例を挙げれば、小振幅値ΔA2は、理論空燃比を基準として±0.2程度の値に設定されている。この場合、小振幅値ΔA2が過小になると、触媒22による酸素の吸蔵・放出量が微少となり、劣化判定が難しくなる。このため、小振幅値ΔA2の最小値は、劣化判定にとって十分な量の酸素が吸蔵・放出される程度の大きさに制限されている。
この構成によれば、センサ信号が反転してから最初の段階では、上流側空燃比の振幅を大振幅値ΔA1として適度に大きくすることができる。これにより、センサ信号が反転した当初は、酸素センサ26の応答性を高めることができ、センサの劣化状態の差による応答性のばらつきを抑えることができる。従って、センサ信号を安定させることができ、その精度を高めることができる。
また、上流側空燃比の振幅を大きくした後には、この振幅を小振幅値ΔA2として適度に小さくすることができる。この状態では、触媒全体の酸素吸蔵能を確実に使用することができ、酸素吸蔵能が全体的に使用された時点で、センサ信号を反転させることができる。即ち、触媒22の酸素吸蔵能に未使用部分があるうちに、排気ガスの吹き抜け現象が生じるのを回避することができる。
従って、触媒22の劣化状態をセンサ信号の反転周期に対して確実に反映させることができ、劣化判定を精度よく行うことができる。また、センサ信号の波形を2段階で変化させることにより、上述した効果を得るにあたって、空燃比の変化を最低限に抑えることができ、運転性の悪化を回避することができる。
(振幅の可変設定)
上述した排気ガスの吹き抜け現象は、上流側空燃比の振幅が大きい場合だけでなく、排気ガスの流量が大きい場合にも生じ易い。即ち、空燃比が一定であっても、排気ガスの流量が大きいと、これに対して触媒22の酸素吸蔵能が追従できなくなる。
このため、本実施の形態では、エアフローメータ16により検出した吸入空気量Ga(≒排気ガスの流量)が増大するにつれて、大振幅値ΔA1と小振幅値ΔA2のうち少なくとも一方の振幅値を減少させる構成としている。図4は、例えば小振幅値ΔA2(または、大振幅値ΔA1でもよい)と、吸入空気量Gaとの関係を示すデータである。このデータはECU40に予め記憶されている。図4に示すように、ECU40は、吸入空気量Gaが増大するにつれて、小振幅値ΔA2を徐々に小さな値に設定する。
この構成によれば、内燃機関の運転状態に応じて排気ガスの流量が変動しても、この流量に応じて小振幅値ΔA2(及び/又は大振幅値ΔA1)を常に適切な値に設定することができる。これにより、排気ガスの流量に影響されることなく、触媒全体の酸素吸蔵能を安定的に使用して劣化判定を行うことができ、判定精度を高めることができる。
(振幅の切換タイミング)
振幅の切換タイミングは、排気ガス積算量Gが切換判定値G0に達した時点として設定されている。即ち、ECU40は、排気ガス積算量Gが切換判定値G0に達したときに、上流側空燃比の振幅を大振幅値ΔA1から小振幅値ΔA2に切換える。ここで、排気ガス積算量Gとは、センサ信号が最後に反転した時点から、ある時点までに流通した排気ガスの総流量であり、吸入空気量Gaを積算することにより算出される。また、切換判定値G0は、例えば重度に劣化した触媒22において、センサ信号が一度反転してから再び反転するまでに必要となる積算空気量に応じて設定されている。
この構成によれば、触媒22が重度に劣化した場合には、図2に示すように、上流側空燃比が大振幅値ΔA1である期間Tの間に、センサ信号を反転させることができる。この期間Tは、前述したように酸素センサ26の応答性が高い期間なので、センサの応答ばらつきの影響を抑制しつつ、重度の劣化を確実に判定することができる。また、触媒22の劣化が軽度である場合には、大振幅値ΔA1の期間だけでなく、小振幅値ΔA2の期間も用いて劣化状態を判定することができ、より厳密な劣化判定を行うことができる。
しかも、振幅値を切換えるべきタイミングは、触媒22に流入する排気ガスの総量に応じて変化する。従って、本実施の形態のように、排気ガス積算量Gに応じて振幅値を切換えることにより、内燃機関の運転状態が変化する場合でも、振幅の切換タイミングを適切に設定することができる。
一方、図5は、切換判定値G0と触媒22の温度(触媒温度)との関係を示すデータである。このデータはECU40に予め記憶されている。図5に示すように、本実施の形態では、触媒温度が高くなるにつれて、切換判定値G0を大きな値に設定し、振幅の切換タイミングを遅くする構成としている。
触媒温度が高い場合には、劣化した触媒でも、ある程度活性化した状態となる。この状態では、センサ信号の反転周期が長くなり、センサ信号が一度反転してから再び反転するまでに必要となる積算空気量(以下、1周期の積算空気量と称す)が大きくなる。このため、本実施の形態では、触媒22の温度状態に関らず、切換判定値G0が劣化触媒の1周期の積算空気量に対応した値となるように、切換判定値G0を温度補正している。
上記構成によれば、触媒22の温度が変化しても、この温度変化に応じて振幅の切換タイミングを補正することができる。このため、広い温度範囲において、劣化判定が容易となる適切なタイミングで空燃比の振幅を切換えることができ、振幅の切換タイミングを最適化することができる。
(判定パラメータ)
次に、触媒22の劣化判定に用いる判定パラメータPについて説明する。判定パラメータPの算出時には、まず、一定時間Δt(例えば、10秒程度)の間に、センサ信号の信号値が描く軌跡の長さを求め、この軌跡長を定時間軌跡長Ltして記憶する。これと同時に吸入空気量Gaを積算することにより、前記一定時間Δt内における吸入空気量Gaの積算量を求め、この積算量を定時間積算空気量Gtとして記憶する。
そして、定時間軌跡長Ltと定時間積算空気量Gtとの比率(Lt/Gt)を、判定パラメータPとして算出する。即ち、判定パラメータPは、一定時間の積算空気量に対するセンサ信号の軌跡長として算出されるものである。ここで、センサ信号は、前述の図2に示すように、排気ガスの流量(吸入空気量)に応じた周期で反転を繰返す。このため、触媒温度等を一定とすれば、定時間軌跡長Ltと定時間積算空気量Gtとの間には、触媒22の劣化状態に関らず、比例関係が成立する。つまり、判定パラメータPは、正常な触媒でも劣化触媒でも、それぞれの劣化状態に応じた一定の値を保持する。
この場合、劣化触媒は、触媒の酸素吸蔵能が低下しているので、正常な触媒に比べてセンサ信号の反転周期が短くなり、これに伴ってセンサ信号の軌跡長が長くなる。このため、劣化触媒の判定パラメータPは、正常な触媒と比較して大きな値となる。従って、判定パラメータPを、後述の劣化判定値Sと比較することにより、触媒22が劣化しているか否かを判定することができる。
また、排気ガスの流量が増減した場合には、これに応じてセンサ信号の軌跡長も変化するので、両者の比率である判定パラメータPは、排気ガスの流量変化に対して一定の値に保持される。従って、本実施の形態によれば、センサ信号の反転周期(触媒22の劣化状態)を判定パラメータPに反映しつつ、排気ガスの流量変化の影響を判定パラメータPから除外することができ、判定精度を高めることができる。
一方、図6は、劣化状態と温度が異なる複数の触媒22について、定時間軌跡長Ltと定時間積算空気量Gtとの関係を示すものである。図6において、特性線の傾きは判定パラメータPの値に相当している。この図から判るように、判定パラメータPは、劣化の有無だけでなく、触媒温度によっても変化する。
このため、本実施の形態では、定時間軌跡長Ltを触媒温度に応じて補正する構成としている。図7は、例えば乗算、加算等の手段により定時間軌跡長Ltに反映される軌跡長補正係数と、触媒温度との関係を示すデータである。このデータはECU40に予め記憶されている。図7に示すように、ECU40は、触媒温度が高くなるにつれて、軌跡長補正係数を増大させ、定時間軌跡長Ltを大きな値に補正する。
ここで、触媒22の温度が高い場合には、その活性が高まることによりセンサ信号の反転周期が長くなるので、センサ信号の軌跡長は短くなる。従って、例えば高温の劣化触媒と、比較的低温な正常触媒との間では、図6に示すように、判定パラメータPの差異(即ち、劣化判定の分解能)が小さくなる。
これに対し、図8は、上述の温度補正を実行した後の定時間軌跡長Ltと、定時間積算空気量Gtとの関係を示している。この図に示すように、上述の温度補正を行うことにより、正常な触媒と劣化触媒との間で判定パラメータPの値を十分に異ならしめることができる。これにより、触媒22の温度状態に関らず、劣化判定の分解能を増大させることができ、正確な判定を行うことができる。
(劣化判定値)
劣化判定値Sは、前述した図8において、仮想線で示す判定レベルの傾きに相当するものである。即ち、劣化判定値Sは、正常な触媒の判定パラメータPと、劣化触媒の判定パラメータPとの間となる値に設定されており、その値はECU40に予め記憶されている。そして、ECU40は、判定パラメータPと劣化判定値Sとを比較し、判定パラメータPが劣化判定値Sよりも大きいときにのみ、触媒22が劣化していると判定する。
(触媒温度の推定)
前述した定時間軌跡長Ltの温度補正では、触媒22の実際の温度ではなく、内燃機関の運転状態等に応じて推定された触媒の推定温度が用いられる。触媒22の推定温度は、例えば内燃機関の機関回転数、吸入空気量、負荷状態、吸気温度等を用いて推定されるもので、その推定方法は一般的に公知なものである。
図9は、劣化状態と温度が異なる2つの触媒に対して、実際の触媒温度を用いて温度補正を行った場合の影響を説明するための説明図である。図9において、上側の黒丸は、例えば実際の温度(触媒の床温)が650℃である劣化触媒の特性を表しており、下側の黒丸は、床温が700℃である正常触媒の特性を表している。また、図中の白丸は、これらの触媒に対して温度補正を行った後の特性である。
正常な触媒は活性が高いので、反応熱が生じる分だけ劣化触媒よりも温度が上昇し易い。このため、図9に示すように、例えば温度が上昇するにつれて補正量が増大するような補正を実施すると、正常な触媒の補正量に対して劣化触媒の補正量が小さくなり、これらの触媒間で補正後の分解能が減少する。即ち、実際の触媒温度に応じて補正を実施すると、この補正は、正常な触媒と劣化触媒との差異を打消すように作用することがある。
そこで、本実施の形態では、触媒の推定温度を用いて定時間軌跡長Ltの温度補正を行うものである。この構成によれば、所定の推定演算により触媒22の温度を求めることができるから、補正のパラメータである温度に触媒自体の劣化状態が反映されるのを回避することができる。従って、触媒22の劣化状態に関らず、定時間軌跡長Ltの温度補正を正しく機能させることができ、劣化判定の分解能を十分に確保することができる。
(劣化判定の実行条件)
正常な触媒と劣化触媒の活性化温度を比較してみると、正常な触媒が活性化し、かつ劣化触媒が不活性となる温度領域(以下、適温領域と称す)が存在する。この適温領域の一例を挙げれば、400〜600℃の温度範囲である。そこで、本実施の形態では、触媒温度が適温領域に含まれるときにのみ劣化判定を実施し、それ以外は劣化判定を禁止する構成としている。
正常な触媒は、適温領域で劣化判定を行うと、センサ信号が通常の反転周期で反転するようになる。一方、劣化触媒の場合には、同じ適温領域でも不活性状態であるために、センサ信号の反転周期が非常に短くなり、その軌跡長が極端に長くなる。従って、本実施の形態によれば、適温領域で劣化判定を行うことにより、正常な触媒と劣化触媒との間で判定パラメータPの値を大きく異ならしめることができ、劣化判定を正確かつ容易に行うことができる。
また、触媒温度が上限温度(例えば800℃程度)を超えた場合には、劣化触媒でも高温によって活性が高くなり、正常な触媒と劣化触媒との差異が減少する。このため、本実施の形態では、触媒温度が上限温度を超えたときには、劣化判定を禁止している。これにより、高温領域での誤判定を回避することができる。
一方、本実施の形態では、排気ガスの流量に対しても、劣化判定を禁止する条件を設けている。図10は、定時間軌跡長Ltと定時間積算空気量Gtとの関係について、排気ガスが大流量となる領域も含めて図示したものである。センサ信号の反転周期は、排気ガスの流量が大きくなるにつれて短くなる。
このため、センサ信号の反転周期が元々短い劣化触媒において、排気ガスの流量が極端に大きくなると、酸素センサ26の応答性が反転周期に追従できなくなり、応答遅れが生じる。この結果、排気ガスの流量が大きな領域では、図10に示すように、劣化触媒の場合だけ定時間軌跡長Ltが短くなり、劣化判定の分解能が減少する虞れがある。
そこで、本実施の形態では、吸入空気量Gaが所定の許容流量よりも大きくなったときに、劣化判定を禁止する構成としている。ここで、許容流量とは、酸素センサ26の応答性が良好であるような吸入空気量の最大値である。この構成によれば、センサの応答遅れが生じ易い大流量の領域では、劣化判定を行わずに済むから、センサの応答遅れが原因で生じる誤判定を未然に防止することができる。
[実施の形態1を実現するための具体的な処理]
図11及び図12は、本実施の形態のシステム動作を実現するために、ECU40が実行するルーチンのフローチャートである。なお、これら2つのルーチンは、内燃機関の運転中に繰返し実行され、互いに並行して作動するものである。また、図示は省略したが、これらのルーチンと別のルーチンでは、エアフローメータ16の出力を用いて吸入空気量Gaが一定時間毎に検出される。
最初に、図11に示す振幅制御ルーチンについて説明する。まず、ステップ100では、吸入空気量Gaが所定の許容流量以下であるか否かを判定する。また、ステップ102では、触媒温度が適温領域であるか否かを判定する。これらのステップの両方で「YES」と判定したときには、触媒の劣化判定制御に好適な条件が成立しているので、後述のステップ104に移る。
また、ステップ100,102の何れかで「NO」と判定したときには、酸素センサ26の応答遅れが生じ易いほど排気ガスが大流量であるか、または正常触媒と劣化触媒とを効率よく判別できないような温度領域である。従って、これらの場合には、劣化判定制御を禁止し、そのまま終了する。
次に、ステップ104では、定時間軌跡長Ltと定時間積算空気量Gtとを算出するために、ECU40のタイマをスタートし、一定時間Δtの計測を開始する。そして、ステップ106〜122では、上流側空燃比をリッチ側で2段階に切換える処理を行う。
即ち、ステップ106では、ECU40に予め記憶されたデータ(図5)を参照することにより、振幅の切換判定値G0を触媒温度に応じて可変に設定する。ステップ108では、センサ信号が反転したタイミングを起点として、上流側空燃比の値がリッチ側の大振幅値ΔA1となるように制御する。そして、ステップ110では、振幅の切換タイミングを計るために、吸入空気量Gaを用いて排気ガス積算量Gの積算を開始する。
次に、ステップ112では、上流側空燃比が大振幅値ΔA1となった状態において、センサ信号が反転したか否かを判定する。ここで「YES」と判定したときには、下流側空燃比がリッチからリーンへと反転したので、後述のステップ124〜140に移行する。また、ステップ112で「NO」と判定したときには、ステップ114で排気ガス積算量Gが切換判定値G0以上となったか否かを判定する。
そして、ステップ114で「YES」と判定したときには、振幅の切換タイミングが到来したので、後述のステップ116に移る。また、ステップ114で「NO」と判定したときには、センサ信号が反転するか、または切換タイミングが到来するまで大振幅値ΔA1を維持しつつ、待機する。
次に、ステップ116では、排気ガス積算量Gを零にクリアする。また、ステップ118では、ECU40に予め記憶されたデータ(図4)を参照することにより、リッチ側の小振幅値ΔA2を吸入空気量Gaに応じて可変に設定する。なお、本ルーチンでは、小振幅値ΔA2のみを可変に設定する構成としたが、本発明はこれに限らず、大振幅値ΔA1または両方の振幅値ΔA1,ΔA2を吸入空気量Gaに応じて可変に設定してもよい。
そして、ステップ120では、上流側空燃比を段差状に減少させることにより、その値がリッチ側の小振幅値ΔA2となるように制御する。また、ステップ122では、上流側空燃比が小振幅値ΔA2となった状態において、センサ信号が反転したか否かを判定する。ここで「YES」と判定したときには、ステップ124〜140に移行する。また、ステップ122で「NO」と判定したときには、センサ信号が反転するまで小振幅値ΔA2を維持しつつ、待機する。
次に、ステップ124〜140では、前述したステップ106〜122とほぼ同様の処理を行うことにより、上流側空燃比をリッチ側で2段階に切換える。この場合、ステップ126では、センサ信号が反転したタイミングを起点として、上流側空燃比の値がリーン側の大振幅値(−ΔA1)となるように制御する。また、ステップ138では、上流側空燃比の値をリーン側の小振幅値(−ΔA2)に切換える。さらに、ステップ130,140では、センサ信号が反転したときに、ステップ106に移るものである。
次に、図12を参照しつつ、判定ルーチンについて説明する。まず、ステップ150では、前述のステップ104でタイマをスタートしてから、一定時間Δtが経過したか否かを判定する。ここで「YES」と判定したときには、ステップ152以降の処理を行うが、「NO」と判定したときには、そのまま終了する。
次に、ステップ152では、一定時間Δtの吸入空気量Gaを積算した定時間積算空気量Gtを算出する。ステップ154では、一定時間Δtのセンサ信号の軌跡長である定時間軌跡長Ltを算出する。また、ステップ156では、内燃機関の運転状態等に応じて触媒温度を推定する。そして、ステップ158では、ECU40に予め記憶されたデータ(図7)を参照することにより、定時間軌跡長Ltを触媒温度に応じて補正する。
次に、ステップ160では、定時間積算空気量Gtと定時間軌跡長Ltとを用いて、これらの比率である判定パラメータPを算出する。また、ステップ162では、ECU40に予め記憶された劣化判定値Sを読込む。そして、ステップ164では、判定パラメータPが劣化判定値Sよりも大きいか否かを判定する。
ステップ164で「YES」と判定したときには、触媒22が劣化していると判断される。そこで、この場合には、ステップ166において、例えば警告灯の点灯などのように、触媒22の劣化に対処するための劣化対応制御を実行する。また、ステップ164で「NO」と判定したときには、そのまま終了する。
以上、詳述したように、本実施の形態によれば、触媒22の劣化判定を行うときに、排気ガスセンサの応答ばらつきを抑制しつつ、触媒全体の酸素吸蔵能を判定結果に反映させることができ、判定精度や信頼性を向上させることができる。
実施の形態2.
次に、図13乃至図16を参照しつつ、本発明の実施の形態2について説明する。本実施の形態のシステムは、前記実施の形態1と同様に、図1に示すシステム構成を採用している。また、本実施の形態では、実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態2の特徴部分]
本実施の形態では、実施の形態1とほぼ同様に、触媒22の劣化判定制御を行う。しかし、燃料中に硫黄分が含まれている場合には、誤判定の虞れが生じるので、硫黄分の影響を補正する必要がある。そこで、本実施の形態では、以下に述べる補正を行うものである。なお、本実施の形態では、実施の形態1で説明した基本的な劣化判定制御については、説明を省略するものとする。
(硫黄判定)
図13は、硫黄分を含有した燃料(以下、硫黄燃料と称す)と、硫黄分を含有していない通常燃料のそれぞれについて、前述の定時間軌跡長Ltと触媒温度との関係を示す特性線図である。燃料中に硫黄分が含まれている場合には、図13に示すように、通常燃料の場合よりも定時間軌跡長Ltが長くなるので、本実施の形態では、これを利用して硫黄分の有無を判定する。
硫黄判定では、まず最初に、触媒温度が低温であるときと高温であるときのそれぞれにおいて、定時間軌跡長Ltを算出する。そして、これらの算出値を用いることにより、触媒温度に対する定時間軌跡長Ltの変化率(即ち、図13中の特性線の傾き)を取得する。ここで、触媒の硫黄被毒は、低温時に発生し易い。このため、上述の低温とは、触媒が活性化する温度範囲内で、硫黄被毒の影響が大きくなるような低い温度である。また、高温とは、低温時に対して定時間軌跡長Ltに十分な差異が生じるような高い温度である。
そして、上述した定時間軌跡長Ltの変化率と、基準の変化率(図13中の基準傾き)とを比較することにより、燃料中に硫黄分が含まれているか否かを判定する。ここで、基準の変化率とは、通常燃料を用いて予め取得された定時間軌跡長Ltの変化率であり、ECU40に記憶されている。ECU40は、判定対象となる燃料の定時間軌跡長Ltの変化率が、基準の変化率よりも大きいときに、当該燃料が硫黄燃料であると判定する。
この構成によれば、触媒温度に対する定時間軌跡長Ltの変化率と、燃料中の硫黄分の有無との間には相関がある。従って、この相関を利用することにより、硫黄分の有無を確実に判定することができる。これにより、例えば硫黄分の有無を直接検出する硫黄センサ等を用いなくても、簡単な構成で硫黄分の検出が可能となるので、システムの複雑化やコストアップを避けることができる。
(硫黄補正)
硫黄燃料であると判定した場合には、この判定結果に基づいて定時間軌跡長Ltと劣化判定値Sの補正が行われる。まず、定時間軌跡長Ltの補正について述べると、図14は、硫黄燃料と通常燃料のそれぞれについて、軌跡長補正係数と触媒温度との関係を示すものである。ここで、軌跡長補正係数とは、実施の形態1(図7参照)と同様に、触媒温度に応じて定時間軌跡長Ltを補正するための補正係数である。また、図14中に実線と点線で示す2種類の軌跡長補正係数は、ECU40に予め記憶されている。
硫黄燃料である場合には、図14中に点線で示す通常燃料用の軌跡長補正係数に代えて、実線で示す硫黄燃料用の軌跡長補正係数が用いられる。即ち、定時間軌跡長Ltに反映される軌跡長補正係数は、通常燃料用のものから硫黄燃料用のものに切換えられる。硫黄燃料用の軌跡長補正係数は、硫黄分の存在及び触媒の温度変化に応じて、定時間軌跡長Ltを補正するものである。
また、硫黄燃料である場合には、劣化判定値Sにも同様に、硫黄分の存在に応じた補正が行われる。図15は、硫黄燃料と通常燃料のそれぞれについて、劣化判定値を示す特性線図である。この場合、劣化判定値Sは、実施の形態1(図8参照)と同様に、定時間軌跡長Ltと定時間積算空気量Gtとの比率(特性線の傾き)として図示されており、ECU40に予め記憶されている。硫黄燃料である場合には、通常燃料用の劣化判定値(図15中に示す点線の傾き)から、硫黄燃料用の劣化判定値(実線の傾き)に切換えられる。
この構成によれば、燃料中に硫黄分が含まれる場合でも、これに対応して定時間軌跡長Lt(及び定時間軌跡長Ltが反映される判定パラメータP)を適切に補正することができ、また劣化判定値Sも適切に補正することができる。従って、硫黄分の有無に関らず、触媒22の劣化状態を正確に判定することができる。
[実施の形態2を実現するための具体的な処理]
図16は、本実施の形態のシステム動作を実現するために、ECU40が実行する判定ルーチンのフローチャートである。なお、本実施の形態では、前記実施の形態1で説明した振幅制御ルーチン(図11)と、図16に示す判定ルーチンとが並行して繰返し実行されるものである。
本実施の形態では、ステップ200〜206及びステップ222〜230では、実施の形態1(図12)におけるステップ150〜166と同様の処理を行う。そして、ステップ208〜220において、燃料中の硫黄分に関連した処理を行うものである。
この硫黄分に関連した処理において、まず、ステップ208では、触媒温度が所定の低温または高温であるか否かを判定する。ここで、所定の低温及び高温とは、ECU40に予め記憶されており、前述したように、硫黄被毒の影響が定時間軌跡長Ltに大きく反映されるような2つの温度値である。
ステップ208で「YES」と判定したときには、一定時間Δt毎に算出される定時間軌跡長Ltのうち、今回算出された定時間軌跡長Ltが硫黄判定に必要なので、ステップ210では、今回の定時間軌跡長Ltを硫黄判定用のデータとして記憶する。また、ステップ208で「NO」と判定したときには、まだ硫黄判定用のデータが揃っていないので、以前の演算処理で既に燃料中の硫黄分に対応した補正(ステップ218)を実行している場合を除いて、ステップ222に移る。
次に、ステップ212では、低温時と高温時の定時間軌跡長Ltを両方とも記憶したか否かを判定する。ここで「YES」と判定したときには、硫黄判定用のデータが揃ったので、ステップ214では、低温時と高温時の定時間軌跡長Ltを用いて、触媒温度に対する定時間軌跡長Ltの変化率(図13中の特性線の傾き)を算出する。また、ステップ212で「NO」と判定したときには、まだ硫黄判定用のデータが揃っていないので、以前の演算処理で既にステップ218を実行している場合を除いて、ステップ222に移る。
次に、ステップ216では、定時間軌跡長Ltの傾きが基準値(図13中の基準傾き)よりも大きいか否かを判定する。ここで「YES」と判定したときには、燃料中に硫黄分が含まれていると判断することができる。そこで、この場合には、ステップ218において、軌跡長補正係数と劣化判定値Sとを硫黄燃料用のデータに切換える(図14、図15参照)。また、ステップ216で「NO」と判定したときには、そのままステップ222に移る。
一方、ステップ220では、以前の演算処理でステップ218(燃料中の硫黄分に対応した補正)を実行中であるか否かを判定する。ここで、「YES」と判定したときには、新たな硫黄判定用のデータが揃っていない状態でも、ステップ218に移り、燃料中の硫黄分に対応した補正を継続する。また、ステップ220で「NO」と判定したときには、ステップ222に移る。
このように、本実施の形態によれば、燃料中の硫黄分を検出し、硫黄分に応じて劣化判定処理の動作を補正することができる。従って、実施の形態1の作用効果に加えて、燃料中の硫黄分により誤判定が生じるのを防止でき、判定精度をより高めることができる。
実施の形態3.
次に、図17及び図18を参照しつつ、本発明の実施の形態3について説明する。本実施の形態のシステムは、前記実施の形態1と同様に、図1に示すシステム構成を採用している。また、本実施の形態では、実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態3の特徴部分]
本実施の形態では、実施の形態1とほぼ同様に、センサ信号を用いて触媒22の劣化判定制御を行う。しかし、酸素センサ26が劣化した場合には、センサ信号の応答性が悪化することにより誤判定の虞れが生じる。そこで、本実施の形態では、以下の構成により酸素センサの動作判定を行うものである。なお、本実施の形態では、実施の形態1で説明した基本的な劣化判定制御については、説明を省略するものとする。
図17は、定時間積算空気量と定時間軌跡長との相関関係を用いて、酸素センサの動作判定を行うときの手順を示す説明図である。酸素センサ26が正常であれば、実施の形態1(図6、図8等)で述べたように、定時間軌跡長Ltと定時間積算空気量Gtとの間には、触媒22の劣化状態に関らず、比例関係が存在する。また、吸入空気量が小流量であるときに、正常な酸素センサと劣化した酸素センサの応答性はほぼ同じレベルとなる。
そこで、センサの動作判定時には、図17に示すように、まず、内燃機関の運転中に定時間積算空気量Gtが小空気量値G1となったときに、定時間軌跡長Ltを算出し、その算出値を基準軌跡長L1として記憶する。ここで、小空気量値G1とは、酸素センサ26が劣化状態に影響されずに正常に作動するような、小流量の吸入空気量に対応する定時間積算空気量である。即ち、基準軌跡長L1は、正常な酸素センサでも劣化した酸素センサでも得られる基準の値となる。
次に、定時間積算空気量Gtが大空気量値G2となったときの定時間軌跡長Ltを推定し、その推定値を推定軌跡長L2として記憶する。この推定演算は、定時間積算空気量Gtと定時間軌跡長Ltとの比例関係によって、2つの比率(L0/G0)と(L1/G1)とが互いに等しくなることを利用して行われる。
この結果、推定軌跡長L2は、定時間積算空気量Gtが大空気量値G2で、かつ酸素センサ26が正常である場合の定時間軌跡長として算出される。ここで、大空気量値G2とは、酸素センサ26が劣化している場合に応答遅れが生じるような、大流量の吸入空気量に対応する定時間積算空気量である。なお、大空気量値G2と小空気量値G1とはECU40に予め記憶されている。
次の処理では、内燃機関の運転中に吸入空気量が増大し、定時間積算空気量Gtが大空気量値G2となったときに、実際の定時間軌跡長Ltを算出し、その算出値を実軌跡長L3として記憶する。そして、推定軌跡長L2と実軌跡長L3とを比較することにより、酸素センサ26が劣化しているか否かを判定する。即ち、これらの軌跡長L1,L2の乖離度が許容限度よりも大きい場合には、酸素センサ26が劣化することによりセンサ信号の応答遅れが生じ、その結果として実軌跡長L3が推定軌跡長L2よりも短くなったと判定することができる。
この構成によれば、センサ信号の軌跡長を用いて、酸素センサ26の劣化判定を正確に行うことができる。これにより、酸素センサ26が劣化した場合には、例えば吸入空気量が大きな領域(酸素センサ26の応答遅れが生じる領域)で触媒22の劣化判定を停止し、それ以外の領域で触媒22の劣化判定を続行することができる。従って、酸素センサ26が劣化したとしても、その影響で触媒22の劣化状態が誤判定されるのを回避することができ、信頼性を高めることができる。
[実施の形態3を実現するための具体的な処理]
図18は、本実施の形態のシステム動作を実現するために、ECU40が実行する判定ルーチンのフローチャートである。なお、本実施の形態では、前記実施の形態1で説明した振幅制御ルーチン及び判定ルーチン(図11及び図12)と並行して、図18に示すセンサ判定ルーチンが繰返し実行されるものである。
まず、ステップ300では、判定ルーチン(図12)で一定時間Δt毎に算出される定時間積算空気量Gtが、予め記憶された小空気量値G1となったか否かを判定する。ここで「YES」と判定したときには、ステップ302において、定時間積算空気量Gtが小空気量値G1となったときの定時間軌跡長Ltを、基準軌跡長L1として記憶する。また、ステップ300で「NO」と判定したときには、定時間積算空気量Gtが小空気量値G1となるまで待機する。
次に、ステップ304では、定時間積算空気量Gtが、予め記憶された大空気量値G2となったか否かを判定する。ここで「YES」と判定したときには、ステップ306において、前述したように、空気量値G1,G2と基準軌跡長L1とを用いて推定軌跡長L2を算出する。そして、ステップ308では、定時間積算空気量Gtが大空気量値G2となったときの定時間軌跡長Ltを、実軌跡長L3として記憶する。また、ステップ304で「NO」と判定したときには、定時間積算空気量Gtが大空気量値G2となるまで待機する。
次に、ステップ310では、推定軌跡長L2と実軌跡長L3との差分を乖離度ΔLとして算出する。そして、ステップ312では、乖離度ΔLが許容限度を超えているか否かを判定する。ここで、「YES」と判定したときには、酸素センサ26が劣化していると判断される。このため、ステップ314では、例えば警告灯の点灯などのように、酸素センサ26の劣化に対応した適切な制御を行う。
また、ステップ312で「NO」と判定したときには、酸素センサ26が正常なので、そのまま終了する。このように、本実施の形態によれば、触媒22の劣化判定を行うためのパラメータ(定時間積算空気量Gtと定時間軌跡長Lt)を用いて、酸素センサ26の劣化判定を容易に行うことができる。従って、実施の形態1の作用効果に加えて、システムの信頼性を更に高めることができる。
実施の形態4.
次に、図19及び図20を参照しつつ、本発明の実施の形態4について説明する。本実施の形態のシステムは、前記実施の形態1と同様に、図1に示すシステム構成を採用している。また、本実施の形態では、実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態4の特徴部分]
本実施の形態では、実施の形態1とほぼ同様に、センサ信号を用いて触媒22の劣化判定制御を行う。しかし、ノイズ等の外乱によりセンサ信号の波形が乱れた場合には、その分だけ軌跡長が長くなり、誤判定の虞れが生じる。そこで、本実施の形態では、以下の構成により判定パラメータを算出するものである。なお、本実施の形態では、実施の形態1で説明した基本的な劣化判定制御については、説明を省略するものとする。
図19は、センサ信号の波形と判定パラメータの算出方法とを示す説明図である。図19(a)は、正常な触媒においてセンサ信号に乱れがない場合を示し、図19(b)は、正常な触媒においてセンサ信号に乱れが生じた場合を示している。また、図19(c)は、劣化触媒においてセンサ信号に乱れがない場合を示している。なお、これらの図中に示す軌跡長、反転回数等の具体的な数値は、説明を容易にするための一例である。
図19(a),(b)を比較すると判るように、センサ信号の波形にノイズが乗ると、その軌跡長に誤差が生じる。このため、判定パラメータPの算出時には、実施の形態1と同様の方法で定時間軌跡長Ltを算出すると共に、この算出期間(一定時間Δt)にセンサ信号が反転した回数nを計測する。そして、定時間軌跡長Ltとセンサ信号の反転回数nとを乗算し、この乗算値(Lt×n)を定時間積算空気量Gtで除算することにより、判定パラメータPを(Lt×n/Gt)として算出する。
このように、本実施の形態では、センサ信号の反転回数nを判定パラメータPに反映させる構成としている。この場合、図19の右側に示すように、センサ信号にノイズが乗ることにより定時間軌跡長Ltに誤差が生じたとしても、センサ信号の反転回数nは、信号波形の乱れによる影響を受け難い。従って、判定パラメータPの耐ノイズ性を向上させることができ、高い判定精度を実現することができる。
[実施の形態4を実現するための具体的な処理]
図20は、本実施の形態のシステム動作を実現するために、ECU40が実行する判定ルーチンのフローチャートである。なお、本実施の形態では、前記実施の形態1で説明した振幅制御ルーチン(図11)と、図20に示す判定ルーチンとが並行して繰返し実行されるものである。
まず、ステップ400〜408では、実施の形態1(図12)におけるステップ150〜158と同様の処理を行う。そして、ステップ410では、一定時間Δtの間に反転したセンサ信号の反転回数nを読込む。この反転回数nは、タイマによって一定時間Δtを計測するときに、これと並行してカウントされるものである。
そして、ステップ412では、定時間積算空気量Gtと、定時間軌跡長Ltと、センサ信号の反転回数nとを用いて、前述の式により判定パラメータPを算出する。また、ステップ414〜418では、実施の形態1におけるステップ162〜166と同様の処理を行い、判定ルーチンを終了する。
このように、本実施の形態によれば、センサ信号の反転回数nを判定パラメータPに反映させることができるので、実施の形態1の作用効果に加えて、ノイズ等の外乱に対する信頼性を更に向上させることができる。
実施の形態5.
次に、図21乃至図23を参照しつつ、本発明の実施の形態5について説明する。本実施の形態のシステムは、前記実施の形態1と同様に、図1に示すシステム構成を採用している。また、本実施の形態では、実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態5の特徴部分]
本実施の形態では、実施の形態1とほぼ同様に、センサ信号を用いて触媒22の劣化判定制御を行う。しかし、ノイズ等の外乱がセンサ信号に乗った場合には、その分だけ軌跡長が長くなり、誤判定の虞れが生じる。そこで、本実施の形態では、以下の構成によりセンサ信号の出力を補正するものである。なお、本実施の形態では、実施の形態1で説明した基本的な劣化判定制御については、説明を省略するものとする。
図21は、センサ信号の信号値と中心値との差分(乖離度)と、信号値を増幅するゲインとの関係を示している。ここで、中心値とは、例えば酸素センサ26から出力されるリッチ出力の電圧値と、リーン出力の電圧値との中間となる電圧値であり、理論空燃比にほぼ対応する電圧値である。
この図に示すように、センサ信号のゲインは、信号値が中心値から乖離するにつれて増大するように設定されている。つまり、センサ信号は、中心値から乖離した信号値ほど、大きな値に増幅される。このゲインの特性は、ECU40に予め記憶されている。ECU40は、図21のデータに基づいてセンサ信号の信号値を増幅した後に、前述の劣化判定制御を行う。
図22は、複数種類の劣化触媒について、補正前,後のセンサ信号を対比して示す説明図である。図22の(a)〜(d)に示すように、センサ信号の振幅は、触媒22の劣化が進行するにつれて増大する。即ち、触媒の劣化が進行すると、上流側空燃比を反転させても、触媒の酸素吸蔵能がすぐに飽和してリッチまたはリーンな排気ガスが触媒の下流側に流出するので、下流側空燃比は大きく変動するようになる。このため、センサ信号は、触媒が劣化するほど、最大振幅に近い位置まで変化してから反転するようになる。
図22(a)は、触媒の劣化状態が軽度である場合を示している。この場合、センサ信号の振幅は比較的小さい(図中の左側)。このため、センサ信号の波形を前記ゲインによって補正すると、補正後の振幅はさらに小さくなり、補正後の軌跡長も補正前と比較して短くなる(図中の右側)。また、図22(b)は、上述の(a)と同じ触媒において、センサ信号にノイズが乗った場合を示している。この場合、軌跡長は、ノイズが乗った分だけ(a)よりも長くなっている。
一方、図22(c)は、触媒の劣化状態が中程度の場合を示している。この場合、センサ信号の振幅は、上述の(b)よりも大きくなっているので、その分だけゲインも大きな値が用いられる。このため、(b),(c)の軌跡長を比較すると、補正前の軌跡長は等しくても、補正後の軌跡長は(c)の方が長くなり、両者の軌跡長に差異が生じる。さらに、図(d)は、触媒の劣化状態が重度の場合を示している。この場合には、重度の劣化により増大したセンサ信号の振幅が、大きなゲインによってさらに増幅される。
上述した信号補正によれば、小さな振幅にノイズが載った場合には、小さなゲインが用いられるので、振幅と共にノイズも減少方向に補正することができる。また、元々大きな振幅に対しては、大きなゲインが用いられるので、振幅を更に大きく増幅することができる。このため、ノイズが乗ることにより軌跡長が長くなったセンサ信号と、元々の振幅が大きいために軌跡長が長くなったセンサ信号とを確実に判別することができる。従って、軌跡長が反映される判定パラメータPの耐ノイズ性を向上させることができ、高い判定精度を実現することができる。
[実施の形態5を実現するための具体的な処理]
図23は、本実施の形態のシステム動作を実現するために、ECU40が実行する判定ルーチンのフローチャートである。なお、本実施の形態では、前記実施の形態1で説明した振幅制御ルーチン(図11)と、図23に示す判定ルーチンとが並行して繰返し実行されるものである。
まず、ステップ500,502では、実施の形態1(図12)におけるステップ150,152と同様の処理を行う。そして、ステップ504では、ECU40に予め記憶されたデータ(図4)を参照することにより、一定時間Δtの間に読込んだセンサ信号の各信号値に対して、個々の信号値に応じたゲインをかける。なお、このゲインをかける処理は、センサ信号を読込む毎に行ってもよい。
また、ステップ506〜518では、実施の形態1におけるステップ154〜166と同様の処理を行い、判定ルーチンを終了する。このように、本実施の形態によれば、センサ信号に対して信号値が大きいほど増大するゲインをかけることができる。従って、実施の形態1の作用効果に加えて、判定パラメータPの耐ノイズ性を更に向上させることができる。
なお、前記実施の形態では、図11中のステップ112,122,130,140、及びステップ108,126が、請求項1に係る空燃比振動手段の具体例を示している。また、ステップ120,138は振幅切換手段の具体例を示している。また、図12,図16,図20,図23中のステップ160,224,412,512は、判定パラメータ算出手段の具体例を示し、ステップ164,228,416,516は、触媒劣化判定手段の具体例を示している。
一方、図11中のステップ110,128は、請求項3に係る排気ガス積算量算出手段の具体例を示し、ステップ106,124は、切換判定値設定手段の具体例を示している。また、ステップ106,124は、図5に示すデータと共に、請求項4に係る振幅切換可変手段の具体例を示している。また、ステップ118,136は、請求項5に係る振幅値可変手段の具体例を示している。
図12,図16,図20,図23中のステップ152,202,402,502は、請求項6に係る空気量積算手段の具体例を示し、ステップ154,204,404,506は、軌跡長取得手段の具体例を示している。ステップ158,222,408,510は、請求項7に係る温度補正手段の具体例を示している。一方、図20中のステップ410,412は、請求項8に係る反映手段の具体例を示している。また、図16中のステップ208,210は、請求項9に係る温度別軌跡長取得手段の具体例を示し、ステップ214は軌跡長変化取得手段の具体例を示している。また、ステップ216は硫黄判定手段の具体例を示し、ステップ218は硫黄補正手段の具体例を示している。
図18中のステップ300,302は、請求項10に係る基準軌跡長取得手段の具体例を示し、ステップ306は軌跡長推定手段の具体例を示している。また、ステップ304,308は実軌跡長取得手段の具体例を示し、ステップ310,312はセンサ劣化判定手段の具体例を示している。一方、図11中のステップ102は、請求項11に係る温度制限手段の具体例を示し、ステップ100は、請求項12に係る流量制限手段の具体例を示している。また、図12,図16,図20,図23中のステップ156,206,406,508は、請求項13に係る触媒温度推定手段の具体例を示している。さらに、図23中のステップ504は、請求項14に係る信号補正手段の具体例を示している。
また、前記各実施の形態では、空燃比の振幅値を大振幅値ΔA1から小振幅値ΔA2へと2段階に切換える構成とした。しかし、本発明はこれに限らず、例えば空燃比の振幅値を大振幅値から小振幅値に向けて、3段階以上の多段階に切換える構成としてもよい。
また、実施の形態では、判定パラメータPとして、定時間積算空気量Gtと定時間軌跡長Ltとの比率を用いる構成とした。しかし、本発明はこれに限らず、判定パラメータPとしては、例えばセンサ信号が反転するのに要する反転時間や、反転するまでの信号値を時間で積分した積分面積等を用いる構成としてもよい。
また、実施の形態では、触媒22の温度が自らの劣化状態に影響されるのを避けるために、運転状態等に応じて触媒温度を推定する構成とした。しかし、本発明はこれに限らず、例えば触媒22の実際の温度を制御に用いる構成としても、十分な効果を得ることができる。また、例えば触媒上流側の排気ガスの温度や、内燃機関の冷却水の温度等を用いる構成としてもよい。
また、実施の形態1のフローチャート(図11)では、小振幅値ΔA2のみを吸入空気量に応じて可変に設定する構成を例示した。しかし、本発明はこれに限らず、例えば大振幅値ΔA1と小振幅値ΔA2の両方、または大振幅値ΔA1のみを吸入空気量に応じて可変に設定する構成としてもよい。
また、実施の形態5では、ECU40の演算処理によりセンサ信号にゲインをかける構成とした。しかし、本発明はこれに限らず、センサ信号を増幅する増幅回路を用いる構成としてもよい。
さらに、実施の形態1乃至5は、それぞれ別個の構成として例示したが、本発明はこれに限らず、実施の形態1乃至5のうち何れか2つ(または3つ〜5つ)を適宜組合わせる構成としてもよい。
本発明の実施の形態1のシステム構成を説明するための全体図である。 触媒の劣化判定制御中における上流側空燃比とセンサ信号の状態を示すタイムチャートである。 上流側空燃比の振幅と触媒の酸素残存量との関係を示す特性線図である。 上流側空燃比の振幅値と吸入空気量との関係を示す特性線図である。 切換判定値と触媒温度との関係を示す特性線図である。 正常な触媒と劣化触媒のそれぞれについて、定時間積算空気量と定時間軌跡長との関係を示す特性線図である。 定時間軌跡長を温度補正するための軌跡長補正係数と、触媒温度との関係を示す特性線図である。 正常な触媒と劣化触媒のそれぞれについて、温度補正した後の定時間軌跡長と、定時間積算空気量との関係を示す特性線図である。 劣化状態と温度が異なる2つの触媒に対して、実際の触媒温度を用いて温度補正を行った場合の影響を説明するための説明図である。 排気ガスが大流量となる領域も含めて、定時間積算空気量と定時間軌跡長との関係を示す特性線図である。 本発明の実施の形態1において実行される振幅制御ルーチンのフローチャートである。 本発明の実施の形態1において実行される判定ルーチンのフローチャートである。 本発明の実施の形態2において、硫黄燃料と通常燃料の特性の差を示す特性線図である。 硫黄燃料と通常燃料のそれぞれについて、軌跡長補正係数と触媒温度との関係を示す特性線図である。 硫黄燃料と通常燃料のそれぞれについて、劣化判定値を示す特性線図である。 本発明の実施の形態2において実行される判定ルーチンのフローチャートである。 本発明の実施の形態3において、定時間積算空気量と定時間軌跡長との相関関係を用いて、酸素センサの動作判定を行うときの手順を示す説明図である。 本発明の実施の形態3において実行されるセンサ判定ルーチンのフローチャートである。 本発明の実施の形態4において、センサ信号の波形と判定パラメータの算出方法とを示す説明図である。 本発明の実施の形態4において実行される判定ルーチンのフローチャートである。 本発明の実施の形態5において、センサ信号の中心値に対する信号値の乖離度と、信号値を増幅するゲインとの関係を示す特性線図である。 複数種類の劣化触媒について、補正前,後のセンサ信号を対比して示す説明図である。 本発明の実施の形態5において実行される判定ルーチンのフローチャートである。
符号の説明
10 内燃機関
12 吸気通路
14 排気通路
16 エアフローメータ
18 スロットル弁
20 スロットルモータ
22 触媒
24 空燃比センサ
26 酸素センサ(排気ガスセンサ)
28 燃料噴射弁
30 吸気弁
32 点火プラグ
34 排気弁
36 クランク軸
38 クランク角センサ
40 ECU
Ga 吸入空気量
P 判定パラメータ
S 劣化判定値
ΔA1 大振幅値
ΔA2 小振幅値
G 排気ガス積算量
G0 切換判定値
Gt 定時間積算空気量
Lt 定時間軌跡長
Δt 一定時間
G1 小空気量値(小流量)
G2 大空気量値(大流量)
L1 基準軌跡長
L2 推定軌跡長
L3 実軌跡長

Claims (12)

  1. 内燃機関の排気ガスを浄化する触媒と、
    前記触媒の下流側に配置され、排気ガスの空燃比に応じて少なくともリッチ出力及びリーン出力となるセンサ信号を出力する排気ガスセンサと、
    前記触媒の上流側における空燃比のリッチ・リーン特性が前記センサ信号の出力に対して逆となるように、理論空燃比を基準として前記空燃比を振動させる空燃比振動手段と、
    前記空燃比振動手段が作動することにより、前記センサ信号がリッチ出力からリーン出力反転する間、及び前記センサ信号がリーン出力からリッチ出力に反転する間にそれぞれ、理論空燃比に対する前記空燃比の振幅を大振幅値から小振幅値に向けて複数段階で切換える振幅切換手段と、
    前記触媒の劣化状態を判定するために、前記センサ信号の反転周期が反映された判定パラメータを算出する判定パラメータ算出手段と、
    前記判定パラメータを劣化判定値と比較することにより、前記触媒が劣化しているか否かを判定する触媒劣化判定手段と、
    内燃機関の吸入空気量を前記センサ信号が反転した時点から積算することにより、当該積算空気量を排気ガス積算量として算出する排気ガス積算量算出手段と、
    劣化した触媒において前記センサ信号が一度反転してから再び反転するまでに必要となる積算空気量に応じて切換判定値を設定する切換判定値設定手段と、を備え、
    前記振幅切換手段は、前記センサ信号が反転した時点から、前記排気ガス積算量が前記切換判定値に達した時点である切換タイミングが到来するまでの間は前記空燃比の振幅を前記大振幅値に保持し、その後に前記振幅を前記小振幅値に切換える構成としたことを特徴とする内燃機関の制御装置。
  2. 前記触媒の温度が高くなるにつれて、前記振幅の切換タイミングを遅くする振幅切換可変手段を備えてなる請求項に記載の内燃機関の制御装置。
  3. 内燃機関の吸入空気量が増大するにつれて、前記大振幅値と前記小振幅値のうち少なくとも一方の振幅値を減少させる振幅値可変手段を備えてなる請求項1または2に記載の内燃機関の制御装置。
  4. 内燃機関の吸入空気量を一定時間にわたって積算することにより、積算空気量を算出する空気量積算手段と、
    前記一定時間内に前記センサ信号の信号値が描く軌跡の長さを軌跡長として取得する軌跡長取得手段と、を備え、
    前記判定パラメータ算出手段は、前記判定パラメータを前記積算空気量と前記軌跡長との比率として算出する構成としてなる請求項1乃至のうち何れか1項に記載の内燃機関の制御装置。
  5. 前記触媒の温度が高くなるにつれて、前記センサ信号の軌跡長を大きな値に補正する温度補正手段を備えてなる請求項に記載の内燃機関の制御装置。
  6. 前記一定時間内における前記センサ信号の反転回数を前記判定パラメータに反映させる反映手段を備えてなる請求項またはに記載の内燃機関の制御装置。
  7. 前記触媒の温度が低い状態と高い状態のそれぞれにおいて、前記センサ信号の信号値が描く軌跡の長さを軌跡長として取得する温度別軌跡長取得手段と、
    前記低い温度での軌跡長と高い温度での軌跡長とを用いて、温度に対する前記軌跡長の変化状態を取得する軌跡長変化取得手段と、
    前記軌跡長変化取得手段により取得した前記軌跡長の変化状態と、内燃機関の燃料が硫黄分を含まないときに取得した前記軌跡長の基準の変化状態とを比較することにより、燃料中に硫黄分が含まれるか否かを判定する硫黄判定手段と、
    前記硫黄判定手段により燃料中に硫黄分が含まれると判定したときに、前記判定パラメータと前記劣化判定値とを補正する硫黄補正手段と、
    を備えてなる請求項1乃至のうち何れか1項に記載の内燃機関の制御装置。
  8. 前記排気ガスセンサが劣化状態に関係なく正常に作動するような吸入空気量を小流量として、吸入空気量が前記小流量となったときに、前記センサ信号の信号値が描く軌跡の長さを基準軌跡長として取得する基準軌跡長取得手段と、
    前記排気ガスセンサが劣化している場合に応答遅れが生じるような吸入空気量を大流量として、吸入空気量が前記大流量となり、かつ前記排気ガスセンサが正常な場合の軌跡長を前記基準軌跡長に応じて推定する軌跡長推定手段と、
    吸入空気量が前記大流量となったときに、前記センサ信号の実際の軌跡長を取得する実軌跡長取得手段と、
    前記軌跡長推定手段により推定した軌跡長と前記実際の軌跡長とを比較することにより、前記排気ガスセンサが劣化しているか否かを判定するセンサ劣化判定手段と、
    を備えてなる請求項1乃至のうち何れか1項に記載の内燃機関の制御装置。
  9. 正常な触媒が活性化し、かつ劣化触媒が不活性となる温度領域に前記触媒の温度が含まれるときにのみ、前記触媒劣化判定手段の判定動作を許す温度制限手段を備えてなる請求項1乃至のうち何れか1項に記載の内燃機関の制御装置。
  10. 前記排気ガスセンサの応答性により制限される許容流量に対して吸入空気量が大きいときに、前記触媒劣化判定手段の判定動作を禁止する流量制限手段を備えてなる請求項1乃至のうち何れか1項に記載の内燃機関の制御装置。
  11. 内燃機関の運転状態に応じて前記触媒の温度を推定する触媒温度推定手段を備えてなる請求項2,5,9のうち何れか1項に記載の内燃機関の制御装置。
  12. 前記センサ信号の信号値が理論空燃比に対応する中心値から乖離するにつれて、当該信号値を大きな値に補正する信号補正手段を備えてなる請求項1乃至11のうち何れか1項に記載の内燃機関の制御装置。
JP2008009816A 2008-01-18 2008-01-18 内燃機関の制御装置 Expired - Fee Related JP4941323B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009816A JP4941323B2 (ja) 2008-01-18 2008-01-18 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009816A JP4941323B2 (ja) 2008-01-18 2008-01-18 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2009167987A JP2009167987A (ja) 2009-07-30
JP4941323B2 true JP4941323B2 (ja) 2012-05-30

Family

ID=40969437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009816A Expired - Fee Related JP4941323B2 (ja) 2008-01-18 2008-01-18 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP4941323B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048707A1 (ja) * 2009-10-23 2011-04-28 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4952773B2 (ja) * 2009-11-04 2012-06-13 トヨタ自動車株式会社 燃料圧力センサーの異常診断装置
JP2011144779A (ja) * 2010-01-18 2011-07-28 Toyota Motor Corp 内燃機関の空燃比気筒間インバランス判定装置
JP5293885B2 (ja) * 2010-04-23 2013-09-18 トヨタ自動車株式会社 触媒異常診断装置
US8613219B2 (en) 2010-04-23 2013-12-24 Toyota Jidosha Kabushiki Kaisha Catalyst abnormality diagnosis apparatus
JP2012052461A (ja) * 2010-08-31 2012-03-15 Mitsubishi Motors Corp 排ガス浄化触媒の劣化診断装置
US8505370B2 (en) 2010-11-22 2013-08-13 Toyota Motor Engineering & Manufacturing Norh America, Inc. Method and system to diagnose exhaust gas sensor deterioration
JP5817996B2 (ja) * 2011-11-24 2015-11-18 トヨタ自動車株式会社 空燃比センサ異常診断装置
EP2857663A4 (en) * 2012-05-28 2016-01-13 Toyota Motor Co Ltd CATALYST DEGRADATION DETERMINATION SYSTEM
US20230417631A1 (en) * 2022-06-27 2023-12-28 Ford Global Technologies, Llc System and method for diagnosing an exhaust gas sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042376B2 (ja) * 2001-10-11 2008-02-06 トヨタ自動車株式会社 内燃機関の触媒劣化検出装置
JP3815386B2 (ja) * 2002-02-08 2006-08-30 トヨタ自動車株式会社 触媒劣化判定方法
JP3846375B2 (ja) * 2002-07-10 2006-11-15 トヨタ自動車株式会社 触媒劣化判定方法
JP2006257904A (ja) * 2005-03-15 2006-09-28 Toyota Motor Corp 内燃機関の触媒劣化判定装置
JP4156630B2 (ja) * 2006-04-18 2008-09-24 三菱電機株式会社 内燃機関の触媒劣化診断装置及び触媒劣化診断方法

Also Published As

Publication number Publication date
JP2009167987A (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4941323B2 (ja) 内燃機関の制御装置
US8555614B2 (en) Internal combustion engine exhaust gas control apparatus and abnormality determining method thereof
US6698187B2 (en) Exhaust gas purifying apparatus for an internal-combustion engine
US6539707B2 (en) Exhaust emission control system for internal combustion engine
JP2626384B2 (ja) 触媒劣化判別装置
JP2626433B2 (ja) 触媒劣化検出装置
JP5062307B2 (ja) 触媒劣化検出装置
JP4161771B2 (ja) 酸素センサの異常検出装置
JP4089537B2 (ja) 空燃比センサの異常検出装置
US6823658B2 (en) Exhaust gas purifying apparatus for an internal-combustion engine
JP4042690B2 (ja) 内燃機関の触媒劣化診断装置
JP5515967B2 (ja) 診断装置
US7063081B2 (en) Deterioration determining apparatus and deterioration determining method for oxygen sensor
JP5407971B2 (ja) 異常診断装置
JP2007211609A (ja) 内燃機関の気筒別空燃比制御装置
JP6316471B1 (ja) エンジン制御装置およびエンジン制御方法
JPH11247687A (ja) 内燃機関の空燃比制御装置
JP4366976B2 (ja) 排気ガスセンサの異常検出装置
JP4069924B2 (ja) 排出ガス浄化用触媒劣化検出装置
JP3674404B2 (ja) 内燃機関の制御装置
WO2004085819A1 (ja) 内燃機関の排気浄化装置
JP4419952B2 (ja) 内燃機関の空燃比制御装置
JP4525196B2 (ja) 空燃比センサの異常検出装置
JPH07116931B2 (ja) 内燃機関の触媒劣化判別装置
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees