JP2004165661A - 非対称に被覆された導体を有するmram - Google Patents

非対称に被覆された導体を有するmram Download PDF

Info

Publication number
JP2004165661A
JP2004165661A JP2003379703A JP2003379703A JP2004165661A JP 2004165661 A JP2004165661 A JP 2004165661A JP 2003379703 A JP2003379703 A JP 2003379703A JP 2003379703 A JP2003379703 A JP 2003379703A JP 2004165661 A JP2004165661 A JP 2004165661A
Authority
JP
Japan
Prior art keywords
memory cell
conductor
data layer
cladding structure
asymmetric cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003379703A
Other languages
English (en)
Inventor
Manoj K Bhattacharyya
マノイ・ケイ・バータッチャーヤ
Thomas C Anthony
トーマス・シー・アンソニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2004165661A publication Critical patent/JP2004165661A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】磁気メモリセルのデータ層の切替え特性に悪影響を及ぼすことなく、切替え磁界を高めること。
【解決手段】磁界に反応するメモリセル(10)の非対称に被覆された導体構造が開示される。メモリセル(10)を横切る導体(11、15)の一方又は双方は、非対称なクラッディング(13、17)を含み、そのクラッディングは導体(11、15)の上面(11t、15t)と、対向する側面(11s、15s)の一部分のみを覆い、そのため対向する側面(11s、15s)のクラッディング(13、17)は、対向する側面(11s、15s)に沿ってメモリセル(10)のデータ層(2)から離れる方向に後退している。クラッディング(13、17)は、オフセット距離(D1、D2又はT1、T2)だけ後退している。非対称なクラッディング(13、17)は、閉磁路の磁気抵抗(R)を増加させ、結果としてデータ層(2)との磁気結合を低減する。
【選択図】図18

Description

本発明は概して、導体のうちの少なくとも1つが非対称なクラッディングを含む磁気メモリデバイスに関する。より具体的には、本発明は、導体のうちの少なくとも1つが、磁気メモリセルのデータ層の切替え磁界を高めながら、切替え特性に対して望ましくない作用を最小限に抑えるように後退した非対称なクラッディングを含む磁気メモリデバイスに関する。
磁気ランダムアクセスメモリ(MRAM)は、従来のデータ記憶またはメモリ技術に代替案を提供することができる新しい技術である。MRAMは、DRAMのような高速のアクセス時間およびハードディスクドライブのような不揮発性のデータ保存などの望ましい特性を有する。MRAMは、データ層、記憶層、自由層またはデータ薄膜と呼ばれるパターニングされた薄膜磁性素子に、変更可能な磁化の向きとして1ビットのデータ(すなわち情報)を格納する。データ層は、バイナリ「1」およびバイナリ「0」を定義する2つの安定した別個の磁気状態を有するように設計される。データビットはデータ層に格納されるが、完全な磁気メモリ素子を形成するために、注意深く制御された磁性および誘電性薄膜材料からなる多数の層が必要とされる。磁気メモリ素子の1つの有名な形態はスピントンネルデバイスである。スピントンネル現象の物理的現象は複雑であり、これを対象にした優れた文献がある。
図1aでは、従来のMRAMメモリ素子101が、薄い障壁層106によって分離されたデータ層102と基準層104とを含む。一般に、障壁層106は、約2.0nm未満の厚みを有する。メモリ素子101は幅Wと、長さLとを有し、幅Wと長さLの比はアスペクト比を定義する(すなわち、アスペクト比=W/L)。トンネル磁気抵抗メモリ(TMR)では、障壁層106は、たとえば、酸化アルミニウム(Al)のような非導電性の誘電体材料である。それに対して、巨大磁気抵抗メモリ(GMR)では、障壁層106は、たとえば銅(Cu)のような導電性材料の薄い層である。基準層104はピン留めされた磁化の向き108を有し、すなわちピン留めされた磁化の向き108は、所定の方向に固定され、外部磁界に応答して回転しない。対照的に、データ層102は、外部磁界に応答して2つの向きの間で回転することができる変更可能な磁化の向き103を有する。変更可能な磁化の向き103は一般に、データ層102の磁化容易軸Eに揃えられる。
図1bでは、ピン留めされた磁化の向き108および変更可能な磁化の向き103が同じ方向を指す(すなわち、それらが互いに平行である)とき、データ層102はバイナリ「1」を格納する。一方、ピン留めされた磁化の向き108および変更可能な磁化の向き103が反対の方向を指す(すなわち、それらが互いに反平行である)とき、データ層102はバイナリ「0」を格納する。
図2aでは、従来のメモリ素子101は一般に2つの直交する導体105および107の交点に配置される。たとえば、導体105はワード線にすることができ、導体107はビット線にすることができる。導体(105、107)はまとめて書込み線と呼ぶことができる。導体107および105にそれぞれ流れる電流IおよびIによって2つの磁界HおよびHを生成することにより、1ビットのデータがメモリ素子101に書き込まれる。磁界HおよびHはデータ層102と協働して、変更可能な磁化の向き103を、現在の向きから新たな向きに回転させる。それゆえ、現在の向きが平行(すなわち、x軸X上の正のX方向)であり、データ層102にバイナリ「1」が格納されるようにピン留めされた磁化の向き108を有する場合には、磁界HおよびHが変更可能な磁化の向き103を反平行な向き(すなわち、x軸X上の負のX方向)に回転させ、データ層102にバイナリ「0」が格納されるようになる。
図2aでは、変更可能な磁化の向き103は、正のX方向から負のX方向に回転するプロセスにおいて例示される。これらの向きはいずれも磁化容易軸Eに揃えられる。しかしながら、回転中に、変更可能な磁化の向き103は、y軸Yの正のY方向および負のY方向に揃えられた磁化困難軸Hに一時的に揃えられるであろう。
図2bでは、従来のメモリ素子101が、行および列に配列された複数の導体107および105の交点に同様に配置された類似のメモリ素子101のアレイ201内に配置される。例示するために、図2bでは、導体107はビット線であり、導体105はワード線である。ワード線およびビット線に電流IおよびIを流すことにより、ワード線およびビット線の交点に配置されたメモリ素子101のうちの選択されたメモリ素子に1ビットのデータが書き込まれる。標準的な書込み動作中、合成された磁界HおよびHがメモリ素子101の変更可能な磁化の向きを切り替える(すなわち回転させる)のに十分な大きさを有する場合にのみ、選択されたメモリ素子101に書込みが行われる。
図3aでは、変更可能な磁化の向き103が磁化容易軸Eに揃えられるとき、従来のデータ層102は、プラス符号+およびマイナス符号−として示される磁荷を有し、それらの磁荷(+、−)は減磁界HDEを生成する。減磁界HDEは、変更可能な磁化の向き103を回転させるために必要とされる合成磁界(H、H)の大きさを低減することにより、データ層102の切替えを容易にする。本質的に、変更可能な磁化の向き103を回転させるのに必要なエネルギーの量が低減される。
同様に図3bでは、変更可能な磁化の向き103が磁化困難軸Hに平行な、部分的に回転した位置にあるとき、磁荷(+、−)によって別の減磁界HDhが生成される。これらの磁荷は、変更可能な磁化の向き103をさらに回転させることを妨げる。
データ層102の切替え特性は、減磁界(HDE、HDh)の大きさによって部分的に決定される。減磁界HDEの大きさは、変更可能な磁化の向き103の初期の回転に必要なエネルギーの量を低減するのに十分な大きさであり、減磁界HDhの大きさは、変更可能な磁化の向き103がさらに回転するのをわずかに妨げ、変更可能な磁化の向き103が磁化困難軸Hを通過する際に、データ層102が即時に切り替わらない(すなわち、論理「1」から論理「0」に)ようにするだけの十分な大きさであることが好ましい。
従来のMRAM設計の短所の1つは、合成磁界(H、H)を生成するために必要とされる電流(I、I)が大きすぎることである。いくつかの理由のために大きい電流は望ましくない。第1に、大きい電流は消費電力を増加し、それはポータブル電子装置または電池駆動式の電子装置では望ましくない。第2に、電流が大きい結果として廃熱の生成が増加し、その廃熱を有効に散逸させるためにファンまたは他の冷却装置が必要になる可能性がある。それらの冷却装置は電池駆動式の装置のコストを上昇させ、重量を増加し、消費電力を増加する。第3に、それらの大きい電流を供給するために、より大きな駆動回路が必要とされ、そのより大きな駆動回路によって、メモリデバイス内のメモリまたは他の重要な回路のために利用することができるダイ面積の量が削減される。最後に、電流を伝える導体が、導体の高い電流密度によって引き起こされるエレクトロマイグレーションに起因して機能しなくなる可能性がある。
電流(I、I)を低減するための従来の方法は、図4に示されるように、導体(105、107)を軟磁性材料で被覆することを含む。クラッディング112は導体120の3つの側面を完全に覆い、導体120の表面と同一平面に配置され、データ層102に隣接する極pを含む。クラッディング112は利用可能な磁界を高め、x軸Xに沿った方向に閉じた磁路(以降、閉磁路と称す)110を生成する。その閉磁路は、磁界(H、H)の磁束を閉じ込めることができ、これらの磁界をデータ層102と効率的に結合する。
さらに、閉磁路110はデータ層102の実効的な長さを増加し、それによりデータ層102の形状異方性を高める。形状異方性が大きくなると、データ層102の磁気的安定性が増す。一般に、形状異方性によって所望の磁気的安定性を達成するために、メモリセル101がその長さL寸法よりも幅W寸法において長くなるように、データ層102は磁化容易軸Eの方向において長くされる。実効的な長さを増加することにより、データ層102の磁気的安定性はさらに高くなるが、データ層102を切り替えるのがより難しくなるという短所もある。結果として、データ層102の切替えを達成するために、より多くの電流が必要とされる。データ層102は磁化容易軸Eの方向において既に物理的に長くされているので、閉磁路110によって生成される実効的な長さの追加によって、その物理的な長さがさらに長くされる。結果として、たとえクラッディング112がデータ層102において利用可能な磁界を集束する効果を有しても、クラッディング112を用いることにより切替え電流要件が悪化する。
さらに、望ましい形状異方性の増加は、メモリセルのサイズが増加することを犠牲にしている。なぜなら、データ層102の物理的な長さを増加させることにより、メモリセル101によって占有される面積も増加するからである。結果として、約2.0〜約3.0またはそれより大きな範囲のアスペクト比が普通である。したがって、メモリセル101がより大きな面積を占有するので、面密度が減少する。理想的には、アスペクト比は、面密度を増加することができるように、できる限り1.0に近くなるようにしなければならない。
図5cでは、アレイ203が、一対の被覆された導体(105c、107c)間の交点に配置された従来のメモリ素子101を含む。図5aでは、図5cのx軸Xに沿った断面図によって、導体107cがクラッディング109を有することが示される。クラッディング109は、導体107cの3つの側面を完全に覆い、導体107cの表面と同一平面に配置されてデータ層102に隣接して配置された極109pを含む。
図6aでは、図5aの構造の1つの短所は、極109pがデータ層102によって生成される磁荷と反対の極性の磁荷(+、−)を生成することである。極109pによって生成される磁荷(+、−)は減磁界H’DEを著しく減少させるか、または相殺し、変更可能な磁化の向き103を回転させるためにさらに大きなエネルギー(すなわち、さらに強い磁界H)が必要とされるようになる。結果として、より大きな磁界Hを生成するために、より多くの電流Iが供給されなければならない。それゆえ、クラッディング109は、データ層102の切替え特性の1つの成分に悪影響を及ぼす。さらに、クラッディング109は前述したように、データ層102の実効的な長さを増加させる。したがって、データ層102の切替えを達成するために、電流Iをさらに増加しなければならない。クラッディング109によって生成される閉磁路は、データ層102を通る低い磁気抵抗の経路を形成し、結果として磁界とデータ層102との強い結合をもたらすので、上述の減磁界H’DEおよびデータ層102の実効長の増加の影響がその強い結合によって悪化する。
図5bでは、図5cのy軸Yに沿った断面図によって、導体105cがクラッディング111を有することが示される。クラッディング111は、導体105cの3つの側面を完全に覆い、導体105cの表面と同一表面に配置されてデータ層102に隣接して配置された極111pを含む。
図6bでは、図5bの構造の1つの短所は、極111pがデータ層102によって生成される磁荷と反対の極性の磁荷(+、−)を生成することである。それらの磁荷はデータ層102の保磁力を低下させ、減磁界H’Dhが減少するか、または相殺される結果となる。結果として、変更可能な磁化の向き103が磁化困難軸Hを通過する際に、その回転に対する抗力がほとんど、または全くなくなる。それゆえ、クラッディング111はデータ層102の切替え特性の別の成分に悪影響を及ぼす。クラッディング111に起因して磁界とデータ層102との結合が強くなることにより、減磁界H’Dhの影響も悪化する。
したがって、磁気メモリセルのデータ層の切替え特性に悪影響を及ぼすことなく、切替え磁界を高めることができる、磁気メモリセルの1つまたは複数の導体のためのクラッディング構造が必要とされている。また、磁気結合が低減されるように磁路の磁気抵抗を増加させるクラッディング構造が必要とされている。さらに、面密度が増加するように磁気メモリセルのアスペクト比の低減を可能にするクラッディング構造が必要とされている。
本発明は、磁気メモリセルを横切る1つまたは複数の導体を非対称に被覆することによって、従来の被覆された導体によって生み出される上述の問題に対処する。磁気メモリデバイスは、磁界に反応するメモリセルと、長さ方向においてメモリセルを横切る第1の導体と、幅方向においてメモリセルを横切る第2の導体とを含む。第1の導体は、その上側表面と、2つの側面の一部とを覆う第1のクラッディングを含む。そのクラッディングは、2つの側面に隣接して配置され、第1のオフセット距離だけ2つの側面に沿って後退する第1の一対の極を含む。
一実施形態では、第2の導体も、その上側表面と、2つの側面の一部とを覆う第2のクラッディングを含む。第2のクラッディングは、2つの側面に隣接して配置され、第2のオフセット距離だけ2つの側面に沿って後退する第2の一対の極を含む。第1および第2のオフセット距離は互いに等しくなる必要はなく、そのため第1および第2の極は、メモリセルのデータ層に対して、またはメモリセル上のいくつかの他の基準点に対して、互いから異なる距離に間隔をおいて配置される。
第1および第2の導体のうちのいずれか一方または両方を、その導体がメモリセルの中央に対称に配置されないように、その個々の交差する方向に対して横方向にずらすことができる。その横方向の変位を用いて、切替えの核形成が生じるデータ層内の点を変化させ、結果としてメモリセルの切替え特性を変化させることができる。
磁路の磁気抵抗が増加するので、被覆された導体によって生成される磁界とデータ層との間の強い磁気結合によって引き起こされる上述の問題は、後退した極によって低減される。増加した磁気抵抗は、磁界とデータ層との結合を低減するように作用するので、磁化容易軸に沿ったデータ層の増加した実効長も極を後退させることにより低減される。
後退した極は、データ層の磁化容易軸および磁化困難軸に沿った減磁界が低減または排除されるようなその極によって生成される磁荷の相殺作用を低減し、第1および第2の導体に流れる電流によって生成される切替え磁界を高めながら、データ層の望ましい切替え特性が得られる。
第1および第2の導体の一方または両方を非対称に被覆することにより、被覆された導体を有する従来のメモリセルよりも、メモリセルのアスペクト比を低減することができる。
本発明の他の態様および利点は、本発明の原理を一例として例示する、添付図面に関連してなされる、以下の詳細な説明から明らかになるであろう。
本発明によれば、磁気メモリセルのデータ層の切替え特性に悪影響を及ぼすことなく、切替え磁界を高めることができる、磁気メモリセルの1つまたは複数の導体のためのクラッディング構造が提供される。また、磁気結合が低減されるように磁路の磁気抵抗を増加させるクラッディング構造が提供される。さらに、本発明によるクラッディング構造によって、面密度が増加するように磁気メモリセルのアスペクト比を低減することが可能になる。
以下の詳細な説明および図面のうちのいくつかの図において、同じ要素は同じ参照番号で特定される。
例示のための図面に示されるように、本発明は、磁界に反応するメモリセル(以降、メモリセルと称する)を含む磁気メモリデバイスのための非対称なクラッディング構造において具現化される。
図7a〜図8bにおいて、磁気メモリセル10は、以下に限定しないが、基準層4、データ層2、およびデータ層2と基準層4との中間に配置された障壁層6を含む複数の層からなる。MRAM技術においてよく理解されているように、データ層2は両方向の矢印Mによって示されるような変更可能な磁化の向きを含み、基準層4は、外部の磁界に応答してその向きを回転することのないピン留めされた磁化の向きPを含む。一般に、ピン留めされた磁化の向きPはメモリセル10の製造工程の一部として決定され、永久に設定される。変更可能な磁化の向きMは、ピン留めされた磁化の向きPと平行か、または反平行になることができる向きを有することができ、その向きは十分な大きさの磁界を外部から供給することにより変更され得る。
また、MRAM技術において、障壁層6は、TMRデバイスの場合には酸化アルミニウム(Al)、窒化アルミニウム(AlNx)、酸化マグネシウム(MgO)または酸化タンタル(TaOx)のような非導電性の材料(すなわち誘電体材料)からなる薄い層であることがよく知られている。逆に、GMRデバイスの場合、障壁層6は銅(Cu)、金(Au)または銀(Ag)のような導電性で、非磁性の材料である。磁界に反応するメモリデバイスは薄膜材料からなるいくつかの層を含むことができる。しかしながら、例示を簡単にするために、磁気メモリセル10は、基準層4と、データ層2と、障壁層6とを含むものとして示されるが、それらの層のみに限定されるものと解釈されるべきではない。
第1の導体11は、メモリセル10の長さ方向Lにおいてメモリセル10を横切り、上面11tと、2つの側面11sと、底面11bとを含む(図8aを参照)。図7bでは、第1の導体11は、以下に説明されるように、第1の非対称のクラッディング13によって覆われる。底面11bは、メモリセルに面するように配置される(すなわち、底面11bはデータ層2に面する)。底面11bはデータ層2に直に接触する必要はなく、MRAMスタックの薄膜材料からなる1つまたは複数の層が底面11bとデータ層2との間に配置され得る。
図8aでは、第1の非対称なクラッディング13が、第1の導体11の上面11tと、2つの側面11sの一部とに接続される。すなわち、第1の非対称のクラッディング13は、2つの側面11sの全体を覆わない。第1の非対称のクラッディング13は、2つの側面11sに沿って後退する(すなわち、データ層2から離れる方向に)第1の一対の極13pを含み、第1の距離D1だけメモリセル10からオフセットされる。第1の非対称のクラッディング13の非対称性は、第1の一対の極13pが底面11bと同一平面にないように、クラッディングが対向する2つの側面11sの一部のみを覆うことによる。
図8bでは、第2の導体15が幅方向Wにおいてメモリセル10を横切り、上面15tと、2つの側面15sと、メモリセル10にも面するように配置された底面15b(すなわち、底面15bはデータ層2に面する)とを含む。底面11bに関して前述したように、第2の導体15の底面15bはデータ層2と直に接触する必要はない。メモリセル10への書込み動作中に、第1の導体11および第2の導体15を流れる電流(図示せず)によって上述の外部磁界が生成され、その外部磁界は互いに合成されて、データ層2と相互作用し、変更可能な磁化の向きMを回転させる。
第1の導体11および第2の導体15は、まとめて書込み線と呼ぶことができる。メモリデバイスのアーキテクチャによっては、第1の導体11はワード線にすることができ、第2の導体15はビット線にすることができ、またはその逆も可能である。たとえば、ワード線およびビット線はアレイに配列されることができ、その場合、ビット線がアレイの行を横切り、ワード線がアレイの列を横切るか、またはビット線がアレイの列を横切り、ワード線がアレイの行を横切る。図18では、MRAMアレイ50は複数のメモリセル10を含み、アレイ50の行に非対称に被覆された導体11と、アレイ50の列に非対称に被覆された導体15とを含む(後で説明されるであろう)。メモリセル10は、行導体と列導体との交点に配置される。
図15では、第1の導体11に流れる電流Iが、第1の非対称なクラッディング13によって生成される閉磁路を通じてデータ層2と磁気的に相互作用する磁界Hを生成する(データ層2で磁束を閉じ込めることを示す、Hの破線を参照されたい)。第1の一対の極13pは第1の距離D1だけ後退されているので、第1の一対の極13pにおける閉磁路の磁気抵抗Rは、第1の非対称なクラッディング13の磁気抵抗Rおよびデータ層2の磁気抵抗Rよりも高い。本質的に、第1の距離D1は、Hのための閉磁路の全磁気抵抗を増加させる隙間を介在させる。結果として、磁界Hとデータ層2との磁気結合が低減され、その結果、磁化困難軸hと揃えられ、かつ第1の一対の極13pとデータ層2とが近いことにより生じるデータ層2の磁荷(+、−)によって生成される減磁界HDhの大きさが減少する。
減磁界HDhの強さが減少する1つの利点は、磁化困難軸hと揃えられるときに、変更可能な磁化の向きMがさらに回転するのを阻む傾向が低減されることである。後退した第1の一対の極13pは、第1の非対称なクラッディング13の磁性材料をデータ層2から離して配置し、第1の非対称なクラッディング13とデータ層2との間の磁気的な干渉が小さくなるようにする。
被覆された導体を有する従来のメモリセルでは、クラッディングはデータ層における磁界を高め、結果として、データ層の保磁力を低減し、減磁界H’Dhを増加させる。減磁界H’Dhは、変更可能な磁化の向きMのための安定した低いエネルギー状態を生み出す。したがって、変更可能な磁化の向きMはその安定した状態から回転しないように抵抗する。それゆえ、十分な大きさの磁界のみが、従来のメモリセルの変更可能な磁化の向きMをその安定した状態から回転させるように付勢することができる。不都合なことに、その磁界を生成するためにより大きな電流が必要とされ、前述したように大きな電流は望ましくない。
したがって、本発明の第1の非対称なクラッディング13は、磁気結合、および減磁界H’Dhの大きさを低減することにより、データ層2の切替え特性を改善し、かつ磁化困難軸hを通って変更可能な磁化の向きMを回転させるために必要な電流Iの大きさを低減することを可能にする、変更可能な磁化の向きMのための制御されたエネルギー状態を提供する。
図12aでは、第1のオフセット距離D1は、第1の導体11の第1の組の極13pと底面11bとの間で測定される距離、または第1の組の極13pとメモリセル10上の所定の点との間で測定される距離にすることができる。メモリセル10上の所定の点はデータ層2とすることができる。図12aでは、メモリセル10上の所定の点に関して1つの可能な選択肢として障壁層6も示される。メモリセル10上の所定の点に関する選択は、応用形態によるか、または単なる好みの問題である。
データ層2、障壁層6、基準層4、およびメモリセル10を構成する任意の他の層は、一般に、数ナノメートル(nm)またはそれ未満の厚みを有する薄膜層であるので、第1の導体11の底面11bは、メモリセル10の所定の点に関する必然的な選択肢である。一方、非対称なクラッディング(13、17)の作用は、データ層2に影響を及ぼすように設計されるので、データ層2もメモリセル10の所定の点に関する必然的な選択肢である。
図9aおよび図9bに示されるように、本発明の一実施形態では、第2の導体15が、上面15tと接続されるだけでなく、2つの側面15sの全体とも接続され、底面15bと実質的に同一平面にある一対の極16pを含む第2の対称なクラッディング16を含む(すなわち、第2の対称なクラッディング16は2つの側面15sに沿って後退していない)。第2の対称なクラッディング16は、第2の導体15を流れる電流(図示せず)によって生成される磁界を高め、かつその磁界とデータ層2との結合を強める。
例示のためだけの図7aでは、メモリセル10がデカルト座標系を基準として示されており、長さ方向Lがx軸Xと揃えられ(図7bも参照)、幅方向Wがy軸Yと揃えられる(図7cも参照)。長さ方向Lはメモリセルの長さLと概ね直交し、幅方向Wはメモリセル10の幅Wと概ね直交する。長さLに対する幅Wの比は、メモリセル10のアスペクト比A(すなわち、A=W÷L)を定義する。
さらに、図7a〜図7cでは、データ層2の磁化容易軸eがx軸Xと概ね揃えられ、データ層2の磁化困難軸hがy軸Yと概ね揃えられる。一般に、磁化容易軸eおよび変更可能な磁化の向きMは、データ層2の磁気的な安定性を高める形状異方性を利用するために、データ層2の最も長い側と揃えられる。
従来のメモリセルでは、形状異方性の磁気的安定性の利点によって、データ層が1.0よりはるかに大きなアスペクト比を有し、そのためデータ層の幅寸法が長さ寸法よりも著しく大きくなるという犠牲をはらっていた。たとえば、従来のメモリセルでは、アスペクト比は約2.0〜約3.0またはそれより大きくなる可能性がある。従来のメモリセルの磁化容易軸に直交する導体が被覆されるとき、そのクラッディングは磁化容易軸に沿ったデータ層の実効長を増加させ、それによりデータ層の磁気的安定性がさらに増す。しかしながら、実効長が長くなると、データ層の切替えがさらに困難になり、データ層の切替えを達成するために、さらに多くの電流が必要とされる。
第1の導体11上の第1の非対称なクラッディング13は、必要な切替え磁界を高め、電流Iによって生成される利用可能な磁界とデータ層2とを効率的に結合すると同時に、データ層2の切替え特性を改善し、かつクラッディング13とデータ層2との間の望ましくない磁気的相互作用を低減する、データ層2の制御されたエネルギー状態も提供する。結果として、データ層2の磁気的安定性が高められ、幅Wが低減され、それに応じて、アスペクト比Aを低減し、面密度を増加させることができる。アスペクト比Aは約1.0〜約1.6までの範囲にすることができる。好適には、アスペクト比Aはできる限り1.0に近く、そのためメモリセル10の幅Wおよび長さLが互いに概ね等しく(すなわちW=L)、データ層2が概ね正方形である(図11を参照)。
図10aおよび図10bに示されるような、本発明の別の実施形態では、非対称なクラッディング構造はさらに、第2の導体15の上面15tと、2つの側面15sの一部分のみとに接続された第2の非対称なクラッディング17を含む。すなわち、第2の非対称なクラッディング17は、2つの側面15sの全体を覆わない。第2の非対称なクラッディング17は、2つの側面15sに沿って(すなわち、データ層2から離れる方向に)後退し、第2の距離D2だけメモリセル10からオフセットされた第2の一対の極17pを含む。第2の非対称なクラッディング17の非対称性も、クラッディングが対向する側面15sの一部分のみを覆い、第2の一対の極17pが底面15bと同一平面にないことによる。
図12bでは、第2のオフセット距離D2は、第2の組の極17pと第2の導体15の底面15bとの間で測定される距離に、または第2の組の極17pとメモリセル10上の所定の点との間で測定される距離にすることができる。たとえば、メモリセル10上の所定の点は、データ層2または障壁層6とすることができる。
図13では、第1および第2の一対の極(13p、17p)がデータ層2上の所定の点に対して非対称に間隔をおいて配置され、第1の一対の極13pとデータ層2上の所定の点との間の第1の距離T1が、第2の一対の極17pとデータ層2上の所定の点との間の第2の距離T2と等しくないようになっている(すなわちT1≠T2)。非対称な間隔は、メモリセル10を構成する種々の材料層の厚みの差、および/または第1および第2のオフセット距離(D1、D2)に起因する可能性がある。T1がT2より短いものとして示されるが、T1をT2よりも長くすることもできる。第1のオフセット距離D1を第2のオフセット距離(D2)よりも長くすることができるか(すなわちD1>D2)、または第2のオフセット距離D2を第1のオフセット距離D1よりも長くすることができる(すなわちD2>D1)。データ層2の切替え特性は、第1および第2のオフセット距離(D1、D2)、および/または第1および第2の距離(T1、T2)を調整することにより調節され得る。たとえば、データ層2を通る磁路の磁気抵抗は、(D1、D2)または(T1、T2)の増加と共に高くなる。
図16では、第2の導体15に流れる電流Iが、第2の非対称なクラッディング17によって生成される閉磁路(データ層2で磁束を閉じ込めることを示す、Hのための破線を参照)を通ってデータ層2と磁気的に相互作用する磁界Hを生成する。第2の一対の極17pは第2の距離D2だけ後退しているので、第2の一対の極17pにおける閉磁路の磁気抵抗Rは、第2の非対称なクラッディング17の磁気抵抗Rおよびデータ層2の磁気抵抗Rよりも高い。第2の距離D2は、Hの閉磁路の全磁気抵抗を増加させる隙間を介在させる。結果として、磁界Hとデータ層2との磁気結合が減少し、磁化容易軸eに沿って揃えられ、かつ第2の一対の極17pがデータ層2に近いことにより生じるデータ層2の磁荷(+、−)によって生成される減磁界HDeの大きさが減少する。
被覆された導体を有する従来のメモリセルの大きなアスペクト比とは著しく対照的に、本発明の別の利点は、第2の非対称なクラッディング17によって、データ層2の幅Wを縮小してアスペクト比Aを低減し、それにより面密度を高めることができることである。アスペクト比Aを低減することから得られる他の利点は、データ層2の切替え磁界特性の改善、およびデータ層2を切り替えるために必要な電流の低減を含む。
さらに、第2の非対称なクラッディング17は磁化容易軸eに沿ったデータ層2の実効長を増加させるので、幅Wを低減することによる形状異方性の低減に起因するデータ層2の磁気的な安定性の低下が補償される。それゆえ、アスペクト比Aは、データ層2の形状異方性の利点を完全になくすことなく低減される。アスペクト比Aは、約1.0〜約1.6の範囲まで低減され得る。好適には、アスペクト比Aはできる限り1.0に近く、そのためメモリセル10の幅Wおよび長さLが互いに概ね等しく(すなわちW=L)、データ層2が概ね正方形である(図11を参照)。アスペクト比Aの低減は、本明細書に示されるような長方形または正方形のメモリセル10に限定されない。たとえば、メモリセル10は、以下に限定されないが、卵形または楕円形を含む形状を有することができる。
図14aおよび図14bでは、第1の導体11および/または第2の導体15がメモリセル10の中央に対称に配置されないように、導体(11、15)を横方向にずらすことにより、データ層2の切替え特性を調節することもできる。たとえば、図14aでは、第1の導体11は、第1の導体11が中心点Cを中心に対称に配置されないように、y軸Yに沿って正の方向の横方向に変位される(すなわち、データ層2の中心点Cから+、−にシフトされる)。結果として、切替えの核形成が行われるデータ層2の点nが中心点Cから離れるようにシフトされ、それによりデータ層2の切替え特性が変更される。同様に、図14bでは、第2の導体15がx軸Xに沿って負の方向の横方向にずらされ、そのため中心点Cを中心に対称的でなくなり、切替えの核形成が行われるデータ層2の点nが、中心点Cから離れるようにシフトされる。第1の導体11、第2の導体15、または第1の導体11および第2の導体15の両方を横方向にずらして、データ層2の切替え特性の所望の変更を達成することができる。
本発明の非対称に被覆された導体の構造に関する別の利点は、第1および第2の導体(11、15)の一方または両方を非対称に被覆することにより、図18に示されるようなメモリセル10のアレイ50の半選択マージンが改善されることである。半選択マージンの改善は、非対称なクラッディングによってアスペクト比Aを実効的に増加させることにより得られる。なぜなら、データ層2の実効長が非対称なクラッディングによって増加するためである。
たとえば、データ層2の物理的な寸法が、
Figure 2004165661
であり、データ層2のアスペクト比Aが約1.0である場合には、第2の導体15の非対称なクラッディング17はデータ層2の実効幅を増加させることができ、そのためWがわずかに増加し、W÷Lが1.0より大きくなる。一例として、WおよびLの物理的な寸法が1.0μmであり、非対称なクラッディング17がWを1.3μmに増加させる効果を有する場合には、データ層2の物理的なアスペクト比Aは1.0(すなわち1.0μm÷1.0μm)であるが、実効的なアスペクト比Aは1.3(すなわち1.3μm÷1.0μm)であり、そのアスペクト比Aの実効的な増加が、アレイ50におけるメモリセル10の中の半選択マージンを改善する。
図17aおよび図17bでは、第1および第2の非対称なクラッディング(13、17)の一例がそれぞれ、2つの側面(11s、15s)に沿った第1の厚みtと、上面(11t、15t)に沿った第2の厚みtとを含み、第1の厚みtは第2の厚みtとは異なる(すなわちt≠t)。tとtの厚みが異なることは、非対称のクラッディング(13、17)を形成する際に用いられる製造工程のアーティファクトとして生じる場合があるか、または側面(11s、15s)上に成長させた薄膜と上面(11t、15t)上に成長させた薄膜との間の磁気的な特性の差を相殺するように意図的に導入される場合がある。たとえば、第1の厚みtを第2の厚みtよりも厚くすることができる(すなわちt>t)。別の例として、tをtの約1.2倍から約2.0倍まで厚くすることができる。
第1および第2の導体(11、15)に適した導電性材料は、以下に限定されないが、銅(Cu)、アルミニウム(Al)、アルミニウム銅(AlCu)、タンタル(Ta)、金(Au)、銀(Ag)およびそれらの材料の合金を含む。第1および第2の非対称のクラッディング(13、17)に適した強磁性材料は、以下に限定されないが、ニッケル鉄(NiFe)、ニッケル鉄コバルト(NiFeCo)、コバルト鉄(CoFe)、パーマロイ(登録商標)およびそれらの材料の合金を含む。
第1および第2の非対称なクラッディング(13、17)を形成するために用いられる工程によっては、第1の一対の極13pに対する第1の距離D1および第2の一対の極17pに対する第2の距離D2は、厳密に等しくない場合もある。すなわち、第2の導体15の一方の側のD2が、第2の導体15の他方の側のD2に厳密に等しくない場合もある。たとえば、第1の導体11の一方の側面11sの第1の距離D1は、他方の側面11sの第1の距離D1に厳密に等しくなくてもよく、そのため一方の極13pが他方の極13pよりもメモリセル10上の所定の点に近いか、または所定の点から離れている。それらの差は、たとえば、非対称のクラッディング(13、17)を形成するために用いられる工程における堆積またはスパッタリングの速度のわずかな差に起因する可能性がある。
本発明のいくつかの実施形態が開示および例示されてきたが、本発明はそのように説明および図示された特定の形態または部品の構成に限定されない。本発明は特許請求の範囲によってのみ限定される。
従来の磁気メモリ素子の断面図である。 図1aの従来の磁気メモリ素子のデータ記憶を示す概略図である。 2つの導体によって横切られる従来のメモリ素子を示す概略図である。 従来のMRAMアレイを示す概略図である。 従来のメモリ素子の磁化容易軸に沿った減磁界を示す平面図である。 従来のメモリ素子の磁化困難軸に沿った減磁界を示す平面図である。 従来の被覆された導体を示す断面図である。 一対の被覆された導体を有する従来のメモリ素子を示す断面図である。 一対の被覆された導体を有する従来のメモリ素子を示す断面図である。 被覆された導体によって横切られる従来のメモリセルを有する従来のMRAMアレイを示す概略図である。 図5aの従来の被覆された導体によって生成される従来のメモリ素子の切替え特性への悪影響を示す図である。 図5bの従来の被覆された導体によって生成される従来のメモリ素子の切替え特性への悪影響を示す図である。 本発明による磁界に反応するメモリセルを示す側面図である。 本発明による磁界に反応するメモリセルを横切る第1の導体の第1の非対称なクラッディングの平面図である。 本発明による磁界に反応するメモリセルを横切る第2の導体の第2の対称なクラッディングの底面図である。 本発明による、メモリセルを横切る第1の導体および第2の導体と、第1の導体が第1の非対称なクラッディングを含むこととを示す断面図である。 本発明による、メモリセルを横切る第1の導体および第2の導体と、第1の導体が第1の非対称なクラッディングを含むこととを示す断面図である。 本発明による、第2の対称なクラッディングが接続される、図8aの第2の導体の断面図である。 本発明による、第2の対称なクラッディングが接続される、図8bの第2の導体の断面図である。 本発明による、第1および第2の導体にそれぞれ接続された第1および第2の非対称なクラッディングを含む第1および第2の導体の断面図である。 本発明による、第1および第2の導体にそれぞれ接続された第1および第2の非対称なクラッディングを含む第1および第2の導体の断面図である。 本発明による、互いに概ね等しい幅および長さを有する、磁界に反応するメモリセルを示す平面図である。 本発明による、所定の点に対する、第1の非対称なクラッディングの後退した極のための第1のオフセット距離を示す断面図である。 本発明による、所定の点に対する、第2の非対称なクラッディングの後退した極のための第2のオフセット距離を示す断面図である。 本発明による、第1および第2の一対の極とデータ層との間の非対称な間隔を示す概略図である。 本発明による、横方向にずらされた第1の導体を示す断面図である。 本発明による、横方向にずらされた第2の導体を示す断面図である。 本発明による、第1の非対称なクラッディングを含む第1の導体に流れる電流によって生成される減磁界を示す概略図である。 本発明による、第2の非対称なクラッディングを含む第2の導体に流れる電流によって生成される減磁界を示す概略図である。 本発明による、非対称なクラッディング厚の違いを示す概略図である。 本発明による、非対称なクラッディング厚の違いを示す概略図である。 本発明による、非対称に被覆された導体を有する磁気メモリデバイスのアレイの断面図である。
符号の説明
2 データ層
4 基準層
6 障壁層
10 磁気メモリセル
11、15 導体
13、16 非対称のクラッディング

Claims (24)

  1. 磁界に反応するメモリセル(10)を含む磁気メモリデバイスのための非対称なクラッディング構造であって、
    長さ方向(L)において前記メモリセル(10)を横切り、上面(11t)と、2つの側面(11s)と、前記メモリセル(10)に面するように配置された底面(11b)とを含む第1の導体(11)と、
    前記上面(11t)と、前記2つの側面(11s)の一部分のみとに接続され、前記2つの側面(11s)に沿って後退し、かつ第1の距離(D1)だけ前記メモリセル(10)からオフセットされた第1の一対の極(13p)を含む第1の非対称なクラッディング(13)と、および
    幅方向(W)において前記メモリセル(10)を横切り、上面(15t)と、2つの側面(15s)と、前記メモリセル(10)に面するように配置された底面(15b)とを含む第2の導体(15)とを含む、非対称なクラッディング構造。
  2. 前記長さ方向(L)が前記メモリセル(10)の長さ(L)と実質的に直交し、前記幅方向(W)が前記メモリセル(10)の幅(W)と実質的に直交し、前記幅(W)と前記長さ(L)の比がアスペクト比(A)を定義する、請求項1に記載の非対称なクラッディング構造。
  3. 前記アスペクト比(A)が約1.0〜約1.6の範囲内にある、請求項2に記載の非対称なクラッディング構造。
  4. 前記第1のオフセット距離(D1)が、前記第1の一対の極(13p)と前記第1の導体(11)の前記底面(11b)との間の距離と、前記第1の一対の極(13p)と前記メモリセル(10)上の所定の点との間の距離(T1)とからなるグループから選択された距離である、請求項1に記載の非対称なクラッディング構造。
  5. 前記メモリセル(10)上の前記所定の点が、前記メモリセル(10)のデータ層(2)を含む、請求項4に記載の非対称なクラッディング構造。
  6. 前記長さ方向(L)が前記メモリセル(10)の磁化容易軸(e)と実質的に一致し、前記幅方向(W)が前記メモリセル(10)の磁化困難軸(h)と実質的に一致する、請求項1に記載の非対称なクラッディング構造。
  7. 前記第2の導体(15)が、前記上面(15t)と、前記2つの側面(15s)の全体とに接続され、前記底面(15b)と実質的に同一平面にある一対の極(16p)を含む第2の対称なクラッディング(16)をさらに含む、請求項1に記載の非対称なクラッディング構造。
  8. 前記第1の導体(11)が前記メモリセル(10)の中心(C)に対称的に配置されないように、前記第1の導体(11)が横方向(±Y)にずらされる、請求項1に記載の非対称なクラッディング構造。
  9. 前記第1の非対称なクラッディング(13)が、前記2つの側面(11s)に沿った第1の厚み(t)と、前記上面(11t)に沿った第2の厚み(t)とをさらに含み、その第1の厚み(t)が、前記第2の厚み(t)に等しくないか、または前記第2の厚み(t)より厚いかのいずれかから選択される、請求項1に記載の非対称なクラッディング構造。
  10. 前記第1の厚み(t)が、前記第2の厚み(t)の約1.2倍〜約2.0倍の範囲内にある、請求項9に記載の非対称なクラッディング構造。
  11. 前記第2の導体(15)の前記上面(15t)と、前記2つの側面(15s)の一部分のみとに接続され、前記第2の導体(15)の前記2つの側面(15s)に沿って後退し、かつ第2の距離(D2)だけ前記メモリセル(10)からオフセットされた第2の一対の極(17p)を含む第2の非対称なクラッディング(17)をさらに含む、請求項1に記載の非対称なクラッディング構造。
  12. 前記第2のオフセット距離(D2)が、前記第2の一対の極(17p)と前記第2の導体(15)の前記底面(15b)との間の距離と、前記第2の一対の極(17p)と前記メモリセル(10)上の所定の点との間の距離(T2)とからなるグループから選択された距離である、請求項11に記載の非対称なクラッディング構造。
  13. 前記メモリセル(10)上の前記所定の点が、前記メモリセル(10)のデータ層(2)を含む、請求項12に記載の非対称なクラッディング構造。
  14. 前記第1の一対の極(13p)および前記第2の一対の極(17p)が、前記データ層(2)上の前記所定の点に対して非対称に間隔をおいて配置される、請求項13に記載の非対称なクラッディング構造。
  15. 前記第2のオフセット距離(D2)が、前記第1のオフセット距離(D1)よりも長い、請求項11に記載の非対称なクラッディング構造。
  16. 前記第1のオフセット距離(D1)が、前記第2のオフセット距離(D2)よりも長い、請求項11に記載の非対称なクラッディング構造。
  17. 前記長さ方向(L)が前記メモリセル(10)の長さ(L)と実質的に直交し、前記幅方向(W)が前記メモリセル(10)の幅(W)と実質的に直交し、前記幅(W)と前記長さ(L)の比がアスペクト比(A)を定義する、請求項11に記載の非対称なクラッディング構造。
  18. 前記アスペクト比(A)が約1.0〜約1.6の範囲内にある、請求項17に記載の非対称なクラッディング構造。
  19. 前記第1の導体(11)が前記メモリセル(10)の中心(C)に対称的に配置されないように、前記第1の導体(11)が横方向(±Y)にずらされる、請求項11に記載の非対称なクラッディング構造。
  20. 前記第2の導体(15)が前記メモリセル(10)の中心(C)に対称的に配置されないように、前記第2の導体(15)が横方向(±X)にずらされる、請求項11に記載の非対称なクラッディング構造。
  21. 前記第1の導体(11)が前記メモリセル(10)の中心(C)に対称的に配置されないように、前記第1の導体(11)が横方向(±Y)にずらされ、前記第2の導体(15)が前記メモリセル(10)の中心(C)に対称的に配置されないように、前記第2の導体(15)が横方向(±X)にずらされる、請求項11に記載の非対称なクラッディング構造。
  22. 前記長さ方向(L)が前記メモリセル(10)の磁化容易軸(e)と実質的に一致し、前記幅方向(W)が前記メモリセル(10)の磁化困難軸(h)と実質的に一致する、請求項11に記載の非対称なクラッディング構造。
  23. 前記第1の非対称なクラッディング(13)および前記第2の非対称なクラッディング(17)のうちの選択された一方または両方が、前記2つの側面(11s、15s)に沿った第1の厚み(t)と、前記上面(11t、15t)に沿った第2の厚み(t)とをさらに含み、その第1の厚み(t)が、前記第2の厚み(t)に等しくないか、または前記第2の厚み(t)より厚いかのいずれかから選択される、請求項11に記載の非対称なクラッディング構造。
  24. 前記第1の厚み(t)が、前記第2の厚み(t)の約1.2倍〜約2.0倍の範囲内にある、請求項23に記載の非対称なクラッディング構造。
JP2003379703A 2002-11-13 2003-11-10 非対称に被覆された導体を有するmram Pending JP2004165661A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/293,350 US6740947B1 (en) 2002-11-13 2002-11-13 MRAM with asymmetric cladded conductor

Publications (1)

Publication Number Publication Date
JP2004165661A true JP2004165661A (ja) 2004-06-10

Family

ID=32176176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379703A Pending JP2004165661A (ja) 2002-11-13 2003-11-10 非対称に被覆された導体を有するmram

Country Status (5)

Country Link
US (1) US6740947B1 (ja)
EP (1) EP1420411A3 (ja)
JP (1) JP2004165661A (ja)
CN (1) CN100399474C (ja)
TW (1) TWI240272B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086016A (ja) * 2003-09-09 2005-03-31 Sony Corp 磁気メモリ
JP2006013498A (ja) * 2004-06-21 2006-01-12 Headway Technologies Inc 磁気トンネル接合型磁気ランダムアクセスメモリセルおよびその製造方法、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルアレイおよびその製造方法
JP2006032762A (ja) * 2004-07-20 2006-02-02 Renesas Technology Corp 磁気記憶装置およびその製造方法
JP2007067064A (ja) * 2005-08-30 2007-03-15 Toshiba Corp 磁気ランダムアクセスメモリ
JP2007141954A (ja) * 2005-11-15 2007-06-07 Toshiba Corp 磁気ランダムアクセスメモリ
JP2013243336A (ja) * 2012-01-30 2013-12-05 Quantu Mag Consultancy Co Ltd Mtj素子及びその製法、並びにmramデバイス

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724652B2 (en) * 2002-05-02 2004-04-20 Micron Technology, Inc. Low remanence flux concentrator for MRAM devices
US7064974B2 (en) * 2002-09-12 2006-06-20 Nec Corporation Magnetic random access memory and method for manufacturing the same
JP3935049B2 (ja) * 2002-11-05 2007-06-20 株式会社東芝 磁気記憶装置及びその製造方法
US6909633B2 (en) * 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM architecture with a flux closed data storage layer
US6909630B2 (en) * 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM memories utilizing magnetic write lines
US7002228B2 (en) * 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
US6963500B2 (en) * 2003-03-14 2005-11-08 Applied Spintronics Technology, Inc. Magnetic tunneling junction cell array with shared reference layer for MRAM applications
US7067866B2 (en) * 2003-03-31 2006-06-27 Applied Spintronics Technology, Inc. MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture
US6982445B2 (en) * 2003-05-05 2006-01-03 Applied Spintronics Technology, Inc. MRAM architecture with a bit line located underneath the magnetic tunneling junction device
US7020009B2 (en) * 2003-05-14 2006-03-28 Macronix International Co., Ltd. Bistable magnetic device using soft magnetic intermediary material
US6944053B2 (en) * 2003-06-17 2005-09-13 Hewlett-Packard Development Company, L.P. Magnetic memory with structure providing reduced coercivity
US7078239B2 (en) * 2003-09-05 2006-07-18 Micron Technology, Inc. Integrated circuit structure formed by damascene process
US6794697B1 (en) * 2003-10-01 2004-09-21 Hewlett-Packard Development Company, L.P. Asymmetric patterned magnetic memory
US7211874B2 (en) * 2004-04-06 2007-05-01 Headway Technologies, Inc. Magnetic random access memory array with free layer locking mechanism
KR100590563B1 (ko) * 2004-10-27 2006-06-19 삼성전자주식회사 멀티 비트 자기 메모리 소자와 그 동작 및 제조 방법
RU2310928C2 (ru) * 2004-10-27 2007-11-20 Самсунг Электроникс Ко., Лтд. Усовершенствованное многоразрядное магнитное запоминающее устройство с произвольной выборкой и способы его функционирования и производства
KR100684893B1 (ko) * 2005-03-28 2007-02-20 삼성전자주식회사 자기 메모리 장치 및 그 제조방법
JP2007059865A (ja) * 2005-07-27 2007-03-08 Tdk Corp 磁気記憶装置
US7414396B2 (en) * 2005-07-29 2008-08-19 Freescale Semiconductor, Inc. Sensor with magnetic tunnel junction and moveable magnetic field source
US7541804B2 (en) * 2005-07-29 2009-06-02 Everspin Technologies, Inc. Magnetic tunnel junction sensor
FR2889350A1 (fr) * 2005-07-29 2007-02-02 St Microelectronics Sa Memoire vive magnetique
TWI279798B (en) * 2005-08-04 2007-04-21 Ind Tech Res Inst Magnetoresistive memory arrays
US7352613B2 (en) * 2005-10-21 2008-04-01 Macronix International Co., Ltd. Magnetic memory device and methods for making a magnetic memory device
US7411816B2 (en) * 2006-01-19 2008-08-12 Honeywell International Inc. Enhanced MRAM reference bit programming structure
US7738287B2 (en) * 2007-03-27 2010-06-15 Grandis, Inc. Method and system for providing field biased magnetic memory devices
JP5389352B2 (ja) 2007-12-06 2014-01-15 ローム株式会社 半導体装置
US10418545B2 (en) 2016-07-29 2019-09-17 Tdk Corporation Spin current magnetization reversal element, element assembly, and method for producing spin current magnetization reversal element
US10439130B2 (en) 2016-10-27 2019-10-08 Tdk Corporation Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element
US10319901B2 (en) 2016-10-27 2019-06-11 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device
US11276815B2 (en) 2016-10-27 2022-03-15 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585616A (en) * 1968-12-24 1971-06-15 Ibm Information storage element
US5956267A (en) 1997-12-18 1999-09-21 Honeywell Inc Self-aligned wordline keeper and method of manufacture therefor
DE19836567C2 (de) * 1998-08-12 2000-12-07 Siemens Ag Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung
US5940319A (en) * 1998-08-31 1999-08-17 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6153443A (en) * 1998-12-21 2000-11-28 Motorola, Inc. Method of fabricating a magnetic random access memory
US6165803A (en) * 1999-05-17 2000-12-26 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6211090B1 (en) * 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
US6236590B1 (en) 2000-07-21 2001-05-22 Hewlett-Packard Company Optimal write conductors layout for improved performance in MRAM
JP4309075B2 (ja) * 2000-07-27 2009-08-05 株式会社東芝 磁気記憶装置
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
US6351409B1 (en) 2001-01-04 2002-02-26 Motorola, Inc. MRAM write apparatus and method
US6413788B1 (en) * 2001-02-28 2002-07-02 Micron Technology, Inc. Keepers for MRAM electrodes
US6404674B1 (en) 2001-04-02 2002-06-11 Hewlett Packard Company Intellectual Property Administrator Cladded read-write conductor for a pinned-on-the-fly soft reference layer
US6430085B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
US6430084B1 (en) 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with a ferromagnetic cladding layer
US6661688B2 (en) * 2001-12-05 2003-12-09 Hewlett-Packard Development Company, L.P. Method and article for concentrating fields at sense layers
US6927072B2 (en) * 2002-03-08 2005-08-09 Freescale Semiconductor, Inc. Method of applying cladding material on conductive lines of MRAM devices
US6873023B2 (en) * 2002-04-18 2005-03-29 Kabushiki Kaisha Toshiba Magnetic random access memory
US6597049B1 (en) * 2002-04-25 2003-07-22 Hewlett-Packard Development Company, L.P. Conductor structure for a magnetic memory
US6780653B2 (en) * 2002-06-06 2004-08-24 Micron Technology, Inc. Methods of forming magnetoresistive memory device assemblies

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086016A (ja) * 2003-09-09 2005-03-31 Sony Corp 磁気メモリ
JP2006013498A (ja) * 2004-06-21 2006-01-12 Headway Technologies Inc 磁気トンネル接合型磁気ランダムアクセスメモリセルおよびその製造方法、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルアレイおよびその製造方法
JP2006032762A (ja) * 2004-07-20 2006-02-02 Renesas Technology Corp 磁気記憶装置およびその製造方法
JP2007067064A (ja) * 2005-08-30 2007-03-15 Toshiba Corp 磁気ランダムアクセスメモリ
JP4557841B2 (ja) * 2005-08-30 2010-10-06 株式会社東芝 磁気ランダムアクセスメモリ、磁気ランダムアクセスメモリのデータ書き込み方法、および、磁気ランダムアクセスメモリの製造方法
JP2007141954A (ja) * 2005-11-15 2007-06-07 Toshiba Corp 磁気ランダムアクセスメモリ
JP4521354B2 (ja) * 2005-11-15 2010-08-11 株式会社東芝 磁気ランダムアクセスメモリ
JP2013243336A (ja) * 2012-01-30 2013-12-05 Quantu Mag Consultancy Co Ltd Mtj素子及びその製法、並びにmramデバイス

Also Published As

Publication number Publication date
CN1527319A (zh) 2004-09-08
US6740947B1 (en) 2004-05-25
EP1420411A2 (en) 2004-05-19
EP1420411A3 (en) 2005-04-13
TWI240272B (en) 2005-09-21
CN100399474C (zh) 2008-07-02
TW200407885A (en) 2004-05-16
US20040089904A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP2004165661A (ja) 非対称に被覆された導体を有するmram
KR100893852B1 (ko) 자기 메모리 셀
US6593608B1 (en) Magneto resistive storage device having double tunnel junction
US7502248B2 (en) Multi-bit magnetic random access memory device
JP4658102B2 (ja) 磁気的に軟らかい基準層を有する磁気抵抗素子のための読出し方法
EP1320102B1 (en) Magnetic random access memory and method of operating the same
US20050167657A1 (en) Multi-bit magnetic memory cells
US6909633B2 (en) MRAM architecture with a flux closed data storage layer
KR20050027159A (ko) 패턴화 및 안정화된 자성 차폐부를 가지는 자기 임의 접근메모리 디자인
KR100969285B1 (ko) 전자 장치, 메모리 장치, 자기 메모리 장치 어레이, 전자장치 제조 방법, 하부 구조 자기 메모리 장치 제조 방법및 상부 구조 자기 메모리 장치 제조 방법
US6661688B2 (en) Method and article for concentrating fields at sense layers
JP5147212B2 (ja) 磁気メモリセル及び磁気ランダムアクセスメモリ
JP2004096116A (ja) 1メモリセル当たり複数ビットを有する磁気記憶装置
JP2005526351A (ja) 読み出し信号が最大で且つ電磁妨害を低減するmramセルおよびアレイ構造
JP2005101605A (ja) Mramのための熱支援型切換えアレイ構成
US6735112B2 (en) Magneto-resistive memory cell structures with improved selectivity
JP2005109493A (ja) 非対称にパターニングされた磁気メモリ
US7542335B2 (en) Magnetic storage device using ferromagnetic tunnel junction element
JP2006066485A (ja) 磁気メモリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728