JP2004214963A - Ofdm復調装置 - Google Patents

Ofdm復調装置 Download PDF

Info

Publication number
JP2004214963A
JP2004214963A JP2002382214A JP2002382214A JP2004214963A JP 2004214963 A JP2004214963 A JP 2004214963A JP 2002382214 A JP2002382214 A JP 2002382214A JP 2002382214 A JP2002382214 A JP 2002382214A JP 2004214963 A JP2004214963 A JP 2004214963A
Authority
JP
Japan
Prior art keywords
circuit
symbol
signal
symbol boundary
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002382214A
Other languages
English (en)
Inventor
Takahiro Okada
隆宏 岡田
Tamotsu Ikeda
保 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002382214A priority Critical patent/JP2004214963A/ja
Priority to PCT/JP2003/016262 priority patent/WO2004062151A1/ja
Priority to EP03780895A priority patent/EP1480363A1/en
Priority to US10/505,793 priority patent/US7289765B2/en
Priority to CNA2003801003435A priority patent/CN1692589A/zh
Publication of JP2004214963A publication Critical patent/JP2004214963A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0036Correction of carrier offset using a recovered symbol clock

Abstract

【課題】FFTの切り出しタイミングとシンボルの境界タイミングとの誤差のうち、動作クロック周期以下の精度の誤差(クロック位相誤差)を高精度に補正する。
【解決手段】OFDM復調装置1は、FFT回路10と、位相補正回路11と、タイミング同期回路13とを備えている。タイミング同期回路13は、ガードインターバルの相関ピーク値に対してフィルタリングを行いシンボル境界値Nxを推定するシンボル境界算出回路43と、シンボル境界位置Nxに基づきクロック位相誤差を算出するシンボル境界補正回路44と、FFT演算のためのスタートフラグを発生するスタートフラグ生成回路45とを有している。シンボル境界補正回路44は、シンボル境界位置Nxから基準クロックの周期以下の精度の値のみを抽出し、この値に基づき各サブキャリア毎の位相補正信号を生成する。位相補正回路11では、FFT演算後の信号に対して位相補正信号を複素乗算し、クロック位相誤差の補正を行う。
【選択図】 図13

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重方式(OFDM:Orthogonal Frequency Division Multiplexing)の変調信号を復調するOFDM復調装置に関する。
【0002】
【従来の技術】
デジタル信号を伝送する方式として、直交周波数分割多重方式(以下、OFDM方式と呼ぶ。OFDM:Orthogonal Frequency Division Multiplexing)と呼ばれる変調方式が用いられている。OFDM方式は、伝送帯域内に多数の直交する副搬送波(サブキャリア)を設け、各サブキャリアの振幅及び位相にPSK(Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)によりデータを割り当てて、デジタル変調する方式である。
【0003】
OFDM方式は、多数のサブキャリアで伝送帯域を分割するため、サブキャリア1波あたりの帯域は狭くなり変調速度は遅くなるが、トータルの伝送速度は、従来の変調方式と変わらないという特徴を有している。また、OFDM方式は、多数のサブキャリアが並列に伝送されるのでシンボル速度が遅くなり、シンボルの時間長に対する相対的なマルチパスの時間長を短くすることができ、マルチパス妨害を受けにくくなるという特徴を有している。
【0004】
また、OFDM方式は、複数のサブキャリアに対してデータの割り当てが行われることから、変調時には逆フーリエ変換を行うIFFT(Inverse Fast Fourier Transform)演算回路、復調時にはフーリエ変換を行うFFT(Fast FourierTransform)演算回路を用いることにより、送受信回路を構成することができるという特徴を有している。
【0005】
以上のような特徴からOFDM方式は、マルチパス妨害の影響を強く受ける地上波デジタル放送に適用されることが多い。このようなOFDM方式を採用した地上波デジタル放送としては、例えば、DVB−T(Digital Video Broadcasting−Terrestrial)やISDB−T(Integrated Services Digital Broadcasting −Terrestrial)といった規格がある。
【0006】
OFDM方式の伝送シンボル(以下、OFDMシンボルと呼ぶ。)は、図15に示すように、送信時にIFFTが行われる信号期間である有効シンボルと、この有効シンボルの後半の一部分の波形がそのままコピーされたガードインターバルとから構成されている。ガードインターバルは、OFDMシンボルの前半部分に設けられている。OFDM方式では、このようなガードインターバルが設けられることにより、マルチパスによるシンボル間干渉を許容し、マルチパス耐性を向上させている。
【0007】
例えばISDB−TSB規格(日本で採用されている地上デジタル音声放送の放送規格)のモード3では、有効シンボル内に、512本のサブキャリアが含まれており、そのサブキャリア間隔は、125/126≒0.992kHzとなる。また、このISDB−TSB規格のモード3では、有効シンボル内の512本のサブキャリアのうち、433本のサブキャリアに伝送データが変調されている。また、ISDB−TSB規格のモード3では、ガードインターバルの時間長が、有効シンボルの時間長の1/4,1/8,1/16,1/32のいずれかとなる。
【0008】
従来のOFDM受信装置の構成例は、例えば、下記の非特許文献1に示されている。以下、この非特許文献1に基づき作製された従来のOFDM受信装置について説明をする。
【0009】
図16に、従来のOFDM受信装置のブロック構成図を示す。
【0010】
従来のOFDM受信装置100は、図16に示すように、アンテナ101と、チューナ102と、バンドパスフィルタ(BPF)103と、A/D変換回路104と、DCキャンセル回路105と、デジタル直交復調回路106と、FFT演算回路107と、フレーム抽出回路108と、同期回路109と、キャリア復調回路110と、周波数デインタリーブ回路111と、時間デインタリーブ回路112と、デマッピング回路113と、ビットデインタリーブ回路114と、デパンクチャ回路115と、ビタビ回路116と、バイトデインタリーブ回路117と、拡散信号除去回路118と、トランスポートストリーム生成回路119と、RS復号回路120と、伝送制御情報復号回路121と、チャンネル選択回路122とを備えている。
【0011】
放送局から放送されたデジタル放送の放送波は、OFDM受信装置100のアンテナ101により受信され、RF信号としてチューナ102に供給される。
【0012】
アンテナ101により受信されたRF信号は、乗算器102a及び局部発振器102bからなるチューナ102によりIF信号に周波数変換され、BPF103に供給される。局部発振器102bから発振される受信キャリア信号の発振周波数は、チャンネル選択回路122から供給されるチャンネル選択信号に応じて切り換えられる。
【0013】
チューナ102から出力されたIF信号は、BPF103によりフィルタリングされた後、A/D変換回路104によりデジタル化される。デジタル化されたIF信号は、DCキャンセル回路105によりDC成分が除去され、デジタル直交復調回路106に供給される。
【0014】
デジタル直交復調回路106は、所定の周波数(キャリア周波数)のキャリア信号を用いて、デジタル化されたIF信号を直交復調し、ベースバンドのOFDM信号を出力する。ベースバンドのOFDM信号は、直交復調された結果、実軸成分(Iチャネル信号)と、虚軸成分(Qチャネル信号)とから構成される複素信号となる。デジタル直交復調回路106から出力されるベースバンドのOFDM信号は、FFT演算回路107及び同期回路109に供給される。
【0015】
FFT演算回路107は、ベースバンドのOFDM信号に対してFFT演算を行い、各サブキャリアに直交変調されている信号を抽出して出力する。
【0016】
FFT演算回路107は、1つのOFDMシンボルから有効シンボル長分の信号を抜き出し、抜き出した信号に対してFFT演算を行う。すなわち、FFT演算回路107は、1つのOFDMシンボルからガードインターバル長分の信号を除き、残った信号に対してFFT演算を行う。FFT演算を行うために抜き出される信号の範囲は、その抜き出した信号点が連続していれば、1つのOFDMシンボルの任意の位置でよい。つまり、その抜き出す信号の範囲の開始位置は、図15に示すように、OFDMシンボルの先頭の境界位置(図15中のAの位置)から、ガードインターバルの終了位置(図15中のBの位置)までの間のいずれかの位置となる。
【0017】
FFT演算回路107により抽出された各サブキャリアに変調されていた信号は、実軸成分(Iチャネル信号)と虚軸成分(Qチャネル信号)とから構成される複素信号である。FFT演算回路107により抽出された信号は、フレーム抽出回路108、同期回路109及びキャリア復調回路110に供給される。
【0018】
フレーム抽出回路108は、FFT演算回路107により復調された信号に基づき、OFDM伝送フレームの境界を抽出するとともに、OFDM伝送フレーム内に含まれているCP,SP等のパイロット信号,TMCCやTPS等の伝送制御情報を復調し、同期回路109及び伝送制御情報復号回路121に供給する。
【0019】
同期回路109は、ベースバンドのOFDM信号、FFT演算回路107により復調された後の各サブキャリアに変調されていた信号、フレーム抽出回路108により検出されたCP,SP等のパイロット信号、及び、チャンネル選択回路122から供給されるチャンネル選択信号を用いて、OFDMシンボルの境界を算出し、FFT回路107に対してFFT演算の演算開始タイミングを設定する。
【0020】
キャリア復調回路110は、FFT演算回路107から出力された各サブキャリアから復調された後の信号が供給され、その信号に対してキャリア復調を行う。例えばISDB−TSB規格のOFDM信号を復調する場合であれば、キャリア復調回路110は、例えば、DQPSKの差動復調又はQPSK、16QAM、64QAMの同期復調を行う。
【0021】
キャリア復調された信号は、周波数デインタリーブ回路111によって周波数方向のデインタリーブ処理がされ、続いて、時間デインタリーブ回路112によって時間方向のデインタリーブ処理がされた後、デマッピング回路113に供給される。
【0022】
デマッピング回路113は、キャリア復調された信号(複素信号)に対してデータの再割付処理(デマッピング処理)を行い、伝送データ系列を復元する。例えばISDB−TSB規格のOFDM信号を復調する場合であれば、デマッピング回路113は、QPSK、16QAM又は64QAMに対応したデマッピング処理を行う。
【0023】
デマッピング回路113から出力され伝送データ系列は、ビットデインタリーブ回路114、デパンクチャ回路115、ビタビ回路116、バイトデインタリーブ回路117、拡散信号除去回路118を通過することにより、多値シンボルの誤り分散のためのビットインタリーブに対応したデインタリーブ処理、伝送ビットの削減のためのパンクチャリング処理に対応したデパンクチャリング処理、畳み込み符号化されたビット列の復号のためのビタビ復号処理、バイト単位でのデインタリーブ処理、エネルギ拡散処理に対応したエネルギ逆拡散処理が行われ、トランスポートストリーム生成回路119に入力される。
【0024】
トランスポートストリーム生成回路119は、例えばヌルパケット等の各放送方式で規定されるデータを、ストリームの所定の位置に挿入する。また、トランスポートストリーム生成回路119は、断続的に供給されてくるストリームのビット間隔を平滑化して時間的に連続したストリームとする、いわゆるスムージング処理を行う。スムージング処理がされた伝送データ系列は、RS復号回路120に供給される。
【0025】
RS復号回路120は、入力された伝送データ系列に対してリードソロモン復号処理を行い、MPEG−2システムズで規定されたトランスポートストリームとして出力する。
【0026】
伝送制御情報復号回路121は、OFDM伝送フレームの所定の位置に変調されているTMCCやTPSといった伝送制御情報を復号する。復号された伝送制御情報は、キャリア復調回路110、時間デインタリーブ回路112、デマッピング回路113、ビットデインタリーブ回路114、及び、トランスポートストリーム生成回路119に供給され、各回路の復調や再生等の制御に用いられる。
【0027】
【特許文献1】
特開2001−1566745号公報
【非特許文献1】
「地上デジタル音声放送用受信装置 標準規格(望ましい仕様) ARIB STD−B30 1.1版」,社団法人電波産業界,平成13年5月31日 策定,平成14年3月28日 1.1改定,p.10−14
【非特許文献2】
”Timing Recovery for OFDM Transmission ”, Banguo Yang 他,IEEE Journal on selected areas in communications, VOL.18, NO11, November 2000
【0028】
【発明が解決しようとする課題】
ところで、OFDM信号を復調する場合、OFDMシンボルの境界を正しく検出し、その境界位置に同期させてFFT演算を行わなければならない。OFDMシンボルの境界位置を正しく検出してOFDMシンボルの同期処理を行うことをシンボル同期処理という。
【0029】
OFDMシンボルの実際の境界位置は、受信装置の動作クロックに一致しているとは限らないが、FFT演算の開始タイミングは、受信装置の動作クロック単位でしか制御することができない。そのため、図17に示すように、OFDMシンボルの同期処理を行って正確に境界位置を算出したとしても、FFT演算を行った後には、OFDM信号の動作クロック周期以下の精度での誤差が発生してしまう。
【0030】
このような動作クロック周期以下の誤差は、例えば、PLL等のクロック再生回路を用いて動作クロックの同期処理を行うことにより取り除けるが、例えば、受信したOFDM信号に対して動作クロックのPLL処理を行わない受信装置(例えば、特許文献1参照。)では、その誤差を取り除く処理は非常に複雑になる。動作クロック周期以下の誤差を取り除く方法として、パイロット信号の位相回転量を算出する方法(例えば、非特許文献2参照。)が提案されているが、この方法では、同期の引き込みが遅く、回路が複雑になってしまう。
【0031】
本発明は、このような従来の実情に鑑みて提案されたものであり、フーリエ変換を行う際の切り出し位置と受信した伝送シンボルの境界位置との動作クロック周期以下の精度の誤差を、簡易な構成で、高速且つ高精度に補正することが可能なOFDM復調装置を提供することを目的とする。
【0032】
【課題を解決するための手段】
本発明にかかるOFDM復調装置は、情報系列が時分割されて複数のサブキャリアに変調されることにより生成された有効シンボルと、この有効シンボルの一部の信号波形が複写されることにより生成されたガードインターバルとが含まれた伝送シンボルを伝送単位とする直交周波数分割多重(OFDM)信号を復調するOFDM復調装置である。
【0033】
本発明にかかるOFDM復調装置は、基準クロックに基づき基準時刻を発生する基準時刻発生手段と、上記基準クロックによりサンプリングされたOFDM信号の各伝送シンボルから上記有効シンボル分のサブキャリアの本数分の信号領域を切り出し、切り出した信号領域に対してフーリエ変換を行うことによって、当該伝送シンボルの各サブキャリアに変調されている複素信号を抽出するフーリエ変換手段と、上記OFDM信号の上記ガードインターバル部分の自己相関値がピークとなるタイミングを検出し、上記基準時刻に同期した当該タイミング(ピーク時刻)を発生するガード相関ピーク時刻検出手段と、上記ピーク時刻に基づき、上記基準時刻に同期した伝送シンボルの境界時刻であるシンボル境界時刻を推定するシンボル境界時刻推定手段と、上記基準クロックの周期精度で表された上記シンボル境界時刻に基づき上記フーリエ変換手段による信号領域の切り出しタイミング位置を制御するタイミング制御手段と、上記基準クロックの周期以下の精度で表されたシンボル境界時刻に基づき位相補正量を算出し、算出した位相補正量に基づき上記フーリエ変換手段により抽出された各サブキャリアに変調されていた上記複素信号に対して位相の補正を行う位相補正手段とを備える。
【0034】
このOFDM復調装置では、OFDM信号のガードインターバルの相関値のピーク値に基づきシンボル境界時刻を推定する。そして、推定されたシンボル境界時刻の基準クロックの周期精度の成分によってフーリエ変換の切り出し領域を制御し、推定されたシンボル境界時刻の基準クロックの周期未満の精度の成分によってフーリエ変換により抽出された各サブキャリアに変調されていた複素信号に対して位相の補正を行う。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態として、本発明を適用したOFDM受信装置について説明をする。
【0036】
OFDM受信装置の全体構成
図1に、本発明の第1の実施の形態のOFDM受信装置のブロック構成図を示す。
【0037】
本発明の第1の実施の形態のOFDM受信装置1は、図1に示すように、アンテナ2と、チューナ3と、バンドパスフィルタ(BPF)4と、A/D変換回路5と、クロック発生回路6と、DCキャンセル回路7と、デジタル直交復調回路8と、キャリア周波数誤差補正回路9と、FFT演算回路10と、位相補正回路11と、ガード相関/ピーク検出回路12と、タイミング同期回路13と、狭帯域キャリア誤差算出回路14と、広帯域キャリア誤差算出回路15と、加算回路16と、数値制御発振回路(NCO)17と、フレーム同期回路18と、等化回路19と、デマッピング回路20と、伝送路復号回路21と、伝送制御情報復号回路22とを備えている。
【0038】
放送局から放送されたデジタル放送の放送波は、OFDM受信装置1のアンテナ2により受信され、RF信号としてチューナ3に供給される。
【0039】
アンテナ2により受信されたRF信号は、乗算器3a及び局部発振器3bからなるチューナ3によりIF信号に周波数変換され、BPF4に供給される。チューナ3から出力されたIF信号は、BPF4によりフィルタリングされた後、A/D変換回路5に供給される。
【0040】
A/D変換回路5は、クロック発生回路6から供給されるクロックによりIF信号をサンプリングして、このIF信号をデジタル化する。A/D変換回路5よりデジタル化されたIF信号は、DCキャンセル回路7に供給され、このDCキャンセル回路7によってDC成分が除去された後、デジタル直交復調回路8に供給される。デジタル直交復調回路8は、所定のキャリア周波数の2相のキャリア信号を用いて、デジタル化されたIF信号を直交復調し、ベースバンドのOFDM信号を出力する。デジタル直交復調回路8から出力されるOFDM時間領域信号は、キャリア周波数誤差補正回路9に供給される。
【0041】
ここで、デジタル直交復調回路8によってデジタル直交復調を行う際、キャリア信号として−Sin成分及びCos成分の2相信号が必要となる。そのため、本装置1では、A/D変換回路5に与えるサンプリングクロックの周波数を、IF信号の中心周波数fIFの4倍の周波数とし、デジタル直交復調回路8に供給する2相のキャリア信号を生成可能としている。
【0042】
また、デジタル直交復調後に、4fIFのクロックのデータ系列を1/4にダウンサンプリングをして、デジタル直交復調後の有効シンボルのサンプリング点数を、サブキャリアの本数(Nu)としている。つまり、デジタル直交復調後のデータ系列のクロックを、サブキャリア間隔分の1の周波数としている。また、デジタル直交復調後のダウンサンプルの割合を1/2として、通常の2倍のサンプリング点数でFFT演算を行うようにして、FFT演算後にさらに1/2のダウンサンプルをしてもよい。このように通常の2倍のサンプリング点数に対してFFT演算を行うことによって、FFT演算により抽出できる信号の周波数帯域を2倍し、デジタル直交復調時のローパスフィルタ回路の回路規模を小さくすることができる。なお、後段の各回路がオーバーサンプリングされたデータ系列に対してデータ処理を行う場合には、デジタル直交復調後の有効シンボルのサンプリング点数(Nu)を、サブキャリア本数の2倍(ここでのnは自然数)としてもよい。
【0043】
クロック発生回路6は、A/D変換回路5に対して以上のような周波数のクロックを供給するとともに、デジタル直交復調後のデータ系列の動作クロック(A/D変換回路5に与えるクロックの周波数に対して1/4分周されたクロック、例えば、サブキャリア間隔分の1の周波数のクロック)を、本装置1内の各回路に対して供給する。
【0044】
なお、クロック発生回路6から発生される動作クロックは、受信したOFDM信号の伝送クロックに対して非同期の自走クロックである。つまり、クロック発生回路6から発生される動作クロックは、その周波数及び位相がPLL等によって伝送クロックと同期しておらず、自走状態で動作している。このように動作クロックを自走状態とすることが可能なのは、タイミング同期回路13によって、OFDM信号の伝送クロックと動作クロックとの周波数誤差を検出し、その周波数誤差成分に基づきフィードフォワード処理により後段でその誤差を除去しているためである。本OFDM受信装置1では、このようにクロック発生回路6を非同期の自走クロックとしているが、本発明は、フィードバック制御により動作クロック周波数を可変制御する装置にも適用することは可能である。
【0045】
また、デジタル直交復調回路8から出力されるベースバンドのOFDM信号は、FFT演算される前のいわゆる時間領域の信号である。このことから、以下、FFT演算前のベースバンド信号を、OFDM時間領域信号と呼ぶ。OFDM時間領域信号は、直交復調された結果、実軸成分(Iチャネル信号)と、虚軸成分(Qチャネル信号)とから構成される複素信号となる。
【0046】
キャリア周波数誤差補正回路9は、NCO17から出力されたキャリア周波数誤差補正信号と、デジタル直交復調後のOFDM時間領域信号とを複素乗算することによって、OFDM時間領域信号のキャリア周波数誤差を補正する。キャリア周波数誤差補正回路9によりキャリア周波数誤差が補正されたOFDM時間領域信号は、FFT演算回路10及びガード相関/ピーク検出回路12に供給される。
【0047】
FFT演算回路10は、1つのOFDMシンボルから有効シンボル長の信号を抜き出し、すなわち、1つのOFDMシンボルの全サンプル(Ns)からガードインターバル分のサンプル数(Ng)のサンプルを除いた信号を抜き出して、有効シンボルのサンプル数(Nu)のデータに対してFFT演算を行う。FFT演算回路10には、抜き出し範囲を特定するスタートフラグ(FFT演算の演算開始タイミング)がタイミング同期回路13から与えられ、このスタートフラグのタイミングでFFT演算を行う。
【0048】
例えば、FFT演算回路10は、図2に示すように、シリアル/パラレル変換器25と、ガードインターバル除去器26と、FFT演算器27と、パラレル/シリアル変換器28とを有している。
【0049】
シリアル/パラレル変換器25は、タイミング同期回路13から与えられるスタートフラグからカウントを開始してOFDMシンボルのサンプル数(Ns)分のデータを切り出して、1ワードがNsとなるパラレルデータとする。ガードインターバル除去器26は、1ワードがNs個のサンプル数のパラレルデータのうち先頭のNu個のデータのみを通過させ、そのワードの後ろのNg個のデータの出力を行わない。FFT演算器27は、ガードインターバル除去器26から出力された有効シンボルのサンプル数(Nu)分のデータに対してFFT演算を行う。パラレル/シリアル変換器28には、FFT演算器27からサブキャリア本数(すなわち、Nu)分のデータが入力される。パラレル/シリアル変換器28は、このNu個のデータをシリアル化して出力する。
【0050】
FFT演算回路10は、以上のように1つのOFDMシンボルに対して、有効シンボル分のサンプル数のデータを抜き出してFFT演算処理を行うことによって、OFDMシンボル内の各サブキャリアに変調されている信号成分を抽出する。
【0051】
なお、FFT演算回路10から出力される信号は、FFTされた後のいわゆる周波数領域の信号である。このことから、以下、FFT演算後の信号をOFDM周波数領域信号と呼ぶ。また、FFT演算回路10から出力されたOFDM周波数領域信号は、OFDM時間領域信号と同様に、実軸成分(Iチャネル信号)と虚軸成分(Qチャネル信号)とから構成される複素信号である。OFDM周波数領域信号は、位相補正回路11に供給される。
【0052】
位相補正回路11は、OFDM周波数領域信号に対して、OFDMシンボルの実際の境界位置と、FFT演算の開始タイミングとのずれによって生じてしまう位相回転成分の補正を行う。位相補正回路11は、サンプリング周期以下の精度で生じるずれを位相補正している。位相補正回路11は、具体的には、FFT演算回路10から出力されるOFDM周波数領域信号に対して、タイミング同期回路13から供給される位相補正信号(複素信号)を複素乗算して、位相回転補正を行う。位相回転補正がされたOFDM周波数領域信号は、広帯域キャリア誤差算出回路15、フレーム同期回路18、等化回路19及び伝送制御情報復号回路22に供給される。
【0053】
ガード相関/ピーク検出回路12には、OFDM時間領域信号が入力される。ガード相関/ピーク検出回路12は、入力されたOFDM時間領域信号と、有効シンボル分遅延したOFDM時間領域信号との相関値を求める。ここで、相関を求める時間長は、ガードインターバルの時間長に設定してある。このため、この相関値を示す信号(以下、ガード相関信号という。)は、OFDMシンボルの境界位置でちょうどピークとなる信号となる。ガード相関/ピーク検出回路12は、ガード相関信号のピーク位置を検出し、そのピーク位置のタイミングを特定する値(ピークタイミング値Np)を出力する。
【0054】
ガード相関/ピーク検出回路12から出力されたピークタイミング値Npは、タイミング同期回路13に供給され、ピークタイミングでの相関値の位相は、狭帯域キャリア周波数誤差算出回路14に供給される。
【0055】
タイミング同期回路13は、ガード相関/ピーク検出回路12から出力されたピークタイミング値Npに対して、例えば、フィルタリング処理を行って、OFDMシンボルの境界位置の推定を行い、その境界位置の推定値に基づきFFT演算を行うための演算開始タイミングを決定する。演算開始タイミングは、スタートフラグとしてFFT演算回路10に供給される。FFT演算回路10では、スタートフラグに基づき、入力されてくるOFDM時間領域信号からFFT演算範囲の信号を抜き出して、FFT演算を行う。また、タイミング同期回路13は、推定されたOFDMシンボルの境界位置と、FFT演算を行う演算開始タイミングとの時間ずれに伴い生じてしまう位相回転量を算出し、算出した位相回転量に基づき位相補正信号(複素信号)を生成し、位相補正回路11に供給する。
【0056】
狭帯域キャリア誤差算出回路14は、OFDMシンボルの境界位置での相関値の位相に基づき、デジタル直交復調時の中心周波数のずれ量のうちの狭帯域の成分を示す狭帯域キャリア周波数誤差成分を算出する。具体的に、狭帯域キャリア周波数誤差成分は、サブキャリアの周波数間隔の±1/2以下の精度の中心周波数のずれ量である。狭帯域キャリア誤差算出回路14により求められた狭帯域キャリア周波数誤差成分は、加算回路16に供給される。
【0057】
広帯域キャリア誤差算出回路15は、位相補正回路11から出力されたOFDM周波数領域信号に基づき、デジタル直交復調時の中心周波数のずれ量のうち広帯域の成分を示す広帯域キャリア周波数誤差成分を算出する。広帯域キャリア周波数誤差成分は、サブキャリアの周波数の間隔精度の中心周波数のずれ量である。
【0058】
広帯域キャリア誤差算出回路15により求められた広帯域キャリア周波数誤差成分は、加算回路16に供給される。
【0059】
加算回路16は、狭帯域キャリア誤差検出回路14により算出された狭帯域キャリア誤差成分と、広帯域キャリア誤差算出回路15により算出された広帯域キャリア誤差成分とを加算して、キャリア補正回路9から出力されたベースバンドOFDM信号のトータルの中心周波数のずれ量を算出する。加算回路16は、算出したトータルの中心周波数のずれ量を、周波数誤差値として出力する。加算回路16から出力された周波数誤差値は、NCO17に供給される。
【0060】
NCO17は、いわゆる数値制御発振器であり、加算回路16から出力された周波数誤差値に応じて増減するキャリア周波数誤差補正信号を発生する。NCO17は、例えば、供給された周波数誤差値がプラスの値であればキャリア周波数誤差補正信号の発振周波数を減少させ、供給されたキャリア周波数誤差値がマイナスの値であれば誤差補正信号の発振周波数を増加させるような制御を行う。NCO17は、このように制御することによって、周波数誤差値が0となるところで発振周波数が安定するようなキャリア周波数誤差補正信号を発生する。
【0061】
フレーム同期回路18は、OFDM伝送フレームの所定の位置に挿入されている同期ワードを検出し、OFDM伝送フレームの開始タイミングを検出する。フレーム同期回路18は、OFDM伝送フレームの開始タイミングに基づき各OFDMシンボルのシンボル番号を特定し、等化回路19等に供給する。
【0062】
等化回路19は、OFDM周波数領域信号に対して、いわゆる等化処理を行う。等化回路19は、フレーム同期回路18から供給されたシンボル番号に基づき、OFDM周波数領域信号内に挿入されているSP(Scattered Pilots)信号と呼ばれるパイロット信号を検出する。等化回路19により等化処理がされたOFDM周波数領域信号は、デマッピング回路20に供給される。
【0063】
デマッピング回路20は、等化処理がされたOFDM周波数領域信号(複素信号)に対して、その変調方式(例えば、QPSK、16QAM又は64QAM)に対応したデータの再割付処理(デマッピング処理)を行い、伝送データを復元する。デマッピング回路20から出力され伝送データは、伝送路復号回路21に供給される。
【0064】
伝送路復号回路21は、入力された伝送データに対して、その放送方式に対応した伝送路復号処理を行う。例えば、伝送路復号回路21では、時間方向のインタリーブ処理に対応した時間デインタリーブ処理、周波数方向のインタリーブに対応した周波数デインタリーブ処理、多値シンボルの誤り分散のためのビットインタリーブに対応したデインタリーブ処理、伝送ビットの削減のためのパンクチャリング処理に対応したデパンクチャリング処理、畳み込み符号化されたビット列の復号のためのビタビ復号処理、バイト単位でのデインタリーブ処理、エネルギ拡散処理に対応したエネルギ逆拡散処理、RS符号化処理に対応したエラー訂正処理等を行う。
【0065】
このように伝送路復号がされた伝送データは、例えば、MPEG−2システムズに規定されたトランスポートストリームとして出力される。
【0066】
伝送制御情報復号回路22は、OFDM伝送フレームの所定の位置に変調されているTMCCやTPSといった伝送制御情報を復号する。
【0067】
ガード相関 ピーク検出回路
つぎに、ガード相関/ピーク検出回路12の詳細な構成について説明をする。
【0068】
なお、以下の説明をするにあたり、Nu,Ng,Nsという定数(Nu,Ng,Nsは、自然数である。)を用いる。Nuは、1つの有効シンボル内のサンプリング数である。Ngは、ガードインターバル内のサンプリング数である。例えば、ガードインターバル長が有効シンボル長の1/4であれば、Ng=Nu/4となる。Nsは、1つのOFDMシンボルのサンプリング数である。すなわち、Ns=Nu+Ngとなる。
【0069】
図3に、ガード相関/ピーク検出回路12のブロック構成図を示す。また、図4に、ガード相関/ピーク検出回路12内の各信号のタイミングチャートを示す。
【0070】
ガード相関/ピーク検出回路12は、図3に示すように、遅延回路31と、複素共役回路32と、乗算回路33と、移動和回路34と、振幅演算回路35と、角度変換回路36と、自走カウンタ37と、ピーク検出回路38と、出力回路39とを備えている。
【0071】
キャリア周波数誤差補正回路9から出力されたOFDM時間領域信号(図4(A))は、遅延回路31及び乗算回路33に供給される。遅延回路31は、Nu個のレジスタ群から構成されるシフトレジスタであり、入力されたOFDM時間領域信号を有効シンボル時間分遅延させる。遅延回路31により有効シンボル時間分遅延されたOFDM時間領域信号(図4(B))は、複素共役回路32に入力される。
【0072】
複素共役回路32は、有効シンボル期間分遅延されたOFDM時間領域信号の複素共役を算出し、乗算回路33に供給する。
【0073】
乗算回路33は、遅延されていないOFDM時間領域信号(図4(A))と、有効シンボル期間分遅延されたOFDM時間領域信号(図4(B))の複素共役信号とを、1サンプル毎に乗算する。乗算結果は移動和回路34に入力される。
【0074】
移動和回路34は、例えば、Ng個のレジスタ群から構成されるシフトレジスタと、各レジスタに格納されている値の総和を演算する加算器とから構成され、1サンプル毎に順次入力されてきた乗算結果に対して、Ng個のサンプル毎の移動和演算を行う。移動和回路34から出力される値が、OFDM時間領域信号と、有効シンボル(Nuサンプル)分の遅延がされたOFDM時間領域信号との相関を示したガード相関信号(図4(C))となる。移動和回路34から出力されるガード相関信号は、振幅演算回路35及び角度変換回路36に供給される。
【0075】
振幅演算回路35は、ガード相関信号の実数部と虚数部とをそれぞれ2乗して、それらを加算し、平方根をとることで、ガード相関信号の振幅成分を求める。ガード相関信号の振幅成分は、ピーク検出回路38に供給される。
【0076】
角度変換回路36は、ガード相関信号の実数部と虚数部とに対してTan−1の演算を行い、ガード相関信号の位相成分を求める。ガード相関信号の位相成分は、ピーク検出回路38に供給される。
【0077】
自走カウンタ37は、動作クロックをカウントするカウンタである。自走カウンタ37のカウント値Nは、0からNs−1までが1ずつインクリメントされ、Ns−1を超えると0に戻る(図4(D))。つまり、自走カウンタ37は、OFDMシンボル期間のサンプル数(Ns)で、1周期となっている巡回カウンタである。自走カウンタ37のカウント値Nは、ピーク検出回路38に供給される。
【0078】
ピーク検出回路38は、自走カウンタ37の1周期内(0〜Ns−1)で最もガード相関信号の振幅値が高いポイントを検出し、そのポイントにおけるカウント値を検出する。ピーク検出回路38は、自走カウンタ37のカウント値が次の周期に移ると、また新たにガード相関信号の振幅値が高いポイントを検出する。ピーク検出回路38により検出されたカウント値が、ガード相関信号のピーク時刻を示すピークタイミング値Npとなる。また、ピーク検出回路38は、そのピーク時刻におけるガード相関信号の位相成分も検出し、検出した位相成分を出力回路39に出力する。
【0079】
出力回路39は、自走カウンタ37のカウント値Nが0となるタイミングで、ピーク検出回路38から出力されたカウント値を取り込んで内部レジスタに格納し、そのカウント値を外部に対して出力可能な状態にセットする(図4(E))。レジスタに格納された当該カウント値は、ガード相関信号のピーク時刻を示す情報(ピークタイミング値Np)として、後段のタイミング同期回路13に出力される。また、出力回路39は、同様に、自走カウンタ37のカウント値Nが0となるタイミングで、ピーク検出回路から出力された位相成分を取り込んで内部レジスタに格納し、その位相成分を外部に対して出力可能な状態にセットする。レジスタに格納された当該位相成分は、後段の狭帯域キャリア周波数誤差算出回路14に出力される。
【0080】
また、自走カウンタ37は、カウント値Nが0となったときにハイとなる有効フラグを発行する(図4(F))。この有効フラグは、後段の回路に対してピークタイミング値Np及び位相値の発行タイミングを示している。
【0081】
なお、本ガード相関/ピーク検出回路12では、1OFDMシンボル周期毎に、ピークタイミング値Npが発生される構成となっているが、1OFDMシンボル周期ではなく、M個の(Mは自然数。)OFDMシンボル周期でピークタイミング値Npを発生するような構成としてもよい。ただし、その際には、有効フラグもM個のOFDMシンボル周期に1回だけ、High(1)とされるように構成する。
【0082】
タイミング同期回路
つぎに、タイミング同期回路13について説明をする。
【0083】
タイミング同期回路13は、マルチパスやフェージングの影響によるピークタイミング値Npの誤差やゆれを除去して、正確にシンボル同期を行うための回路である。
【0084】
図5に、タイミング同期回路13の内部構成図を示す。
【0085】
タイミング同期回路13は、図5に示すように、シンボル境界算出回路43と、シンボル境界補正回路44と、スタートフラグ生成回路45とを備えている。
【0086】
タイミング同期回路13には、ガード相関/ピーク検出回路12からピークタイミング値Npが、M個のOFDMシンボル毎に入力される(Mは自然数。)。タイミング同期回路13内の各回路は、ピークタイミング値Npの入力タイミング周期(Mシンボル周期)で動作が制御されている。
【0087】
シンボル境界算出回路43は、Mシンボル周期で入力されるピークタイミング値Npに対して、フィルタリング処理を行い、OFDMシンボルの境界位置を示すシンボル境界位置Nxを算出する。シンボル境界位置Nxは、ガード相関/ピーク検出回路12内の自走カウンタ37の周期である0〜Nsの範囲で表された値である。ただし、このシンボル境界位置Nxは、自走カウンタ37及びピークタイミング値Npが整数精度の値であるのに対して、小数点以下の精度の値となっている。シンボル境界算出回路43では、出力値(シンボル境界位置Nx)と入力値(ピークタイミング値Np)との位相誤差を算出し、位相誤差成分に基づき出力値(シンボル境界位置Nx)を安定化させるフィルタリング処理が行われる。
【0088】
シンボル境界算出回路43から出力されるシンボル境界位置Nxは、シンボル境界補正回路44に入力される。
【0089】
シンボル境界補正回路44は、Mシンボル毎に入力されるシンボル境界位置Nxの整数成分を検出して、FFT演算のためのスタート時刻を算出する。算出されたスタート時刻は、スタートフラグ生成回路45に供給される。また、シンボル境界補正回路44は、シンボル境界位置Nxの小数以下の成分を検出することにより、シンボル境界時刻とFFT演算開始時刻との動作クロック周期以下の精度の時間ずれを求め、その時間ずれ量に基づきFFT演算後の各サブキャリアに含まれている信号成分の位相回転量を算出する。算出された位相回転量は、複素信号に変換されたのち、位相誤差補正回路11に供給される。
【0090】
スタートフラグ生成回路45は、シンボル境界補正回路44から供給されたスタート時刻に基づき、FFT演算のための信号切り出しタイミング(すなわち、FFT演算開始タイミング)を特定するスタートフラグを発生する。このスタートフラグは、1OFDMシンボル毎に発生される。なお、スタートフラグは、入力されたシンボル境界位置Nxから所定のマージン時間分遅延させたのち発生させてもよい。ただし、このマージン時間は、少なくともガードインターバルの時間長を超えないようにする。このようにシンボル境界時刻から所定のマージン時間を遅延させてスタートフラグを発生することで、例えば、前ゴーストのシンボル境界を検出してしまったことによるシンボル間干渉を除去することができる。
【0091】
シンボル境界算出回路
つぎに、シンボル境界算出回路43について説明をする。
【0092】
シンボル境界算出回路43は、ガード相関/ピーク検出回路12からピークタイミング値Npが入力され、このピークタイミング値Npに基づきいわゆるDLL(Delay Locked Loop)によるループフィルタリングを行い、シンボル境界位置Nxを推定する回路である。
【0093】
(Np、Nxについての説明)
まず、ピークタイミング値Np及びシンボル境界位置Nxについて説明をする。
【0094】
ピークタイミング値Npは、ガード相関/ピーク検出回路12により検出されたガード相関信号のピーク位置を示す値である。また、シンボル境界位置Nxは、受信したOFDM信号のOFDMシンボルの境界位置を示す値である。
【0095】
ピークタイミング値Np及びシンボル境界位置Nxは、ガード相関/ピーク検出回路12内の自走カウンタ37のカウント値の範囲内の値をとる。すなわち、ピークタイミング値Np及びシンボル境界位置Nxは、0からNsまで範囲の値をとる。ピークタイミング値Npは自走カウンタ37のカウント値がそのまま出力された値であることから0〜Nsの範囲の整数精度の値である。シンボル境界位置Nxは、0〜Nsの範囲の小数点以下の精度も含めた値である。
【0096】
ガード相関/ピーク検出回路12内の自走カウンタ37は、本OFDM受信装置1の動作クロックをカウントして自走動作しているので、そのカウント値はOFDM受信装置1の基準時刻とみなすことができる。また、自走カウンタ37の1周期のカウント数は、OFDM信号の1シンボル内のサンプル数Ns(有効シンボルのサンプル数Nuとガードインターバルのサンプル数Ngとを加算した数)に設定されている。従って、ピークタイミング値Np及びシンボル境界位置Nxは、自走カウンタ37に同期した時刻を表している。言い換えれば、OFDM信号のシンボル周期に対する位相を表している。
【0097】
本OFDM受信装置1では、以上のようにOFDM信号の1シンボルのサンプル数Ns内の範囲の値を用いて、ピークタイミング値Np及びシンボル境界位置Nxを生成しているので、繰り返し発生するシンボル境界位置の同期制御を簡易に行うことが可能となっている。
【0098】
(シンボル境界算出回路の全体構成)
続いて、シンボル境界算出回路43の内部構成について説明をする。図6に、シンボル境界算出回路43の回路図を示す。
【0099】
シンボル境界算出回路43は、図6に示すように、位相比較回路51と、リミッタ52と、非対称ゲイン回路53と、ローパスフィルタ54と、クロック誤差補正回路55と、位相発生回路56と、第1のレジスタ58と、第2のレジスタ59と、第3のレジスタ60とを備えている。
【0100】
シンボル境界算出回路43には、ピークタイミング値Np及び有効フラグが入力される。有効フラグは、自走カウンタ37の巡回タイミングに同期して、Mシンボル(Mは自然数。)に1回だけHigh(1)となる。シンボル境界算出回路43は、有効フラグがHighとなったタイミング毎に、シンボル境界位置Nxを算出する。
【0101】
(位相比較回路)
図7に、位相比較回路51の回路構成図を示す。
【0102】
位相比較回路51は、減算器51aと、モジュロ演算器51bとから構成されている。位相比較回路51には、ガード相関/ピーク検出回路12からピークタイミング値Npが入力されるとともに、シンボル境界算出回路43の出力値であるシンボル境界位置Nxがフィードバックされて入力される。位相比較回路51に入力されるシンボル境界位置Nxは、ガード相関/ピーク検出回路12から出力されるピークタイミング値Npの入力タイミングに対して、1サンプル前(すなわち、1回前に有効フラグがHighとなったタイミング)に当該シンボル境界算出回路43から出力された値である。位相比較回路51に入力されるシンボル境界位置Nxは、第1のレジスタ58を介して入力されている。
【0103】
減算器51aは、ピークタイミング値Npからシンボル境界位置Nxを減算する。モジュロ演算器51bは、減算器51aの出力値に対して、Ns(1シンボルのサンプル数)の剰余演算する。つまり、モジュロ演算器51bは、減算器51aの出力値をNs(1シンボルのサンプル数)で除算し、その余りの値を出力する。
【0104】
このような位相比較回路51では、自走カウンタ37のカウント値をシンボル周期とみなした場合における、現在推定されているシンボル境界位相と、現在のシンボルのガード相関信号のピーク位相との位相差Δθが算出される。つまり、自走カウンタ37のカウント値を基準時刻とみなした場合における、現在推定されているシンボル境界時刻と、現在のガード相関信号のピーク時刻との時間差が算出される。
【0105】
位相比較回路51により算出された位相差Δθは、リミッタ52に供給される。
【0106】
(リミッタ)
図8に、リミッタ52の回路構成図を示す。
【0107】
リミッタ52には、位相比較回路51の出力値である位相差Δθが入力される。リミッタ52は、上限値TH1と位相差Δθとを比較する第1の比較器52aと、下限値TH2と位相差Δθとを比較する第2の比較器52bと、位相差Δθ、上限値TH1又は下限値TH2のいずれか一つを選択するセレクタ52cとから構成されている。上限値TH1と下限値TH2との大小関係は、TH1>TH2である。
【0108】
第1の比較器52aは、位相差Δθが上限値TH1より小さければLow(0)を出力し、位相差Δθが上限値TH1以上であればHigh(1)を出力する。第2の比較器52bは、位相差Δθが下限値TH2より大きければLow(0)を出力し、位相差Δθが下限値TH2以下であればHigh(1)を出力する。
【0109】
セレクタ52cは、第1の比較器52aの出力がLow(0)且つ第2の比較器52bの出力がLow(0)であれば、位相比較回路51から出力された位相差Δθをそのまま出力する。セレクタ52cは、第1の比較器52aの出力がHigh(1)であれば上限値TH1を出力し、第2の比較器52bの出力がHigh(1)であれば下限値TH2を出力する。すなわち、リミッタ52は、入力された位相差Δθが上限値TH1から下限値TH2の範囲に入っていればそのまま位相差Δθを出力するが、入力された位相差Δθが上限値TH1以上であれば出力値を上限値TH1でクリップし、入力された位相差Δθが下限値以下であれば出力値を下限値TH2でクリップするといった、TH1>TH2の範囲で位相差Δθのレベル制限を行う回路である。
【0110】
なお、ここでは、位相差Δθは0を中心としてプラス方向とマイナス方向に値が変動するので、TH1≧0,TH2≦0に設定する。
【0111】
シンボル境界算出回路43では、このようなリミッタ52を設けることによって、例えばフェージング環境において生じる大きなインパルスノイズを除去することができ、同期保持特性を向上させることができる。
【0112】
リミッタ52によりレベル制限がされた位相差Δθは、非対称ゲイン回路53に供給される。
【0113】
(非対称ゲイン回路)
図9に、非対称ゲイン回路53の回路構成図を示す。
【0114】
非対称ゲイン回路53には、リミッタ52の出力値であるレベル制限がされた後の位相差Δθが入力される。非対称ゲイン回路53は、位相差Δθの極性を判断する比較器53aと、位相差Δθに第1のゲインGaを乗算する第1の乗算器53bと、位相差Δθに第2のゲインGbを乗算する第2の乗算器53cと、第1の乗算器53b又は第2の乗算器53cのいずれかの出力を選択するセレクタ53dとから構成されている。第1のゲインGaと第2のゲインGbとの関係は、Ga>Gbである。
【0115】
比較器53aは、位相差Δθと0とを比較し、位相差Δθが0より小さければLow(0)を出力し、位相差Δθが0以上であればHigh(1)を出力する。セレクタ53dは、比較器53aの出力がLow(0)であれば、第1の乗算器53bの出力値(位相差ΔθにGaが乗算された値)を選択して出力し、比較器53aの出力がHigh(1)であれば、第2の乗算器53cの出力値(位相差ΔθにGbが乗算された値)を選択して出力する。
【0116】
すなわち、非対称ゲイン回路53は、ピークタイミング値Npがシンボル境界位置Nxよりも早いか遅いかを判別し、ピークタイミング値Npの方がシンボル境界位置Nxよりも早ければ小さいゲイン(Gb)を乗算し、ピークタイミング値Npの方がシンボル境界位置Nxよりも遅ければ大きいゲイン(Ga)を乗算する。つまり、非対称ゲイン回路53は、マルチパス等により複数のピーク値が検出されるような場合に、より時間的に早い信号(主波)に対して同期をしやすいように、位相差Δθに乗算するゲインを変えている。
【0117】
非対称ゲイン回路53によりゲインが乗算された位相差Δθは、ローパスフィルタ54に供給される。
【0118】
(ローパスフィルタ)
図10に、ローパスフィルタ54の回路構成図を示す。
【0119】
ローパスフィルタ54には、非対称ゲイン回路53によりゲインが乗算された位相差Δθ及びガード相関/ピーク検出回路12から出力された有効フラグが入力される。ローパスフィルタ54は、イネーブル機能付きのレジスタ54aと、減算器54bと、乗算器54cと、加算器54dとから構成されている。
【0120】
イネーブル機能付きレジスタ54aは、イネーブルポートENに有効フラグが入力され、入力ポートDに当該ローパスフィルタ54の出力値(平均位相差AveΔθ)が入力される。
【0121】
減算器54bは、非対称ゲイン回路53から出力された位相差Δθから、レジスタ54aの出力値を減算する。すなわち、減算器54bは、入力された位相差Δθから、1サンプル前(1回前に有効フラグがHighとなったタイミング)の当該ローパスフィルタ54の出力値(平均位相差AveΔθ)を減算して、位相差Δθの残差を算出する。
【0122】
乗算器54cは、減算器54bから出力された位相差Δθの残差に対して所定の係数Kを乗算する。加算器54dは、所定の係数Kが乗算された残差と、レジスタ54aの出力値とを加算する。この加算器54dの出力値が、当該ローパスフィルタ54の出力値(平均位相差AveΔθ)となる。
【0123】
つまり、ローパスフィルタ54は、IIR型のローパスフィルタを用いて、入力された位相差Δθを平均化し、平均位相差AveΔθを算出する回路である。
【0124】
ローパスフィルタ54により算出された平均位相差AveΔθは、クロック誤差補正回路55に供給される。
【0125】
(クロック誤差補正回路)
図11に、クロック誤差補正回路55の回路構成図を示す。
【0126】
クロック誤差補正回路55には、ローパスフィルタ54の出力値である平均位相差AveΔθ及びガード相関/ピーク検出回路12から出力された有効フラグが入力される。
【0127】
クロック誤差補正回路55は、乗算器55aと、レジスタ55bと、第1の加算器55cと、第2の加算器55dとから構成されている。
【0128】
乗算器55aは、ローパスフィルタ54から出力された平均位相差AveΔθに対して所定の係数K1を乗算する。乗算器55aの出力値は、現在処理中の特定のシンボルに対するクロック周波数誤差と、現在推定されているクロック周波数誤差との残差成分となる。例えば、係数K1を、nシンボル分のサンプリング数の逆数(nは有効フラグが発生するシンボルの間隔)、つまり、1/(n×Ns)とすることによって、クロック周波数誤差の残差成分が算出できる。
【0129】
レジスタ55bには、現在推定されているクロック周波数誤差が格納される。第1の加算器55cは、レジスタ55bに格納されている現在推定されているクロック周波数誤差と、乗算器55aから出力された残差成分とを加算して、新たなクロック周波数誤差を算出する。
【0130】
第2の加算器55dは、第1の加算器55cから出力されたクロック周波数誤差を、ローパルフィルタ54から出力された平均位相差AveΔθに加算する。クロック周波数誤差が加算された平均位相差AveΔθは、位相発生回路56に供給される。
【0131】
このように、クロック誤差補正回路55は、平均位相差AveΔθに対してクロック周波数誤差を加算することにより、平均位相差AveΔθに対してクロック周波数誤差の補正を行う。このため、シンボル境界算出回路43では、より正確なシンボル同期処理を行うことができる。
【0132】
なお、レジスタ55bは、イネーブル機能付きのレジスタとなっている。レジスタ55bは、イネーブルポートENに入力フラグが入力され、入力ポートDに第1の加算器55aの出力値が入力される。従って、レジスタ55bには、現在推定されているクロック周波数誤差として、第1の加算器55cから出力されるクロック周波数誤差の推定値が格納される。クロック周波数誤差は、その残差成分を累積加算することによって算出することが可能である。つまり、乗算器55aの出力を累積加算してゆき、その値が安定化したときにクロック周波数誤差の推定値となる。
【0133】
このようなクロック誤差補正回路55が設けられていることによって、シンボル境界位置を算出する際に、クロック周波数誤差を用いて補正をすることができる。そのため、より早く且つ正確にシンボル境界を算出することができる。
【0134】
(位相発生回路)
図12に、位相発生回路56の回路構成図を示す。
【0135】
位相発生回路56には、クロック誤差補正回路55の出力値であるクロック周波数誤差成分が補正された後の平均位相差AveΔθ、並びに、ガード相関/ピーク検出回路12から出力された有効フラグが入力される。
【0136】
位相発生回路56は、加算器56aと、レジスタ56bとから構成されている。
【0137】
レジスタ56bには、現在の推定位相が格納されている。
【0138】
加算器56aには、クロック誤差補正回路55から出力された平均位相差AveΔθと、レジスタ56bに格納されている現在の推定位相が入力される。加算器56aは、平均位相差AveΔθと現在の推定位相とを加算し、シンボル境界位置Nxを出力する。
【0139】
このような位相発生回路56は、平均位相差AveΔθに、現在推定されている位相を加算することによって、シンボル境界位置Nxを算出する。つまり、位相発生回路56は、位相比較回路51からクロック誤差補正回路55までのパスで算出された位相の誤差成分を、現在推定されている位相に加算することによって、最終的なシンボル境界位置を示す出力位相(シンボル境界位置Nx)を発生する。なお、この出力位相(シンボル境界位置Nx)は、自走カウンタ37から発生されるカウント値(0〜Ns)の周期の位相を表しているため、算出された後の出力位相がNsを越えた場合又は0を下回った場合には、自走カウンタ37のカウント周期(Ns)でモジュロ演算を行った後の値が出力される。
【0140】
ここで、レジスタ56bは、イネーブル機能付きのレジスタとなっている。レジスタ56bは、イネーブルポートENに入力フラグが入力され、入力ポートDに加算器55aの出力が入力される。従って、レジスタ56bには、現在の推定位相として、加算器56aから出力される推定値が格納される。現在の推定位相は、その位相残差を累積加算することによって算出することが可能である。つまり、加算器56aの出力を累積加算してゆき、その値が安定化したときに現在の推定位相となる。
【0141】
このような位相発生回路56が設けられていることによって、シンボル境界位置を算出する際に、現在の推定位相を用いて補正をすることができる。そのため、より早く且つ正確にシンボル境界を算出することができる。
【0142】
位相発生回路56から出力されたシンボル境界位置Nxは、第1のレジスタ58及び第2のレジスタ59に供給される。
【0143】
(出力回路及びフィードバック回路)
シンボル境界算出回路43の第1のレジスタ58及び第2のレジスタ59は、イネーブル機能付きのレジスタである。
【0144】
第1のレジスタ58には、イネーブルポートENに有効フラグが入力され、入力ポートDには位相発生回路56の出力値(シンボル境界位置Nx)が入力される。第1のレジスタ58は、その出力ポートQが位相比較回路51に接続されている。従って、第1のレジスタ58は、シンボル境界位置Nxを1サンプル分(1有効シンボル分)遅延させ、位相比較回路51に供給している。
【0145】
第2のレジスタ59には、イネーブルポートENに有効フラグが入力され、入力ポートDには位相発生回路56の出力値(シンボル境界位置Nx)が入力される。第2のレジスタ59は、その出力ポートQがシンボル境界補正回路44に接続されている。従って、第2のレジスタ59は、シンボル境界位置Nxを1サンプル分(1有効シンボル分)遅延させ、シンボル境界回路44に供給している。
【0146】
第3のレジスタ60は、入力ポートDに入力された信号を、1クロック分遅延させて出漁ポートQに反映させる通常のレジスタである。第3のレジスタ60の入力ポートDには、ガード相関/ピーク検出回路12から出力された有効フラグが入力され、出力ポートQには、シンボル境界補正回路44が接続されている。従って、第3のレジスタ60は、シンボル境界位置Nxとのタイミングの同期をとって、有効フラグをシンボル境界補正回路44に供給している。
【0147】
シンボル境界補正回路
つぎに、シンボル境界補正回路44について説明をする。
【0148】
図13にシンボル境界補正回路44のブロック構成図を示す。
【0149】
シンボル境界補正回路44には、シンボル境界算出回路43からシンボル境界位置Nxが入力される。このシンボル境界位置Nxは、ガード相関/ピーク検出回路12内の自走カウンタ37のカウント周期(0〜Ns)内の値となっている。つまり、シンボル境界位置Nxは、OFDM信号のシンボル境界位置を自走カウンタ37の周期に対する位相で表した値である。言い換えれば、自走カウンタ37が基準時刻を発生するとみなした場合におけるその基準時刻で表した値である。
【0150】
さらに、シンボル境界位置Nxは、上述したシンボル境界算出回路43によってフィルタリングが行われることにより、その精度が自走カウンタ37の動作クロックの周期以下まで表されている。すなわち、シンボル境界位置Nxは、0〜Nsの範囲の小数点以下の精度も含めた値となっている。
【0151】
シンボル境界補正回路44は、このようなシンボル境界位置Nxを整数精度(つまり、動作クロックの周期精度)で表しなおして、動作クロック精度でのシンボル境界位置を算出する。それとともに、シンボル境界補正回路44は、シンボル境界位置Nxの小数精度の値に基づき、FFTの切り出しタイミングとシンボルの境界タイミングとの動作クロック周期以下の精度の誤差を示す位相誤差量βを算出し、さらに、その位相誤差量βに基づき位相補正回路11に供給する位相補正信号を生成する。
【0152】
シンボル境界補正回路44の内部構成について説明をする。
【0153】
図13に示すように、シンボル境界補正回路44は、整数丸め回路44aと、減算器44bと、位相補正量算出回路44cと、複素変換回路44dとを備えている。
【0154】
整数丸め回路44aには、シンボル境界算出回路43から算出されたシンボル境界位置Nxが入力される。整数丸め回路44aは、入力されたシンボル境界位置Nxを動作クロック精度の値に丸める演算を行う。つまり、0〜Nsの範囲の整数の値に丸める。例えば、整数丸め回路44aは、シンボル境界位置Nxの小数点以下の値を切捨てる演算、シンボル境界位置Nxの小数点以下の値を切り上げる演算、又は、シンボル境界位置Nxの小数点以下の値の四捨五入する演算、といったような整数丸め演算を行う。整数丸めがされたシンボル境界位置Nxは、減算器44bに供給される。さらに、整数丸めがされたシンボル境界位置Nxは、シンボルスタート情報として、スタートフラグ生成回路45にも供給される。
【0155】
減算器44bは、シンボル境界算出回路43から出力されたシンボル境界位置Nx(小数点以下の精度まで表されたシンボル境界位置Nx)から、整数丸め回路44aから出力されたシンボル境界位置Nx(整数精度のシンボル境界位置Nx)を減算する。減算器44bの出力値は、FFTの切り出しタイミングとシンボルの境界タイミングとの動作クロック周期以下の精度の誤差、すなわち、位相誤差量βである。減算器44bから出力された位相誤差量βは、位相補正量算出回路44cに供給される。
【0156】
位相補正量算出回路44cには、位相誤差量βとともに、各サブキャリアのサブキャリア番号nが入力される。サブキャリア番号は、例えば、フレーム同期回路18等から入力される。位相補正量算出回路44cは、位相誤差量βから、各サブキャリアに対する補正量θclk(n)を、以下の式に基づき算出する。
【0157】
θclk(n)=2πnβ/N
ここで、nはサブキャリア番号を示し、Nは、有効シンボルのサンプル数(つまり、サブキャリア数)を示している。
【0158】
図14は、一例として、OFDM信号の各周波数のサブキャリアの配置と、サブキャリア番号を示している。この図14に示すように、この例においては、OFDM信号の中心周波数に位置するサブキャリアのサブキャリア番号を0としている。各サブキャリアは、周波数Δf(Δf=1/T:Tは有効シンボル長)間隔で配置され、それぞれにサブキャリア番号が付けられている。例えば、中心周波数より低い周波数に配置されているサブキャリアには、−1〜−512のサブキャリア番号が付与され、中心周波数より高い周波数に配置されているサブキャリアには、1〜511のサブキャリア番号が付与されている。上記のサブキャリア番号nは、この図14に示すようなサブキャリアの周波数に対応した値となっている。
【0159】
また、各サブキャリア毎に補正量が異なるのは、位相誤差量βがFFTの切り出しタイミングとシンボルの境界タイミングとの遅延時間で表されているため、その遅延時間で生じる位相回転量が各周波数毎に異なるからである。
【0160】
以上のように位相補正量算出回路44cは、位相補正量θclk(n)を求め、求めた位相補正量θclk(n)を複素変換回路44dに供給する。
【0161】
複素変換回路44dは、供給された位相補正量θclk(n)に対して、サイン及びコサインをとり、複素信号に変換する。複素変換回路44dは、複素変換をした位相補正量(cos(θclk(n)),sin(θclk(n)))を、位相補正信号として、位相補正回路11に供給する。
【0162】
このような位相補正信号が供給された位相補正回路11では、FFT演算回路10から出力されるOFDM周波数領域信号の各サブキャリアに対応したデータに対して、複素変換回路44dから出力される位相補正信号(cos(θclk(n)),sin(θclk(n)))を複素乗算して位相誤差を補正する。具体的には、位相補正回路11では、以下に示すような行列演算を行う。
【0163】
【数1】
Figure 2004214963
【0164】
上式において、Iin(n),Qin(n)は、FFT演算回路10から出力されたサブキャリア番号nの演算結果であり、Iin(n)が実数成分,Qin(n)が虚数成分を示している。また、Iout(n),Qout(n)は、位相補正回路11から出力されるサブキャリア番号nの位相補正結果であり、Iout(n)が実数成分,Qout(n)が虚数成分を示している。
【0165】
以上のように、シンボル境界補正回路44では、非常に簡易な回路構成で且つ正確に誤差を補正することができる。さらに、シンボル境界補正回路44は、FFT演算前のガード相関ピーク信号を用いて誤差量を算出しているので、例えばパイロット信号等を用いてフィードバックして補正を行うよりも、非常に早く同期の引き込みを行うことが可能となる。
【0166】
スタートフラグ生成回路
スタートフラグ生成回路45は、Mシンボル毎に入力されるシンボルスタート情報(整数丸めがされた後のシンボル境界位置Nx)がシンボル境界補正回路44から入力され、FFT演算のための信号切り出しタイミング(すなわち、FFT演算開始タイミング)を示すスタートフラグを発生する。スタートフラグは、1OFDMシンボル毎に発生される。
【0167】
スタートフラグ生成回路45は、図13に示すように、カウンタ45aと、レジスタ45bと、比較器45cとから構成されている。
【0168】
カウンタ45aは、ガード相関/ピーク検出回路12内の自走カウンタ37と同期して動作する同一周期のカウンタである。つまり、カウンタ45aは、0からNsまでの値をカウントするカウンタである。さらに、このカウンタ45aは、上述したシンボル境界算出回路43での遅延時間分、上記自走カウンタ37のカウント値から位相が遅らされている。
【0169】
レジスタ45bには、シンボル境界補正回路44からシンボルスタート情報(整数丸めがされたシンボル境界位置Nx)を、有効フラグがアサート(1とされたタイミング)毎に格納する。
【0170】
比較器45cは、カウンタ45aが発生するカウント値と、レジスタ45bに格納されているシンボルスタート情報とを比較し、一致したタイミングでHigh(1)となるスタートフラグを発生する。
【0171】
比較器45cから発生されたスタートフラグは、FFT演算回路10に供給される。FFT演算回路10は、スタートフラグがHigh(1)となったタイミングで、入力されてくるシリアルデータ系列をパラレル化することにより、FFT演算を行うNu個のデータを切り出す。
【0172】
以上のようにスタートフラグ生成回路45では、シンボル境界算出回路43により算出されたシンボル境界位置Nxに示されたタイミングから、FFT演算回路10に入力されてくるシリアルデータ系列に同期させたスタートフラグに変換し、FFT演算回路10に供給している。
【0173】
なお、この例では、スタートフラグ生成回路45の内部にカウンタ45aを設けているが、自走カウンタ37のカウント値を遅延調整した値を、比較器45cに供給するようにしてもよい。
【0174】
また、自走カウンタ37のカウント値に対するカウンタ45aの遅延量を、シンボル境界算出回路43の処理遅延量にマージンを加えた値とすることによって、前ゴーストによるシンボル間干渉を除去するように、FFT演算のための切り出し範囲を調整してもよい。
【0175】
【発明の効果】
本発明にかかるOFDM復調装置では、OFDM信号のガードインターバルの相関値のピーク値に基づきシンボル境界時刻を推定する。そして、推定されたシンボル境界時刻の基準クロックの周期精度の成分によってフーリエ変換の切り出し領域を制御し、推定されたシンボル境界時刻の基準クロックの周期未満の精度の成分によってフーリエ変換により抽出された各サブキャリアに変調されていた複素信号に対して位相の補正を行う。
【0176】
このことにより本発明に係るOFDM復調装置では、PLL等のクロック再生回路や、パイロット信号を利用した位相回転量の検出処理回路等を用いない非常に簡易な構成により、引き込み速度が速く且つ高精度に、フーリエ変換を行う際の切り出し位置と受信した伝送シンボルの境界位置との動作クロック周期以下の精度の誤差を補正することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態のOFDM受信装置のブロック構成図である。
【図2】FFT演算回路の構成を示す図である。
【図3】ガード相関/ピーク検出回路のブロック構成図である。
【図4】ガード相関/ピーク検出回路内の各信号のタイミングチャートである。
【図5】タイミング同期回路のブロック構成図である。
【図6】シンボル境界算出回路のブロック構成図である。
【図7】上記シンボル境界算出回路内の位相比較回路の回路構成図である。
【図8】上記シンボル境界算出回路内のリミッタの回路構成図である。
【図9】上記シンボル境界算出回路内の非対称ゲイン回路の回路構成図である。
【図10】上記シンボル境界算出回路内のローパスフィルタの回路構成図である。
【図11】上記シンボル境界算出回路内のクロック誤差補正回路の回路構成図である。
【図12】上記シンボル境界算出回路内の位相発生回路の回路構成図である。
【図13】シンボル境界補正回路及びスタートフラグ生成回路の回路構成図である。
【図14】サブキャリア番号を示した図である。
【図15】OFDM方式の伝送シンボルについて説明するための図である。
【図16】従来のOFDM受信装置のブロック構成図である。
【図17】FFT演算を開始位置を示すスタートフラグと、OFDMシンボル境界位置の位置ずれについて説明するための図である。
【符号の説明】
1 OFDM受信装置、2 アンテナ、3 チューナ、4 バンドパスフィルタ、5 A/D変換回路、6 クロック発生回路、7 DCキャンセル回路、8デジタル直交復調回路、9 キャリア周波数誤差補正回路、10 FFT演算回路、11 位相補正回路、12 ガード相関/ピーク検出回路、13 タイミング同期回路、14 狭帯域キャリア誤差算出回路、15 広帯域キャリア誤差算出回路、16 加算回路、17 数値制御発振回路、18 フレーム同期回路、19 等化回路、20 デマッピング回路、21 伝送路復号回路、22 伝送制御情報復号回路

Claims (3)

  1. 情報系列が時分割されて複数のサブキャリアに変調されることにより生成された有効シンボルと、この有効シンボルの一部の信号波形が複写されることにより生成されたガードインターバルとが含まれた伝送シンボルを伝送単位とする直交周波数分割多重(OFDM)信号を復調するOFDM復調装置において、
    基準クロックに基づき基準時刻を発生する基準時刻発生手段と、
    上記基準クロックによりサンプリングされたOFDM信号の各伝送シンボルから上記有効シンボル分のサブキャリアの本数分の信号領域を切り出し、切り出した信号領域に対してフーリエ変換を行うことによって、当該伝送シンボルの各サブキャリアに変調されている複素信号を抽出するフーリエ変換手段と、
    上記OFDM信号の上記ガードインターバル部分の自己相関値がピークとなるタイミングを検出し、上記基準時刻に同期した当該タイミング(ピーク時刻)を発生するガード相関ピーク時刻検出手段と、
    上記ピーク時刻に基づき、上記基準時刻に同期した伝送シンボルの境界時刻であるシンボル境界時刻を推定するシンボル境界時刻推定手段と、
    上記基準クロックの周期精度で表された上記シンボル境界時刻に基づき上記フーリエ変換手段による信号領域の切り出しタイミング位置を制御するタイミング制御手段と、
    上記基準クロックの周期以下の精度で表されたシンボル境界時刻に基づき位相補正量を算出し、算出した位相補正量に基づき上記フーリエ変換手段により抽出された各サブキャリアに変調されていた上記複素信号に対して位相の補正を行う位相補正手段と
    を備えるOFDM復調装置。
  2. 上記タイミング制御手段は、上記シンボル境界時刻を上記基準クロック精度に丸め、丸めたシンボル境界時刻に基づき上記フーリエ変換手段による信号領域の切り出しタイミング位置を制御し、
    上記位相補正手段は、上記シンボル境界時刻推定手段により推定されたシンボル境界時刻と上記タイミング制御手段により丸められたシンボル境界時刻との差分時間を算出し、算出した差分時間に基づき上記位相補正量を算出すること
    を特徴とする請求項1記載のOFDM復調装置。
  3. 上記位相補正信号生成手段は、上記基準クロックの周期以下の精度で表されたシンボル境界時刻及び位相補正を行う複素信号が変調されていたサブキャリアの周波数に応じて、各サブキャリアに対する上記位相補正量を算出すること
    を特徴とする請求項1記載のOFDM復調装置。
JP2002382214A 2002-12-27 2002-12-27 Ofdm復調装置 Withdrawn JP2004214963A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002382214A JP2004214963A (ja) 2002-12-27 2002-12-27 Ofdm復調装置
PCT/JP2003/016262 WO2004062151A1 (ja) 2002-12-27 2003-12-18 Ofdm復調装置
EP03780895A EP1480363A1 (en) 2002-12-27 2003-12-18 Ofdm demodulation device
US10/505,793 US7289765B2 (en) 2002-12-27 2003-12-18 OFDM demodulator
CNA2003801003435A CN1692589A (zh) 2002-12-27 2003-12-18 Ofdm解调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382214A JP2004214963A (ja) 2002-12-27 2002-12-27 Ofdm復調装置

Publications (1)

Publication Number Publication Date
JP2004214963A true JP2004214963A (ja) 2004-07-29

Family

ID=32708583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382214A Withdrawn JP2004214963A (ja) 2002-12-27 2002-12-27 Ofdm復調装置

Country Status (5)

Country Link
US (1) US7289765B2 (ja)
EP (1) EP1480363A1 (ja)
JP (1) JP2004214963A (ja)
CN (1) CN1692589A (ja)
WO (1) WO2004062151A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300746A (ja) * 2005-04-21 2006-11-02 Daihen Corp 信号処理装置
CN100373895C (zh) * 2006-04-29 2008-03-05 北京理工大学 基于分数阶傅立叶变换的正交频分复用(ofdm)系统
JP2012191297A (ja) * 2011-03-09 2012-10-04 Fujitsu Semiconductor Ltd 受信装置,送信装置およびその離散サンプルタイミングに係る補正方法
JPWO2018220825A1 (ja) * 2017-06-02 2019-11-07 三菱電機株式会社 レーダ装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428143B2 (ja) * 2004-05-28 2010-03-10 ソニー株式会社 通信装置、通信方法及びプログラム
JP4595509B2 (ja) * 2004-11-26 2010-12-08 ソニー株式会社 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US20060120468A1 (en) * 2004-12-03 2006-06-08 Che-Li Lin Method and system for guard interval size detection
US20060140109A1 (en) * 2004-12-28 2006-06-29 Mediatek Incorporation Method and system for joint mode and guard interval detection
US20060140110A1 (en) * 2004-12-28 2006-06-29 Mediatek Inc. Method and system for joint mode and guard interval detection
US8401503B2 (en) * 2005-03-01 2013-03-19 Qualcomm Incorporated Dual-loop automatic frequency control for wireless communication
CN101138180B (zh) * 2005-03-10 2011-06-15 松下电器产业株式会社 无线发送装置和无线接收装置
US8009775B2 (en) * 2005-03-11 2011-08-30 Qualcomm Incorporated Automatic frequency control for a wireless communication system with multiple subcarriers
EP1802010A2 (en) * 2005-12-08 2007-06-27 Electronics and Telecommunications Research Institute TII decoder and method for detecting TII
US8139661B2 (en) * 2005-12-08 2012-03-20 Electronics And Telecommunications Research Institute Signal transmitting and receiving apparatuses
US7693095B2 (en) * 2006-07-13 2010-04-06 Infineon Technologies Ag Apparatus and method for compensating for frequency / phase pulling bursts in received OFDM signals
US8509323B2 (en) 2006-08-22 2013-08-13 Motorola Mobility Llc Resource allocation including a DC sub-carrier in a wireless communication system
US20080232482A1 (en) * 2007-03-19 2008-09-25 Legend Silicon Corp. Method and apparatus for constructing receiver diversity for ofdm signals
JP4359638B2 (ja) * 2007-08-24 2009-11-04 Okiセミコンダクタ株式会社 相関演算器及び相関演算装置
US8238480B2 (en) * 2007-10-05 2012-08-07 Motorola Mobility Llc Adaptive self-quieter suppression for OFDM wireless communication systems
JP2009094839A (ja) * 2007-10-10 2009-04-30 Fujitsu Microelectronics Ltd Ofdm受信装置
US8787146B2 (en) * 2008-03-31 2014-07-22 Hitachi, Ltd. Timing adjustment method, receiving station, and transmitting station in wireless communication system, and wireless communication system
US8174958B2 (en) * 2008-08-01 2012-05-08 Broadcom Corporation Method and system for a reference signal (RS) timing loop for OFDM symbol synchronization and tracking
KR101038855B1 (ko) * 2008-12-04 2011-06-02 성균관대학교산학협력단 Ofdm 시스템에서의 주파수 동기 장치 및 방법
US8428188B2 (en) * 2009-06-17 2013-04-23 Techwell, Inc. Carrier phase offset correction for a QAM system
JP5516967B2 (ja) * 2010-05-31 2014-06-11 ソニー株式会社 位相同期装置、位相同期方法、およびプログラム
JP5867772B2 (ja) * 2010-09-10 2016-02-24 ソニー株式会社 受信装置、およびプログラム
DE102010042475B4 (de) * 2010-10-14 2014-04-30 Intel Mobile Communications GmbH Vorrichtungen und Verfahren zum Reduzieren eines Fehlersignalanteils eines Sendesignals in einem Empfangssignal
US8761326B2 (en) * 2011-08-29 2014-06-24 Mediatek Inc. Compensating devices and methods for detecting and compensating for sampling clock offset
US9197400B1 (en) * 2012-05-21 2015-11-24 Marvell International Ltd. Method and apparatus for joint estimation of carrier frequency offset and sampling frequency offset
US9350587B1 (en) 2012-11-30 2016-05-24 Marvell International Ltd. System and method for timing error estimation
TWI470980B (zh) * 2012-12-26 2015-01-21 Mstar Semiconductor Inc 解碼方法及多媒體播放系統
US9571324B2 (en) * 2013-07-23 2017-02-14 Intel IP Corporation Method for improving spectral efficiency in Wi-Fi OFDM systems
US9936502B2 (en) 2013-12-18 2018-04-03 Huawei Technologies Co., Ltd. System and method for OFDMA resource management in WLAN
US9755795B2 (en) 2013-12-18 2017-09-05 Huawei Technologies Co., Ltd. System and method for WLAN OFDMA design of subcarrier groups and frame format
KR102529191B1 (ko) * 2016-01-27 2023-05-08 삼성전자주식회사 무선 통신 시스템에서 위상 에러를 추정 및 보상하는 방법 및 장치
WO2017131457A1 (en) * 2016-01-27 2017-08-03 Samsung Electronics Co., Ltd. Method and apparatus for estimating and correcting phase error in wireless communication system
RU2644609C1 (ru) * 2017-02-20 2018-02-13 Общество с ограниченной ответственностью "КАСКАД" Цифровой ofdm демодулятор с децимацией частоты дискретизации
US10708012B1 (en) * 2019-02-09 2020-07-07 RF DSP Inc. Wideband subcarrier wireless transceiver circuits and systems
US11799707B2 (en) * 2022-09-06 2023-10-24 Ultralogic 6G, Llc Guard-space phase-tracking reference signal for 5G and 6G networking

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190610A (ja) * 1996-12-24 1998-07-21 Fujitsu Ten Ltd マルチキャリア方式の受信機
JP2871655B1 (ja) * 1997-11-25 1999-03-17 株式会社次世代デジタルテレビジョン放送システム研究所 シンボル同期回路
JPH11355241A (ja) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd シンボル同期回路
JP2001156745A (ja) * 1999-09-14 2001-06-08 Sony Corp 復調装置及び復調方法
JP2002141885A (ja) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Ofdm受信機
JP4050476B2 (ja) * 2001-03-28 2008-02-20 株式会社東芝 直交周波数分割多重伝送信号受信装置
JP3798656B2 (ja) * 2001-06-22 2006-07-19 株式会社ケンウッド 直交周波数分割多重信号受信装置、受信装置、直交周波数分割多重信号受信方法及び受信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300746A (ja) * 2005-04-21 2006-11-02 Daihen Corp 信号処理装置
CN100373895C (zh) * 2006-04-29 2008-03-05 北京理工大学 基于分数阶傅立叶变换的正交频分复用(ofdm)系统
JP2012191297A (ja) * 2011-03-09 2012-10-04 Fujitsu Semiconductor Ltd 受信装置,送信装置およびその離散サンプルタイミングに係る補正方法
JPWO2018220825A1 (ja) * 2017-06-02 2019-11-07 三菱電機株式会社 レーダ装置

Also Published As

Publication number Publication date
CN1692589A (zh) 2005-11-02
US7289765B2 (en) 2007-10-30
EP1480363A1 (en) 2004-11-24
US20050163094A1 (en) 2005-07-28
WO2004062151A1 (ja) 2004-07-22

Similar Documents

Publication Publication Date Title
JP2004214963A (ja) Ofdm復調装置
JP2004214961A (ja) Ofdm復調装置
JP3429748B2 (ja) 多重搬送波復調システムにおいて精細な周波数同期を行うための方法および装置
JP2004214962A (ja) Ofdm復調装置
JP4356203B2 (ja) 復調装置及び復調方法
US8681900B2 (en) Methods and apparatus for synchronization in multiple-channel communication systems
US9742530B2 (en) Receiver and method of receiving
US20040218519A1 (en) Apparatus and method for estimation of channel state information in OFDM receivers
WO2003028205A1 (en) Method and system to implement non-linear filtering and crossover detection for pilot carrier signal phase tracking
JP4419271B2 (ja) 復調装置及び復調方法
JP2004214960A (ja) Ofdm復調装置
JP2007208748A (ja) Ofdm復調装置、ofdm復調方法、プログラム及びコンピュータ読み取り可能な記録媒体
US20060165187A1 (en) Multiplex signal error correction method and device
JP2004304455A (ja) Ofdm信号復調装置および方法
JP4285038B2 (ja) Ofdm復調装置
JP4211461B2 (ja) Ofdm信号復調装置および方法
JP4114524B2 (ja) Ofdm復調装置及び方法
JP2001292122A (ja) 復調装置及び復調方法
JP4362955B2 (ja) 復調装置及び復調方法
JP4345194B2 (ja) 復調装置
JP2004304454A (ja) Ofdm信号復調装置および方法
JP2004096187A (ja) ディジタル放送受信装置
JP4527046B2 (ja) Ofdm復調装置、ofdm復調プログラム、および記録媒体
JP2004214959A (ja) 復調装置及び復調方法
JP2004297214A (ja) 復調装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307