JP2004079002A - 不揮発性記憶装置 - Google Patents

不揮発性記憶装置 Download PDF

Info

Publication number
JP2004079002A
JP2004079002A JP2002233331A JP2002233331A JP2004079002A JP 2004079002 A JP2004079002 A JP 2004079002A JP 2002233331 A JP2002233331 A JP 2002233331A JP 2002233331 A JP2002233331 A JP 2002233331A JP 2004079002 A JP2004079002 A JP 2004079002A
Authority
JP
Japan
Prior art keywords
data
memory cell
circuit
bit line
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002233331A
Other languages
English (en)
Other versions
JP2004079002A5 (ja
Inventor
Tsukasa Oishi
大石 司
Hiroaki Tanizaki
谷崎 弘晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Renesas Technology Corp
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp, Mitsubishi Electric Engineering Co Ltd filed Critical Renesas Technology Corp
Priority to JP2002233331A priority Critical patent/JP2004079002A/ja
Priority to TW092101096A priority patent/TW584853B/zh
Priority to US10/353,913 priority patent/US6778445B2/en
Priority to CNA031105882A priority patent/CN1495798A/zh
Publication of JP2004079002A publication Critical patent/JP2004079002A/ja
Publication of JP2004079002A5 publication Critical patent/JP2004079002A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1039Read-write modes for single port memories, i.e. having either a random port or a serial port using pipelining techniques, i.e. using latches between functional memory parts, e.g. row/column decoders, I/O buffers, sense amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2227Standby or low power modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

【課題】データ書込電流によって書込まれた記憶データのレベルに応じて電気抵抗が不揮発的に変化するメモリセルを備えた不揮発性記憶装置において、多ビットデータの高速な並列入出力動作に適した周辺回路の構成を提供する。
【解決手段】選択的にアクセス対象となるメモリセルブロック5a,5bに対して、周辺回路10は、データノード10♯へ入出力されるLビット(L:2以上の整数)の入力データDINおよび出力データDOUTを書込および読出する。周辺回路10は、クロック信号CLKに応答して動作する回路群20a,20b,25a,25b,30,40,50,60,70を用いて、データ書込動作およびデータ読出動作のそれぞれを複数のステージに分割して、パイプライン処理する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
この発明は、不揮発性記憶装置に関し、より特定的には、データ書込電流によって書込まれた記憶データのレベルに応じて電気抵抗が変化するメモリセルを備えた不揮発性記憶装置に関する。
【0002】
【従来の技術】
近年、新世代の不揮発性記憶装置として、MRAM(Magnetic Random AccessMemory)デバイスが注目されている。MRAMデバイスは、半導体集積回路に形成された複数の薄膜磁性体を用いて不揮発的なデータ記憶を行ない、薄膜磁性体の各々に対してランダムアクセスが可能な不揮発性記憶装置である。
【0003】
特に、近年では磁気トンネル接合を利用した薄膜磁性体をメモリセルとして用いることによって、MRAMデバイスの性能が飛躍的に進歩することが発表されている。磁気トンネル接合を有するメモリセルを備えたMRAMデバイスについては、“A 10ns Read and Write Non−Volatile Memory Array Using a MagneticTunnel Junction and FET Switch in each Cell”, ISSCC Digest of TechnicalPapers, TA7.2, Feb. 2000.、 “Nonvolatile RAM based on Magnetic Tunnel Junction Elements”, ISSCC Digest of Technical Papers, TA7.3, Feb. 2000. 、および“A 256kb 3.0V 1T1MTJ Nonvolatile Magnetoresistive RAM”, ISSCC Digest of Technical Papers, TA7.6, Feb. 2001.等の技術文献に開示されている。
【0004】
図14は、磁気トンネル接合を有するメモリセル(以下、単に「MTJメモリセル」とも称する)の構成を示す概略図である。
【0005】
図14を参照して、MTJメモリセルは、磁気的に書込まれた記憶データのデータレベルに応じて電気抵抗が変化するトンネル磁気抵抗素子TMRと、アクセストランジスタATRとを含む。アクセストランジスタATRは、ビット線BLおよびソース電圧線SLの間に、トンネル磁気抵抗素子TMRと直列に接続される。代表的には、アクセストランジスタATRとして、半導体基板上に形成された電界効果型トランジスタが適用される。
【0006】
MTJメモリセルに対しては、データ書込時に異なった方向のデータ書込電流をそれぞれ流すためのビット線BLおよびライトディジット線WDLと、データ読出を指示するためのワード線WLと、データ読出時にトンネル磁気抵抗素子TMRを接地電圧GNDにプルダウンするためのソース電圧線SLとが設けられる。データ読出時においては、アクセストランジスタATRのターンオンに応答して、トンネル磁気抵抗素子TMRは、ソース電圧線SLおよびビット線BLの間に電気的に結合される。
【0007】
図15は、MTJメモリセルに対するデータ書込動作を説明する概念図である。
【0008】
図15を参照して、トンネル磁気抵抗素子TMRは、固定された一定の磁化方向を有する強磁性体層(以下、単に「固定磁化層」とも称する)FLと、外部からの印加磁界に応じた方向に磁化される強磁性体層(以下、単に「自由磁化層」とも称する)VLとを有する。固定磁化層FLおよび自由磁化層VLの間には、絶縁体膜で形成されるトンネルバリア(トンネル膜)TBが設けられる。自由磁化層VLは、書込まれる記憶データのレベルに応じて、固定磁化層FLと同一方向または固定磁化層FLと反対方向に磁化される。これらの固定磁化層FL、トンネルバリアTBおよび自由磁化層VLによって、磁気トンネル接合が形成される。
【0009】
トンネル磁気抵抗素子TMRの電気抵抗は、固定磁化層FLおよび自由磁化層VLのそれぞれの磁化方向の相対関係に応じて変化する。具体的には、トンネル磁気抵抗素子TMRの電気抵抗は、固定磁化層FLの磁化方向と自由磁化層VLの磁化方向とが同じ(平行)である場合に最小値Rminとなり、両者の磁化方向が反対(反平行)方向である場合に最大値Rmaxとなる。
【0010】
データ書込時においては、ワード線WLが非活性化されて、アクセストランジスタATRはターンオフされる。この状態で、自由磁化層VLを磁化するためのデータ書込電流は、ビット線BLおよびライトディジット線WDLのそれぞれにおいて、書込データのレベルに応じた方向に流される。
【0011】
図16は、データ書込時におけるデータ書込電流とトンネル磁気抵抗素子の磁化方向との関係を示す概念図である。
【0012】
図16を参照して、横軸H(EA)は、トンネル磁気抵抗素子TMR内の自由磁化層VLにおいて磁化容易軸(EA:Easy Axis)方向に印加される磁界を示す。一方、縦軸H(HA)は、自由磁化層VLにおいて磁化困難軸(HA:HardAxis)方向に作用する磁界を示す。磁界H(EA)およびH(HA)は、ビット線BLおよびライトディジット線WDLをそれぞれ流れる電流によって生じる2つの磁界の一方ずつにそれぞれ対応する。
【0013】
MTJメモリセルにおいては、固定磁化層FLの固定された磁化方向は、自由磁化層VLの磁化容易軸に沿っており、自由磁化層VLは、記憶データのレベル(“1”および“0”)に応じて、磁化容易軸方向に沿って、固定磁化層FLと平行あるいは反平行(反対)方向に磁化される。MTJメモリセルは、自由磁化層VLの2通りの磁化方向と対応させて、1ビットのデータ(“1”および“0”)を記憶することができる。
【0014】
自由磁化層VLの磁化方向は、印加される磁界H(EA)およびH(HA)の和が、図16に示されるアステロイド特性線の外側の領域に達する場合においてのみ新たに書換えることができる。すなわち、印加されたデータ書込磁界がアステロイド特性線の内側の領域に相当する強度である場合には、自由磁化層VLの磁化方向は変化しない。
【0015】
アステロイド特性線に示されるように、自由磁化層VLに対して磁化困難軸方向の磁界を印加することによって、磁化容易軸に沿った磁化方向を変化させるのに必要な磁化しきい値を下げることができる。図16に示した例のようにデータ書込時の動作点を設計した場合には、データ書込対象であるMTJメモリセルにおいて、磁化容易軸方向のデータ書込磁界は、その強度がHWRとなるように設計される。すなわち、このデータ書込磁界HWRが得られるように、ビット線BLまたはライトディジット線WDLを流されるデータ書込電流の値が設計される。一般的に、データ書込磁界HWRは、磁化方向の切換えに必要なスイッチング磁界HSWと、マージン分ΔHとの和で示される。すなわち、HWR=HSW+ΔHで示される。
【0016】
MTJメモリセルの記憶データ、すなわちトンネル磁気抵抗素子TMRの磁化方向を書換えるためには、ライトディジット線WDLとビット線BLとの両方に所定レベル以上のデータ書込電流を流す必要がある。これにより、トンネル磁気抵抗素子TMR中の自由磁化層VLは、磁化容易軸(EA)に沿ったデータ書込磁界の向きに応じて、固定磁化層FLと平行もしくは、反対(反平行)方向に磁化される。トンネル磁気抵抗素子TMRに一旦書込まれた磁化方向、すなわちMTJメモリセルの記憶データは、新たなデータ書込が実行されるまでの間不揮発的に保持される。
【0017】
図17は、MTJメモリセルからのデータ読出を説明する概念図である。
図17を参照して、データ読出動作時においては、アクセストランジスタATRは、ワード線WLの活性化に応答してターンオンする。これにより、トンネル磁気抵抗素子TMRは、接地電圧GNDへプルダウンされた状態でビット線BLと電気的に結合される。
【0018】
この状態で、ビット線BLを所定電圧へプルアップすれば、ビット線BLおよびトンネル磁気抵抗素子TMRを含む電流経路を、トンネル磁気抵抗素子TMRの電気抵抗に応じた、すなわちMTJメモリセルの記憶データのレベルに応じたメモリセル電流Icellが通過する。たとえば、このメモリセル電流Icellを所定の基準電流と比較することにより、MTJメモリセルから記憶データを読出すことができる。
【0019】
なお、データ読出時においても、トンネル磁気抵抗素子TMRにデータ読出電流が流れるが、データ読出電流Isは、一般的に上述したデータ書込電流と比較して1〜2桁程度小さくなるように設計される。したがって、データ読出時におけるデータ読出電流Isの影響によって、MTJメモリセルの記憶データが誤って書換えられる可能性は小さい。すなわち非破壊的なデータ読出が可能である。
【0020】
図18は、半導体基板上に作製されたMTJメモリセルの構造図である。
図18を参照して、半導体主基板SUB上に形成されたアクセストランジスタATRは、n型領域である不純物領域310および320と、ゲート330とを有する。不純物領域310は、コンタクトホール341に形成される金属膜を介してソース電圧線SLと電気的に結合される。
【0021】
ライトディジット線WDLは、ソース電圧線SLの上層に設けられた金属配線層に形成される。トンネル磁気抵抗素子TMRは、ライトディジット線WDLの上層側に配置される。トンネル磁気抵抗素子TMRは、ストラップ350およびコンタクトホール340に形成された金属膜を介して、アクセストランジスタATRの不純物領域320と電気的に結合される。ストラップ350は、トンネル磁気抵抗素子TMRをアクセストランジスタATRと電気的に結合するために設けられ、導電性の物質で形成される。ビット線BLは、トンネル磁気抵抗素子TMRと電気的に結合されて、トンネル磁気抵抗素子TMRの上層側に設けられる。
【0022】
データ書込電流およびデータ読出電流が流されるビット線BLおよびデータ書込電流が流されるライトディジット線WDLは、金属配線層を用いて形成される。一方、ワード線WLは、アクセストランジスタATRのゲート電圧を制御するために設けられるので、電流を積極的に流す必要はない。したがって、集積度を高める観点から、ワード線WLは、独立した金属配線層を新たに設けることなく、ゲート330と同一の配線層に、ポリシリコン層やポリサイド層などを用いて形成されるのが一般的である。
【0023】
このように、MRAMデバイスは、半導体基板上に集積配置されたMTJメモリセルによって、不揮発的なデータ記憶を実行できる。すなわち各MTJメモリセルにおいて、トンネル磁気抵抗素子TMRは、印加されるデータ書込磁界によって書換え可能な磁化方向に応じて、その電気抵抗が変化するので、トンネル磁気抵抗素子TMRの電気抵抗RmaxおよびRminと、記憶データのレベル(“1”および“0”)とをそれぞれ対応付けることによって、不揮発的なデータ記憶を実行することができる。
【0024】
また、異なるタイプの不揮発性メモリセルとして、OUM(Ovonic Unified Memories)セルも着目されつつある。OUMの概要については、たとえば「不揮発性メモリー最前線:フラッシュからOUMへ米Intelが描く将来像」,日経マイクロデバイス2002年3月号,PP65−78に開示されている。当該OUMセルは、薄膜のカルコゲナイド層および発熱素子によって構成される。当該カルコゲナイドは、データ書込電流が通過する発熱素子からの加熱パターンに応じて、アモルファス化または結晶化される。カルコゲナイド層の電気抵抗は、アモルファス状態および結晶状態でそれぞれ異なるので、アモルファス化および結晶化するための2通りの加熱パターンにそれぞれ対応する、データ書込電流の2通りの供給パターンを書込データのレベルに応じて設定することによって、OUMセルでの不揮発的なデータ記憶が実行される。
【0025】
以上説明したように、MTJメモリセルおよびOUMセルには、電流供給を伴ったデータ書込が実行され、かつ、記憶データに応じて電気抵抗が変化するという共通点が存在する。
【0026】
【発明が解決しようとする課題】
メモリデバイスの主要なアプリケーションの一つとして、多ビットデータの高速な並列入出力動作が要求されるキャッシュメモリが存在する。現状では、このようなキャッシュメモリには、CMOS(Complementary Metal Oxide Semiconductor)構成のクロスカップルラッチを基本としたSRAM(Static Random Access Memory)セルが使用されている。しかし、SRAMセルは、メモリセル1個当りの面積が大きい、あるいは電源を受けるとデータ消失する揮発性メモリであるといった問題点を有しており、その使用は必ずしも便利ではない。
【0027】
これに対して、現在一般的に用いられている不揮発性記憶装置である、EEPOROM(Electrically Erasable/Programable Read Only Memory))やフラッシュメモリ(R)は、データ書込動作(プログラム動作)に比較的時間を要するためキャッシュメモリへの適用は困難であった。
【0028】
したがって、上述したMTJメモリセルやOUMセルといった新しい方式の不揮発性メモリによって、高速動作可能なキャッシュメモリを構成することが望まれる。しかしながら、MTJセルおよびOUMセルをキャッシュメモリとして適用するためには、これらのセル特性を考慮した、多ビットデータの並列なデータ読出動作およびデータ書込動作を実行することが必要である。
【0029】
この発明は、このような問題点を解決するためになされたものであって、MTJセルやOUMセルに代表される、データ書込電流によって書込まれた記憶データのレベルに応じて電気抵抗が不揮発的に変化するメモリセルを備えた不揮発性記憶装置において、多ビットデータの高速な並列入出力動作に適した周辺回路の構成を提供することである。
【0030】
【課題を解決するための手段】
この発明に従う不揮発性記憶装置は、選択的にアクセス対象となる複数のメモリセルブロックを備え、複数のメモリセルブロックの各々は、行列状に配置され、各々の電気抵抗がデータ書込電流によって不揮発的に書込まれた記憶データに応じて変化する複数のメモリセルと、メモリセル列にそれぞれ対応して設けられる複数のビット線とを含む。不揮発性記憶装置は、複数のメモリセルブロックにそれぞれ対応して設けられ、各々が対応するメモリセルブロックでメモリセル行を選択するための複数の行選択回路と、複数のメモリセルブロックのうちの選択メモリセルブロックに対して、複数のビット線のうちの少なくとも一部を介して、データノードへ入出力される複数ビットのデータを選択メモリセル行のメモリセルの少なくとも一部へ並列に書込みおよび読出すための周辺回路とをさらに備える。周辺回路は、複数ビットのデータをメモリセル列に沿った方向に伝達する。
【0031】
好ましくは、周辺回路は、複数のメモリセルブロックにそれぞれ対応して設けられた複数のライトドライバを含み、複数のライトドライバの各々は、複数のビット線にそれぞれ対応して設けられる複数のビット線ドライバを有し、複数のビット線ドライバの各々は、対応するビット線へのデータ書込電流の供給を制御し、行選択回路は、データ読出時に、選択メモリセル行に属するメモリセルを複数のビット線とそれぞれ電気的に結合する。周辺回路は、各々が、複数のビット線のうちの自身と接続された少なくとも1本に対してデータ読出電流を供給するとともに、データ読出電流に基づいてデータ読出を実行する複数のセンスアンプと、複数のメモリセルブロックにそれぞれ対応して設けられる複数のセレクタ回路とをさらに含む。複数のセレクタ回路のうちの選択メモリセルブロックに対応する1つは、データ読出動作時には、対応するメモリセルブロック中の複数のビット線の少なくも一部と複数のセンスアンプとの間を選択的に接続し、データ書込動作時には、データノードへ入力された複数ビットのデータを対応するメモリセルブロック中の複数のビット線ドライバの一部へ選択的に伝達する。
【0032】
さらに好ましくは、複数のメモリセルブロックの各々は、データ読出動作時における複数のメモリセルの比較対象として設けられた複数のリファレンスセルをさらに含み、複数のメモリセルブロックのうちの1つの非選択メモリセルブロックにおいて、複数のビット線は、複数のリファレンスセルとそれぞれ電気的に結合され、セレクタ回路は、複数のセンスアンプの各々を、選択メモリセルブロック中の複数のビット線のうちの1本および1つの非選択ブロック中の複数のビット線のうちの1本と接続する。
【0033】
あるいは好ましくは、不揮発性記憶装置は、メモリセル行およびメモリセル列を選択するための情報を一時的に保持するアドレスラッチ回路をさらに備え、周辺回路は、選択メモリセルブロックとデータノードの間で伝達される複数ビットのデータを一時的に保持するデータラッチ回路を含み、データ読出動作およびデータ書込動作のそれぞれを複数のサイクルに分割して、各サイクルをパイプライン処理によって実行する。
【0034】
この発明の他の構成に従う不揮発性記憶装置は、行列状に配置され、各々の電気抵抗がデータ書込電流によって不揮発的に書込まれた記憶データに応じて変化する複数のメモリセルと、メモリセル行およびメモリセル列を選択するための一時的に情報を保持するアドレスラッチ回路と、メモリセル列にそれぞれ対応して設けられる複数のビット線と、アドレスラッチ回路に保持された情報に応じて、メモリセル行を選択する行選択回路と、データノードへ入出力される複数ビットのデータを、複数のビット線のうちの少なくとも一部を介して、選択メモリセル行のメモリセルの少なくとも一部の選択メモリセルに対して並列に書込みおよび読出すための周辺回路とを備え、周辺回路は、選択メモリセルおよびデータノードの間で伝達される複数ビットのデータを一時的に保持するデータラッチ回路を含み、かつ、データ読出動作およびデータ書込動作のそれぞれを複数のサイクルに分割して、各サイクルをパイプライン処理によって実行する。
【0035】
好ましくは、複数のサイクルは、所定周期を有するクロック信号に同期して順次実行される。
【0036】
また好ましくは、周辺回路は、各々が複数のビット線のうちの自身と接続された1本へデータ読出電流を供給するとともに、データ読出電流に基づいてデータ読出を実行する複数のセンスアンプと、アドレスラッチ回路に保持された情報に応じて、データ読出動作時に、複数のビット線の少なくとも一部と複数のセンスアンプとの間を選択的に接続するセレクタ回路とを含み、行選択回路は、データ読出時に、選択メモリセル行に属するメモリセルを複数のビット線のそれぞれと電気的に結合し、複数のサイクルは、複数のビット線の各々をデータ読出動作の前とは異なる所定電圧に設定する第1のサイクルと、第1のサイクルの後に実行される第2のサイクルとを含み、第2のサイクルにおいて、行選択回路は、選択メモリセル行に属するメモリセルと複数のビット線とをそれぞれ電気的に結合する。
【0037】
さらに好ましくは、不揮発性記憶装置は、データ読出動作時における複数のメモリセルの比較対象として設けられた複数のリファレンスセルをさらに備え、第1のサイクルにおいて、複数のビット線の各々は、複数のリファレンスセルと電気的に結合された状態でデータ読出電流の供給を受ける。
【0038】
あるいは、さらに好ましくは、複数のサイクルは、第2のサイクルの後に実行される第3のサイクルをさらに含み、第3のサイクルにおいて、行選択回路は、第2のサイクルとは異なるメモリセル行を選択して、異なるメモリセル行に属するメモリセルを複数のビット線とそれぞれ電気的に結合する。
【0039】
また好ましくは、周辺回路は、複数のビット線にそれぞれ対応して設けられ、各々が、対応するビット線に対するデータ書込電流の供給を制御する複数のビット線ドライバと、データ書込動作時に、ビット線ドライバのうちのアドレスラッチ回路に保持された情報に応じて選択された一部に対して、データノードへ入力された複数ビットのデータを伝達するセレクタ回路とを含み、複数のサイクルは、複数のビット線ドライバによるデータ書込電流の供給を準備するための第1のサイクルと、第1のサイクルの後に実行される第2のサイクルとを含み、第2のサイクルにおいて、セレクタ回路によって選択されたビット線ドライバは、対応するビット線のそれぞれへデータ書込電流を供給する。
【0040】
さらに好ましくは、複数のサイクルは、第2のサイクルの後に実行される第3のサイクルをさらに含み、第3のサイクルにおいて、行選択回路が第2のサイクルとは異なるメモリセル行を選択した状態の下で、セレクタ回路によって選択されたビット線ドライバは、対応するビット線のそれぞれへデータ書込電流を供給する。
【0041】
この発明の他の構成に従う不揮発性記憶装置は、行列状に配置され、各々の電気抵抗がデータ書込電流によって不揮発的に書込まれた記憶データに応じて変化する複数のメモリセルと、メモリセル行を選択するための行選択回路と、メモリセル列にそれぞれ対応して設けられる複数のビット線と、1回のデータ書込動作でのLビット(L:2以上の整数)の入力データを、複数のビット線を介して、複数のメモリセルのうちの選択されたL個へ書込むための周辺回路とを備え、周辺回路は、Lビットの入力データを一時的に保持するためのデータラッチ回路を含み、1回のデータ書込動作において、異なるM個(Mは、Lの約数であり、かつ、2≦M≦Lである整数)ずつのメモリセルに対してMビットの入力データを並列にそれぞれ書込むための(L/M)回の単位データ書込を実行する。
【0042】
好ましくは、周辺回路は、複数のビット線にそれぞれ対応して設けられ、各々が対応するビット線へのデータ書込電流の供給を制御する複数のビット線ドライバと、単位データ書込のそれぞれにおいて、複数のビット線ドライバのうちのM個を選択するためのセレクタ回路と、単位データ書込のそれぞれにおいて、セレクタ回路によって選択されたM個のビット線ドライバに対して、データラッチ回路に保持された入力データのうちのMビットにそれぞれ対応する特性を有するデータ書込電流の供給を指示するドライバ制御回路とをさらに含む。
【0043】
さらに好ましくは、複数のビット線ドライバは、M個のグループに分割され、
ドライバ制御回路は、単位データ書込のそれぞれにおいて、データラッチ回路に保持された入力データのうちのMビットに基づいてM組の書込制御信号を生成する書込デコード回路を有し、セレクタ回路は、M個のグループのそれぞれから1個ずつビット線ドライバを選択するとともに、書込デコード回路からのM組の書込制御信号を選択したM個のビット線ドライバに対して並列にそれぞれ伝達する。
【0044】
あるいは、さらに好ましくは、行選択回路は、単位データ書込のそれぞれにおいて異なるメモリセル行を選択し、1回のデータ書込動作において、ドライバ制御回路によるM個のビット線ドライバの選択は固定される。
【0045】
また好ましくは、データ書込電流は、書込まれるデータのレベルに応じた方向を有し、複数のメモリセルの各々は、固定された磁化方向を有する第1の磁性体層と、データ書込電流によって生じた磁界に応じた方向に磁化される第2の磁性体層と、第1および第2の磁性体層の間に形成された絶縁膜とを有する。
【0046】
あるいは好ましくは、データ書込電流の印加パターンは、書込まれるデータのレベルに応じて制御され、複数のメモリセルの各々は、データ書込電流によって発熱する加熱素子と、加熱素子によって加熱されて、データ書込電流の印加パターンに応じて異なる2つの相状態の一方に変化する相変化素子とを有する。
【0047】
【発明の実施の形態】
以下において、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中における同一符号は、同一または相当部分を示すものとする。
【0048】
[実施の形態1]
図1は、本発明の実施の形態に従う不揮発性記憶装置の代表例として示されるMRAMデバイス1の全体構成を示す概略ブロック図である。
【0049】
なお、以下の説明で明らかなように、本願発明の適用は、MTJメモリセルを備えたMRAMデバイスに限定されるものではなく、データ書込電流によって書込まれた記憶データのレベルに応じて電気抵抗が不揮発的に変化するメモリセルを備える不揮発性記憶装置に共通に適用することができる。
【0050】
図1を参照して、MRAMデバイス1は、選択的にアクセス対象となるメモリセルブロック5a,5bと、メモリセルブロック5aに対応して設けられる行選択回路11a,12aおよびアドレスラッチ回路14a,15aと、メモリセルブロック5bに対応して設けられる行選択回路11b,12bおよびアドレスラッチ回路14b,15bと、列デコード回路16とを備える。
【0051】
メモリセルブロック5a,5bの各々は、行列状に配置された複数のMTJメモリセルMCと、データ読出時にMTJメモリセルの比較対象として設けられるリファレンスセルRMCとを有する。リファレンスセルRMCは、MTJメモリセルMCとメモリセル列を共有するように、リファレンスセル行を形成するように配置される。
【0052】
MTJメモリセルの行にそれぞれ対応してワード線WLおよびライトディジット線WDLが配置され、メモリセル列にそれぞれ対応してビット線BLが配置される。ビット線BLは、同一のメモリセル列に属するMTJメモリセルMCおよびリファレンスセルRMCによって共有される。リファレンスセル行に対しては、ワード線WLおよびライトディジット線WDLとはそれぞれ独立に、リファレンスワード線RWLおよびダミーライトディジット線WDLdが配置される。
【0053】
アドレスラッチ回路14a,14b,15a,15bは、ロウアドレスRAを一時的に保持する。行選択回路11a,12aは、アドレスラッチ回路14a,15aにラッチされたロウアドレスに基づいてメモリセルブロック5aにおける行選択を実行する。同様に、行選択回路11b,12bは、アドレスラッチ回路14b,15bにラッチされたロウアドレスに基づいてメモリセルブロック5aにおける行選択を実行する。あるいは、アドレスラッチ回路14a,15a,14b,15bに、ロウアドレスRAのプリデコード結果あるいはデコード結果をラッチする構成としてもよい。
【0054】
列デコード回路16は、コラムアドレスCAを一時的に保持するラッチ機能を有するとともに、保持されたコラムアドレスに基づいてメモリセルブロック5a,5bにおける列選択、すなわちビット線選択を実行する。
【0055】
MRAMデバイス1は、データノード10♯へ入出力されるLビット(L:2以上の整数)の入力データDINおよび出力データDOUTを、メモリセルブロック5aおよび5bのうちの選択された一方(以下、「選択メモリセルブロック」とも称する)に対して入出力するための周辺回路10をさらに備える。
【0056】
周辺回路10は、メモリセルブロック5aに対応して設けられるライトドライバ20aおよびセレクタ回路25aと、メモリセルブロック5bに対応して設けられるライトドライバ20bおよびセレクタ回路25bと、ライトドライバ制御回路30と、センスアンプ部40と、転送ラッチ回路50と、データバッファ60と、転送バッファ70とを含む。周辺回路10を構成する各回路は、クロック信号CLKに応答して動作する。
【0057】
セレクタ回路25aおよび25bは、列デコード回路16に従って、メモリセルブロック5aおよび5bのそれぞれにおいて、ビット線BLの少なくとも一部を選択する。
【0058】
データバッファ60は、データノード10♯に入力された入力データDINを一時的に保持する。転送バッファ70は、選択メモリセルブロックからの読出データを出力データDOUTとしてデータノード10♯へ出力する。
【0059】
周辺回路10は、セレクタ回路25aおよび25bによって選択されたビット線を介して、選択メモリセルブロック中の選択メモリセル行に属する複数のメモリセルの少なくとも一部に対して、入力データDINの書込および出力データDOUTの読出を実行する。なお、後の説明で明らかになるように、周辺回路10は、選択メモリセルブロックとデータノード10♯の間で、入力データDINおよび出力データDOUTを、ビット線方向すなわちメモリセル列に沿った方向に伝達している。
【0060】
図2は、MRAMデバイス1におけるデータ読出動作に関する構成を説明するブロック図である。図2においては、周辺回路10のうち、データ読出動作に関連する回路群が主に示される。
【0061】
以降においては、メモリセルブロック5aが選択メモリセルブロックである場合を想定して説明するが、メモリセルブロック5bの構成およびこれに対するデータ読出動作についても、メモリセルブロック5aと同様である。
【0062】
図2を参照して、メモリセルブロック5aには、MTJメモリセルMCが行列状に配列される。既に説明したように、メモリセル行にそれぞれ対応してワード線WLおよびライトディジット線WDLが配置され、メモリセル列にそれぞれ対応して、ビット線BLおよびソース電圧線SLが配置される。
【0063】
MTJメモリセルMCの各々は、図14で説明したのと同様の構成を有し、対応するビット線BLおよびソース電圧線SLの間に直列に接続される、トンネル磁気抵抗素子TMRおよびアクセストランジスタATRを含む。
【0064】
トンネル磁気抵抗素子TMRは、既に説明したように、磁化方向に応じた電気抵抗を有する。すなわち、各MTJメモリセルにおいて、トンネル磁気抵抗素子TMRは、Hレベル(“1”)およびLレベル(“0”)のいずかのデータを記憶するために所定方向に沿って磁化されて、その電気抵抗RmaxおよびRminのいずれかに設定される。
【0065】
各ソース電圧線SLは、接地電圧GNDに結合される。これにより、各アクセストランジスタATRのソース電圧は、接地電圧GNDに固定される。これにより、対応するワード線WLがHレベルに活性化される選択行において、トンネル磁気抵抗素子TMRの各々は、接地電圧GNDにプルダウンされた状態で、ビット線BLと接続される。
【0066】
さらに、メモリセルブロック5aは、リファレンスセル行を形成するように配置された複数のリファレンスセルRMCをさらに含む。リファレンスセルRMCは、データ読出時における選択メモリセルの比較対象として設けられる。リファレンスセルRMCの各々は、MTJメモリセルMCと同様の構成および特性を有する。したがって、リファレンスセルRMCは、有効ビットとして作用するMTJメモリセルMCに加えて、1行分余分に設けたMTJメモリセルによって構成できる。
【0067】
このように、リファレンスセルRMCをMTJメモリセルMCと同様の構成および形状とすることによって、リファレンスセルを作製するための特別の設計や製造工程が不要となる。したがって、製造工程の複雑化によるチップ面積の増大およびメモリアレイの加工マージンの低下等といった問題を招くことなく、リファレンスセルを製造することができる。特に、メモリセルブロック5a,5b内での構造の連続性を確保できるので、また、MTJメモリセルMCおよびリファレンスセルRMCの製造特性の安定化にも寄与できる。
【0068】
各リファレンスセルRMCは、所定レベルの記憶データを固定的に保持する必要がある。すなわち、各リファレンスセルRMCについては、製造時に当該所定レベルに相当する方向に磁化すれば、通常動作時にデータ書込を行なう必要はない。特に、当該所定レベルをMTJメモリセルでの電気抵抗Rminに対応付けると、各リファレンスセルRMCにおいて、図15等に示した固定磁化層FLおよび自由磁化層VLを同一方向に磁化すればよいため、製造時の磁化工程を効率化できる。したがって、以下では、各リファレンスセルRMCは、電気抵抗Rminに対応するレベルを記憶しているものとする。
【0069】
リファレンスセルRMCは、MTJメモリセルMCとメモリセル列を共有するように配置される。既に説明したように、リファレンスセル行に対応してリファレンスワード線RWLおよびダミーライトディジット線WDLdが配置される。
【0070】
したがって、リファレンスセルRMCの各々は、対応するビット線BLおよびソース電圧線SLの間に直列に接続される、トンネル磁気抵抗素子TMRおよびアクセストランジスタATRを有する。各リファレンスセルRMCにおいて、アクセストランジスタATRのゲートはリファレンスワード線RWLと接続される。
【0071】
行選択回路11aは、奇数行に対応するワード線ドライバ82およびワード線選択部80aを有する。これに対して、行選択回路12aは、偶数行に対応するワード線ドライバ82、リファレンスワード線RWLに対応するワード線ドライバ82Rおよびワード線選択部81aを有する。このように、ワード線ドライバ82を1行おきに交互配置することで、行選択回路11a,12aの回路素子を効率的に配置できる。
【0072】
アドレスラッチ回路14a,15aの各々は、所定周期を有するクロック信号CLKの活性化エッジに応答して、入力されたロウアドレスRAを取込んでラッチする。ワード線選択部80aは、アドレスラッチ回路14aにラッチされたロウアドレスRAに基づいて、奇数行のワード線WLを選択的に活性化する。同様に、ワード線選択部81aは、アドレスラッチ回路15aにラッチされたロウアドレスRAに基づいて、偶数行のワード線WLを選択的に活性化する。選択メモリセルブロック5a全体では、ワード線選択部80a,81aによって、複数のワード線のうちの1本が活性化される。
【0073】
図3は、行選択回路のうちの、ワード線選択に関連する部分の構成を示す回路図である。
【0074】
図3を参照して、アドレスラッチ回路15aは、ロウアドレスRAのそれぞれのビットに対応して設けられる複数のラッチユニット90を有する。各ラッチユニット90は、クロック信号CLKの活性化エッジに応答して、ロウアドレスRAの対応するビットを取込んで一時的に保持する。ワード線選択部80aは、ラッチユニット90において保持されたロウアドレスRAのそれぞれのビットをデコードして、リファレンスセル行に対応するデコード信号Rd♯およびそれぞれのメモリセル行に対応するデコード信号Rdを生成する。
【0075】
データ読出時において、デコード信号Rdは、選択メモリセルブロックの選択メモリセル行においてLレベルに活性化され、それ以外のメモリセル行においてHレベルへ非活性化される。
【0076】
ワード線ドライバ82は、電源電圧Vcc♯および対応するワード線WLの一端側の間に接続されたPチャネルMOSトランジスタ83と、接地電圧GNDおよび対応するワード線WLの一端側の間に接続されたNチャネルMOSトランジスタ84とを有する。トランジスタ83および84の各ゲートには対応するデコード信号Rdが入力される。したがって、選択メモリセル行においては、トランジスタ83がターンオンしトランジスタ84がターンオフするので、ワード線WLは、電源電圧Vcc♯と接続されてHレベルへ活性化される。一方、それ以外のメモリセル行においては、トランジスタ84がターンオンしトランジスタ83がターンオフするので、ワード線WLは、接地電圧GNDと接続されてLレベルに非活性化される。
【0077】
同様に、ワード線ドライバ82Rは、電源電圧Vcc♯およびリファレンスワード線RWLの一端側の間に接続されたPチャネルMOSトランジスタ83Rと、接地電圧GNDおよびリファレンスワード線RWLの一端側の間に接続されたNチャネルMOSトランジスタ84Rとを有する。トランジスタ83Rおよび84Rの各ゲートには、デコード信号Rd♯が入力される。リファレンスワード線RWLは、デコード信号Rd♯の活性化(Lレベル)に応答して、電源電圧Vcc♯と接続されてHレベルへ活性化される。選択メモリセルブロックおよび非選択メモリセルブロックのそれぞれにおけるリファレンスワード線RWLの活性化制御については、後程詳細に説明する。また、アドレスラッチ回路14a、ワード線選択部80aおよび奇数行に対応するワード線ドライバ82についても、図3に示したアドレスラッチ回路15a、ワード線選択部81aおよび偶数行に対応するワード線ドライバ82のそれぞれと同様の構成および機能を有する。
【0078】
再び図2を参照して、対応するワード線WLが活性化された選択メモリセル行のMTJメモリセルは、ビット線BLとそれぞれ電気的に結合される。これに対して、リファレンスセルRMCは、リファレンスワード線RWLの活性化に応答して、ビット線BLとそれぞれ電気的に結合される。
【0079】
なお、ライトディジット線WDLに対応してライトディジット線ドライバ85が設けられ、ビット線BLの両端にそれぞれ対応して、ライトドライバ20aを構成するビット線ドライバWDVaおよびWDVbが配置されるが、詳細な構成および動作については、データ書込動作に関する回路群とともに詳細に説明する。
【0080】
センスアンプ部40は、1回のデータ読出動作における出力データDOUTのビット数以上、すなわちL個以上のセンスアンプを有する。言い換えれば、センスアンプ部40は、少なくともL個のセンスアンプを総括的に表記したものである。
【0081】
列デコード回路16は、読出制御信号RDSの活性化に応答してコラムアドレスCAを取込んでラッチし、ラッチしたコラムアドレスに応じてセレクタ回路25aおよび25bの接続を制御する。すなわちセレクタ回路25aおよび25bは、1回のデータ読出動作時において、列デコード回路16にラッチされたコラムアドレスCAに基づいて、ビット線BLとセンスアンプ部40との間の接続を制御する。
【0082】
データ読出時において、セレクタ回路25aは、列デコード回路16の指示に応じて、メモリセルブロック5a中のビット線BLのうちのL本をL個のセンスアンプと接続する。同様に、セレクタ回路25bは、列デコード回路16の指示に応じて、メモリセルブロック5b中のビット線BLのうちのL本をL個のセンスアンプと接続する。この結果、L個のセンスアンプの各々は、選択メモリセルブロック中のL本のビット線(選択ビット線)の1本および非選択メモリセルブロック中のL本のビット線の1本と接続される。
【0083】
各センスアンプは、接続されたビット線の各々を、同等の駆動力でプルアップする。したがって、選択メモリセルブロックの選択ビット線には、選択メモリセルへのアクセスに基づいて選択メモリセルの電気抵抗(RmaxまたはRmin)に応じた電圧および電流が生じる。これに対して、非選択メモリセルブロックのビット線上には、リファレンスセルへのアクセスに基づいて、リファレンスセルの電気抵抗(Rmin)に応じた電圧および電流が生じる。
【0084】
なお、以下においては、選択メモリセルブロックの選択ビット線上の電圧および電流を、V(BL)およびI(BL)でそれぞれ示し、非選択メモリセルのビット線上の電圧および電流をV(BLr)およびI(BLr)でそれぞれ示すものとする。
【0085】
図4および図5は、各センスアンプにおける増幅動作を説明する第1および第2の概念図である。
【0086】
図4を参照して、選択ビット線電圧V(BL)は、選択メモリセルの記憶データに応じて、V(Rmax)およびV(Rmin)のいずれか一方に落ち着く。これに対して、非選択メモリセルブロックのビット線電圧V(BLr)は、電圧V(Rmin)と同等のレベルに落ち着く。
【0087】
各センスアンプは、非選択メモリセルブロックのビット線と接続された一方の入力ノードにおいて、電圧オフセットΔVを与えるような構成を有している。入力ノードの一方に対して電圧オフセットを付与するセンスアンプ構成は一般的であるので、その具体的な構成については省略する。ここで、電圧オフセットΔVは、下記(1)式を満たすように定められる。
【0088】
V(Rmin)+ΔV<V(Rmax) …(1)
あるいは、電流センスアンプをセンスアンプ部40に用いることもできる。電流センスアンプを配置した場合には、図5に示すようなオフセットを与える必要がある。
【0089】
図5を参照して、選択ビット線電流I(BL)は、選択メモリセルの記憶データに応じて、I(Rmax)およびI(Rmin)のいずれか一方に落ち着く。これに対して、非選択メモリセルブロックのビット線電流I(BLr)は、電流I(Rmin)と同等のレベルに落ち着く。
【0090】
各センスアンプは、非選択メモリセルブロックのビット線と接続された一方の入力ノードにおいて、電流オフセットΔIを与えるような構成を有している。このような電流オフセットは、たとえば、入力ノード間に所定の入力インピーダンス差を設けることで実現できるが、そのセンスアンプ構成は一般的であるので、詳細な回路構成については省略する。
ここで、電流オフセットΔIは、下記(2)式を満たすように定められる。
【0091】
I(Rmin)−ΔI>I(Rmax) …(2)
このようにして、L本の選択ビット線とそれぞれ接続されたL個のセンスアンプによって、L個の選択メモリセルの記憶データのそれぞれ対応した電圧信号を生成することができる。
【0092】
あるいは、センスアンプ部40を各メモリセルブロックにおけるビット線本数と同数のセンスアンプで構成し、セレクタ回路25a,25bと同様に、列デコード回路16の指示に応じて、これらのセンスアンプのうちのL個を選択的に動作させる構成としてもよい。
【0093】
再び図2を参照して、センスアンプ部40中のL個のセンスアンプによって並列に読出されたLビットの読出データは、転送ラッチ回路50によってラッチされ、転送バッファ70へ並列に伝達される。転送バッファ70は、Lビットの出力データDOUTをデータノード10♯へ並列に出力する。
【0094】
図6は、実施の形態1に従うMRAMデバイスにおけるデータ読出動作を説明する動作波形図である。
【0095】
図6を参照して、クロック信号CLKは、所定周期でHレベル(活性状態)および非活性状態(Lレベル)を繰返す。クロック信号CLKの活性化エッジは、それぞれ時刻T1〜T6,…で示され、対応するクロック信号周期は、サイクル151〜155,…で示される。時刻T1において、リードコマンドが入力されると、読出制御信号RDSがHレベルに設定されるとともに、クロック活性化エッジである時刻T1〜T4において、リードクロックRDCがHレベルに活性化される。
【0096】
以下に説明するように、周辺回路10におけるデータ読出動作は、クロック信号CLKの各サイクルに対応して複数のステージ(段階)に分割されて、パイプライン処理で実行される。
【0097】
時刻T1において、リードクロックRDCに応答して、ロウアドレスRA1およびコラムアドレスCA0がアドレスラッチ回路14a,15aおよび列デコード回路16内にラッチされる。
【0098】
サイクル151においては、時刻T1におけるアドレスラッチ内容に基づいて、行選択および列選択が実行される。具体的には、図3に示したワード線選択部80a,81aや列デコード回路16におけるデコード処理が実行される。
【0099】
セレクタ回路25aおよび25bは、列デコード回路16のデコード結果に応じて、選択メモリセルブロック5aおよび非選択メモリセルブロック5bのそれぞれにおいて、コラムアドレスCA0に対応するL本ずつのビット線を選択して、センスアンプ部40中のL個のセンスアンプとそれぞれ接続する。
【0100】
さらに、選択メモリセルブロック5aおよび非選択メモリセルブロック5bの両方において、リファレンスワード線RWLがHレベルへ活性化される。これに応答して、メモリセルブロック5a,5bの各々において、データ読出動作前に接地電圧GNDにプリチャージされていた各ビット線BLは、リファレンスセルRMCの電気抵抗(Rmin)に応じた所定電圧に初期設定される。
【0101】
次のサイクル152が開始される時刻T2までに、選択メモリセルブロック5aにおいてリファレンスワード線RWLは非活性化されるが、非選択メモリセルブロック5bのリファレンスワード線RWLは、継続的に活性化される。選択メモリセルブロックおよび非選択メモリセルブロックの判別は、時刻T1にラッチされたアドレス情報に基づいて実行される。
【0102】
次のサイクル152(時刻T2〜T3)においては、時刻T1でラッチされたロウアドレスRA1に対応するワード線WLs(1)が活性化される。この結果、選択メモリセルブロック5aの選択ビット線には、選択メモリセルの記憶データRmaxまたはRminに応じた電圧(電流)が発生する。一方、図示しない非選択ブロックの対応するビット線には、リファレンスセルRMCの電気抵抗(Rmin)に応じた電圧(電流)が維持されている。したがって、これらのビット線の電圧差(電流差)を増幅して、センスアンプ部40はLビットの並列なデータ読出を実行する。
【0103】
センスアンプ部40による読出データは、サイクル152の途中において、有効な振幅まで増幅される。転送ラッチ回路50でのラッチデータLD(1)は、この時点から有効となる。
【0104】
また、データ読出動作時には、コラムアドレスCAが固定される(CA=CA0)一方で、ロウアドレスRAは、各サイクルごとにバースト的に更新される。図10においては、このようなバースト動作の最初の4回分が示され、ロウアドレスRA1〜RA4に対応するデータ読出が代表的に図示される。
【0105】
サイクル152が開始される時刻T2では、新たなロウアドレスRA2が、アドレスラッチ回路14a,15aにラッチされ、サイクル152において、ロウアドレスRA2に対応する行選択処理が実行される。
【0106】
転送ラッチ回路50にラッチされた有効なラッチデータLD(1)は、次のクロック活性化エッジ(時刻T3)に応答して、転送バッファ70に転送される。したがって、次のサイクル153(時刻T3〜T4)において、転送バッファ70は、ロウアドレスRA1およびコラムアドレスCA0に対応する先頭のLビットの読出データOD(1)を出力する。
【0107】
このように、データ読出動作は、サイクル151〜153にそれぞれ相当する第1〜第3のステージに分割されてパイプライン処理される。第1のステージ(サイクル151)においては、実質的なアレイ動作は実行されす、アドレス情報の取込みおよびラッチ、デコード処理、ならびにビット線の初期電圧設定が実行される。第2のステージ(サイクル152)においては、選択ワード線が活性化されてビット線電圧(電流)が選択メモリセルの記憶データに応じて変化し、当該ビット線電圧(電流)に基づいたセンスアンプ部での増幅動作が実行される。さらに、第3のステージ(サイクル153)において、第1のステージで取込まれたアドレス情報に対応する読出データが出力される。
【0108】
サイクル153においては、ロウアドレスRA1に対応する上記第3ステージの処理と並行して、ロウアドレスRA2に対応する上記第2ステージの処理およびロウアドレスRA3に対応する上記第2ステージの処理が実行される。すなわち、サイクル153では、ロウアドレスRA2に対応するワード線が活性化される。また、サイクル153が開始される時刻T3では、新たなロウアドレスRA3が、アドレスラッチ回路14a,15aにラッチされ、サイクル153において、ロウアドレスRA3に対応する行選択処理が実行される。
【0109】
サイクル154以降においても、同様のパイプライン処理が実行されるので、サイクル154〜156において、ロウアドレスRA2〜RA4にそれぞれ対応するワード線WLs(2)〜WLs(4)がそれぞれ活性化されて、サイクル152〜154でそれぞれ取込まれたロウアドレスRA2〜RA4に対応する読出データOD(2)〜OD(4)がそれぞれ出力される。
【0110】
このように、周辺回路10において、セレクタ回路25a,25bによるビット線の接続選択によって、多ビットの読出データを列方向(ビット線)に沿って効率的に出力することができる。
【0111】
また、周辺回路10でのデータ読出動作を複数のステージに分割してパイプライン処理化しているので、クロック信号CLKに応答した高周波化処理によって、データ読出を高速化できる。特に、アドレス選択が確定する前の最初のサイクル(図6におけるサイクル151)において、選択メモリセルブロックおよび非選択メモリセルブロックのビット線をプリチャージ電圧GNDから選択メモリセルへのアクセス時に発生する電圧に近いレベルに初期設定してから選択メモリセルへアクセスするので、データ読出動作の高速化が可能となる。
【0112】
次に、データ書込動作およびデータ書込動作に関連する回路群の構成について説明する。
【0113】
図7は、MRAMデバイス1におけるデータ書込動作に関する構成を説明するブロック図である。図7においては、周辺回路10のうち、データ書込動作に関連する回路群が主に示される。
【0114】
以降においては、メモリセルブロック5aが選択メモリセルブロックである場合を想定して説明するが、メモリセルブロック5bの構成およびこれに対するデータ書込動作についても、メモリセルブロック5aと同様である。
【0115】
図7を参照して、ライトドライバ20aは、各ビット線BLの両端にそれぞれ対応して配置されたビット線ドライバWDVaおよびWDVbを有する。各メモリセル列において、ビット線ドライバWDVaは、書込制御信号WTa0およびWTa1に応じて、対応するビット線BLの一端側を電源電圧Vccおよび接地電圧GNDの一方で駆動する。同様に、ビット線ドライバWDVbは、書込制御信号WTb0およびWTb1に応じて、対応するビット線BLの一端側を電源電圧Vccおよび接地電圧GNDの一方で駆動する。
【0116】
ビット線ドライバWDVaおよびWDVbで用いられる電源電圧Vccは、十分なデータ書込電流を供給するために、データ読出回路系の電源電圧Vcc♯よりも高い電圧に設定してもよい。この場合には、電圧発生回路95によって、電源電圧Vcc♯を昇圧して、データ書込回路系用の電源電圧Vccが生成される。
【0117】
また、ライトディジット線WDLのそれぞれに対応して、ライトディジット線ドライバ85が設けられる。
【0118】
図8は、行選択回路のうちの、ライトディジット線選択に関連する部分の構成を示す回路図である。
【0119】
図8を参照して、アドレスラッチ回路15aは、ワード線選択部81aと共有される。ライトディジット線選択部81♯aは、アドレスラッチ回路15aに保持されたロウアドレスRAのそれぞれのビットをデコードして、デコード信号Rd´を生成する。
【0120】
データ書込時に、デコード信号Rd´は、選択メモリセルブロックの選択メモリセル行においてLレベルに活性化され、それ以外のメモリセル行においてHレベルへ非活性化される。
【0121】
ライトディジット線ドライバ85は、電源電圧Vccおよび対応するライトディジット線WDLの一端側の間に接続されたPチャネルMOSトランジスタ86を有する。ライトディジット線WDLの他端側は、接地電圧GNDと接続される。トランジスタ83および84の各ゲートには対応するデコード信号Rd´が入力される。したがって、選択メモリセル行においては、トランジスタ86がターンオンして、ライトディジット線WDLには、ライトディジット線ドライバ85から接地電圧GNDへ向かう方向に、データ書込電流が流される。一方、それ以外のメモリセル行においては、トランジスタ86がターンオフされるので、ライトディジット線WDLにデータ書込電流は流されない。ライトディジット線WDLを流れるデータ書込電流は、各MTJメモリセルMCにおいて磁化困難軸方向に沿った磁界を発生する。
【0122】
さらに、リファレンスセル行に対応して、ライトディジット線ドライバ85Rが設けられる。既に説明したように、リファレンスセルRMCに対しては、通常動作時にデータ書込を実行する必要がない。したがって、ダミーライトディジット線WDLdおよびライトディジット線ドライバ85Rの配置は本来必要ない。しかし、メモリセルブロック内およびその周辺領域で形状の連続性を確保して製造プロセスを容易化するために、ダミーライトディジット線WDLdおよび、ライトディジット線ドライバ85と同一構成のライトディジット線ドライバ85Rが形状ダミーとして設けられる。
【0123】
ライトディジット線ドライバ85Rは、電源電圧Vccおよびライトディジット線WDLの一端側の間に接続されたPチャネルMOSトランジスタ86Rを有する。トランジスタ86Rのゲート電圧は、ライトディジット線選択部81♯aによってHレベルへ固定されるので、トランジスタ86Rは、オフ状態を維持する。
【0124】
また、ディジット線選択部80♯aおよび奇数行に対応するディジット線ドライバ85についても、図8に示したディジット線選択部81♯aおよび偶数行に対応するディジット線ドライバ85のそれぞれと同様の構成および機能を有する。
【0125】
再び図7を参照して、データ書込時には、周辺回路10のうち、セレクタ回路25a,25b、ライトドライバ制御回路30およびデータバッファ60が使用される。ライトドライバ制御回路30は、データ入力バッファから伝達されたLビットの入力データDINを一時的に保持するためのデータラッチ回路32と、データラッチ回路32に保持されたデータに基づいて、書込制御信号WTa0,WTa1,WTb0,WTb1を生成するライトドライバデコーダ31とを含む。
【0126】
図9は、データ書込動作時における周辺回路の動作を説明するブロック図である。
【0127】
図9を参照して、メモリセルブロック5a,5bの各々は、256個のメモリセル列、すなわち256本のビット線を有するものとする。これに対して1回のデータ書込動作での入力データDINは、32ビット単位で32〜256ビットである。すでに説明したように、MTJメモリセルに対するデータ書込には、所定レベル以上の磁界を生じさせる電流の供給が必要である。このため、並列に書込可能なMTJメモリセルの数には制限がある。したがって、本実施の形態のMRAMデバイスにおいては、同時並列に書込可能なビット数は、Mビット(Mは、Lの約数であり、かつ、2≦M≦Lである整数)に制限される。ここでは、M=32であるものとする。
【0128】
1回のデータ書込動作における入力データDINのビット数L=256のときは、1回のデータ書込動作は、(L/M)=8回の単位データ書込に分割される。すなわち、入力データDINは、8回の単位データ書込のそれぞれで並列に書込まれる32ビットずつの書込データDI(1)〜DI(8)に分割される。
【0129】
データバッファ60は、1回のデータ書込動作におけるLビット(256ビット)の入力データDINを一時的に保持する。各単位データ書込において、データバッファ60に保持された入力データDINは、データビットグループ単位で32ビット(Mビット)ずつ、データラッチ回路32へ転送される。データラッチ回路32は、各単位データ書込で用いられる、入力データDINのうちのMビット(32ビット)の書込データを一時的に保持する。ここでは、データラッチ回路32に保持された32ビットの書込データの先頭ビットを、特にDB♯と表記している。
【0130】
ライトドライバデコーダ31は、各単位データ書込動作において、データラッチ回路32に保持された32ビットの書込データを受けて、当該書込データをそれぞれ書込むための32組(M組)の書込制御信号WTa0,WTa1,WTb0,WTb1を生成する。ライトドライバデコーダ31によって生成された書込制御信号WTa0,WTa1,WTb0,WTb1は、選択メモリセルブロック5aに対応するセレクタ回路25aへ伝達される。
【0131】
メモリセルブロック5a,5bの各々において、256本のビット線にそれぞれ対応する256個のビット線ドライバWDVa,WDVbは、M個(32個)のグループに分割される。したがって、各グループは、256/32=8本のビット線にそれぞれ対応する8個ずつ(8組)のビット線ドライバWDVa,WDVbによって構成される。
【0132】
セレクタ回路25aは、各グループにおいて8:1選択を行なうためのセレクタ制御信号SD1〜SD8に応じて、書込制御信号WTa0,WTa1,WTb0,WTb1をビット線ドライバWDVa,WDVbに選択的に伝達する。たとえば、書込データの先頭ビットDB♯に対応する書込制御信号WTa0,WTa1,WTb0,WTb1は、セレクタ制御信号SD1〜SD8に応じて、先頭のグループを構成する8個ずつのビット線ドライバWDVa,WDVbのうちの1個ずつへ伝達される。
【0133】
図10は、ビット線ドライバへの書込制御信号の伝達に関する構成を詳細に説明する回路図である。
【0134】
図10を参照して、ビット線ドライバWDVaは、ビット線BLの一端側と、電源電圧Vccおよび接地電圧GNDとの間にそれぞれ接続されたドライバトランジスタ91および92を含む。選択ビット線に対応するドライバトランジスタ91および92のゲートには、セレクタ101および102をそれぞれ介して、書込制御信号WTa1およびWTa0がそれぞれ入力される。ビット線ドライバWDVbは、ビット線BLの他端側と、電源電圧Vccおよび接地電圧GNDとの間にそれぞれ接続されたドライバトランジスタ93および94を含む。選択ビット線に対応するドライバトランジスタ93および94のゲートには、セレクタ103および104をそれぞれ介して、書込制御信号WTb1およびWTb0がそれぞれ入力される。ドライバトランジスタ91,93は、PチャネルMOSトランジスタで構成され、ドライバトランジスタ92,94は、NチャネルMOSトランジスタで構成される。
【0135】
したがって、選択ビット線に対応するビット線ドライバWDVaは、書込制御信号WTa0およびWTa1に応じて、選択ビット線の一端側を電源電圧Vccおよび接地電圧GNDの一方で駆動する。一方、選択ビット線に対応するビット線ドライバWDVbは、書込制御信号WTb0およびWTb1に応じて、選択ビット線の他端側を電源電圧Vccおよび接地電圧GNDの他方で駆動する。
【0136】
図9で説明したように、ライトドライバデコーダ31は、データラッチ回路32に一時的に保持された32ビットの書込データのそれぞれのビットに基いて、32組の書込制御信号WTa0,WTa1,WTb0,WTb1を生成する。
【0137】
書込データの対応するビットが“1”であるときには、書込制御信号WTa1およびWTa0がLレベルに設定され、書込制御信号WTb1およびWTb0がHレベルに設定される。これによって、ドライバトランジスタ91,94がオンする一方で、ドライバトランジスタ92,93がオフする。この結果、ビット線には、ビット線ドライバWDVaからWDVbへ向かう方向にデータ書込電流+Iwが流される。これに対して、書込データの対応するビットが“0”であるときには、書込制御信号WTa1およびWTa0がHレベルに設定され、書込制御信号WTb1およびWTb0がLレベルに設定される。これによって、ドライバトランジスタ92,93がオンする一方で、ドライバトランジスタ91,94がオフする。この結果、ビット線には、ビット線ドライバWDVbからWDVaへ向かう方向にデータ書込電流−Iwが流される。
【0138】
ビット線BLを流れるデータ書込電流は、MTJメモリセルにおいて磁化容易軸方向に沿った磁界を発生させる。対応するライトディジット線WDLおよびビット線BLの両方にデータ書込電流が流されたMTJメモリセルにおいて、ビット線を流れるデータ書込電流(+Iw,−Iw)の方向に応じた書込データが磁気的に書込まれる。同様の構成は、各メモリセル列のビット線BLに対応して設けられる。
【0139】
セレクタデコーダ26は、列デコード回路16にラッチされたコラムアドレスCAのデコード結果およびデータ書込動作時におけるビット線電流供給期間を規定する制御信号CBIに基づいて、セレクタ制御信号SD1〜SD8を生成する。以下においては、セレクタ制御信号SD1〜SD8を総称して、単にセレクタ制御信号SDとも表記する。セレクタデコーダ26は、コラムアドレスCAおよびに基づいて、セレクタ制御信号SD1〜SD8のうちの1つをビット線電流期間に対応させてHレベルに活性化する。ビット線電流期間におけるその他のセレクタ制御信号およびビット線電流期間以外における各セレクタ制御信号SDは、Lレベルに設定される。
【0140】
32個のグループごとに独立に生成された書込制御信号WTa0,WTa1,WTb0,WTb1は、同一のグループに属するビット線ドライバWDVa,WDVbに対して共通に与えられる。各メモリセル列において、書込制御信号WTa0,WTa1,WTb0,WTb1は、書込制御信号はセレクタ101〜104を介して、ドライバトランジスタ91〜94のゲートにそれぞれ伝達される。同一のビット線ドライバに対応するセレクタ101〜104は、共通のセレクタ制御信号SDを受ける。たとえば、図1に示された先頭のビット線ドライバに対応するセレクタ101〜104は各々セレクタ制御信号SD1を受け、次のメモリセル列のセレクタ101〜104は、セレクタ制御信号SD2を受ける。
【0141】
対応するセレクタ制御信号SDがHレベルに活性化されているときには、セレクタ101〜104は、書込制御信号WTa1,WTa0,WTb0,WTb1を、対応するドライバトランジスタ91〜94のそれぞれのゲートへ伝達する。この結果、データ書込時のビット線電流供給期間において、選択ビット線には、書込制御信号WTa1,WTa0,WTb0,WTb1に応じた方向のデータ書込電流+Iwまたは−Iwが流れる。
【0142】
この結果、各グループにおいて、セレクタ制御信号SD1〜SD8によって選択された1組のビット線ドライバを用いてデータ書込が実行される。すなわち、32ビットの並列なデータ書込による1回の単位データ書込が実行される。
【0143】
一方、対応するセレクタ制御信号SDがLレベルに非活性化されているときには、セレクタ101および102の出力はHレベルに固定され、セレクタ103および104の出力はLレベルに固定される。この結果、ビット線電流供給期間以外での各ビット線およびビット線電流供給期間における非選択ビット線の各々は、対応するドライバトランジスタ91〜94の各々がオフされるので、フローティング状態とされる。
【0144】
図11は、実施の形態1に従うMRAMデバイスにおけるデータ書込動作を説明する動作波形図である。
【0145】
図11を参照して、クロック信号CLKの活性化エッジは、図6と同様に、時刻T1〜T6,…でそれぞれ示され、対応するクロック信号周期も、サイクル151〜155,…でそれぞれ示される。時刻T1において、ライトコマンドが入力されると、書込制御信号WRSがHレベルに設定されるとともに、クロック活性化エッジである時刻T1〜T6,…において、ライトクロックWTCがHレベルに活性化される。
【0146】
ずでに説明したように、L=256ビットの場合には、1回のデータ書込動作は、32ビットずつの書込データDI(1)〜DI(8)をそれぞれ書込みための8回の単位データ書込から構成されるが、図11では、これらの最初の4回の単位データ書込について、代表的に図示する。
【0147】
以下に説明するように、周辺回路10におけるデータ書込動作も、クロック信号CLKの各サイクルに対応して複数のステージ(段階)に分割されて、パイプライン処理で実行される。
【0148】
時刻T1において、ライトクロックWTCに応答して、ロウアドレスRA1およびコラムアドレスCA0がアドレスラッチ回路14a,15aおよび列デコード回路16内にラッチされる。
【0149】
サイクル151においては、時刻T1におけるアドレスラッチ内容に基づいて、行選択および列選択が実行される。具体的には、図3に示したワード線選択部80a,81aや列デコード回路16におけるデコード処理が実行される。さらに、入力データDINの先頭の32ビットに相当する32ビットの書込データDI(1)が、最初の単位データ書込のために、図7,9に示したデータラッチ回路32に分割転送されてラッチされる。
【0150】
サイクル151においては、図7に示した電圧発生回路95は、昇圧動作やポンピング動作によって電源電圧Vccを生成する。また、図7,9に示したライトドライバデコーダ31は、データラッチ回路32にラッチされた書込データに基づいて、最初の単位データ書込のための32組の書込制御信号WTa1,WTa0,WTb0,WTb1が生成される。このように、次のサイクル152で実際にデータ書込電流を供給するための準備動作が実行される。
【0151】
次のサイクル152(時刻T2〜T3)においては、時刻T1でラッチされたロウアドレスRA1に対応するライトディジット線WDLs(1)が活性化される。また、選択メモリセルブロック5aに対応するセレクタ回路25aは、図10に示したセレクタデコーダ26からのセレクタ制御信号に応じて、32本の選択ビット線にそれぞれ対応するビット線ドライバWDVa,WDVbに対して、32組の書込制御信号WTa1,WTa0,WTb0,WTb1がそれぞれ伝達される。
【0152】
この結果、選択メモリセルブロック5aの選択ライトディジット線(1本)および選択ビット線(32本)には、書込データDI(1)を書込むためのデータ書込電流が流される。これにより、書込データDI(1)に対応する最初の単位データ書込が実行される。
【0153】
また、データ書込動作時にも、コラムアドレスCAが固定される(CA=CA0)一方で、ロウアドレスRAは、各サイクルごとにバースト的に更新される。したがって、サイクル152が開始される時刻T2では、新たなロウアドレスRA2が、アドレスラッチ回路14a,15aにラッチされ、サイクル152において、ロウアドレスRA2に対応する行選択処理が実行される。さらに、時刻T2では、入力データDINの次の32ビットに相当する32ビットの書込データDI(2)が、データラッチ回路32に分割転送されてラッチされる。
【0154】
このように、1回のデータ書込動作は、複数の単位データ書込に分割されて、入力データDINの一部ビットずつが各単位データ書込で並列に書込まれる。単位データ書込は、サイクル151〜152にそれぞれ相当する第1および第2のステージに分割されてパイプライン処理される。第1のステージ(サイクル151)においては、実質的なアレイ動作は実行されす、アドレス情報の取込み、入力データの分割転送およびデータ書込電流供給準備が実行される。第2のステージ(サイクル152)においては、活性化された選択ワード線および選択ビット線に対応するビット線ドライバ回路によって、実際にデータ書込電流が供給される。
【0155】
サイクル152においては、ロウアドレスRA1に対応する上記第2ステージの処理と並行して、次のロウアドレスRA2に対応する上記第1ステージの処理が実行される。
【0156】
サイクル153以降においても、同様のパイプライン処理が実行されるので、サイクル153および154において、ロウアドレスRA3およびRA4がそれぞれ取込まれ、書込データDI(3)およびDI(4)がデータラッチ回路32へ分割転送されてラッチされる。また、サイクル153においては書込データDI(3)に対応するデータ書込電流の供給準備が実行され、サイクル154においては書込データDI(4)に対応するデータ書込電流の供給準備が実行される。
【0157】
この結果、サイクル153〜155において、ロウアドレスRA2〜RA4にそれぞれ対応するライトディジット線WDLs(2)〜WDLs(4)がそれぞれ活性化されて、サイクル152〜154でそれぞれ取込まれたロウアドレスRA2〜RA4に対応する書込データDI(2)〜DI(4)がそれぞれ書込まれる。
【0158】
このように、周辺回路10において、セレクタ回路25a,25bによるビット線の接続選択によって、多ビットの書込データを列方向(ビット線)に沿って効率的に入力することができる。
【0159】
また、1回のデータ書込動作における入力データのビット数が多い場合でも、複数の単位データ書込に分割して、実際に同時並列に書込まれるビット数が抑制されるので、データ書込電流の増大による消費電力のピーク的な増大を抑制できる。さらに、周辺回路10でのデータ書込動作を複数のステージに分割してパイプライン処理化しているので、クロック信号CLKに応答した高周波化処理によって、データ書込を高速化できる。特に、アドレス選択が確定する前の最初のサイクル(図11におけるサイクル151)において、データ書込回路系での電源電圧Vccの生成を行なっているので、データ書込動作の高速化が可能となる。
【0160】
[実施の形態2]
実施の形態2においては、実施の形態1に示した不揮発性記憶装置において、MTJメモリセルに代えて適用することが可能なOUMセルの構成について説明する。
【0161】
図12は、OUMセルによって形成された実施の形態2に従うメモリセルブロックの構成を示す回路図である。
【0162】
図12を参照して、メモリセルブロック5♯は、行列状に配置されたOUMセル200を有する。OUMセル200の行にそれぞれ対応してワード線WLおよびコレクタ線CLが配置され、OUMセルの列にそれぞれ対応してビット線BLが配置される。各OUMセル200は、対応するビット線およびコレクタ線の間に直列に接続された、相変化素子であるカルコゲナイド層210とスイッチングトランジスタ220とを有する。スイッチングトランジスタ220のゲートはワード線WLと接続されコレクタはコレクタ線CLに接続されている。
【0163】
図13は、OUMセルの構造を示す断面図である。
図13を参照して、スイッチングトランジスタ220は、p型領域221上に形成されたn型領域222と、n型領域222内に形成されたp型領域223とを有する。スイッチングトランジスタ220は、p型領域221、n型領域222およびp型領域223によるpnp型の縦型寄生バイポーラトランジスタで形成される。
【0164】
n型領域222は、図12に示したワード線WLに相当する。また、カルコゲナイド層210およびスイッチングトランジスタ220の間には、通過電流によって発熱する加熱素子230が設けられる。データ書込時には、スイッチングトランジスタ220がターンオンされるとともに、ビット線BLからカルコゲナイド層210および加熱素子230を通過するデータ書込電流が流される。当該データ書込電流の供給パターン(たとえば供給期間および供給電流量)に応じて、カルコゲナイド層210は、結晶状態およびアモルファス状態のいずれか一方に相変化する。カルコゲナイド層210は、アモルファス状態時および結晶状態時のそれぞれにおいて、その電気抵抗が変化する。具体的には、アモルファス化されたカルコゲナイド層は、結晶化時よりも電気抵抗が高い。
【0165】
したがって、データ読出時には、スイッチングトランジスタ220をターンオンさせて、相変化に至らないレベルのデータ読出電流をカルコゲナイド層210に通過させることによって、電気抵抗差に基づいてMTJセルと同様のデータ読出を実行することができる。
【0166】
したがって、ライトドライバ20a,20bに含まれるビット線ドライバの構成をOUMセルに適合するものに変更すれば、図12に示したOUMセルによるメモリセルブロック5♯を、図1に示したMRAMデバイス1におけるMTJメモリセルMCと置換しても、同様の周辺回路構成に従って、同様の多ビット並列データ入出力を実行することが可能である。したがって、OUMセルを備えた不揮発性記憶装置においても、多ビットデータの高速な並列入出力動作に適した周辺回路の構成を実現できる。
【0167】
なお、本実施の形態においては、選択的にアクセス対象となる2個のメモリセルブロックを備えるMRAMデバイス(不揮発性記憶装置)の構成を代表的に説明するが、本願発明の適用はこのような構成に限定されない。すなわち、3以上の任意の複数個のメモリセルブロックを備える構成や、メモリセルブロックの選択を伴わない、メモリセルブロックが1個の構成においても、セレクタ回路とデータノードとの間について同様の周辺回路構成が適用できる。
【0168】
また、本願発明の実施の形態においては、リファレンスセルRMCがMTJメモリセルMCと同様の構造および特性を有する構成について説明したが、本願発明は、このようなリファレンスセルに限定されず、MTJメモリセルと異なる特性を有するように設計されたリファレンスセルに対しても適用できる。
【0169】
たとえば、MTJメモリセルに対して、正規メモリセルMCの2種類の電気抵抗RmaxおよびRminの中間レベル、好ましくはRref=(Rmax+Rmin)/2を有するように予め設計されるリファレンスセルRMCを設ける構成においても、本願発明を同様に適用できる。
【0170】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0171】
【発明の効果】
請求項1から3に記載の不揮発性記憶装置は、ビット線選択に基づいてデータ読出およびデータ書込が実行される選択メモリセルブロックに対して、周辺回路において多ビットの入出力データを列方向(ビット線方向)に沿って効率的に伝達することができる。したがって、多ビットデータの並列な高速入出力が要求されるキャッシュメモリに適した不揮発性記憶装置を提供できる。
【0172】
請求項4に記載の不揮発性記憶装置は、データ読出動作およびデータ書込動作を複数のステージに分割してパイプライン処理するので、請求項1に記載の不揮発性記憶装置が奏する効果に加えて、データ読出およびデータ書込を高速化できる。
【0173】
請求項5および6に記載の不揮発性記憶装置は、周辺回路がデータ読出動作およびデータ書込動作を複数のステージに分割してパイプライン処理するので、データ読出およびデータ書込を高速化できる。したがって、多ビットデータの並列な高速入出力が要求されるキャッシュメモリに適した不揮発性記憶装置を提供できる。
【0174】
請求項7および8に記載の不揮発性記憶装置は、アドレス選択が確定する前の最初のサイクルにおいて、各ビット線をプリチャージ電圧から選択メモリセルへのアクセス時に発生する電圧に近いレベルに初期設定することができる。したがって、実際に選択メモリセルへアクセスした際のビット線電圧の変化が小さいので、請求項5に記載の不揮発性記憶装置が奏する効果に加えて、データ読出動作をさらに高速化できる。
【0175】
請求項9に記載の不揮発性記憶装置は、第2のサイクル以降においても、ビット線選択を固定したままで、行選択をバースト的に逐次更新して連続的にデータ読出を実行できる。したがって、請求項7に記載の不揮発性記憶装置が奏する効果に加えて、多ビットデータの並列な高速出力にさらに適した構成とすることができる。
【0176】
請求項10に記載の不揮発性記憶装置は、アドレス選択が確定する前の最初のサイクルにおいて、データ書込電流の供給を準備した後に、次のサイクルにおいて実際にデータ書込電流の供給を開始する構成としているので、請求項5に記載の不揮発性記憶装置が奏する効果に加えて、データ書込動作をさらに高速できる。
【0177】
請求項11に記載の不揮発性記憶装置は、第2のサイクル以降においても、ビット線選択を固定したままで、行選択をバースト的に逐次更新して連続的にデータ書込を実行できる。したがって、請求項10に記載の不揮発性記憶装置が奏する効果に加えて、多ビットデータの並列な高速入力にさらに適した構成とすることができる。
【0178】
請求項12から14に記載の不揮発性記憶装置は、1回のデータ書込動作における入力データのビット数が多い場合でも、複数の単位データ書込に分割して、実際に同時並列に書込まれるビット数が抑制されるので、データ書込電流の増大による消費電力のピーク的な増大を抑制できる。したがって、多ビットデータの並列な高速入出力が要求されるキャッシュメモリに適した不揮発性記憶装置を提供できる。
【0179】
請求項15に記載の不揮発性記憶装置は、第2のサイクル以降においても、ビット線選択を固定したままで、行選択をバースト的に逐次更新して連続的にデータ書込を実行できる。したがって、請求項13に記載の不揮発性記憶装置が奏する効果に加えて、多ビットデータの並列な高速入力にさらに適した構成とすることができる。
【0180】
請求項16に記載の不揮発性記憶装置は、請求項1、5または12に記載の不揮発性記憶装置が奏する効果を、MTJメモリセルを備えたMRAMデバイスにおいて享受できる。
【0181】
請求項17に記載の不揮発性記憶装置は、請求項1、5または12に記載の不揮発性記憶装置が奏する効果を、OUMメモリセルを備えたメモリデバイスにおいて享受できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に従う不揮発性記憶装置の代表例として示されるMRAMデバイスの全体構成を示す概略ブロック図である。
【図2】図1に示されたMRAMデバイスにおけるデータ読出動作に関する構成を説明するブロック図である。
【図3】行選択回路のうちの、ワード線選択に関連する部分の構成を示す回路図である。
【図4】センスアンプにおける増幅動作を説明する第1の概念図である。
【図5】センスアンプにおける増幅動作を説明する第2の概念図である。
【図6】実施の形態1に従うMRAMデバイスにおけるデータ読出動作を説明する動作波形図である。
【図7】図1に示されたMRAMデバイスにおけるデータ書込動作に関する構成を説明するブロック図である。
【図8】行選択回路のうちの、ディジット線選択に関連する部分の構成を示す回路図である。
【図9】データ書込動作時における周辺回路の動作を説明するブロック図である。
【図10】図9のうちビット線ドライバへの書込制御信号の伝達に関する構成を詳細に説明する回路図である。
【図11】実施の形態1に従うMRAMデバイスにおけるデータ書込動作を説明する動作波形図である。
【図12】実施の形態2に従うメモリセルブロックの構成を示す回路図である。
【図13】図12に示されたOUMセルの構造を示す断面図である。
【図14】MTJメモリセルの構成を示す概略図である。
【図15】MTJメモリセルに対するデータ書込動作を説明する概念図である。
【図16】データ書込時におけるデータ書込電流とトンネル磁気抵抗素子の磁化方向との関係を示す概念図である。
【図17】MTJメモリセルからのデータ読出を説明する概念図である。
【図18】半導体基板上に作製されたMTJメモリセルの構造図である。
【符号の説明】
1 MRAMデバイス、5a,5b メモリセルブロック、10 周辺回路、10♯ データノード、11a,11b,12a,12b 行選択回路、14a,14b,15a,15b アドレスラッチ回路、16 列デコード回路、20a,20b ライトドライバ、25a,25b セレクタ回路、26 セレクタデコーダ、30 ライトドライバ制御回路、31 ライトドライバデコーダ、32 データラッチ回路、40 センスアンプ部、50 転送ラッチ回路、60 データバッファ、70 転送バッファ、80a,81a ワード線選択部、80♯a,81♯a ライトディジット線選択部、82,82R ワード線ドライバ、85,85R ライトディジット線ドライバ、91〜94 ドライバトランジスタ、95 電圧発生回路、101〜104 セレクタ、151〜156 サイクル、200 OUMセル、210 カルコゲナイド層、220 スイッチングトランジスタ、221,223 p型領域、222 n型領域、230 加熱素子、ATR アクセストランジスタ、BL ビット線、CA,CA0 コラムアドレス、CLK クロック信号、DI(1)〜DI(4) 書込データ(単位データ書込)、DIN 入力データ、DOUT 出力データ、GND 接地電圧、MC MTJメモリセル、RA,RA1〜RA4 ロウアドレス、RMC リファレンスセル、RWL リファレンスワード線、SD1〜SD8 セレクタ制御信号、SL ソース電圧線、TMR トンネル磁気抵抗素子、WDL ライトディジット線、WDLd ダミーライトディジット線、WDVa,WDVb ビット線ドライバ、WL ワード線、WTa0,WTa1,WTb0,WTb1 書込制御信号。

Claims (17)

  1. 選択的にアクセス対象となる複数のメモリセルブロックを備え、
    前記複数のメモリセルブロックの各々は、
    行列状に配置され、各々の電気抵抗がデータ書込電流によって不揮発的に書込まれた記憶データに応じて変化する複数のメモリセルと、
    メモリセル列にそれぞれ対応して設けられる複数のビット線とを含み、
    前記複数のメモリセルブロックにそれぞれ対応して設けられ、各々が対応するメモリセルブロックでメモリセル行を選択するための複数の行選択回路と、
    前記複数のメモリセルブロックのうちの選択メモリセルブロックに対して、前記複数のビット線のうちの少なくとも一部を介して、データノードへ入出力される複数ビットのデータを選択メモリセル行のメモリセルの少なくとも一部へ並列に書込みおよび読出すための周辺回路とをさらに備え、
    前記周辺回路は、前記複数ビットのデータを前記メモリセル列に沿った方向に伝達する、不揮発性記憶装置。
  2. 前記周辺回路は、前記複数のメモリセルブロックにそれぞれ対応して設けられた複数のライトドライバを含み、
    前記複数のライトドライバの各々は、前記複数のビット線にそれぞれ対応して設けられる複数のビット線ドライバを有し、
    前記複数のビット線ドライバの各々は、対応するビット線への前記データ書込電流の供給を制御し、
    前記行選択回路は、データ読出時に、前記選択メモリセル行に属するメモリセルを前記複数のビット線とそれぞれ電気的に結合し、
    前記周辺回路は、
    各々が、前記複数のビット線のうちの自身と接続された少なくとも1本に対してデータ読出電流を供給するとともに、前記データ読出電流に基づいてデータ読出を実行する複数のセンスアンプと、
    前記複数のメモリセルブロックにそれぞれ対応して設けられる複数のセレクタ回路とをさらに含み、
    前記複数のセレクタ回路のうちの前記選択メモリセルブロックに対応する1つは、前記データ読出動作時には、対応するメモリセルブロック中の前記複数のビット線の少なくも一部と前記複数のセンスアンプとの間を選択的に接続し、データ書込動作時には、前記データノードへ入力された前記複数ビットのデータを前記対応するメモリセルブロック中の前記複数のビット線ドライバの一部へ選択的に伝達する、請求項1に記載の不揮発性記憶装置。
  3. 前記複数のメモリセルブロックの各々は、前記データ読出動作時における前記複数のメモリセルの比較対象として設けられた複数のリファレンスセルをさらに含み、
    前記複数のメモリセルブロックのうちの1つの非選択メモリセルブロックにおいて、前記複数のビット線は、前記複数のリファレンスセルとそれぞれ電気的に結合され、
    前記セレクタ回路は、前記複数のセンスアンプの各々を、前記選択メモリセルブロック中の前記複数のビット線のうちの1本および前記1つの非選択ブロック中の前記複数のビット線のうちの1本と接続する、請求項2に記載の不揮発性記憶装置。
  4. 前記メモリセル行および前記メモリセル列を選択するための情報を一時的に保持するアドレスラッチ回路をさらに備え、
    前記周辺回路は、前記選択メモリセルブロックと前記データノードの間で伝達される前記複数ビットのデータを一時的に保持するデータラッチ回路を含み、データ読出動作およびデータ書込動作のそれぞれを複数のサイクルに分割して、各前記サイクルをパイプライン処理によって実行する、請求項1に記載の不揮発性記憶装置。
  5. 行列状に配置され、各々の電気抵抗がデータ書込電流によって不揮発的に書込まれた記憶データに応じて変化する複数のメモリセルと、
    メモリセル行およびメモリセル列を選択するための一時的に情報を保持するアドレスラッチ回路と、
    前記メモリセル列にそれぞれ対応して設けられる複数のビット線と、
    前記アドレスラッチ回路に保持された情報に応じて、前記メモリセル行を選択する行選択回路と、
    データノードへ入出力される複数ビットのデータを、前記複数のビット線のうちの少なくとも一部を介して、選択メモリセル行のメモリセルの少なくとも一部の選択メモリセルに対して並列に書込みおよび読出すための周辺回路とを備え、
    前記周辺回路は、前記選択メモリセルおよび前記データノードの間で伝達される前記複数ビットのデータを一時的に保持するデータラッチ回路を含み、かつ、データ読出動作およびデータ書込動作のそれぞれを複数のサイクルに分割して、各前記サイクルをパイプライン処理によって実行する、不揮発性記憶装置。
  6. 前記複数のサイクルは、所定周期を有するクロック信号に同期して順次実行される、請求項5に記載の不揮発性記憶装置。
  7. 前記周辺回路は、
    各々が、前記複数のビット線のうちの自身と接続された1本へデータ読出電流を供給するとともに、前記データ読出電流に基づいてデータ読出を実行する複数のセンスアンプと、
    前記アドレスラッチ回路に保持された情報に応じて、前記データ読出動作時に、前記複数のビット線の少なくとも一部と前記複数のセンスアンプとの間を選択的に接続するセレクタ回路とを含み、
    前記行選択回路は、前記データ読出時に、前記選択メモリセル行に属するメモリセルを前記複数のビット線のそれぞれと電気的に結合し、
    前記複数のサイクルは、
    前記複数のビット線の各々を前記データ読出動作の前とは異なる所定電圧に設定する第1のサイクルと、
    前記第1のサイクルの後に実行される第2のサイクルとを含み、
    前記第2のサイクルにおいて、前記行選択回路は、前記選択メモリセル行に属するメモリセルと前記複数のビット線とをそれぞれ電気的に結合する、請求項5に記載の不揮発性記憶装置。
  8. 前記データ読出動作時における前記複数のメモリセルの比較対象として設けられた複数のリファレンスセルをさらに備え、
    前記第1のサイクルにおいて、前記複数のビット線の各々は、前記複数のリファレンスセルと電気的に結合された状態で前記データ読出電流の供給を受ける、請求項7に記載の不揮発性記憶装置。
  9. 前記複数のサイクルは、前記第2のサイクルの後に実行される第3のサイクルをさらに含み、
    前記第3のサイクルにおいて、前記行選択回路は、前記第2のサイクルとは異なるメモリセル行を選択して、前記異なるメモリセル行に属するメモリセルを前記複数のビット線とそれぞれ電気的に結合する、請求項7に記載の不揮発性記憶装置。
  10. 前記周辺回路は、
    前記複数のビット線にそれぞれ対応して設けられ、各々が、対応するビット線に対する前記データ書込電流の供給を制御する複数のビット線ドライバと、
    前記データ書込動作時に、前記ビット線ドライバのうちの前記アドレスラッチ回路に保持された情報に応じて選択された一部に対して、前記データノードへ入力された前記複数ビットのデータを伝達するセレクタ回路とを含み、
    前記複数のサイクルは、
    前記複数のビット線ドライバによる前記データ書込電流の供給を準備するための第1のサイクルと、
    前記第1のサイクルの後に実行される第2のサイクルとを含み、
    前記第2のサイクルにおいて、前記セレクタ回路によって選択されたビット線ドライバは、対応するビット線のそれぞれへ前記データ書込電流を供給する、請求項5に記載の不揮発性記憶装置。
  11. 前記複数のサイクルは、前記第2のサイクルの後に実行される第3のサイクルをさらに含み、
    前記第3のサイクルにおいて、前記行選択回路が前記第2のサイクルとは異なるメモリセル行を選択した状態の下で、前記セレクタ回路によって選択されたビット線ドライバは、対応するビット線のそれぞれへ前記データ書込電流を供給する、請求項10に記載の不揮発性記憶装置。
  12. 行列状に配置され、各々の電気抵抗がデータ書込電流によって不揮発的に書込まれた記憶データに応じて変化する複数のメモリセルと、
    メモリセル行を選択するための行選択回路と、
    メモリセル列にそれぞれ対応して設けられる複数のビット線と、
    1回のデータ書込動作でのLビット(L:2以上の整数)の入力データを、前記複数のビット線を介して、前記複数のメモリセルのうちの選択されたL個へ書込むための周辺回路とを備え、
    前記周辺回路は、前記Lビットの入力データを一時的に保持するためのデータラッチ回路を含み、
    前記周辺回路は、前記1回のデータ書込動作において、異なるM個(Mは、Lの約数であり、かつ、2≦M≦Lである整数)ずつのメモリセルに対してMビットの入力データを並列にそれぞれ書込むための(L/M)回の単位データ書込を実行する、不揮発性記憶装置。
  13. 前記周辺回路は、
    前記複数のビット線にそれぞれ対応して設けられ、各々が対応するビット線への前記データ書込電流の供給を制御する複数のビット線ドライバと、
    前記単位データ書込のそれぞれにおいて、前記複数のビット線ドライバのうちのM個を選択するためのセレクタ回路と、
    前記単位データ書込のそれぞれにおいて、前記セレクタ回路によって選択されたM個のビット線ドライバに対して、前記データラッチ回路に保持された入力データのうちのMビットにそれぞれ対応する特性を有する前記データ書込電流の供給を指示するドライバ制御回路とをさらに含む、請求項12に記載の不揮発性記憶装置。
  14. 前記複数のビット線ドライバは、M個のグループに分割され、
    前記ドライバ制御回路は、前記単位データ書込のそれぞれにおいて、前記データラッチ回路に保持された入力データのうちの前記Mビットに基づいてM組の書込制御信号を生成する書込デコード回路を有し、
    前記セレクタ回路は、前記M個のグループのそれぞれから1個ずつ前記ビット線ドライバを選択するとともに、前記書込デコード回路からの前記M組の書込制御信号を、選択したM個のビット線ドライバに対して並列にそれぞれ伝達する、請求項13に記載の不揮発性記憶装置。
  15. 前記行選択回路は、前記単位データ書込のそれぞれにおいて異なるメモリセル行を選択し、
    前記1回のデータ書込動作において、前記ドライバ制御回路による前記M個のビット線ドライバの選択は固定される、請求項13に記載の不揮発性記憶装置。
  16. 前記データ書込電流は、書込まれるデータのレベルに応じた方向を有し、
    前記複数のメモリセルの各々は、
    固定された磁化方向を有する第1の磁性体層と、
    前記データ書込電流によって生じた磁界に応じた方向に磁化される第2の磁性体層と、
    前記第1および第2の磁性体層の間に形成された絶縁膜とを有する、請求項1、5または12に記載の不揮発性記憶装置。
  17. 前記データ書込電流の印加パターンは、書込まれるデータのレベルに応じて制御され、
    前記複数のメモリセルの各々は、
    前記データ書込電流によって発熱する加熱素子と、
    前記加熱素子によって加熱されて、前記データ書込電流の前記印加パターンに応じて異なる2つの相状態の一方に変化する相変化素子とを有する、請求項1、5または12に記載の不揮発性記憶装置。
JP2002233331A 2002-08-09 2002-08-09 不揮発性記憶装置 Pending JP2004079002A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002233331A JP2004079002A (ja) 2002-08-09 2002-08-09 不揮発性記憶装置
TW092101096A TW584853B (en) 2002-08-09 2003-01-20 Nonvolatile memory device suitable for cache memory
US10/353,913 US6778445B2 (en) 2002-08-09 2003-01-30 Pipeline nonvolatile memory device with multi-bit parallel read and write suitable for cache memory.
CNA031105882A CN1495798A (zh) 2002-08-09 2003-04-11 适合于超高速缓冲存储器的非易失性存储器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233331A JP2004079002A (ja) 2002-08-09 2002-08-09 不揮発性記憶装置

Publications (2)

Publication Number Publication Date
JP2004079002A true JP2004079002A (ja) 2004-03-11
JP2004079002A5 JP2004079002A5 (ja) 2005-10-27

Family

ID=31492424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233331A Pending JP2004079002A (ja) 2002-08-09 2002-08-09 不揮発性記憶装置

Country Status (4)

Country Link
US (1) US6778445B2 (ja)
JP (1) JP2004079002A (ja)
CN (1) CN1495798A (ja)
TW (1) TW584853B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283387B2 (en) 2005-09-08 2007-10-16 Samsung Electronics Co., Ltd. Phase change random access memory device having variable drive voltage circuit
JP2008257788A (ja) * 2007-04-04 2008-10-23 Elpida Memory Inc 半導体記憶装置及びその制御方法
JP2011243272A (ja) * 2010-05-13 2011-12-01 Micron Technology Inc 抵抗メモリのスタガープログラム方法
JP2012064281A (ja) * 2010-09-17 2012-03-29 Toshiba Corp 半導体記憶装置
JP2012119018A (ja) * 2010-11-30 2012-06-21 Hitachi Ltd 半導体装置および情報処理システム
JP2012524362A (ja) * 2009-04-20 2012-10-11 サンディスク スリーディー,エルエルシー データ線切り替えスキームを備えるメモリシステム
JP2013524401A (ja) * 2010-04-12 2013-06-17 モサイド・テクノロジーズ・インコーポレーテッド 可変データ幅を使用してメモリをプログラムする方法
JP2014130675A (ja) * 2014-02-26 2014-07-10 Ps4 Luxco S A R L 複数のセンスアンプ及びこれを備える半導体装置
JP2014139862A (ja) * 2014-05-01 2014-07-31 Hitachi Ltd 半導体装置、および記憶装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086934A (ja) * 2002-08-22 2004-03-18 Renesas Technology Corp 不揮発性記憶装置
US7129560B2 (en) * 2003-03-31 2006-10-31 International Business Machines Corporation Thermal memory cell and memory device including the thermal memory cell
US7206224B1 (en) * 2004-04-16 2007-04-17 Spansion Llc Methods and systems for high write performance in multi-bit flash memory devices
TWI285893B (en) * 2004-11-12 2007-08-21 Ind Tech Res Inst Hybrid MRAM memory array architecture
JP4646634B2 (ja) * 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
KR100630744B1 (ko) * 2005-03-21 2006-10-02 삼성전자주식회사 워드라인 구동회로의 레이아웃 면적을 감소시킨 반도체메모리 장치
TWI449040B (zh) * 2006-10-06 2014-08-11 Crocus Technology Sa 用於提供內容可定址的磁阻式隨機存取記憶體單元之系統及方法
US7596045B2 (en) * 2007-10-31 2009-09-29 International Business Machines Corporation Design structure for initializing reference cells of a toggle switched MRAM device
US7961506B2 (en) 2008-02-05 2011-06-14 Micron Technology, Inc. Multiple memory cells with rectifying device
US20100128519A1 (en) * 2008-11-25 2010-05-27 Seagate Technology Llc Non volatile memory having increased sensing margin
JP5675046B2 (ja) * 2008-12-01 2015-02-25 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体メモリおよびビット線制御方法
US8582353B2 (en) * 2009-12-30 2013-11-12 Hynix Semiconductor Inc. Nonvolatile memory device
US8446753B2 (en) * 2010-03-25 2013-05-21 Qualcomm Incorporated Reference cell write operations at a memory
US8909849B2 (en) * 2010-11-15 2014-12-09 Intel Corporation Pipeline architecture for scalable performance on memory
US8638600B2 (en) * 2011-04-22 2014-01-28 Hewlett-Packard Development Company, L.P. Random-access memory with dynamically adjustable endurance and retention
US8854873B1 (en) * 2011-05-05 2014-10-07 Adesto Technologies Corporation Memory devices, architectures and methods for memory elements having dynamic change in property
JP5624573B2 (ja) * 2012-02-24 2014-11-12 株式会社東芝 半導体記憶装置及びその制御方法
US9275714B1 (en) * 2014-09-26 2016-03-01 Qualcomm Incorporated Read operation of MRAM using a dummy word line
US10254967B2 (en) 2016-01-13 2019-04-09 Sandisk Technologies Llc Data path control for non-volatile memory
US10528286B2 (en) 2016-11-11 2020-01-07 Sandisk Technologies Llc Interface for non-volatile memory
US10528255B2 (en) 2016-11-11 2020-01-07 Sandisk Technologies Llc Interface for non-volatile memory
US10528267B2 (en) 2016-11-11 2020-01-07 Sandisk Technologies Llc Command queue for storage operations
US10114589B2 (en) * 2016-11-16 2018-10-30 Sandisk Technologies Llc Command control for multi-core non-volatile memory
JP2019046051A (ja) * 2017-08-31 2019-03-22 東芝メモリ株式会社 メモリ装置およびデータ処理装置
US10818345B1 (en) * 2019-10-22 2020-10-27 Micron Technology, Inc. Two-stage signaling for voltage driver coordination in integrated circuit memory devices
CN112259137B (zh) * 2020-11-02 2023-05-23 海光信息技术股份有限公司 内存运算电路及芯片结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191973B1 (en) 1999-09-27 2001-02-20 Motorola Inc. Mram cam
JP3985432B2 (ja) 2000-06-19 2007-10-03 日本電気株式会社 磁気ランダムアクセスメモリ
US6700813B2 (en) * 2001-04-03 2004-03-02 Canon Kabushiki Kaisha Magnetic memory and driving method therefor
US6625054B2 (en) * 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6759249B2 (en) * 2002-02-07 2004-07-06 Sharp Laboratories Of America, Inc. Device and method for reversible resistance change induced by electric pulses in non-crystalline perovskite unipolar programmable memory

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283387B2 (en) 2005-09-08 2007-10-16 Samsung Electronics Co., Ltd. Phase change random access memory device having variable drive voltage circuit
JP2008257788A (ja) * 2007-04-04 2008-10-23 Elpida Memory Inc 半導体記憶装置及びその制御方法
JP2012524362A (ja) * 2009-04-20 2012-10-11 サンディスク スリーディー,エルエルシー データ線切り替えスキームを備えるメモリシステム
JP2013524401A (ja) * 2010-04-12 2013-06-17 モサイド・テクノロジーズ・インコーポレーテッド 可変データ幅を使用してメモリをプログラムする方法
JP2011243272A (ja) * 2010-05-13 2011-12-01 Micron Technology Inc 抵抗メモリのスタガープログラム方法
KR101359877B1 (ko) * 2010-05-13 2014-02-06 마이크론 테크놀로지, 인크. 저항성 메모리의 스태거드 프로그래밍
US9164894B2 (en) 2010-05-13 2015-10-20 Micron Technology, Inc. Staggered programming for resistive memories
JP2012064281A (ja) * 2010-09-17 2012-03-29 Toshiba Corp 半導体記憶装置
JP2012119018A (ja) * 2010-11-30 2012-06-21 Hitachi Ltd 半導体装置および情報処理システム
JP2014130675A (ja) * 2014-02-26 2014-07-10 Ps4 Luxco S A R L 複数のセンスアンプ及びこれを備える半導体装置
JP2014139862A (ja) * 2014-05-01 2014-07-31 Hitachi Ltd 半導体装置、および記憶装置

Also Published As

Publication number Publication date
CN1495798A (zh) 2004-05-12
TW200402723A (en) 2004-02-16
US20040027908A1 (en) 2004-02-12
US6778445B2 (en) 2004-08-17
TW584853B (en) 2004-04-21

Similar Documents

Publication Publication Date Title
JP2004079002A (ja) 不揮発性記憶装置
US6791869B2 (en) Nonvolatile memory device with configuration switching the number of memory cells used for one-bit data storage
JP4771631B2 (ja) 薄膜磁性体記憶装置
KR100520865B1 (ko) 2방향의 데이터 기입 자계에 의해 데이터 기입을 실행하는박막 자성체 기억 장치
JP4656720B2 (ja) 薄膜磁性体記憶装置
TWI339399B (en) Method and system for providing a magnetic memory structure utilizing spin transfer
US7170776B2 (en) Non-volatile memory device conducting comparison operation
KR100572744B1 (ko) 레퍼런스셀 없이 데이터 판독을 실행하는 박막 자성체기억장치
JP2004103104A (ja) 薄膜磁性体記憶装置
JP4208498B2 (ja) 薄膜磁性体記憶装置
JP2004062922A (ja) 不揮発性半導体記憶装置
JP2004086952A (ja) 薄膜磁性体記憶装置
JP2003346473A (ja) 薄膜磁性体記憶装置
US6618317B1 (en) Write system architecture of magnetic memory array divided into a plurality of memory blocks
JP2004030826A (ja) 薄膜磁性体記憶装置
JP4262969B2 (ja) 薄膜磁性体記憶装置
US6865103B2 (en) Thin film magnetic memory device having a redundant structure
JP2004103202A (ja) 薄膜磁性体記憶装置
JP2007122838A (ja) 半導体記憶装置
JP5036854B2 (ja) 半導体装置
JP5005070B2 (ja) 半導体装置
JP4553927B2 (ja) 半導体装置
JP4675362B2 (ja) 半導体装置
JP2004259389A (ja) 薄膜磁性体記憶装置
JP2003263885A (ja) 薄膜磁性体記憶装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111