JP2004186501A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004186501A
JP2004186501A JP2002352787A JP2002352787A JP2004186501A JP 2004186501 A JP2004186501 A JP 2004186501A JP 2002352787 A JP2002352787 A JP 2002352787A JP 2002352787 A JP2002352787 A JP 2002352787A JP 2004186501 A JP2004186501 A JP 2004186501A
Authority
JP
Japan
Prior art keywords
bit line
memory cell
potential
bit
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002352787A
Other languages
English (en)
Inventor
Takeshi Fujino
毅 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002352787A priority Critical patent/JP2004186501A/ja
Priority to US10/419,940 priority patent/US20040109342A1/en
Priority to TW092109560A priority patent/TW594745B/zh
Priority to KR1020030045611A priority patent/KR20040048799A/ko
Priority to DE10334432A priority patent/DE10334432A1/de
Publication of JP2004186501A publication Critical patent/JP2004186501A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/005Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor comprising combined but independently operative RAM-ROM, RAM-PROM, RAM-EPROM cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/08Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements
    • G11C17/10Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM
    • G11C17/12Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM using field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/27ROM only
    • H10B20/30ROM only having the source region and the drain region on the same level, e.g. lateral transistors
    • H10B20/34Source electrode or drain electrode programmed
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/60Peripheral circuit regions
    • H10B20/65Peripheral circuit regions of memory structures of the ROM only type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/002Isolation gates, i.e. gates coupling bit lines to the sense amplifier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/005Transfer gates, i.e. gates coupling the sense amplifier output to data lines, I/O lines or global bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/312DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with a bit line higher than the capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】プログラム開発段階から量産段階への移行が低コストで実現できる半導体装置を提供する。
【解決手段】開発段階においては、半導体装置の内蔵メモリのすべてをRAMとして作製する。一方、量産段階においては、プログラムを収納する領域を配線工程以降のマスク変更によりROMに変更する。ROMに変更する際には、DRAMのキャパシタのストレージノードであった電極プレートをメモリセルアレイ単位で接続し、これを固定電位に結合する。アクセストランジスタを固定電位に結合するか否かは、DRAMのキャパシタを内壁に形成する絶縁膜の開口部を設けるか否かで行なう。開発用チップと量産用チップを途中工程まで共通に作ることができ、量産用チップを迅速に供給することができる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
この発明は半導体装置に関し、より特定的には、ダイナミックランダムアクセスメモリ(DRAM)の少なくとも一部分を、工程変更により読出専用メモリ(ROM)としたメモリを備える半導体装置に関する。
【0002】
【従来の技術】
電気製品に組込まれる組込用マイクロコンピュータなどでは、システムプログラムの初期開発時にはフラッシュメモリが混載されたマイクロコンピュータが使用されるのが一般的である。フラッシュメモリが混載されたマイクロコンピュータはシステムプログラムを容易に変更できる。このため、製品に搭載した状態でもプログラムを何度も書換えて動作確認をしつつプログラム開発ができる。
【0003】
一方、プログラム開発が終了し、プログラムの内容が固定された後の量産時においては、ROM搭載マイクロコンピュータを使用することが一般的に行なわれてきた。量産時にフラッシュメモリをROMに置き換えるのは、フラッシュメモリを搭載するマイクロコンピュータに比べROMを搭載するマイクロコンピュータはチップ面積が小さいため価格が安いからである。
【0004】
【特許文献1】
特開平5−314776号公報
【0005】
【特許文献2】
特開平5−189988号公報
【0006】
【発明が解決しようとする課題】
しかしながら、このような場合には、開発時と量産時で2種類のチップを用意しなければならないという問題点があった。また、最先端の微細化プロセスには、フラッシュメモリを混載することが製造上困難となりつつあることも問題点となっている。
【0007】
このように2種類のチップを用意する場合の開発期間の短縮のために、マスタスライス方式を適用することが考えられる。マスタスライス方式とは、トランジスタを配置した標準チップを予め準備するマスタ工程と、要求機能によってトランジスタ間の電気接続を変更するスライス工程からなる製造手法である。マスタ工程がすでに施され、ウェルの形成から始まりトランジスタの形成までが完了しているマスタスライスを作り溜めておくことにより、要求機能が確定した時点からすぐにスライス工程を行なうことができ開発期間が短縮される。
【0008】
具体的には、マイクロコンピュータチップに搭載されるメモリをすべてランダムアクセスメモリ(RAM)として内蔵しておき、開発時には外部からこのRAMにプログラムをロードして動作させる。そして、量産時には、スライス工程のスライスマスクを改定することによってプログラム領域のRAMをプログラムコードが記憶されたROMに変更することができればよい。これにより、開発時と量産時のLSIを1つのマスタスライスで実現することができ、また、RAM領域とROM領域の容量比率を自由に変更できるという利点も生まれる。
【0009】
このような目的を実現するために、SRAM(static random access memory)をROMに変更することも可能である。このような検討が特許文献1(特開平5−314776号公報)に記載されている。しかしながら、SRAMは、ROMに比べて約5倍以上の面積を有しているため、量産時のチップ面積が大きくなってしまう。したがって、SRAMを使用することはコスト的に困難である。
【0010】
SRAMよりも面積が小さいDRAMをROMに変更することもたとえば特許文献1(特開平5−314776号公報)や特許文献2(特開平5−189988号公報)に開示されている。しかしながら、特許文献2では、DRAMセルをROMに変更する場合には、メモリセルのアクセストランジスタのストレージノードを固定電位に接続するのであるが、この固定電位はハイレベルまたはローレベルのいずれか一方となっている。そして、固定電位の逆データを記憶するためには、ストレージノードを固定電位に接続することはせずにスタートアップ時に固定電位と逆データをDRAMセルに書込むことによって記憶する。この技術では、スタートアップ時には固定データと反対のデータを全面書込してキャパシタにデータを書込む必要があり、さらに動作中はリフレッシュ動作が必要になるため完全な不揮発性メモリとはならない。
【0011】
また、この技術にはDRAMのメモリセルに含まれるキャパシタのストレージノードの対極であるセルプレートを固定電位とし、キャパシタの絶縁膜を選択的にエッチングするような工程が必要となる。この場合は工程が追加となるし、キャパシタの絶縁膜は非常に薄いので、選択的にこの絶縁膜だけをエッチングするのは非常に困難である。たとえば下地のキャパシタ電極や層間絶縁膜とともに絶縁膜を孔あけするのは容易であるが、特定のメモリセルのみに絶縁膜を付加して、他のメモリセルを絶縁膜無しにするのはレジスト除去時に絶縁膜自身にダメージを与えるおそれがある。
【0012】
また、特許文献1(特開平5−314776号公報)に記載されたDRAMセルのレイアウトでは、メモリセルのストレージノードを接地電位および電源電位の2種類の固定電位の両方に接続可能とする必要がある。このような2種類の固定電位をストレージノードに選択的に供給するためには、ワード線に匹敵するピッチで2種類の電源配線を配置する必要があり歩留りの低下が懸念される。
【0013】
この発明はRAMとしては通常のROMと同等以下のメモリ面積を実現できるDRAMセルを使用しつつ、読出のための周辺回路レイアウトをほとんど変更することなく、DRAMセルをスライスマスク(トランジスタ形成以降の主として配線工程のマスク)の改定によりROMに変更できる半導体装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
この発明は要約すれば、半導体装置であって、第1の領域に配置され、揮発的に情報の記憶を行なう第1のメモリセルアレイを備える。第1のメモリセルアレイは、第1の固定電位が与えられる第1の電極プレートと、第1の電極プレートと絶縁膜を介して対向して配置される複数の第2の電極プレートと、複数の第1のビット線と、複数の第1のワード線と、複数の第2の電極プレートにそれぞれ一方端が接続される複数の第1のアクセストランジスタとを含む。複数の第1のアクセストランジスタの各々は、複数の第1のビット線のうちの対応するビット線に他方端が接続され、複数の第1のワード線のうちの対応するワード線に制御電極が接続される。半導体装置は、第2の領域に配置され、不揮発的に情報の記憶を行なう第2のメモリセルアレイをさらに備える。第2のメモリセルアレイは、第2の固定電位が与えられ、複数の第2の電極プレートと同一工程で形成される第3の電極プレートと、複数の第2のビット線と、複数の第2のワード線と、複数の第2のアクセストランジスタとを含む。複数の第2のアクセストランジスタの各々は、制御電極が複数の第2のワード線のうちの対応するワード線に接続され、一方端が複数の第2のビット線のうちの対応するビット線に接続され、他方端が第3の電極プレートに接続されるか否かが保持情報に応じて決定される。
【0015】
【発明の実施の形態】
以下において、本発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
【0016】
[実施の形態1]
図1は、本発明の実施の形態1の半導体記憶装置1の構成を示す概略ブロック図である。
【0017】
図1を参照して、半導体記憶装置1は、中央処理装置(CPU)2からアドレス信号ADRを受けるロウ/コラムデコーダ6と、CPU2からコマンド信号CMDを受ける制御回路4と、メモリセルアレイ22〜28と、センスアンプ帯30〜38と、プリアンプ&ライトドライバ40と、切替スイッチ12〜18とを含む。
【0018】
メモリセルアレイ22〜28の各々は、行列状に配列されるメモリセルMCと、メモリセルMCの列に対応して設けられるビット線BLと、メモリセルMCの行に対応して設けられるワード線WLとを含む。図1においては、メモリセルアレイ26のメモリセルMC,ビット線BLおよびワード線WLが代表的に1つずつ示されている。
【0019】
ロウ/コラムデコーダ6は、CPU2からアドレス信号ADRを受取り、メモリセルアレイ26のワード線WLを選択する。また同時にセンスアンプ帯に選択信号を出力しビット線の選択を行なう。
【0020】
制御回路4は、CPU2から与えられたコマンド信号CMDに応じて読出動作や書込動作の指示をチップの全体に対して行なう。センスアンプ帯は、ビット線から読出されたメモリセルMCのデータを増幅してプリアンプに出力する。プリアンプはデータバスDBにデータ出力信号DOを出力する。またライトドライバはデータバスDBから受けたデータ入力信号DIを増幅してセンスアンプ帯に出力する。センスアンプ帯において選択されたビット線を経由してメモリセルにこのデータ入力信号が伝達される。
【0021】
切替スイッチ12〜18は、マスタスライス工程以降で各メモリセルアレイについてROMとRAMの切換が指定されるスイッチである。切替スイッチ12〜18は、メモリセルアレイ22〜28に対応してそれぞれ設けられている。
【0022】
図2は、図1におけるセンスアンプ帯とメモリセルアレイの説明をするための回路図である。
【0023】
図2を参照して、メモリセルアレイ22および24がセンスアンプ帯32を共有している。メモリセルアレイ22は、図1の切替スイッチ12がRAM動作の選択をしているので、RAMセルアレイとして動作する。このようにRAM動作を行なうメモリセルアレイをこの明細書ではRAM部とも呼ぶことにする。一方、メモリセルアレイ24は、図1の切替スイッチ14がROM動作の選択をしているのでROMセルアレイとして動作する。このようにROM動作を行なうメモリセルアレイをこの明細書ではROM部とも呼ぶことにする。
【0024】
メモリセルアレイ22は、メモリセルユニットU00L〜U31Lを含む。メモリセルユニットU00L〜U31Lは、各々が2つのトランジスタおよび2つのキャパシタを含む、いわゆるツインメモリセルである。
【0025】
メモリセルユニットU00Lは、一方端がセルプレート電位VCPに結合されるキャパシタC00と、キャパシタC00の他方端とビット線BL0Bとの間に接続されるNチャネルMOSトランジスタT00と、一方端がセルプレート電位VCPに結合されるキャパシタC01と、キャパシタC01の他方端とビット線/BL0Bとの間に接続されるNチャネルMOSトランジスタT01とを含む。NチャネルMOSトランジスタT00,T01のゲートはともにワード線WL0_Lに接続される。
【0026】
メモリセルユニットU01Lは、一方端がセルプレート電位VCPに結合されるキャパシタC02と、キャパシタC02の他方端とビット線BL1Bとの間に接続されるNチャネルMOSトランジスタT02と、一方端がセルプレート電位VCPに結合されるキャパシタC03と、キャパシタC03の他方端とビット線/BL1Bとの間に接続されるNチャネルMOSトランジスタT03とを含む。NチャネルMOSトランジスタT02,T03のゲートはともにワード線WL0_Lに接続される。
【0027】
メモリセルユニットU10Lは、一方端がセルプレート電位VCPに結合されるキャパシタC10と、キャパシタC10の他方端とビット線BL0Aとの間に接続されるNチャネルMOSトランジスタT10と、一方端がセルプレート電位VCPに結合されるキャパシタC11と、キャパシタC11の他方端とビット線/BL0Aとの間に接続されるNチャネルMOSトランジスタT11とを含む。NチャネルMOSトランジスタT10,T11のゲートはともにワード線WL1_Lに接続される。
【0028】
メモリセルユニットU11Lは、一方端がセルプレート電位VCPに結合されるキャパシタC12と、キャパシタC12の他方端とビット線BL1Aとの間に接続されるNチャネルMOSトランジスタT12と、一方端がセルプレート電位VCPに結合されるキャパシタC13と、キャパシタC13の他方端とビット線/BL1Aとの間に接続されるNチャネルMOSトランジスタT13とを含む。NチャネルMOSトランジスタT12,T13のゲートはともにワード線WL1_Lに接続される。
【0029】
メモリセルユニットU20Lは、一方端がセルプレート電位VCPに結合されるキャパシタC20と、キャパシタC20の他方端とビット線BL0Aとの間に接続されるNチャネルMOSトランジスタT20と、一方端がセルプレート電位VCPに結合されるキャパシタC21と、キャパシタC21の他方端とビット線/BL0Aとの間に接続されるNチャネルMOSトランジスタT21とを含む。NチャネルMOSトランジスタT20,T21のゲートはともにワード線WL2_Lに接続される。
【0030】
メモリセルユニットU21Lは、一方端がセルプレート電位VCPに結合されるキャパシタC22と、キャパシタC22の他方端とビット線BL1Aとの間に接続されるNチャネルMOSトランジスタT22と、一方端がセルプレート電位VCPに結合されるキャパシタC23と、キャパシタC23の他方端とビット線/BL1Aとの間に接続されるNチャネルMOSトランジスタT23とを含む。NチャネルMOSトランジスタT22,T23のゲートはともにワード線WL2_Lに接続される。
【0031】
メモリセルユニットU30Lは、一方端がセルプレート電位VCPに結合されるキャパシタC30と、キャパシタC30の他方端とビット線BL1Bとの間に接続されるNチャネルMOSトランジスタT30と、一方端がセルプレート電位VCPに結合されるキャパシタC31と、キャパシタC31の他方端とビット線/BL1Bとの間に接続されるNチャネルMOSトランジスタT31とを含む。NチャネルMOSトランジスタT30,T31のゲートはともにワード線WL3_Lに接続される。
【0032】
メモリセルユニットU31Lは、一方端がセルプレート電位VCPに結合されるキャパシタC32と、キャパシタC32の他方端とビット線BL1Bとの間に接続されるNチャネルMOSトランジスタT32と、一方端がセルプレート電位VCPに結合されるキャパシタC33と、キャパシタC33の他方端とビット線/BL1Bとの間に接続されるNチャネルMOSトランジスタT33とを含む。NチャネルMOSトランジスタT32,T33のゲートはともにワード線WL3_Lに接続される。
【0033】
ビット線BL0A,/BL0A,BL1A,/BL1Aは、センスアンプ帯32に接続される。一方、ビット線BL0B,/BL0B,BL1B,/BL1Bはセンスアンプ帯30に接続される。
【0034】
メモリセルアレイ24は、RAM部であればキャパシタのストレージノードに相当する部分が、後に説明するように、接続された1つのプレートとなっている。メモリセルアレイ24のこのプレートには接地電位が供給される。本明細書では、このプレートを固定電位プレートと呼ぶこととする。
【0035】
メモリセルアレイ24は、各々がデータ1ビットを不揮発的に記憶するメモリセルユニットU00R〜U31Rを含む。
【0036】
メモリセルユニットU00Rは、一方端がビット線BL0Dと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL0_Rが接続されるNチャネルMOSトランジスタT40と、ビット線/BL0Dと固定電位プレートとの間に接続されゲートがワード線WL0_Rに接続されるNチャネルMOSトランジスタT41とを含む。
【0037】
メモリセルユニットU01Rは、一方端がビット線BL1Dと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL0_Rが接続されるNチャネルMOSトランジスタT42と、ビット線/BL1Dと固定電位プレートとの間に接続されゲートがワード線WL0_Rに接続されるNチャネルMOSトランジスタT43とを含む。
【0038】
メモリセルユニットU10Rは、ビット線/BL0Cと固定電位プレートとの間に接続されゲートにワード線WL1_Rが接続されるNチャネルMOSトランジスタT50と、一方端がビット線/BL0Cと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL1_Rが接続されるNチャネルMOSトランジスタT51とを含む。
【0039】
メモリセルユニットU11Rは、一方端がビット線BL1Cと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL1_Rが接続されるNチャネルMOSトランジスタT52と、ビット線BL1Cと固定電位プレートとの間に接続されゲートにワード線WL1_Rが接続されるNチャネルMOSトランジスタT53とを含む。
【0040】
メモリセルユニットU20Rは、一方端がビット線BL0Cと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL2_Rが接続されるNチャネルMOSトランジスタT60と、ビット線/BL0Cと固定電位プレートとの間に接続されゲートにワード線WL2_Rが接続されるNチャネルMOSトランジスタT61とを含む。
【0041】
メモリセルユニットU21Rは、ビット線BL1Cと固定電位プレートとの間に接続されゲートにワード線WL2_Rが接続されるNチャネルMOSトランジスタT62と、一方端がビット線/BL1Cと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL2_Rが接続されるNチャネルMOSトランジスタT63とを含む。
【0042】
メモリセルユニットU30Rは、一方端がビット線BL0Dと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL3_Rが接続されるNチャネルMOSトランジスタT70と、ビット線/BL0Dと固定電位プレートとの間に接続されゲートにワード線WL3_Rが接続されるNチャネルMOSトランジスタT71とを含む。
【0043】
メモリセルユニットU31Rは、一方端がビット線BL1Dと接続され他方端が固定電位プレートと分離されてフローティング状態とされ、ゲートにワード線WL3_Rが接続されるNチャネルMOSトランジスタT72と、ビット線/BL1Dと固定電位プレートとの間に接続されゲートにワード線WL3_Rが接続されるNチャネルMOSトランジスタT73とを含む。
【0044】
ビット線BL0C,/BL0C,BL1C,/BL1Cは、センスアンプ帯34に接続される。一方ビット線BL0D,/BL0D,BL1D,/BL1Dはセンスアンプ帯32に接続される。
【0045】
図3は、図2におけるセンスアンプ帯32の構成を示した回路図である。
図3を参照して、センスアンプ帯32は、ビット線BL0Aと/BL0Aとをイコライズ電位VBLに設定するためのイコライズ回路52と、ビット線BL0A,/BL0Aを信号BLI_Lに応じてそれぞれビット線BL0,/BL0に接続する接続回路54と、イネーブル信号SAE,/SAEに応じてビット線BL0,/BL0の間に生ずる電位差を増幅するセンスアンプSA0とを含む。
【0046】
センスアンプ帯32は、さらに、コラム選択線CSL0の活性化に応じてビット線BL0,/BL0をそれぞれグローバルIO線GIO,/GIOに接続する選択ゲート56と、信号BLI_Rに応じてビット線BL0D,/BL0Dをそれぞれビット線BL0,/BL0と接続する接続回路58と、イコライズ信号BLEQ_Rに応じてビット線BL0D,/BL0Dをイコライズ電位VBLにイコライズするイコライズ回路60とを含む。
【0047】
センスアンプ帯32は、さらに、ビット線BL1Aと/BL1Aとをイコライズ電位VBLに設定するためのイコライズ回路152と、ビット線BL1A,/BL1Aを信号BLI_Lに応じてそれぞれビット線BL1,/BL1に接続する接続回路154と、イネーブル信号SAE,/SAEに応じてビット線BL1,/BL1の間に生ずる電位差を増幅するセンスアンプSA1とを含む。
【0048】
センスアンプ帯32は、さらに、コラム選択線CSL1の活性化に応じてビット線BL1,/BL1をそれぞれグローバルIO線GIO,/GIOに接続する選択ゲート156と、信号BLI_Rに応じてビット線BL1D,/BL1Dをそれぞれビット線BL1,/BL1と接続する接続回路158と、イコライズ信号BLEQ_Rに応じてビット線BL1D,/BL1Dをイコライズ電位VBLに設定するためのイコライズ回路160とを含む。
【0049】
イコライズ回路52は、ビット線BL0Aとビット線/BL0Aとの間に接続されゲートに信号BLEQ_Lを受けるNチャネルMOSトランジスタ72と、一方端がイコライズ電位VBLに結合され他方端がビット線BL0Aに接続されゲートに信号BLEQ_Lを受けるNチャネルMOSトランジスタ74と、一方端がイコライズ電位VBLに結合され他方端がビット線BL0Aに接続されゲートに信号BLEQ_Lを受けるNチャネルMOSトランジスタ76とを含む。
【0050】
接続回路54は、ビット線BL0Aとビット線BL0との間に接続されゲートに信号BLI_Lを受けるNチャネルMOSトランジスタ78と、ビット線/BL0Aとビット線/BL0との間に接続されゲートに信号BLI_Lを受けるNチャネルMOSトランジスタ80とを含む。
【0051】
センスアンプSA0は、ソースが電源電位VddLに結合されゲートにイネーブル信号/SAEを受けるPチャネルMOSトランジスタ82と、PチャネルMOSトランジスタ82のドレインとビット線BL0との間に接続されゲートにビット線/BL0が接続されるPチャネルMOSトランジスタ84と、PチャネルMOSトランジスタ82のドレインとビット線/BL0との間に接続されゲートにビット線BL0が接続されるPチャネルMOSトランジスタ88とを含む。
【0052】
センスアンプSA0は、さらに、ソースが接地電位に結合されゲートにイネーブル信号SAEを受けるNチャネルMOSトランジスタ92と、ビット線BL0とNチャネルMOSトランジスタ92のドレインとの間に接続されゲートにビット線/BL0が接続されるNチャネルMOSトランジスタ86と、ビット線/BL0とNチャネルMOSトランジスタ92のドレインとの間に接続されゲートにビット線BL0が接続されるNチャネルMOSトランジスタ90とを含む。
【0053】
選択ゲート56は、ビット線BL0とグローバルIO線GIOとの間に接続されゲートにコラム選択線CSL0が接続されるNチャネルMOSトランジスタ94と、ビット線/BL0とグローバルIO線/GIOとの間に接続されゲートにコラム選択線CSL0が接続されるNチャネルMOSトランジスタ96とを含む。
【0054】
接続回路58は、ビット線BL0とビット線BL0Dとの間に接続されゲートに信号BLI_Rを受けるNチャネルMOSトランジスタ98と、ビット線/BL0とビット線/BL0Dとの間に接続されゲートに信号BLI_Rを受けるNチャネルMOSトランジスタ100とを含む。
【0055】
イコライズ回路60は、ビット線BL0Dとビット線/BL0Dとの間に接続されゲートにイコライズ信号BLEQ_Rを受けるNチャネルMOSトランジスタ102と、一方端がイコライズ電位VBLに結合され他方端がビット線BL0Dに接続されゲートに信号BLEQ_Rを受けるNチャネルMOSトランジスタ104と、一方端がイコライズ電位VBLに結合され他方端がビット線/BL0Dに接続されゲートに信号BLEQ_Rを受けるNチャネルMOSトランジスタ106とを含む。
【0056】
イコライズ回路152は、ビット線BL1Aとビット線/BL1Aとの間に接続されゲートに信号BLEQ_Lを受けるNチャネルMOSトランジスタ172と、一方端がイコライズ電位VBLに結合され他方端がビット線BL1Aに接続されゲートに信号BLEQ_Lを受けるNチャネルMOSトランジスタ174と、一方端がイコライズ電位VBLに結合され他方端がビット線BL1Aに接続されゲートに信号BLEQ_Lを受けるNチャネルMOSトランジスタ176とを含む。
【0057】
接続回路154は、ビット線BL1Aとビット線BL1との間に接続されゲートに信号BLI_Lを受けるNチャネルMOSトランジスタ178と、ビット線/BL1Aとビット線/BL1との間に接続されゲートに信号BLI_Lを受けるNチャネルMOSトランジスタ180とを含む。
【0058】
センスアンプSA1は、ソースが電源電位VddLに結合されゲートにイネーブル信号/SAEを受けるPチャネルMOSトランジスタ182と、PチャネルMOSトランジスタ182のドレインとビット線BL1との間に接続されゲートにビット線/BL1が接続されるPチャネルMOSトランジスタ184と、PチャネルMOSトランジスタ182のドレインとビット線/BL1との間に接続されゲートにビット線BL1が接続されるPチャネルMOSトランジスタ188とを含む。
【0059】
センスアンプSA1は、さらに、ソースが接地電位に結合されゲートにイネーブル信号SAEを受けるNチャネルMOSトランジスタ192と、ビット線BL1とNチャネルMOSトランジスタ192のドレインとの間に接続されゲートにビット線/BL1が接続されるNチャネルMOSトランジスタ186と、ビット線/BL1とNチャネルMOSトランジスタ192のドレインとの間に接続されゲートにビット線BL1が接続されるNチャネルMOSトランジスタ190とを含む。
【0060】
選択ゲート156は、ビット線BL1とグローバルIO線GIOとの間に接続されゲートにコラム選択線CSL1が接続されるNチャネルMOSトランジスタ194と、ビット線/BL1とグローバルIO線/GIOとの間に接続されゲートにコラム選択線CSL1が接続されるNチャネルMOSトランジスタ196とを含む。
【0061】
接続回路158は、ビット線BL1とビット線BL1Dとの間に接続されゲートに信号BLI_Rを受けるNチャネルMOSトランジスタ198と、ビット線/BL1とビット線/BL1Dとの間に接続されゲートに信号BLI_Rを受けるNチャネルMOSトランジスタ200とを含む。
【0062】
イコライズ回路160は、ビット線BL1Dとビット線/BL1Dとの間に接続されゲートにイコライズ信号BLEQ_Rを受けるNチャネルMOSトランジスタ202と、一方端がイコライズ電位VBLに結合され他方端がビット線BL1Dに接続されゲートに信号BLEQ_Rを受けるNチャネルMOSトランジスタ204と、一方端がイコライズ電位VBLに結合され他方端がビット線/BL1Dに接続されゲートに信号BLEQ_Rを受けるNチャネルMOSトランジスタ206とを含む。
【0063】
図4(a)〜図4(c)は、RAMセルアレイに配置されるメモリセルの配置や構造と回路図との関係を説明するための図である。
【0064】
図4(a)〜図4(b)を参照して、メモリセルアレイがRAMとして使用される場合のスタック型DRAMセルについて説明する。図4(a)は、図2におけるメモリセルユニットU10L,U20Lの回路を、配置に対応させて抽出して示したものである。接続関係については、図2で説明しているので説明は繰返さない。
【0065】
図4(b)は、図4(a)のビット線BL0Aに接続されるトランジスタT10,T20とキャパシタC10,C20について示した平面図である。キャパシタC10の中心がワード線WL0_Lとワード線WL1_Lとの間に配置されている。またキャパシタC20の中心がワード線WL2_Lとワード線WL3_Lとの間に配置されている。そしてキャパシタC10,C20の上にワード線と直交するようにビット線BL0Aが配置され、ワード線WL1_Lとワード線WL2_Lとの間においてコンタクトホールによってトランジスタのソース/ドレインに接続されている。
【0066】
図4(c)は図4(b)のI−I断面における断面図である。図4(b)、図4(c)を参照して、p型基板302の主表面上に素子分離領域304,306が形成され、素子分離領域304,306の間の領域にn型不純物領域308,310,312が形成されている。素子分離領域304の上部にはワード線WL0_Lに相当する配線314が形成される。またn型不純物領域308,310の間の領域の上部にはワード線WL1_Lに相当する配線316が形成される。n型不純物領域310,312の間の領域の上部にはワード線WL2_Lに相当する配線318が形成される。素子分離領域306の上部にはワード線WL3_Lに相当する配線320が形成される。なお配線314〜320はたとえば多結晶シリコンで形成されている。
【0067】
n型不純物領域308,310,312の上部には絶縁膜にコンタクトホール322,324,326が設けられその中には導電性のプラグが形成される。コンタクトホール322,326の上部には、それぞれ導電膜328,330が形成される。導電膜328,330は、キャパシタC10,C20のストレージノード側電極となる。導電膜328,330の上部には、薄い絶縁膜332が形成される。絶縁膜332の上部にはセルプレート電極となる導電膜334が形成される。
【0068】
そして、コンタクトホール324の上部にコンタクトホール336が設けられ、導電性のプラグがその内部に形成され、そしてその上部にビット線BL0Aに相当する導電膜338が形成される。
【0069】
図5は、図2におけるROMセルアレイに配置されるメモリセルの配置や構造と回路図との関係を説明するための図である。
【0070】
図5(a)は、図2のメモリセルユニットU10R,U20R,U50R,U60Rを実際のメモリセルの配置に対応させて描いた回路図である。素子の接続関係については、図2で説明しているので説明は繰返さない。
【0071】
図5(b)は、ビット線BL0Cに接続される図5(a)に示されたトランジスタT50,T60,T90,T100に対応する配置を説明するための平面図である。ワード線WLG,WL0_R〜WL7_Rに直交するようにビット線BL0Cが配置されている。
【0072】
図5(c)は、図5(b)におけるII−II断面の断面図である。
図5(b),図5(c)を参照して、p型基板302の上部には、素子分離領域352,354,356が形成され、素子分離領域352,354の間の領域には、n型不純物領域358,360,362が形成される。また素子分離領域354,356の間の領域にはn型不純物領域364,366,368が形成される。素子分離領域352の上部には配線370,371,372が形成される。またn型不純物領域358,360の間の領域の上部には配線373が形成される。同様にn型不純物領域360,362の間の領域の上部には配線374が形成される。
【0073】
また、素子分離領域354の上部には配線375,376が形成される。n型不純物領域364,366の間の領域の上部には配線377が形成される。n型不純物領域366,368の間の領域の上部には配線378が形成される。素子分離領域356の上部には配線379が形成される。
【0074】
たとえば配線370〜379は多結晶シリコンで形成される。配線370は、図5(b)のワード線WLGに相当し、配線372〜379は、それぞれワード線WL0_R〜WL7_Rに相当する。配線370に接続するためにコンタクトホール380が設けられその中に導電性のプラグが形成される。
【0075】
n型不純物領域358の上部にはコンタクトホール382が設けられコンタクトホール382の内部には導電性のプラグが形成される。n型不純物領域360の上部にはコンタクトホール384が設けられその内部に導電性のプラグが形成される。n型不純物領域362の上部にはコンタクトホール386が設けられ、その内部に導電性のプラグが形成される。
【0076】
n型不純物領域364,366,368の上部にはそれぞれコンタクトホール388,390,392が設けられ、これらの内部には各々導電性のプラグが形成される。
【0077】
次にRAMセルアレイからROMセルアレイに変更する際に大きく異なる部分について説明する。コンタクトホール380,382,392の上部にはDRAMであればキャパシタ形成用の開口部に相当する開口部390,391,393がそれぞれ設けられる。図5(a)において各トランジスタのビット線に結合される一方端と異なる他方端が、この開口部を形成するか否かで、接地電位に結合されるか否かが決定される。
【0078】
開口部390,391,393の内部には導電膜394が形成されている。この導電膜394には配線370およびコンタクトホール380内の導電性プラグを介して接地電位が供給されている。不純物領域358の上部にコンタクトホール382が存在し、かつ、開口部344が存在することにより、不純物領域358は、導電膜394に接続されこれにより接地電位に結合されることになる。
【0079】
一方、不純物領域362の上部にはコンタクトホール386が設けられているが、その上の絶縁膜には開口部344に対応する開口部は設けられていない。したがって、不純物領域362は導電膜394から分離されているので、図5(a)に示すように、トランジスタT60のビット線に接続される一方端と異なる他方端は接地電位から分離されることになる。
【0080】
導電膜394の上部には、DRAMセルアレイのキャパシタの電極間絶縁膜に相当する薄い絶縁膜396が形成され、さらにその上にDRAMセルアレイのセルプレートに相当する導電膜398が形成される。この導電膜398は、セルプレート電位とは分離されており、フローティング状態か、または、固定電位プレートである導電膜394と等しい接地電位に結合される。
【0081】
そしてコンタクトホール384,390の上部にビット線を接続するためのコンタクトホール400,401がそれぞれ設けられ、その中に導電性のプラグが形成される。そしてコンタクトホール400,401が設けられた絶縁膜の上部にビット線BL0Cに対応する配線402が設けられる。
【0082】
図6〜図13は、図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための図である。
【0083】
図6(a),図6(b)を参照して、活性領域上にワード線となる配線316,318が配置され、交差部にメモリセルトランジスタが形成される。すなわちp型基板302の活性領域以外の部分には素子分離領域304,306が形成され、配線314,316,318,320がその上に形成され、n型不純物が注入されることにより、n型不純物領域308,310,312が形成される。すなわち、配線316をゲート電極とするトランジスタと、配線318をゲート電極とするトランジスタとが形成される。
【0084】
図7(a),図7(b)を参照して、ゲート配線上に絶縁膜が成膜された後に、メモリセルトランジスタのソースドレインコンタクト322,324,326が形成される。
【0085】
図8(a),図8(b)を参照して、再び絶縁膜が成膜された後に、DRAMにおいて記憶情報である電荷を蓄積するためのキャパシタを形成するための開口部327,329が設けられる。
【0086】
図9(a),図9(b)を参照して、DRAMセルのキャパシタのストレージノードとなる導電膜331が、絶縁膜上部と開口部327,329の内壁に沿って形成される。
【0087】
図10(a),図10(b)を参照して、レジストを全面塗布した後に、フォトマスクによって開口部を除いた部分を露光し、露光部のレジストを除去する。その後エッチバックすることで、開口部327,329の内部にのみ導電膜328,330を残存させる。そしてキャパシタ電極間の絶縁膜である332を成膜する。
【0088】
図11(a),図11(b)を参照して、メモリセルキャパシタの対向電極、つまりセルプレートとなる導電膜334を全面に形成する。その後領域333の内部のみ、ビット線コンタクトホールを形成するために導電膜334を除去する。
【0089】
図12(a),図12(b)を参照して、キャパシタ対向電極、すなわちセルプレートとなる導電膜334上に再度絶縁膜を形成し、その後ビット線コンタクトホール336をコンタクトホール324内の導電体に接続するために開口する。
【0090】
図13(a),図13(b)を参照して、ビット線コンタクトホール336の内部に導電体を埋込んだ後に導電膜338を形成する。導電膜338は、ビット線配線部分を残してエッチングされる。
【0091】
図14〜図21は、図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための図である。
【0092】
図14(a),図14(b)を参照して、p型基板302の表面上に素子分離領域352,354,356が形成される。そして配線370〜379が形成される。これらの配線のうち、配線371〜379はワード線となる。n型不純物が配線370〜379の上部から注入されるとn型不純物領域358,360,362,364,366,368が活性領域に形成される。このようにして配線373,374,377,378をゲート電極とするNチャネルMOSトランジスタが形成される。
【0093】
図15(a),図15(b)を参照して、ゲート配線上に絶縁膜が成膜された後にメモリセルトランジスタのソースドレインコンタクトホール382,384,386,388,390,392および接地電位に設定される配線370へのコンタクトホール380が設けられる。
【0094】
図16(a),図16(b)を参照して、再び絶縁膜が成膜された後にROM部においてセルデータプログラミング用の開口部391,393が選択的に設けられる。この選択は、ROM部の各メモリセルに記憶するデータの極性に応じて決定される。具体的には、データに対応する転写用マスクを作成し、このマスクを用いて開口部を設けることでプログラミングが行なわれる。
【0095】
図17(a),図17(b)を参照して、ROM部においては接地電位が与えられた配線層となる導電膜394が形成される。この導電膜394は、RAM部でのストレージノードつまり、図9(b)の導電膜331と同時に形成される。
【0096】
図18(a),図18(b)を参照して、レジストを全面塗布した後に露光して開口部395,397のレジストを除去する。その後エッチングを行ない開口部395,397の導電膜394を除去する。RAM部においては導電膜331は、絶縁膜の開口部の内部のみに残存し、ストレージノードとしてキャパシタ毎に導電膜328,330に分離されていた。これに対し、ROM部においては、導電膜394は開口部395,397以外の部分は、導電膜394は1つの固定電極プレートとして残存する。導電膜394は、配線370と接続されている。配線370を経由して固定電位が導電膜394に与えられる。
【0097】
そして、図10(b)に示したRAM部におけるキャパシタの電極間の絶縁膜332と同時に、絶縁膜396が形成される。
【0098】
図19(a),図19(b)を参照して、絶縁膜396の上部に導電膜398が形成されビット線コンタクトホールを設けるため、開口部395の導電膜398が除去される。この導電膜398は、RAM部であればセルプレートつまりキャパシタ対向電極となる導電膜334に対応する。
【0099】
図20(a),図20(b)を参照して、導電膜398の上部に絶縁膜が形成された後にビット線用のコンタクトホール400,401が設けられる。
【0100】
図21(a),図21(b)を参照して、ビット線用のコンタクトホール400,401の内部に導電体が埋込まれた後に、ビット線として配線402が形成される。
【0101】
図22(a),図22(b)は、RAM部の記憶動作を説明するための図である。図22(a)は、模式的な平面図である。図22(b)は図22(a)の平面図に対応する等価回路図である。
【0102】
図22(a),図22(b)を参照して、RAM部においては、ワード線が1本活性化された際に相補なビット線に同時に接続される2つのキャパシタで、1ビットの記憶を行なう。すなわち、キャパシタ501,502の1ペアは、ワード線WLnによって同時に選択され、1ビットの記憶を行なう。またキャパシタ503,504の1ペアは、ワード線WLn+1によって同時に選択され、1ビットの記憶を行なう。さらにキャパシタ505,506の1ペアは、ワード線WLn+2によって同時に選択され、1ビットの記憶を行なう。同様にキャパシタ507,508の1ペアは、ワード線WLn+3によって同時に選択され、1ビットの記憶を行なう。
【0103】
なお、図中512,514,516,518,520,522は活性領域を示し、コンタクトホール532,534,540,542はトランジスタと対応のビット線とを接続するためのビット線コンタクトホールを示す。また図22(a)は、キャパシタやコンタクトホールなどが見やすいようにビット線は表示されていない。コンタクトホール532,540はビット線BLAに接続するためのコンタクトホールである。コンタクトホール536はビット線BLBに接続するためのコンタクトホールである。コンタクトホール534,542はビット線/BLAに接続するためのコンタクトホールである。またコンタクトホール538はビット線/BLBに接続するためのコンタクトホールである。
【0104】
図示しないが、ビット線BLD,/BLDおよびビット線BLC,/BLCは、図3で説明したような相補信号を受けて動作するクロスカップル型センスアンプに接続されている。
【0105】
センスアンプが活性化されると、片方のビット線は電源電位VddLとなり、他方のビット線は接地電位に設定される。RAM部においては、書込時にキャパシタ501,502の一方のストレージノードがセンスアンプによって電源電位に保持され、他方のストレージノードが接地電位が保持される。例えば、電源電位VddLとして、0.8〜2.5V程度の電位が使用される。他のキャパシタの対に関しても一方のストレージノードが電源電位に保持され、他方のストレージノードが接地電位に保持される。
【0106】
読出時においては、ビット線対にメモリセルキャパシタからの電荷が相補的に読出される。これによってビット線対に生じた電位の変化がセンスアンプによって増幅されることにより、データが読出される。
【0107】
図23(a),図23(b)は、ROM部のデータ記憶と読出時について説明するための図である。
【0108】
図23(a),図23(b)を参照して、絶縁膜の開口部601〜608は記憶すべきデータに応じて選択的に設けられる。図23(a)に示すように、開口部601,604,606,607は破線で示されており、開口部602,603,605,608は実線で示されている。これは、図23(b)に示すように、一方端がビット線に接続されるトランジスタの他方端に相当するソース/ドレイン領域を接地電位に結合する場合には図23(a)中では実線であらわし開口部を設けることを示し、この他方端を接地電位に結合しない場合には破線であらわし開口部は設けないということを示している。
【0109】
なお、図23(a)は、活性領域やコンタクトホールなどが見やすいようにビット線は表示されていない。活性領域612,620にはそれぞれビット線に接続するためのコンタクトホール632,640が設けられているが、これはビット線BLCに接続するためのコンタクトホールである。また活性領域616にはビット線コンタクトホール636が設けられているがこれはビット線BLDに接続するためのコンタクトホールである。同様に活性領域614,622にはそれぞれビット線コンタクトホール634,642が設けられているが、これはビット線/BLCに接続するためのコンタクトホールである。また活性領域618にはビット線コンタクトホール638が設けられているが、これはビット線/BLDに接続するためのコンタクトホールである。
【0110】
図24(a)〜図24(C)は、RAM部の読出動作を説明するための図である。
【0111】
図24(a),図24(b)を参照して、メモリセルユニット651からデータが読出される場合について説明する。まずワード線の電圧としては、アレイ電圧より高い電源電位VddHが使用される。例えば、電源電位VddHとしては、2.5Vの電位が使用される。また、ストレージノードの対向電極であるセルプレート電位Vcpは、アレイ電圧の2分の1すなわちVddL/2が適用される。このように2つのメモリセルキャパシタに相補的にデータを記憶させる方法をツインセル方式と呼んでいる。
【0112】
時刻t1において、ワード線WL0の活性化に応じてビット線BLBにはHに対応して僅かに電位が上昇し、一方ビット線/BLBにおいてはデータLoに対応して僅かに電位が下降する。そして時刻t2において、センスアンプのイネーブル信号SAEの活性化に応じてビット線の電位差が増幅され、ビット線BLBの電位は電源電位VddLに上昇し、ビット線/BLBの電位は接地電位まで下がる。
【0113】
図24(a)、図24(c)を参照して、メモリセルユニット652からデータが読出される場合について説明する。まず時刻t1においてワード線WL1の活性化に応じてデータLoに応じてビット線BLAの電位は僅かに下降する。またビット線/BLAの電位はデータHiに対応して僅かに上昇する。
【0114】
そして時刻t2においてセンスアンプイネーブル信号SAEの活性化に応じてビット線BLAの電位は接地電位に下がり、ビット線/BLAの電位は電源電位VddLに上昇する。
【0115】
図25(a)〜図25(c)は、ROM部の読出動作を説明するための図である。
【0116】
図25(a),図25(b)を参照して、メモリセルユニット656からの読出動作を説明する。時刻t1においてワード線WL0が活性化されると、ビット線/BLDはアクセストランジスタを介して接地電位に接続される。一方ビット線BLDは、開口部が設けられていないことによりアクセストランジスタが導通しても接地電位には接続されないので、その電位は電位VddL/2のままである。
【0117】
時刻t2においてセンスアンプイネーブル信号SAEが電源電位VddLに活性化されると、ビット線BLD,/BLDの間に生じた電位差が拡大される。そしてビット線BLDの電位は電源電位VddLに上昇し、ビット線/BLDの電位は接地電位に下がる。
【0118】
図25(a),図25(c)を参照して、メモリセルユニット657からの読出動作について説明する。
【0119】
時刻t1において、ワード線WL1の活性化に応じて、ビット線BLCがアクセストランジスタを介して接地電位に結合される。一方、ビット線/BLCの電位は、開口部が設けられていないことにより、アクセストランジスタの導通時においてもそのまま電位VddL/2を維持する。
【0120】
そして時刻t2においてセンスアンプイネーブル信号SAEの活性化に応じてセンスアンプが活性化され、ビット線BLC,/BLCの間の電位差が増幅される。これによりビット線/BLCの電位は電源電位VddLに上昇し、ビット線BLCの電位は接地電位に下がる。
【0121】
以上説明したように、実施の形態1の半導体記憶装置においては、図2に示したようにRAM部とROM部で全く同じセンスアンプ回路を使用しており、その結果RAM回路のキャパシタのストレージノード電極のマスク変更と、メモリセルキャパシタ開口のマスクプログラミングによりRAM部をROM部に変更することができる。すなわち、DRAMセルをスライスマスク改訂によりROM化できる。
【0122】
[実施の形態2]
実施の形態1においては、いわゆるツインセル方式のDRAMをツインセル方式のROMに変更できることを示した。これに対し、1つのメモリセルに1つのトランジスタとキャパシタを含むシングルセル方式のDRAMに対しても予め共通回路としてDRAMダミーセル領域を用意しておくことでROMに変更することができる。
【0123】
図26は、実施の形態2の半導体記憶装置の主要部680のRAM部を示した回路図である。RAM部は、センスアンプ帯686の右側に配置されている。
【0124】
図27は、実施の形態2の半導体記憶装置の主要部680のROM部を示した回路図である。ROM部は、センスアンプ帯686の左側に配置されている。
【0125】
図26、図27を参照して、主要部680は、DRAMとして動作するメモリセルアレイ682と、ROMとして動作するメモリセルアレイ684と、メモリセルアレイ682および684に共有されるセンスアンプ帯686と、メモリセルアレイ682に対応して設けられるロウデコード回路890と、ロウデコード回路890の出力に応じてワード線を駆動するワード線ドライバ894と、メモリセルアレイ684に対応して設けられるロウデコード回路892と、ロウデコード回路892の出力に応じてワード線を駆動するワード線ドライバ896とを含む。
【0126】
主要部680は、さらに、ロウデコード回路890,892の制御をRAM動作を行なわせるかROM動作を行なわせるかによって切換えるための切替スイッチ898,899を含む。
【0127】
メモリセルアレイ682は、通常のシングルセル方式のDRAMと同様のメモリセル700〜733と、リファレンスセル800とを含む。
【0128】
メモリセル701,702はビット線BL0Aに接続される。メモリセル700,703はビット線/BL0Aに接続される。メモリセル711,712はビット線BL0Bに接続される。メモリセル710,713はビット線/BL0Bに接続される。
【0129】
メモリセル721,722はビット線BL1Aに接続される。メモリセル720,723はビット線/BL1Aに接続される。メモリセル731,732はビット線BL1Bに接続される。メモリセル730,733はビット線/BL1Bに接続される。
【0130】
次にメモリセルとワード線の接続について説明する。メモリセル700,710,720,730はワード線WL0_Lに接続される。メモリセル701,711,721,731はワード線WL1_Lに接続される。メモリセル702,712,722,732はワード線WL2_Lに接続される。メモリセル703,713,723,733はワード線WL3_Lに接続される。
【0131】
メモリセル700〜733の各々は、接続されるビット線とセルプレートとの間に直列に接続されるアクセストランジスタとキャパシタとを含む。アクセストランジスタのゲートはメモリセルに接続されるワード線に接続されている。
【0132】
リファレンスセル800は、ビット線BL0Aと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL03L,PWL03Lに接続されるNチャネルMOSトランジスタ818,812と、NチャネルMOSトランジスタ818,812の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ814,816とを含む。
【0133】
リファレンスセル800は、さらに、ビット線/BL0Aと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL12L,PWL12Lに接続されるNチャネルMOSトランジスタ828,822と、NチャネルMOSトランジスタ828,822の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ826,824とを含む。
【0134】
リファレンスセル800は、さらに、ビット線BL1Aと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL03L,PWL03Lに接続されるNチャネルMOSトランジスタ838,832と、NチャネルMOSトランジスタ838,832の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ836,834とを含む。
【0135】
リファレンスセル800は、さらに、ビット線/BL1Aと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL12L,PWL12Lに接続されるNチャネルMOSトランジスタ848,842と、NチャネルMOSトランジスタ848,842の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ846,844とを含む。
【0136】
切替スイッチ898は、メモリセルアレイ682が通常のDRAM動作をするために接地電位を選択するように設定されている。ロウデコード回路890は、信号RXT,SD<0>,およびメインデコード信号MAINDECLを入力に受けるAND回路910と、信号RXT,SD<1>,およびメインデコード信号MAINDECLを入力に受けるAND回路912と、信号RXT,SD<2>,およびメインデコード信号MAINDECLを入力に受けるAND回路914と、信号RXT,SD<3>,およびメインデコード信号MAINDECLを入力に受けるAND回路916とを含む。
【0137】
ロウデコード回路890は、さらに、信号SD<0>,SD<3>を受けるOR回路902と、OR回路902の出力と信号RXTとを第1、第2の入力にそれぞれ受け第3の入力が接地電位に結合されたAND回路904と、信号SD<1>,SD<2>を受けるOR回路906と、OR回路906の出力と信号RXTとを第1、第2の入力にそれぞれ受け第3の入力が接地電位に結合されているAND回路908とを含む。
【0138】
ワード線ドライバ894は、AND回路910の出力に応じてワード線WL0_Lを駆動するバッファ回路940と、AND回路912の出力に応じてワード線WL1_Lを駆動するバッファ回路941と、AND回路914の出力に応じてワード線WL2_Lを駆動するバッファ回路942と、AND回路916の出力に応じてワード線WL3_Lを駆動するバッファ回路943とを含む。
【0139】
ワード線ドライバ894は、さらに、AND回路904の出力を受けてワード線PWL03Lを駆動するインバータ944と、AND回路904の出力に応じてワード線RWL03Lを駆動するバッファ回路945と、AND回路908の出力に応じてワード線PWL12Lを駆動するインバータ946と、AND回路908の出力に応じてワード線RWL12Lを駆動するバッファ回路947とを含む。
【0140】
メモリセルアレイ684は、各々が1ビットの記憶単位に相当し不揮発的にデータ保持を行なうメモリセル750〜783と、リファレンスセル802とを含む。
【0141】
メモリセル751,752はビット線BL0Cに接続される。メモリセル750,753はビット線/BL0Cに接続される。メモリセル761,762はビット線BL0Dに接続される。メモリセル760,763はビット線/BL0Dに接続される。
【0142】
メモリセル771,772はビット線BL1Cに接続される。メモリセル770,778はビット線/BL1Cに接続される。メモリセル781,782はビット線BL1Dに接続される。メモリセル780,783はビット線/BL1Dに接続される。
【0143】
次にメモリセルとワード線の接続について説明する。メモリセル750,760,770,780はワード線WL0_Rに接続される。メモリセル751,761,771,781はワード線WL1_Rに接続される。メモリセル752,762,772,782はワード線WL2_Rに接続される。メモリセル753,763,778,783はワード線WL3_Rに接続される。
【0144】
メモリセル750〜783の各々は、対応するビット線に一方端が接続され対応するワード線にゲートが接続されるアクセストランジスタを含む。各メモリセルには保持するデータに対応してアクセストランジスタの他方端が接地電位に結合されるか否かが決定されている。
【0145】
具体的には、メモリセル750,753,761,762,770,771,773,782においてはアクセストランジスタの他方端は接地電位とは分離されフローティング状態となっている。そしてメモリセル751,752,760,763,772,780,781,783においては、アクセストランジスタの他方端は接地電位に結合されている。
【0146】
リファレンスセル802は、ビット線BL0Dと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL03R,PWL03Rに接続されるNチャネルMOSトランジスタ858,852と、NチャネルMOSトランジスタ858,852の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ854,856とを含む。
【0147】
リファレンスセル802は、さらに、ビット線/BL0Dと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL12R,PWL12Rに接続されるNチャネルMOSトランジスタ868,862と、NチャネルMOSトランジスタ868,862の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ866,864とを含む。
【0148】
リファレンスセル802は、さらに、ビット線BL1Dと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL03R,PWL03Rに接続されるNチャネルMOSトランジスタ878,872と、NチャネルMOSトランジスタ878,872の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ876,874とを含む。
【0149】
リファレンスセル802は、さらに、ビット線/BL1Dと接地ノードとの間に直列に接続されゲートがそれぞれワード線RWL12R,PWL12Rに接続されるNチャネルMOSトランジスタ888,882と、NチャネルMOSトランジスタ888,882の接続ノードと接地ノードとの間に並列に接続される2つのキャパシタ886,884とを含む。
【0150】
切替スイッチ899は、メモリセルアレイ684がROM動作をするために電源電位を選択するように設定されている。ロウデコード回路892は、信号RXT,SD<0>,およびメインデコード信号MAINDECRを入力に受けるAND回路930と、信号RXT,SD<1>,およびメインデコード信号MAINDECRを入力に受けるAND回路932と、信号RXT,SD<2>,およびメインデコード信号MAINDECRを入力に受けるAND回路934と、信号RXT,SD<3>,およびメインデコード信号MAINDECRを入力に受けるAND回路936とを含む。
【0151】
ロウデコード回路890は、さらに、信号SD<0>,SD<3>を受けるOR回路922と、OR回路922の出力と信号RXTとを第1、第2の入力にそれぞれ受け第3の入力が電源電位に結合されたAND回路924と、信号SD<1>,SD<2>を受けるOR回路926と、OR回路926の出力と信号RXTとを第1、第2の入力にそれぞれ受け第3の入力が電源電位に結合されているAND回路928とを含む。
【0152】
ワード線ドライバ896は、AND回路930の出力に応じてワード線WL0_Rを駆動するバッファ回路950と、AND回路932の出力に応じてワード線WL1_Rを駆動するバッファ回路951と、AND回路934の出力に応じてワード線WL2_Rを駆動するバッファ回路952と、AND回路936の出力に応じてワード線WL3_Rを駆動するバッファ回路953とを含む。
【0153】
ワード線ドライバ896は、さらに、AND回路924の出力を受けてワード線PWL03Rを駆動するインバータ954と、AND回路924の出力に応じてワード線RWL03Rを駆動するバッファ回路955と、AND回路928の出力に応じてワード線PWL12Rを駆動するインバータ956と、AND回路928の出力に応じてワード線RWL12Rを駆動するバッファ回路957とを含む。
【0154】
センスアンプ帯686の構成については、図3で説明したセンスアンプ帯32と同様であるので説明は繰返さない。
【0155】
次にRAMとして動作するRAM部の動作について説明する。
図28(a)〜図28(c)は、実施の形態2のRAM部の動作を説明するための図である。
【0156】
図28(a),図28(b)を参照して、メモリセル961のストレージノードの電位がHiレベルに対応する電位VddLに保持されているとする。
【0157】
時刻t1において、メモリセル961のキャパシタに保持されていた電荷が、ワード線WL0の活性化に応じてビット線BLRに放出され、ビット線BLRの電位はわずかに上昇する。一方、ビット線/BLRの電位は電位VddL/2を維持する。
【0158】
時刻t2において、信号SAEの活性化に応じてセンスアンプが動作を行ない、ビット線BLR,/BLRの間の電位差を増幅する。その結果、ビット線BLRの電位は電源電位VddLに上昇する。一方、ビット線/BLRの電位は接地電位に下がる。
【0159】
図28(a),図28(c)を参照して、メモリセル962のストレージノードの電位は、Loレベルに対応する接地電位に保持されている。
【0160】
時刻t1において、ワード線WL3の活性化に応じて、接地電位となっているメモリセル962のストレージノードに、ビット線BLRから電荷が流れ込むので、ビット線BLRの電位はわずかに下降する。一方、ビット線/BLRの電位は電位VddL/2を維持する。
【0161】
時刻t2において、信号SAEの活性化に応じてセンスアンプが動作し、ビット線BLR,/BLRの電位差を増幅する。つまりセンスアンプにおいて、メモリセルに向けて電荷が流出したビット線BLRの比較対照となるのは、電位VddL/2にプリチャージされたビット線/BLRである。これに応じてビット線/BLRの電位は電源電圧VddLに上昇する。一方、ビット線BLRの電位は接地電位に下がる。
【0162】
図29(a)〜図29(c)は、実施の形態2のROM部の読出動作を説明するための図である。
【0163】
図29(a),図29(b)を参照して、メモリセル971においては、メモリセルキャパシタに相当する開口部が設けられていないので、アクセストランジスタが導通してもビット線の電位は変化しない。したがって、RAM部のように比較対照ノードを電位VddL/2にしておくと、電位差が生じない。そこで、センスアンプの比較対照ノードの電位を接地電位と電位VddL/2の中間の電位にする。このために、データ読出前すなわち時刻t1より前のプリチャージ期間中に接地電位に相当するデータをリファレンスセル980に書込んでおく。その後、読出し対象であるメモリセル971が接続されるビット線BLRと対をなしているビット線/BLRにリファレンスセル980を接続する。このようにして、接地電位と電位VddL/2の中間の電位を発生させる。
【0164】
具体的には、時刻t1以前においてはワード線PWL03が電源電位VddHに設定されることによってキャパシタ984,986のストレージノードに接地電位が与えられる。
【0165】
そして、時刻t1においてワード線RWL03が電源電位VddHに活性化されることによってアクセストランジスタ988が導通し、電位VddL/2にプリチャージされていたビット線/BLRからキャパシタ984,986のストレージノードに向けて電荷が流入する。したがってビット線/BLRの電位はわずかに下降する。
【0166】
これに対し時刻t1においてワード線WL0が活性化されても、メモリセル971のアクセストランジスタの他方端は接地ノードに結合されておらずフローティング状態であるのでビット線BLRの電位はプリチャージされた電位である電位VddL/2を維持する。
【0167】
時刻t2において、信号SAEが電源電位VddLに活性化されると、センスアンプが動作し、ビット線BLR,/BLRの電位差が増幅される。その結果、ビット線/BLRは接地電位に設定され、ビット線BLRの電位は電源電位VddLに設定される。
【0168】
図29(a),図29(c)を参照して、メモリセル972からのデータの読出について説明する。メモリセル972においては、メモリセル971の場合と異なり、アクセストランジスタの一方端がビット線BLRに接続され、アクセストランジスタの他方端は接地電位に結合されている。これは、DRAMの場合においてメモリセルキャパシタの開口部が設けられていることに対応する。
【0169】
時刻t1までの動作は、図29(b)で説明した場合と同様であるので説明は繰返さない。
【0170】
時刻t1において、ワード線RWL03が活性化されると、図29(b)で示した場合と同様にビット線/BLRの電位はわずかに下降する。これに対して、メモリセル972においては、ワード線WL3が活性化されるとアクセストランジスタが導通しビット線BLRがアクセストランジスタを介して接地ノードに結合される。この場合はビット線BLRの電位はビット線/BLRの電位よりもさらに接地電位側に変化する。
【0171】
時刻t2において信号SAEの活性化に応じてセンスアンプが動作すると、ビット線BLR,/BLRの間の電位差が増幅される。これに応じてビット線BLRは接地電位に設定され、ビット線/BLRの電位は電源電位VddLに変化する。
【0172】
なお、図29(a)に示すように、リファレンスセルには、通常のメモリセルキャパシタ2個を並列に接続したものを使用することができる。ワード線WL0,WL3が活性化されるときには、2系統のダミーワード線PWL03,RWL03を動作させワード線WL1,WL2が活性化されるときにはダミーワード線PWL12,RWL12を動作させる。
【0173】
[実施の形態3]
実施の形態3では、実施の形態1,実施の形態2で説明したような、スライスマスクの変更によってROM部に置換可能なRAM部をマイクロコンピュータに適用したときの応用例について説明する。
【0174】
マイクロコンピュータを使用した電子回路において、プログラムの初期開発時には、通常フラッシュメモリ混載マイクロコンピュータが使用される。そして量産時つまりプログラムコードが固定されたときには、ROM内蔵のマイクロコンピュータを使用されることが行なわれる。
【0175】
図30は、プログラム開発用およびプログラム固定後のマイクロコンピュータについて説明するための図である。
【0176】
図30(a)を参照して、プログラム開発用のマイクロコンピュータは、不揮発データの書換えが電気的に可能なフラッシュメモリと、主記憶メモリ等の作業用メモリであるスタティックランダムアクセスメモリ(SRAM)と、中央処理装置CPUとを含む。フラッシュメモリにCPUのプログラムコードを記憶させておけば、プログラム開発者は、プログラムの改善を行ないながらその効果を確かめることを迅速に行なうことができる。
【0177】
これに対してプログラム固定後に使用されるマイクロコンピュータ999は、書換えが不可能なROMと、SRAMと、CPUとを含む。フラッシュメモリに対してROMは面積が小さいので、量産時のコストを安くすることができる。
【0178】
図31は、本発明の半導体記憶装置を内蔵するマイクロコンピュータを用いて開発を行なう場合を説明するための図である。
【0179】
図31(a)を参照して、開発用マイクロコンピュータ1000は、マイクロコンピュータチップ1001bと、同じパッケージ内に収納される外付けのフラッシュメモリチップ1001aとを含む。マイクロコンピュータチップ1001bは、CPUとメモリ領域がすべてRAMであるDRAMとを含む。開発時には、外付けのフラッシュメモリチップ1001aからプログラムをDRAMにロードしてCPUを動作させる。
【0180】
図31(b)を参照して、量産時には、スライスマスク変更によって、開発用チップのプログラム領域のRAMに相当する部分をROMに変えることが可能となる。量産用のマイクロコンピュータチップ1001cは、DRAMと、もともとDRAMであった部分であって変更されたROM部と、CPUとを含む。マイクロコンピュータチップ1001cは、図31(a)のマイクロコンピュータチップ1001bとトランジスタ形成までの工程が同一マスクで作成される。したがって同一のチップサイズである。フラッシュメモリチップ1001aが必要ない分、開発コストを安くすることができる。また、トランジスタ形成工程を完了させて保持していたマイクロコンピュータチップ1001bのマスタスライスをそのままマイクロコンピュータチップ1001cの生産に使用できるので、量産チップを迅速にユーザに供給することが可能である。
【0181】
図32は、図31(a)で説明した開発用のマイクロコンピュータがパッケージに収納されている構造の一例を示した図である。
【0182】
図32を参照して、フラッシュメモリチップ1001aはダイパッド1005の上面に配置される。一方、マイクロコンピュータチップ1001bは、ダイパッド1005の下面に配置される。フラッシュメモリチップ1001aの入出力パッド1002はボンディングワイヤ1003によってリード1004に接続される。たとえばアドレス信号を入力するパッドについては同じリード1004からフラッシュメモリチップ1001aのパッド1002に対してもマイクロコンピュータチップ1001bのパッド1002に対しても接続がされる。他のパッドについては必要に応じて必要なチップがリード1004に接続される。
【0183】
このようにすれば、図30(a)に示した場合において必要となったフラッシュ混載プロセスの開発や、フラッシュ版、ROM版という2種類のコンピュータの開発が不要となる。また、従来の方式では、RAM領域とROM領域のメモリ容量比率が異なる場合にはやはり別のLSIチップを開発しなければならなかったが、本方式では、同じマスタスライスを容量比率が異なる2つのLSIに用いることができるという利点もある。
【0184】
図31(b)のDRAM部は、図30(b)の従来のSRAM部の役割を担う。SRAMを用いていた部分をDRAMで構成するため、同じ記憶容量でもサイズを小さく形成できる。図31(b)のDRAMとROMの容量比は、品種の用途に応じて決定される。
【0185】
以上の実施の形態で説明したように、開発段階においては、半導体装置の内蔵メモリのすべてをRAMとして作製する。一方、量産段階においては、プログラムを収納する領域を配線工程以降のマスク変更によりROMに変更する。ROMに変更する際には、DRAMのキャパシタのストレージノードであった電極プレートをメモリセルアレイ単位で接続し、これを固定電位に結合する。アクセストランジスタを固定電位に結合するか否かは、DRAMのキャパシタを内壁に形成する絶縁膜の開口部を設けるか否かで行なう。
【0186】
このようにすれば、開発用チップと量産用チップを途中工程まで共通に作ることができ、量産用チップを迅速に供給することができる。したがって、プログラム開発段階から量産段階への移行が低コストで実現できる半導体装置を提供することができる。
【0187】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0188】
【発明の効果】
本発明によれば、開発用チップと量産用チップを途中工程まで共通に作ることができ、量産用チップを迅速に供給することができる。したがって、プログラム開発段階から量産段階への移行が低コストで実現できる半導体装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の半導体記憶装置1の構成を示す概略ブロック図である。
【図2】図1におけるセンスアンプ帯とメモリセルアレイの説明をするための回路図である。
【図3】図2におけるセンスアンプ帯32の構成を示した回路図である。
【図4】図2におけるRAMセルアレイに配置されるメモリセルの配置や構造と回路図との関係を説明するための図である。
【図5】図2におけるROMセルアレイに配置されるメモリセルの配置や構造と回路図との関係を説明するための図である。
【図6】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第1の図である。
【図7】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第2の図である。
【図8】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第3の図である。
【図9】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第4の図である。
【図10】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第5の図である。
【図11】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第6の図である。
【図12】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第7の図である。
【図13】図2におけるメモリセルアレイ22のDRAMセルを形成する製造工程を説明するための第8の図である。
【図14】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第1の図である。
【図15】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第2の図である。
【図16】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第3の図である。
【図17】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第4の図である。
【図18】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第5の図である。
【図19】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第6の図である。
【図20】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第7の図である。
【図21】図2におけるメモリセルアレイ24のROMセルを形成する製造工程を説明するための第8の図である。
【図22】RAM部の記憶動作を説明するための図である。
【図23】ROM部のデータ記憶と読出時について説明するための図である。
【図24】RAM部の読出動作を説明するための図である。
【図25】ROM部の読出動作を説明するための図である。
【図26】実施の形態2の半導体記憶装置の主要部680のRAM部を示した回路図である。
【図27】実施の形態2の半導体記憶装置の主要部680のROM部を示した回路図である。
【図28】実施の形態2のRAM部の動作を説明するための図である。
【図29】実施の形態2のROM部の読出動作を説明するための図である。
【図30】プログラム開発用およびプログラム固定後のマイクロコンピュータについて説明するための図である。
【図31】本発明の半導体記憶装置を内蔵するマイクロコンピュータを用いて開発を行なう場合を説明するための図である。
【図32】図31(a)で説明した開発用のマイクロコンピュータがパッケージに収納されている構造の一例を示した図である。
【符号の説明】
1 半導体記憶装置、2 CPU、4 制御回路、6 ロウ/コラムデコーダ、12,14 切替スイッチ、22〜28,682,684 メモリセルアレイ、30〜38,686 センスアンプ帯、40 プリアンプ&ライトドライバ、52,60,152,160 イコライズ回路、54,58,154,158 接続回路、56,156 選択ゲート、302 p型基板、304,306,352〜356 素子分離領域、314〜320,370〜379,402 配線、322〜326,336,380〜392,400,401,532〜542,632〜642 コンタクトホール、328,330,331,334,338,394,398 導電膜、332,396 絶縁膜、333 領域、327,329,390〜393,395,397,601〜608 開口部、308〜312,358〜368 n型不純物領域、612〜622 活性領域、651,652,656,657,U00L〜U31L,U00R〜U31R メモリセルユニット、680 主要部、800,802,980 リファレンスセル、890,892 ロウデコード回路、894,896 ワード線ドライバ、898,899 切替スイッチ、700〜733,750〜783,MC,961,962,971,972 メモリセル、988 アクセストランジスタ、999 マイクロコンピュータ、1000 開発用マイクロコンピュータ、1001a フラッシュメモリチップ、1001b,1001c マイクロコンピュータチップ、1002 パッド、1003 ボンディングワイヤ、1004 リード、1005 ダイパッド、501〜508,814,816,826,824,836,834,854,856,866,864,876,874,886,884,984,986,C00〜C33 キャパシタ、BL,BL0,/BL0,BL1,/BL1,BL0A,/BL0A,BL1A,/BL1A,BL0B,/BL0B,BL1B,/BL1B,BL0C,/BL0C,BL1C,/BL1C,BL0D,/BL0D,BL1D,/BL1D,BLA,/BLA,BLB,/BLB,BLC,/BLC,BLD,/BLD,BLR,/BLR ビット線、CSL0,CSL1 コラム選択線、DB データバス、GIO,/GIO グローバルIO線、SA0,SA1 センスアンプ、T00〜T100トランジスタ、WL,WL0〜WLn,WL0_L〜WL3_L,WL0_R〜WL3_R,WLG,RWL03L,PWL03L,RWL03R,PWL03R,RWL12L,PWL12L,RWL12R,PWL12R ワード線。

Claims (9)

  1. 半導体装置であって、
    第1の領域に配置され、揮発的に情報の記憶を行なう第1のメモリセルアレイを備え、
    前記第1のメモリセルアレイは、
    第1の固定電位が与えられる第1の電極プレートと、
    前記第1の電極プレートと絶縁膜を介して対向して配置される複数の第2の電極プレートと、
    複数の第1のビット線と、
    複数の第1のワード線と、
    前記複数の第2の電極プレートにそれぞれ一方端が接続される複数の第1のアクセストランジスタとを含み、
    前記複数の第1のアクセストランジスタの各々は、前記複数の第1のビット線のうちの対応するビット線に他方端が接続され、前記複数の第1のワード線のうちの対応するワード線に制御電極が接続され、
    前記半導体装置は、
    第2の領域に配置され、不揮発的に情報の記憶を行なう第2のメモリセルアレイをさらに備え、
    前記第2のメモリセルアレイは、
    第2の固定電位が与えられ、前記複数の第2の電極プレートと同一工程で形成される第3の電極プレートと、
    複数の第2のビット線と、
    複数の第2のワード線と、
    複数の第2のアクセストランジスタとを含み、
    前記複数の第2のアクセストランジスタの各々は、制御電極が前記複数の第2のワード線のうちの対応するワード線に接続され、一方端が前記複数の第2のビット線のうちの対応するビット線に接続され、他方端が前記第3の電極プレートに接続されるか否かが保持情報に応じて決定される、半導体装置。
  2. 前記複数の第1、第2のアクセストランジスタが形成される半導体基板をさらに備え、
    前記第1の電極プレートおよび前記複数の第2の電極プレートは、前記第1のアクセストランジスタの上部に層間絶縁膜を介して積層して形成される、請求項1に記載の半導体装置。
  3. 前記第1、第2のメモリセルアレイに共用して用いられるセンスアンプ帯をさらに備える、請求項1に記載の半導体装置。
  4. 前記センスアンプ帯は、
    各々が、アドレス信号に応じて前記複数の第1のビット線の1つと前記複数の第2のビット線の1つのいずれか一方に選択的に接続状態となる複数のセンスアンプ回路を含む、請求項3に記載の半導体装置。
  5. 前記複数の第1のアクセストランジスタは、1ビットの情報読出しに対して相補な対をなす2つが同時に導通状態になり、
    前記複数の第2のアクセストランジスタは、1ビットの情報読出しに対して相補な対をなす2つが同時に導通状態になる、請求項1に記載の半導体装置。
  6. 前記複数の第1のアクセストランジスタのうちの相補な対をなす2つのアクセストランジスタは、前記複数の第1のビット線のうちの相補な対をなす2つのビット線にそれぞれ接続され、
    前記複数の第2のアクセストランジスタのうちの相補な対をなす2つのアクセストランジスタは、前記複数の第2のビット線のうちの相補な対をなす2つのビット線にそれぞれ接続される、請求項5に記載の半導体装置。
  7. 前記複数の第1のアクセストランジスタは、1ビットの情報読出しに対して1つが選択的に導通状態になり、
    前記複数の第2のアクセストランジスタは、1ビットの情報読出しに対して1つが選択的に導通状態になる、請求項1に記載の半導体装置。
  8. 前記複数の第2のアクセストランジスタの選択時に同時に選択される参照メモリセルと、
    前記複数の第2のアクセストランジスタのうちの選択されたトランジスタが接続される前記複数の第2のビット線のうちの所定のビット線と前記参照メモリセルとに接続されるセンスアンプ回路とをさらに備える、請求項7に記載の半導体装置。
  9. 前記第1、第2のメモリセルアレイからデータの受信を行なう中央演算処理装置をさらに備える、請求項1に記載の半導体装置。
JP2002352787A 2002-12-04 2002-12-04 半導体装置 Withdrawn JP2004186501A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002352787A JP2004186501A (ja) 2002-12-04 2002-12-04 半導体装置
US10/419,940 US20040109342A1 (en) 2002-12-04 2003-04-22 Semiconductor memory device producible with incorporated memory switched from RAM to ROM
TW092109560A TW594745B (en) 2002-12-04 2003-04-24 Semiconductor memory device producible with incorporated memory switched from RAM to ROM
KR1020030045611A KR20040048799A (ko) 2002-12-04 2003-07-07 내장 메모리를 램으로부터 롬으로 전환하여 생산가능한반도체장치
DE10334432A DE10334432A1 (de) 2002-12-04 2003-07-28 Halbleiterspeichervorrichtung, die mit integriertem zwischen RAM und ROM geschaltetem Speicher herstellbar ist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352787A JP2004186501A (ja) 2002-12-04 2002-12-04 半導体装置

Publications (1)

Publication Number Publication Date
JP2004186501A true JP2004186501A (ja) 2004-07-02

Family

ID=32376176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352787A Withdrawn JP2004186501A (ja) 2002-12-04 2002-12-04 半導体装置

Country Status (5)

Country Link
US (1) US20040109342A1 (ja)
JP (1) JP2004186501A (ja)
KR (1) KR20040048799A (ja)
DE (1) DE10334432A1 (ja)
TW (1) TW594745B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128320A (ja) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd 半導体記憶装置およびその製造方法
JP2006127749A (ja) * 2004-10-28 2006-05-18 Samsung Electronics Co Ltd ページバッファおよびページバッファを含む不揮発性メモリ装置
JP2006295130A (ja) * 2005-03-15 2006-10-26 Elpida Memory Inc メモリ装置及びその製造方法
JP2010176728A (ja) * 2009-01-27 2010-08-12 Toshiba Corp 半導体記憶装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003223013A1 (en) * 2003-04-28 2004-11-23 Solid State System Co., Ltd. Nonvolatile memory structure with high speed high bandwidth and low voltage
JP4531615B2 (ja) * 2005-02-03 2010-08-25 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP2009010104A (ja) * 2007-06-27 2009-01-15 Renesas Technology Corp 半導体装置およびその製造方法
KR102246342B1 (ko) 2014-06-26 2021-05-03 삼성전자주식회사 멀티 스택 칩 패키지를 갖는 데이터 저장 장치 및 그것의 동작 방법
US10347322B1 (en) * 2018-02-20 2019-07-09 Micron Technology, Inc. Apparatuses having memory strings compared to one another through a sense amplifier
US20220406343A1 (en) * 2021-06-17 2022-12-22 Sonic Star Global Limited Control circuit for adjusting timing of sense amplifier enable signal, and sense enable circuit and method for enabling sense amplifier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230358A (ja) * 1985-04-05 1986-10-14 Nec Corp 半導体記憶装置
JPH0563162A (ja) * 1991-08-30 1993-03-12 Sharp Corp 半導体記憶装置
JPH05189988A (ja) * 1992-01-10 1993-07-30 Sharp Corp 半導体記憶装置
JPH08329672A (ja) * 1995-05-29 1996-12-13 Matsushita Electron Corp 半導体集積回路および半導体装置
CN100359601C (zh) * 1999-02-01 2008-01-02 株式会社日立制作所 半导体集成电路和非易失性存储器元件

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128320A (ja) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd 半導体記憶装置およびその製造方法
US7763922B2 (en) 2004-10-27 2010-07-27 Panasonic Corporation Semiconductor memory and method for manufacturing the same
JP4646595B2 (ja) * 2004-10-27 2011-03-09 パナソニック株式会社 半導体記憶装置
JP2006127749A (ja) * 2004-10-28 2006-05-18 Samsung Electronics Co Ltd ページバッファおよびページバッファを含む不揮発性メモリ装置
US8174888B2 (en) 2004-10-28 2012-05-08 Samsung Electronics Co., Ltd. Page-buffer and non-volatile semiconductor memory including page buffer
US8493785B2 (en) 2004-10-28 2013-07-23 Samsung Electronics Co., Ltd. Page-buffer and non-volatile semiconductor memory including page buffer
JP2006295130A (ja) * 2005-03-15 2006-10-26 Elpida Memory Inc メモリ装置及びその製造方法
JP2010176728A (ja) * 2009-01-27 2010-08-12 Toshiba Corp 半導体記憶装置

Also Published As

Publication number Publication date
TW594745B (en) 2004-06-21
KR20040048799A (ko) 2004-06-10
DE10334432A1 (de) 2004-06-24
US20040109342A1 (en) 2004-06-10
TW200410251A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
TWI692037B (zh) 半導體記憶體裝置
JP4149170B2 (ja) 半導体記憶装置
US7977736B2 (en) Vertical channel transistors and memory devices including vertical channel transistors
JP4630879B2 (ja) 半導体メモリ装置
JP4632287B2 (ja) 半導体集積回路装置
KR100666022B1 (ko) 반도체 메모리
KR100757127B1 (ko) 반도체 집적 회로 장치
JP2003092364A (ja) 半導体記憶装置
US8750069B2 (en) Semiconductor device and method for forming the same
JP4439082B2 (ja) 半導体記憶装置
JP2003282823A (ja) 半導体集積回路
KR101095730B1 (ko) 앤티퓨즈를 기반으로 하는 반도체 메모리 장치
JP2004186501A (ja) 半導体装置
JP2000208726A (ja) Nand型不揮発性強誘電体メモリセル及びそれを用いた不揮発性強誘電体メモリ装置
JP6687719B2 (ja) 半導体記憶装置
US9251871B2 (en) Sense amplifier with dual gate precharge and decode transistors
JP2003030999A (ja) 半導体記憶装置
TW202111956A (zh) 半導體裝置及半導體裝置之製造方法
US20230122198A1 (en) Memory device having sub wordline driver
US20240203462A1 (en) Devices and methods for a finfet sense amplifier
JP2024030086A (ja) メモリデバイス
JP2023130952A (ja) 半導体記憶装置
JP2024002881A (ja) メモリデバイス
CN118197375A (zh) 用于finfet感测放大器的装置及方法
CN117615573A (zh) 包含存储器阵列区和外围电路系统区中的结构的存储器装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207