JP2004047016A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2004047016A
JP2004047016A JP2002205784A JP2002205784A JP2004047016A JP 2004047016 A JP2004047016 A JP 2004047016A JP 2002205784 A JP2002205784 A JP 2002205784A JP 2002205784 A JP2002205784 A JP 2002205784A JP 2004047016 A JP2004047016 A JP 2004047016A
Authority
JP
Japan
Prior art keywords
voltage
channel mos
current
transistor
nonvolatile semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002205784A
Other languages
English (en)
Inventor
Masaaki Mihara
三原 雅章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002205784A priority Critical patent/JP2004047016A/ja
Priority to US10/337,342 priority patent/US6788581B2/en
Priority to KR10-2003-0015614A priority patent/KR100496782B1/ko
Priority to TW092116949A priority patent/TW200407890A/zh
Priority to CNA031787177A priority patent/CN1495800A/zh
Publication of JP2004047016A publication Critical patent/JP2004047016A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】不揮発性半導体記憶装置において、ノイズやチャージシェア等が発生しても、メモリセルのデータの誤読み出しの可能性を低減させる。
【解決手段】メモリセルのH,Lレベルを判定するノードの電圧がしきい値電圧以下の範囲において、メモリセルに電流を供給する電流源として動作するトランジスタを飽和領域で動作するような構成にする。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、メモリセルのデータ誤読み出しの確率を低減させた不揮発性半導体記憶装置に関する。
【0002】
【従来の技術】
記憶データレベルに応じて、しきい値電圧が変化するトランジスタをメモリセルとして備える不揮発性半導体記憶装置の読み出し回路には、いわゆるディスチャージ形読み出し回路および電流検出形回路などが使われている。
【0003】
一例を挙げると、ディスチャージ形読み出し回路において、メモリセルの内容を読み出すとき、ほとんど電流を流さないメモリセルの内容の読み出し時をLレベル読み出し時とする。一方、H,Lレベルを判定するノードに接続される電流源として動作するトランジスタ(以下、電流源トランジスタと称する)の飽和領域の電流よりも多くの電流を流すことができるメモリセルの内容の読み出し時をHレベル読み出し時とする。その結果、ディスチャージ形読み出し回路はメモリセルのH,Lレベルを判定できる。
【0004】
しかし、従来のディスチャージ形読み出し回路で使用される電流源トランジスタは、必ずしもその動作範囲が適切となるように考慮されていなかったため、データ誤読み出しの危険性があった。具体的には、Lレベル読み出し時において、従来のディスチャージ形読み出し回路は、データ線にノイズがのったり、チャージシェアの発生により、H、Lレベルを判定するノードの電圧が下降し、電流源トランジスタの飽和電流よりも少ない電流を電流源トランジスタが供給するおそれがある。そのとき、電流源トランジスタは線形領域で動作していたため、データ誤読み出しの危険性があった。
【0005】
図11は、従来のディスチャージ形読み出し回路の構成図である。図11に示すように、従来のディスチャージ形読み出し回路である不揮発性半導体記憶装置106は、複数のメモリセルを含むメモリセルアレイ1と、データ読み出し時に、クロック信号CNTに応答してノードN3とノードN4を電気的に結合するNチャネルMOSトランジスタNM1と、電源電圧VccとNチャネルMOSトランジスタNM1との間に設けられ、電流源トランジスタとして作用するPチャネルMOSトランジスタTr15と、PチャネルMOSトランジスタTr15およびNチャネルMOSトランジスタNM1の接続ノードを入力とし、入力された電圧レベルを反転して出力する反転回路3とを備える。
【0006】
メモリセルアレイ1は、複数のメモリセルから1つのメモリセルを選択するための、ワード線、ビット線、ワード線デコーダおよびビット線デコーダ(図示せず)を含む。一例として、PチャネルMOSトランジスタTr15のしきい値電圧は0.6Vであり、反転回路3のしきい値電圧は1.5Vであるものとする。
【0007】
NチャネルMOSトランジスタNM1は、ノードN4を介してメモリセルアレイ1に接続される。常時電流を供給するPチャネルMOSトランジスタTr15のゲートは、一般的には、接地電圧GNDに接続される。
【0008】
ノードN3はノイズの影響を受けにくくするため、十分に短く設計される。一方、ノードN4はメモリセルアレイ1との間を接続するために、ノードN3よりも十分に長くなってしまうのが一般的である。ノードN3およびノードN4には、寄生容量C2およびC1がそれぞれあり、C1>C2の関係がある。また、電源電圧Vccは3Vとする。
【0009】
図12は、PチャネルMOSトランジスタTr15の電流の流れやすさを示すk値が1.2μA/Vであるときの、PチャネルMOSトランジスタTr15の特性を示す特性曲線T1aである。縦軸は、PチャネルMOSトランジスタTr15が流す電流値を示す。横軸は、ノードN3の電圧を示す。
【0010】
この特性曲線T1aから、PチャネルMOSトランジスタTr15が飽和領域で流す電流値(飽和電流)は7.2μAである。また、特性曲線T1aにおいて、PチャネルMOSトランジスタTr15は、0.6Vより小さい電圧では飽和領域で動作し、0.6Vより大きい電圧では線形領域で動作する。
【0011】
次に、図11および図12を用いて、H,Lレベル読み出し時の不揮発性半導体記憶装置106の動作を説明する。データを読み出さないときは、ノードN3の電圧は3Vである。
【0012】
Hレベル読み出し時、選択メモリセルは、一例として、最大で10μAの電流を流せるものとする。出力OUTのH、Lレベルの判定は、ノードN3の電圧が反転回路3のしきい値電圧より小さければHレベルとし、ノードN3の電圧が反転回路3のしきい値電圧より大きければLレベルとする。
【0013】
データ読み出し時、PチャネルMOSトランジスタTr15の飽和電流は7.2μAなので、選択メモリセルが流せる電流量の方が多い。そのため、H,Lレベルを判定するノードN3の電圧は下降しほぼ0Vになる。
【0014】
したがって、ノードN3の電圧は、反転回路のしきい値電圧1.5Vよりも小さくなり、出力OUTはHレベルとなる。
【0015】
仮に、ノードN4にノイズがのったり、ノードN3とノードN4との間でチャージシェアが発生して、ノードN3の電圧が反転回路3のしきい値電圧1.5Vより下降したとしても、出力OUTはHレベルになるのでデータの誤読み出しとはならない。
【0016】
Lレベル読み出し時、選択メモリセルは、ほとんど電流を流さないものとする。一例として、選択メモリセルのリーク電流値は0.1μAとする。
【0017】
データ読み出し時、選択メモリセルは0.1μAしか電流を流せないので、H,Lレベルを判定するノードN3の電圧はほとんど下降せず、ほぼ3Vである。
【0018】
このとき、ノードN4にノイズがのったり、ノードN3とノードN4との間でチャージシェアが発生したとする。その結果、ノードN3の電圧が下降し、瞬間的に、PチャネルMOSトランジスタTr15が線形領域で動作する、7.2μAと6μAとの間の電流を流したとする。このような現象が生じると、ノードN3の電圧は反転回路3のしきい値電圧1.5Vより小さくなるので、Lレベルデータが読み出されるべきであるにもかかわらず、出力OUTは、Hレベルとなりデータの誤読み出しを起こしてしまう。
【0019】
【発明が解決しようとする課題】
このように、従来の不揮発性半導体記憶装置においては、電流源トランジスタの適正なゲート電圧レベルが特に考慮されていなかったため、結果として、H,Lレベルを判定するノードの電圧がしきい値電圧以下の範囲において、当該電流源トランジスタが線形領域で動作する傾向にあった。そのため、Lレベル読み出し時、チャージシェアまたはデータ線へのノイズ等によって、電流源トランジスタの飽和電流より少ない電流が流れたとき、電圧を判定するノードの電圧がしきい値電圧以下になることがあった。このような現象により、従来の不揮発性半導体記憶装置は、メモリセルのデータの誤読み出しを行なう可能性が高かった。
【0020】
この発明は、この様な問題点を解決するためになされたものであって、この発明の目的は、Lレベル読み出し時、データ線へのノイズや、チャージシェア等の影響によって、電流源トランジスタが飽和電流以下の電流を供給しても、データの誤読み出しをしない不揮発性半導体記憶装置を提供することである。
【0021】
【課題を解決するための手段】
請求項1に記載の不揮発性半導体記憶装置は、複数のメモリセルと、データ読み出し時、複数のメモリセルから選択された1つのセルと電気的に結合されるデータ線と、データ読み出し時、データ線の電流を検知するセンスアンプ回路とを備え、センスアンプ回路は、データ読み出し時、データ線に電流を供給する第1の電流源を含み、第1の電流源は、データ読み出し時にデータ線と接続される第1の内部ノードと、第1の内部ノードと電源電圧との間に電気的に結合される第1のトランジスタとを有し、センスアンプ回路は、データ読み出し時、第1の内部ノードの電圧と第1のしきい値電圧とを比較する第1の変換回路をさらに含み、第1の内部ノードの電圧が第1のしきい値電圧以下の範囲において、第1のトランジスタが飽和領域で動作するように、第1のトランジスタのゲート電圧を設定する第1の電圧設定回路をさらに備える。
【0022】
請求項2に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、第1のトランジスタは、PチャネルMOSトランジスタであり、ゲート電圧に第1のトランジスタのしきい値電圧を加えた電圧は、第1のしきい値電圧より大きい。
【0023】
請求項3に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、第1の電圧設定回路は、カレントミラー回路である。
【0024】
請求項4に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、複数のメモリセルは、複数のブロックに分割され、データ線と、センスアンプ回路と、第1の電圧設定回路とは、ブロックごとに配置される。
【0025】
請求項5に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、複数のメモリセルは、複数のブロックに分割され、データ線と、センスアンプ回路とは、ブロックごとに配置され、第1の電圧設定回路は、複数のブロックによって共有される。
【0026】
請求項6に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、複数のメモリセルは、複数のブロックに分割され、データ線と、センスアンプ回路とは、ブロックごとに配置され、第2の電圧設定回路と、第2の電流源と、電源電圧と接地電圧の間の中間電圧を発生する中間電位発生回路とをさらに備え、第2の電圧設定回路と、第2の電流源とは、ブロックごとに配置され、第2の電圧設定回路は、各ブロックごとのセンスアンプ回路内の第1の内部ノードの少なくとも1つの電圧が第1のしきい値電圧以下の範囲において、各ブロックごとの第1のセンスアンプ回路内の第1のトランジスタが飽和領域で動作するように、第1のトランジスタのゲート電圧をそれぞれ設定し、第2の電流源は、中間電位に応じた複数の第2の電圧設定回路へそれぞれ電流を供給する。
【0027】
請求項7に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、第1の変換回路は、データ読み出し時、データ線に電流を供給するための第3の電流源と、第3の電流源を所定の電流量に制限する電流制限回路とを含み、第3の電流源は、第1の内部ノードと電源電圧との間に電気的に結合される第2のトランジスタとを有し、第1の内部ノードの電圧が第1のしきい値電圧以下の範囲において、第2のトランジスタは、飽和領域で動作する。
【0028】
請求項8に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置において、データ読み出し時、第1のトランジスタと同じレベルの電流を供給する第4の電流源と、データ読み出し時、第4の電流源と電気的に結合される比較データ線と、比較データ線と電気的に結合される第5の電流源とをさらに備え、第4の電流源は、データ読み出し時、比較データ線と接続される第2の内部ノードと、第2の内部ノードと電源電圧との間に電気的に結合される第3のトランジスタとを含み、第2の内部ノードの電圧が第1のしきい値電圧以下の範囲において、第3のトランジスタが飽和領域で動作するように、第3のトランジスタのゲート電圧を設定する第3の電圧設定回路と、第1の内部ノードと第2の内部ノードとの電圧の差を検出するための差動増幅回路とをさらに備え、第5の電流源は、比較データ線から第3のトランジスタと同じレベルの電流を流出させ、データ読み出し時、選択された1つのセルは、記憶データに応じて、第1のトランジスタの供給する電流よりも大きい電流および小さい電流のいずれか一方をデータ線から流出させる。
【0029】
【発明の実施の形態】
以下において、本発明の実施の形態について、図面を参照しながら説明する。なお、図中同一符号は同一または相当部分を示す。
【0030】
[実施の形態1]
図1は、本発明の実施の形態1に従う不揮発性半導体記憶装置100の構成図である。
【0031】
図1を参照して、実施の形態1に従う不揮発性半導体記憶装置100は、複数のメモリセルを含むメモリセルアレイ1と、センスアンプ回路10と、電圧設定回路20とを備える。
【0032】
メモリセルアレイ1は、PチャネルMOSトランジスタATr0、ATr1と、PチャネルMOSトランジスタYTr0、YTr1〜YTr16と、不揮発性メモリセルFM0,FM1〜FM16と、ワード線WL0と,ビット線BL0、BL1〜BL16とを含む。このメモリセルアレイ1内の構成は、一例であって、実際には、PチャネルMOSトランジスタ、不揮発性メモリセル、ワード線およびビット線は、メモリセルアレイ1の構成より多くある。
【0033】
PチャネルMOSトランジスタATr0およびATr1のソースは、ノードN4に接続される。PチャネルMOSトランジスタATr0のドレインは、PチャネルMOSトランジスタYTr0、YTr1〜YTr15のソースに各々接続される。PチャネルMOSトランジスタYTr0、YTr1〜YTr16のドレインは、ビット線BL0、BL1〜BL16にそれぞれ接続される。ビット線BL0、BL1〜BL16のそれぞれは、不揮発性メモリセルFM0,FM1〜FM16のドレインにそれぞれ接続される。ワード線WL0は、不揮発性メモリセルFM0,FM1〜FM16のコントロールゲートにそれぞれ接続される。PチャネルMOSトランジスタATr1のドレインは、PチャネルMOSトランジスタYTr16のソースに接続される。
【0034】
PチャネルMOSトランジスタATr0およびPチャネルMOSトランジスタYTr0、YTr1〜YTr15は、ブロック選択信号AD0、ビット線選択信号YS0〜YS15、およびワード線選択信号WS0に応答して、BL0〜BL15のうちの所望のビット線に接続されている所望の不揮発性メモリセルを選択する機能を有する。
【0035】
センスアンプ回路10は、データ読み出し時に、クロック信号CNTに応答して、ノードN3とノードN4を電気的に結合するNチャネルMOSトランジスタNM1と、電源電圧VccとNチャネルMOSトランジスタNM1との間に設けられ、電流源トランジスタとして作用するPチャネルMOSトランジスタTr1と、PチャネルMOSトランジスタTr1およびNチャネルMOSトランジスタNM1の接続ノードを入力とし、入力された電圧レベルを反転して出力する反転回路3とを含む。一例として、PチャネルMOSトランジスタTr1のしきい値電圧は0.6Vであり、反転回路3のしきい値電圧は1.5Vであるものとする。
【0036】
NチャネルMOSトランジスタNM1は、ノードN4を介してメモリセルアレイ1に接続される。ノードN4は、データ読み出し時、複数のメモリセルのうちの1つと電気的に結合されるデータ線に相当する。
【0037】
電圧設定回路20は、電源電圧Vccと接地電圧GNDとの間に直列に接続されたPチャネルMOSトランジスタTr2およびNチャネルMOSトランジスタTr3と、電源電圧Vccと接地電圧GNDとの間に直列に接続されたPチャネルMOSトランジスタTr5およびNチャネルMOSトランジスタTr4とを含む。また、電圧設定回路20は、PチャネルMOSトランジスタTr1のゲート電圧を所望の値に設定する。
【0038】
PチャネルMOSトランジスタTr2のゲートは、接地電圧GNDと接続される。PチャネルMOSトランジスタTr3のゲートおよびNチャネルMOSトランジスタTr4のゲートは、PチャネルMOSトランジスタTr2およびNチャネルMOSトランジスタTr3の接続ノードN1と接続される。PチャネルMOSトランジスタTr5のゲートは、PチャネルMOSトランジスタTr5およびNチャネルMOSトランジスタTr4の接続ノードN2とPチャネルMOSトランジスタTr1のゲートと接続される。
【0039】
ノードN2およびN3は、ノイズの影響を受けにくくするため、十分に短く設計される。一方、ノードN4は、メモリセルアレイ1との間を接続するために、ノードN2、3よりも十分に長くなってしまうのが一般的である。ノードN3およびノードN4には、寄生容量C2およびC1がそれぞれあり、C1>C2の関係がある。また、電源電圧Vccは3Vとする。
【0040】
次に、電流源トランジスタとして作用するPチャネルMOSトランジスタTr1に接続され、H,Lレベルを判定するノードN3の電圧が反転回路3のしきい値電圧以下の範囲において、PチャネルMOSトランジスタTr1が飽和領域で動作するためのPチャネルMOSトランジスタTr1および電圧設定回路20内のトランジスタの特性を決める設計方法を説明する。
【0041】
一例として、PチャネルMOSトランジスタTr1、Tr2およびTr5と、NチャネルMOSトランジスタTr3およびTr4のしきい値電圧を0.6Vとする。
【0042】
ノードN3の電圧が反転回路3のしきい値電圧以下になっても、PチャネルMOSトランジスタTr1が飽和領域で動作するためには、PチャネルMOSトランジスタTr1のゲート電圧としきい値電圧を足した値が、反転回路3のしきい値電圧である1.5Vより大きくなることが必要最低限条件である。そのため、PチャネルMOSトランジスタTr1のゲート電圧としきい値電圧を足した値が、反転回路3のしきい値電圧である1.5Vにマージンとして0.6Vを加えた2.1Vになるように設計する。すなわち、ノードN3の電圧が2.1Vより小さくなれば、PチャネルMOSトランジスタTr1が飽和領域で動作するよう設計する。
【0043】
ノードN3の電圧が2.1Vであるとしたとき、PチャネルMOSトランジスタTr1のしきい値電圧は0.6Vとしているので、ノードN2の電圧は1.5Vとなる。PチャネルMOSトランジスタTr1に流れる電流Idsは、飽和領域において
Ids=k(Vgs−Vth)                …(1)
によって求められる。Idsは飽和領域で流れる電流値である。kは、値が大きいほどトランジスタがより多くの電流を流すことができる指標となる値である。Vgsはゲート−ソース間の電圧である。Vthはしきい値電圧である。
【0044】
一例として、PチャネルMOSトランジスタTr1が飽和領域で動作するとき、7.2μAの電流を流すようにする。(1)式に、Ids=7.2、Vgs=−1.5、Vth=−0.6をそれぞれ代入すると、k=8.9が求められる。したがって、図2のようなk値が8.9μA/Vの特性曲線T1の特性をもった、PチャネルMOSトランジスタTr1を決定できる。
【0045】
図2において、横軸はノードN3の電圧を示す。縦軸はPチャネルMOSトランジスタTr1が流す電流値を示す。特性曲線T1より、ノードN3の電圧が2.1Vより小さくなれば、PチャネルMOSトランジスタTr1が飽和領域で動作することが分かる。
【0046】
次に、PチャネルMOSトランジスタTr1およびPチャネルMOSトランジスタTr5に流れる電流を等しくするために、PチャネルMOSトランジスタTr1と同じk値のPチャネルMOSトランジスタTr5を使用する。PチャネルMOSトランジスタTr5のゲートおよびドレインは短絡されているので、PチャネルMOSトランジスタTr5の特性曲線は、図3の特性曲線T5となる。
【0047】
図3において、横軸はノードN2の電圧を示す。縦軸はNチャネルMOSトランジスタTr4およびPチャネルMOSトランジスタTr5が流す電流値を示す。
【0048】
ノードN2の電圧は1.5Vであるので、特性曲線T5とNチャネルMOSトランジスタTr4の特性曲線T4の交点が1.5Vとなるように、NチャネルMOSトランジスタTr4のk値およびVgsを決める。ここでは、一例として、ノードN1の電圧が設計上1.2Vとなるようにした。NチャネルMOSトランジスタTr4が飽和領域で流す電流値は、ノードN2の電圧が1.5Vなので、特性曲線T5より7.2μAとなる。(1)式に、Ids=7.2μA、Vgs=1.2V、Vth=0.6それぞれ代入すると、k=20が求められる。したがって、図3のようなk値が20μA/Vの特性曲線T4の特性をもった、NチャネルMOSトランジスタTr4を決定できる。
【0049】
次に、NチャネルMOSトランジスタTr4およびNチャネルMOSトランジスタTr3に流れる電流を等しくするため、NチャネルMOSトランジスタTr4と同じk値のNチャネルMOSトランジスタTr3を使用する。PチャネルMOSトランジスタTr2のゲートは、接地電圧GNDに接続されているので、ノードN1の電圧は、電源電圧Vccである3Vとなる。そのため、PチャネルMOSトランジスタTr3のVgs=3Vとなる。したがって、PチャネルMOSトランジスタTr3の特性曲線は、図4の特性曲線T3となる。
【0050】
図4において、横軸はノードN1の電圧を示す。縦軸はPチャネルMOSトランジスタTr2およびNチャネルMOSトランジスタTr3が流す電流値を示す。
【0051】
ノードN2の電圧は、設計上1.2Vとなるようにしているので、特性曲線T3とPチャネルMOSトランジスタTr2の特性曲線の交点が1.2Vになるように、PチャネルMOSトランジスタTr2のk値を求める。特性曲線T3により、ノードN2の電圧が1.2Vのとき、NチャネルMOSトランジスタTr3に流れる電流は6.5μAであることがわかる。線形領域において、ノードN1の電圧が1.2Vであるときの、PチャネルMOSトランジスタTr2に流れる電流は
Ids=k((Vgs−Vth)−(Vgd−Vth))    …(2)
で求められる。(2)式に、Ids=6.5、Vgs=−3、Vth=−0.6、Vgd=−1.2をそれぞれ代入すると、k=1.2が求められる。したがって、図4のようなk値が1.2μA/Vの特性曲線T2の特性をもった、PチャネルMOSトランジスタTr2を決定できる。
【0052】
以上により、PチャネルMOSトランジスタTr1および電圧設定回路20内のトランジスタの特性を決めることができる。
【0053】
次に、図1および図2を用いて、H,Lレベル読み出し時の不揮発性半導体記憶装置100の動作を説明する。データを読み出さないときは、ノードN3の電圧は3Vである。
【0054】
Hレベル読み出し時は、従来の不揮発性半導体記憶装置106と同様、データの誤読み出しは生じないので動作の詳細な説明は繰り返さない。
【0055】
Lレベル読み出し時、選択メモリセルは、ほとんど電流を流さないものとする。一例として、選択メモリセルのリーク電流値は0.1μAとする。
【0056】
データ読み出し時、選択メモリセルは0.1μAしか電流を流せないので、ノードN3の電圧は、ほとんど下降せず、ほぼ3Vである。このとき、ノードN4にノイズがのったり、ノードN3とノードN4との間でチャージシェアが発生したとする。その結果、ノードN3の電圧が下降し、PチャネルMOSトランジスタTr1の飽和電流である7.2μAより少ない電流がノードN3に流れたとする。このとき、ノードN3の電圧は、電流源トランジスタとして作用するPチャネルMOSトランジスタTr1によって、飽和領域と線形領域の境界電圧である2.1Vよりも小さくならない。よって、ノードN3の電圧は、従来の不揮発性半導体記憶装置106のように、反転回路のしきい値電圧である1.5Vより小さくなることはないので、データの誤読み出しはおきない。
【0057】
以上説明したように、実施の形態1に従う不揮発性半導体記憶装置100においては、電流源トランジスタとして作用するPチャネルMOSトランジスタTr1に接続されているH、Lレベルを判定するノードの電圧がしきい値電圧以下の範囲において、電流源トランジスタが飽和領域で動作するよう、電流源トランジスタのゲート電圧は適切な値に設定される。その結果、データ読み出し線にノイズがのったり、チャージシェア等が発生し、電流源トランジスタの飽和電流より少ない電流が発生しても、選択メモリセルの誤読み出しをすることはない。
【0058】
[実施の形態2]
図5は、本発明の実施の形態2に従う不揮発性半導体記憶装置101の構成図である。
【0059】
図5を参照して、実施の形態2に従う不揮発性半導体記憶装置101は、実施の形態1に従う不揮発性半導体記憶装置100と比較して、メモリセルアレイ1が複数のメモリセルブロックに分割されている点と、電圧設定回路20と同様な構成の電圧設定回路20aおよび20bをさらに備える点と、センスアンプ回路10と同様な構成のセンスアンプ回路10aおよび10bをさらに備える点とが異なる。それ以外の構成は、図1に示した不揮発性半導体記憶装置100と同じであるので詳細な説明は繰り返さない。
【0060】
センスアンプ回路10aおよび10bは、センスアンプ回路10と比較して、出力信号OUTに対応するものが、それぞれ出力信号OUTaおよびOUTbである点と、ノードN2に対応するものが、それぞれノードN2aおよびN2bである点と、ノードN4に対応するものが、それぞれノードN4aおよびN4bである点とが異なる。それ以外の構成は、図1に示したセンスアンプ回路10と同じであるので詳細な説明は繰り返さない。
【0061】
当該複数のメモリセルブロックは、それぞれ複数のメモリセルを有する。また、メモリセルアレイ1は、当該複数のメモリセルブロック内の複数のメモリセルから1つのメモリセルをそれぞれ選択するための、ワード線、ビット線、ワード線デコーダおよびビット線デコーダ(図示せず)を含む。
【0062】
電圧設定回路20、20aおよび20b内のPチャネルMOSトランジスタTr5のゲートは、ノードN2、N2aおよびN2bを介して、それぞれセンスアンプ回路10、10aおよび10b内のPチャネルMOSトランジスタTr1のゲートと接続される。センスアンプ回路10、10aおよび10bは、ノードN4、N4aおよびN4bを介して、当該複数のメモリセルブロックのうち1つのメモリセルブロックにそれぞれ接続される。ノードN4、N4aおよびN4bは、データ読み出し時、当該複数のメモリセルブロックのうちの1つのメモリセルブロック内の複数のメモリセルのうちの1つとそれぞれ電気的に結合される。
【0063】
ノードN2、N2aおよびN2bとノードN3、N3aおよびN3bは、ノイズの影響を受けにくくするため、それぞれ十分に短く設計される。ノードN4、N4aおよびN4bは、メモリセルアレイ1との間を接続するために、ノードN2、N2aおよびN2bとノードN3、N3aおよびN3bよりもそれぞれ十分に長くなってしまうのが一般的である。
【0064】
電圧設定回路20,20aおよび20bは、センスアンプ回路10、10aおよび10b内の電流源トランジスタとして作用するPチャネルMOSトランジスタTr1に接続されているH、Lレベルを判定するノードN3、N3aおよびN3bの少なくとも1つの電圧がしきい値電圧以下になったとする。そのとき、実施の形態1と同様に、PチャネルMOSトランジスタTr1それぞれが飽和領域で動作するよう、PチャネルMOSトランジスタTr1それぞれのゲート電圧は適切な値に設定される。
【0065】
次に、Lレベル読み出し時の不揮発性半導体記憶装置101の動作を説明する。センスアンプ回路10、10aおよび10bは、当該複数のメモリセルブロックのうちの1つのメモリセルブロック内の複数のメモリセルの中のそれぞれの選択メモリセルのデータを読み出す。それぞれの選択メモリセルのデータを読み出す動作は、実施の形態1の不揮発性半導体記憶装置100と同様なので詳細な説明は繰り返さない。
【0066】
以上説明したように、実施の形態2に従う不揮発性半導体記憶装置101においては、不揮発性半導体記憶装置101のそれぞれの選択メモリセルのデータの出力先は、OUT,OUTaおよびOUTbと3つあるので、同時に3つのメモリセルのデータを読み出すことができる。
【0067】
また、不揮発性半導体記憶装置101は、複数のセンスアンプ回路内の電流源トランジスタに接続されているH、Lレベルを判定するノードN3、N3aおよびN3bの少なくとも1つの電圧が、しきい値電圧以下の範囲において、電流源トランジスタそれぞれが飽和領域で動作するよう、電流源トランジスタそれぞれのゲート電圧は適切な値に設定されている。その結果、データ読み出し線にノイズがのったり、チャージシェア等が発生し、電流源トランジスタの飽和電流より少ない電流が発生しても、選択メモリセルの誤読み出しをすることはない。
【0068】
さらに、不揮発性半導体記憶装置101は複数の電圧設定回路が複数のセンスアンプ回路の近傍にそれぞれ接続されている。したがって、不揮発性半導体記憶装置101は、同時に複数のデータを読み出すことができる。
【0069】
[実施の形態3]
図6は、本発明の実施の形態3に従う不揮発性半導体記憶装置102の構成図である。
【0070】
図6を参照して、実施の形態3に従う不揮発性半導体記憶装置102は、実施の形態2に従う不揮発性半導体記憶装置101と比較して、電圧設定回路20aおよび20bを備えない点と、ノードN2が、センスアンプ回路10aおよび10b内のPチャネルMOSトランジスタTr1のゲートに各々接続される点とが異なる。それ以外の構成は、図5に示した不揮発性半導体記憶装置101と同じであるので詳細な説明は繰り返さない。
【0071】
電圧設定回路20のPチャネルMOSトランジスタTr5のゲートは、ノードN2を介して、センスアンプ回路10、10aおよび10b内のPチャネルMOSトランジスタTr1のゲートと各々接続される。すなわち、電圧設定回路20は、センスアンプ回路10、10aおよび10bにノードN2を介して、電圧を分配している。ノードN2は実施の形態2の不揮発性半導体記憶装置101のノードN2よりも十分に長くなってしまうのが一般的である。
【0072】
電圧設定回路20は、センスアンプ回路10、10aおよび10b内の電流源トランジスタであるPチャネルMOSトランジスタTr1に接続されているH、Lレベルを判定するノードN3、N3aおよびN3bの少なくとも1つの電圧がしきい値電圧以下になったとする。そのとき、実施の形態1と同様に、PチャネルMOSトランジスタTr1それぞれが飽和領域で動作するよう、PチャネルMOSトランジスタTr1それぞれのゲート電圧は適切な値に設定される。
【0073】
Lレベル読み出し時の不揮発性半導体記憶装置102の動作は、実施の形態2に従う不揮発性半導体記憶装置101と同様であるので、詳細な説明は繰り返さない。
【0074】
以上説明したように、実施の形態3に従う不揮発性半導体記憶装置102においては、ノードN2から複数のセンスアンプ回路に電圧を分配する構成となっている。その結果、ノードN2の配線は十分に長くなってしまうのが一般的なので、不揮発性半導体記憶装置101と比較して、ノイズに弱いという欠点がある。
【0075】
しかし、不揮発性半導体記憶装置102は、不揮発性半導体記憶装置101と比較して、1つの電圧設定回路に複数のセンスアンプ回路がそれぞれ接続されている。したがって、不揮発性半導体記憶装置102は、不揮発性半導体記憶装置101と同様に同時に複数のデータを読み出すことができる。また、不揮発性半導体記憶装置102は、電圧設定回路は1つである。そのため、電圧設定回路を複数備える不揮発性半導体記憶装置101より、回路面積の縮小化が図れる。
【0076】
[実施の形態4]
図7は、本発明の実施の形態4に従う不揮発性半導体記憶装置103の構成図である。
【0077】
図7を参照して、実施の形態4に従う不揮発性半導体記憶装置103は、実施の形態3に従う不揮発性半導体記憶装置102と比較して、電圧設定回路20の代わりに、電圧設定回路24を備える点と、電圧設定回路21と、電圧設定回路21aと、電圧設定回路21bと、電流源25と、電流源25aと、電流源25bとをさらに備える点とが異なる。それ以外の構成は、図6に示した不揮発性半導体記憶装置102と同じであるので詳細な説明は繰り返さない。
【0078】
電圧設定回路24は、電源電圧Vccと接地電圧GNDとの間に直列に接続されたPチャネルMOSトランジスタTr2およびNチャネルMOSトランジスタTr3を含む。また、電圧設定回路24は電源電圧Vccと接地電圧GNDの間の中間電圧を生成する。
【0079】
電流源25,25aおよび25bは、NチャネルMOSトランジスタTr4、NチャネルMOSトランジスタTr4aおよびNチャネルMOSトランジスタTr4bをそれぞれ含む。また、電流源25,25aおよび25bは、電圧設定回路24により生成された中間電圧をもとに、電圧設定回路21,21aおよび21bにそれぞれ電流を供給する。
【0080】
NチャネルMOSトランジスタTr4、Tr4aおよびTr4bは、電流源として動作する。また、NチャネルMOSトランジスタTr4、Tr4aおよびTr4bは、ノードN5、N5aおよびN5bと接地電圧GNDとの間にそれぞれ設けられる。
【0081】
電圧設定回路24内のPチャネルMOSトランジスタTr2のゲートは、接地電圧GNDと接続される。NチャネルMOSトランジスタTr3のゲートは、PチャネルMOSトランジスタTr2およびNチャネルMOSトランジスタTr3の接続ノードN1およびNチャネルMOSトランジスタTr4、Tr4aおよびTr4bのゲートに各々接続される。
【0082】
電圧設定回路21、21aおよび21bは、電源電圧VccとノードN5、N5aおよびN5bとの間にPチャネルMOSトランジスタTr5をそれぞれ設ける。電圧設定回路21、21aおよび21b内のPチャネルMOSトランジスタTr5のゲートは、PチャネルMOSトランジスタTr5のドレインと、センスアンプ回路10、10aおよび10b内のPチャネルMOSトランジスタTr1のゲートとにそれぞれ接続される。
【0083】
また、電流源25内のNチャネルMOSトランジスタTr4、Tr4aおよびTr4bのドレインは、ノードN5、N5aおよびN5bを介して、電圧設定回路21、21aおよび21b内のPチャネルMOSトランジスタTr5のドレインとそれぞれ接続される。すなわち、電流源トランジスタとして作用するNチャネルMOSトランジスタTr4、Tr4aおよびTr4bは、ノードN5、N5aおよびN5bを介して、電圧設定回路21、21a、21b内のPチャネルMOSトランジスタTr5に電流をそれぞれ供給している。
【0084】
電圧設定回路21、21aおよび21bは、センスアンプ回路10、10aおよび10b内の電流源トランジスタとして作用するPチャネルMOSトランジスタTr1に接続されているH、Lレベルを判定するノードN3、N3aおよびN3bの少なくとも1つの電圧がしきい値電圧以下になったとする。そのときPチャネルMOSトランジスタTr1それぞれが飽和領域で動作するよう、電流源トランジスタそれぞれのゲート電圧は適切な値に設定される。
【0085】
Lレベル読み出し時の不揮発性半導体記憶装置103の動作は、実施の形態2に従う不揮発性半導体記憶装置101と同様であるので、詳細な説明は繰り返さない。
【0086】
以上説明したように、実施の形態4に従う不揮発性半導体記憶装置103においては、不揮発性半導体記憶装置102と比較して、電圧設定回路21、21aおよび21bおよびNチャネルMOSトランジスタTr4aおよびTr4bをさらに備えるので、回路面積が多少大きくなってしまうという欠点がある。
【0087】
しかし、不揮発性半導体記憶装置103は、電流源25、25aおよび25bからノードN5、N5aおよびN5bを介して、電圧設定回路21、21aおよび21bにそれぞれ電流を供給している。そして、電圧設定回路21、21aおよび21bは、センスアンプ回路10、10aおよび10bの近傍でノードN2、N2aおよびN2bの電圧をそれぞれ設定する。したがって、電流を分配する方式の不揮発性半導体記憶装置103は、電圧を分配する方式の不揮発性半導体記憶装置102と比較して、ノイズに強いという利点を持っている。
【0088】
[実施の形態5]
図8は、本発明の実施の形態5に従う不揮発性半導体記憶装置104の構成図である。
【0089】
図8を参照して、実施の形態5に従う不揮発性半導体記憶装置104は、実施の形態1に従う不揮発性半導体記憶装置100と比較して、センスアンプ回路10に代えてセンスアンプ回路11を備える点と、反転回路3aをさらに備える点と、電圧設定回路20内のノード1が、反転回路3aに接続される点とが異なる。それ以外の構成は、図1に示した不揮発性半導体記憶装置100と同じであるので詳細な説明は繰り返さない。
【0090】
センスアンプ回路11は、センスアンプ回路10と比較して、反転回路3を含まない点が異なる。それ以外の構成は、図1に示したセンスアンプ回路10と同じであるので詳細な説明は繰り返さない。
【0091】
反転回路3aは、電源電圧Vccと接地電圧GNDとの間に直列に接続されたPチャネルMOSトランジスタTr8と、NチャネルMOSトランジスタTr7、Tr6とを含む。PチャネルMOSトランジスタTr8は、電流源として動作する。NチャネルMOSトランジスタTr6は、NチャネルMOSトランジスタTr4と同じ特性とする。PチャネルMOSトランジスタTr8のしきい値電圧は0.6Vとする。
【0092】
PチャネルMOSトランジスタTr8のゲートおよびドレインは、NチャネルMOSトランジスタTr7のゲートおよびドレインとそれぞれ接続される。PチャネルMOSトランジスタTr8のゲートおよびNチャネルMOSトランジスタTr7のゲートの接続ノードは、ノードN3と接続される。NチャネルMOSトランジスタTr6のゲートは、ノードN1と接続される。ノードN1、N2の電圧は、実施の形態1と同じで、それぞれ、1.2、1.5Vとする。また、電源電圧Vccは3Vとする。反転回路3aの論理しきい値電圧は1.5Vとする。
【0093】
次に、データ読み出し時、不揮発性半導体記憶装置104のノードN3の電圧が、反転回路3aのしきい値電圧以下になっても、電流源トランジスタとして作用するPチャネルMOSトランジスタTr8が飽和領域で動作するために、反転回路3a内のPチャネルMOSトランジスタTr8の特性を決める設計方法を説明する。
【0094】
図9を参照して、NチャネルMOSトランジスタTr6は、NチャネルMOSトランジスタTr4と同じ特性としているので、NチャネルMOSトランジスタTr6のk値および特性曲線は図3の特性曲線T4と同じである特性曲線T6となる。したがって、NチャネルMOSトランジスタTr6が飽和領域において、流すことが可能な電流量は、7.2μAである。
【0095】
図9において、横軸はノードN3の電圧を示す。縦軸はPチャネルMOSトランジスタTr8およびNチャネルMOSトランジスタTr6が流す電流値を示す。
【0096】
反転回路3aの論理しきい値電圧を1.5Vとしているので、ノードN3の電圧が1.5Vのとき、PチャネルMOSトランジスタTr8が飽和領域で動作するように設計する。そのため、ノードN3の電圧を1.5Vとすると、PチャネルMOSトランジスタTr8のVgs=−1.5Vとなる。PチャネルMOSトランジスタTr8は、NチャネルMOSトランジスタTr6によって流すことが可能な電流量が7.2μAと制限されるので、(1)式に、Ids=7.2、Vgs=−1.5、Vth=−0.6をそれぞれ代入すると、k=8.9が求められる。したがって、図9のようなk値が8.9μA/Vの特性曲線T8の特性をもった、PチャネルMOSトランジスタTr8を決定できる。
【0097】
次に、図8および図9を用いて、Lレベル読み出し時の不揮発性半導体記憶装置104の動作を説明する。データを読み出さないときは、ノードN3の電圧は3Vである。メモリセルアレイ1内の選択メモリセルは、ほとんど電流を流さないものとする。一例として、選択メモリセルが流すことが可能な電流値は0.1μAとする。
【0098】
データ読み出し時、選択メモリセルは0.1μAしか電流を流せないので、ノードN3の電圧は、ほとんど下降せず、ほぼ3Vである。このとき、ノードN4にノイズがのったり、ノードN3とノードN4との間でチャージシェアが発生したとする。その結果、ノードN3の電圧が下降し、PチャネルMOSトランジスタTr8の飽和電流である7.2μAより少ない電流がノードN3に流れたとする。このとき、ノードN3の電圧は、電流源トランジスタとして作用するPチャネルMOSトランジスタTr8によって、飽和領域と線形領域の境界電圧である2.1Vよりも小さくならない。よって、ノードN3の電圧は、従来の不揮発性半導体記憶装置106のように、反転回路のしきい値電圧である1.5Vより小さくなることはないので、データの誤読み出しはおきない。
【0099】
以上説明したように、実施の形態5に従う不揮発性半導体記憶装置104においては、電流源トランジスタであるPチャネルMOSトランジスタTr8に接続されているH、Lレベルを判定するノードの電圧がしきい値電圧以下の範囲において、電流源トランジスタとして作用するPチャネルMOSトランジスタTr8が飽和領域で動作するような構成にする。その結果、データ読み出し線にノイズがのったり、チャージシェア等が発生し、電流源として作用するPチャネルMOSトランジスタTr8の飽和電流より少ない電流が発生しても、選択メモリセルの誤読み出しをすることはない。
【0100】
[実施の形態6]
図10は、本発明の実施の形態6に従う不揮発性半導体記憶装置105の構成図である。
【0101】
図10を参照して、実施の形態6に従う不揮発性半導体記憶装置105は、実施の形態1に従う不揮発性半導体記憶装置100と比較して、センスアンプ回路10に代えてセンスアンプ回路11を備える点と、電圧設定回路20と同様な構成の電圧設定回路20aと、センスアンプ回路11と同様な構成のセンスアンプ回路11aと、差動増幅回路40と、不揮発性メモリセル31とをさらに備える点とが異なる。それ以外の構成は、図1に示した不揮発性半導体記憶装置100と同じであるので詳細な説明は繰り返さない。
【0102】
電圧設定回路20aは、電圧設定回路20と比較して、ノードN1に対応するものがノードN1aであり、ノードN2に対応するものがノードN2aである。センスアンプ回路11aは、センスアンプ回路11と比較して、ノードN3に対応するものがノードN3aであり、ノードN4に対応するものがノードN4aである。
【0103】
差動増幅回路40は、電流源26と、電源電圧Vccと電流源26との間に直列に接続されたPチャネルMOSトランジスタTr10およびNチャネルMOSトランジスタTr11と、電源電圧Vccと電流源26との間に直列に接続されたPチャネルMOSトランジスタTr12およびNチャネルMOSトランジスタTr13とを備える。差動増幅回路は、ノードN3およびN3aの電圧が異なれば、出力OUTをHレベルにする。
【0104】
PチャネルMOSトランジスタTr10のゲートは、PチャネルMOSトランジスタTr10およびNチャネルMOSトランジスタTr11の接続ノードと、PチャネルMOSトランジスタTr12のゲートとに接続される。NチャネルMOSトランジスタTr11のゲートは、ノードN3に接続される。NチャネルMOSトランジスタTr13のゲートは、ノードN3aに接続される。PチャネルMOSトランジスタTr12およびNチャネルMOSトランジスタTr13の接続ノードは、出力OUTと接続される。
【0105】
ノードN2およびN2aと、ノードN3およびN3aと、ノードN4aは、ノイズの影響を受けにくくするため、それぞれ十分に短く設計される。ノードN4は、メモリセルアレイ1との間を接続するために、ノードN2およびN2aと、ノードN3およびN3aと、ノードN4aよりもそれぞれ十分に長くなってしまうのが一般的である。
【0106】
不揮発性メモリセル31は、センスアンプ回路11a内の電流源として作用するPチャネルMOSトランジスタTr1の飽和電流と同じ電流値である7.2μAを流す電流源として動作するように、不揮発性メモリセル31の特性とVcc2の電圧が決定される。
【0107】
次に、Lレベル読み出し時の不揮発性半導体記憶装置105の動作を説明する。データを読み出さないときは、ノードN3およびノードN3aの電圧は3Vである。メモリセルアレイ1内の選択メモリセルは、ほとんど電流を流さないものとする。一例として、選択メモリセルが流すことが可能な電流値は0.1μAとする。
【0108】
データ読み出し時、選択メモリセルが0.1μAしか電流を流せないので、ノードN3の電圧は、ほとんど下降せず、ほぼ3Vである。また、ノードN4に流れる電流値は0.1μAである。一方、不揮発性メモリセル31は電流を7.2μA流すことができるので、ノードN3aの電圧は下降し、一例として1Vになったとする。
【0109】
したがって、ノードN3およびN4の電圧には差があるので、出力OUTはHレベルである。このとき、ノードN4に外部からノイズがのったり、ノードN3とノードN4との間でチャージシェアが発生し、ノードN3の電圧が下降し、PチャネルMOSトランジスタTr1の飽和電流である7.2μAより少ない電流がノードN3に流れたとする。このとき、ノードN3の電圧は、電流源として動作するPチャネルMOSトランジスタTr1によって、実施の形態1と同様、飽和領域と線形領域の境界電圧である2.1Vよりも小さくならない。したがって、ノードN3aの電圧は1Vなので、差動増幅回路40の動作により、データの誤読み出しはおきない。
【0110】
以上説明したように、実施の形態6に従う不揮発性半導体記憶装置105は、Lレベル読み出し時、ノードN3およびN3aの電圧に所定の電位差を持たすように構成される。また、不揮発性半導体記憶装置105においては、電流源トランジスタとして作用するPチャネルMOSトランジスタTr1に接続されているH、Lレベルを判定するノードの電圧がしきい値電圧以下の範囲において、電流源トランジスタが飽和領域で動作するよう、電流源トランジスタのゲート電圧は適切な値に設定される。その結果、データ読み出し線にノイズがのったり、チャージシェア等が発生し、電流源トランジスタの飽和電流より少ない電流が発生しても、選択メモリセルの誤読み出しをすることはない。
【0111】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0112】
【発明の効果】
請求項1〜3に記載の不揮発性半導体記憶装置は、H、Lレベルを判定する内部ノードの電圧がしきい値電圧以下の範囲において、センスアンプ回路内の電流源として動作するトランジスタが、飽和領域で動作する構成とすることで、メモリセルのデータの誤読み出しの確率を低減させることができる。
【0113】
請求項4に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置の奏する効果に加えて、複数のデータを一度に読み出すことができる。
【0114】
請求項5に記載の不揮発性半導体記憶装置は、請求項1および4に記載の不揮発性半導体記憶装置の奏する効果に加えて、1つの電圧設定回路から複数のセンスアンプ回路に電圧を分配することで、回路面積を縮小することができる。
【0115】
請求項6に記載の不揮発性半導体記憶装置は、請求項1に記載の不揮発性半導体記憶装置の奏する効果に加えて、1つの電流源から複数のセンスアンプ回路に電流を分配することでノイズに対しても強く、また、複数のデータを一度に読み出すことができる。
【0116】
請求項7に記載の不揮発性半導体記憶装置は、H、Lレベルを判定する内部ノードの電圧がしきい値電圧以下になったとき、変換回路内の電流源として動作するトランジスタが、飽和領域で動作するような構成とすることで、メモリセルのデータの誤読み出しの確率を低減させることができる。
【0117】
請求項8に記載の不揮発性半導体記憶装置は、同様な構成の電圧設定回路と電流源を2つ設け、データ読み出し時、各電流源の内部ノードとの間に電圧差を持たせ、H、Lレベルを判定する内部ノードの電圧がしきい値電圧以下になったとき、メモリセルに接続されている電流源内のトランジスタが、飽和領域で動作するような構成とすることで、メモリセルのデータの誤読み出しの確率を低減させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の不揮発性半導体記憶装置の構成図である。
【図2】本発明の不揮発性半導体記憶装置で使用するPチャネルMOSトランジスタTr1の特性を示す図である。
【図3】本発明の不揮発性半導体記憶装置で使用するNチャネルMOSトランジスタTr4およびPチャネルMOSトランジスタTr5の特性を示す図である。
【図4】本発明の不揮発性半導体記憶装置で使用するPチャネルMOSトランジスタTr2およびNチャネルMOSトランジスタTr3の特性を示す図である。
【図5】本発明の実施の形態2の不揮発性半導体記憶装置の構成図である。
【図6】本発明の実施の形態3の不揮発性半導体記憶装置の構成図である。
【図7】本発明の実施の形態4の不揮発性半導体記憶装置の構成図である。
【図8】本発明の実施の形態5の不揮発性半導体記憶装置の構成図である。
【図9】本発明の不揮発性半導体記憶装置で使用するNチャネルMOSトランジスタTr6およびPチャネルMOSトランジスタTr8の特性を示す図である。
【図10】本発明の実施の形態6の不揮発性半導体記憶装置の構成図である。
【図11】従来の不揮発性半導体記憶装置の構成図である。
【図12】従来の不揮発性半導体記憶装置で使用するPチャネルMOSトランジスタTr15の特性を示す図である。
【符号の説明】
1 メモリセルアレイ、3,3a 反転回路、10,10a,10b,11,11a センスアンプ回路、20,20a,20b,21,21a,21b,24 電圧設定回路、25,25a,25b,26 電流源、31 不揮発性メモリセル、40 差動増幅回路、C1,C2 寄生容量、100,101,102,103,104,105,106 不揮発性半導体記憶装置、ATr0,ATr1 PチャネルMOSトランジスタ、YTr0,YTr1〜YTr16 PチャネルMOSトランジスタ、FM0,FM1〜FM16 不揮発性メモリセル、WL0 ワード線、BL0,BL1〜BL16 ビット線、NM1 NチャネルMOSトランジスタ、Tr1,Tr2,Tr5,Tr8,Tr10,Tr12,Tr15 PチャネルMOSトランジスタ、Tr3,Tr4,Tr6,Tr7,Tr11,Tr13 NチャネルMOSトランジスタ。

Claims (8)

  1. 複数のメモリセルと、
    データ読み出し時、前記複数のメモリセルから選択された1つのセルと電気的に結合されるデータ線と、
    前記データ読み出し時、前記データ線の電流を検知するセンスアンプ回路とを備え、
    前記センスアンプ回路は、前記データ読み出し時、前記データ線に電流を供給する第1の電流源を含み、
    前記第1の電流源は、前記データ読み出し時に前記データ線と接続される第1の内部ノードと、前記第1の内部ノードと電源電圧との間に電気的に結合される第1のトランジスタとを有し、
    前記センスアンプ回路は、前記データ読み出し時、前記第1の内部ノードの電圧と第1のしきい値電圧とを比較する第1の変換回路をさらに含み、
    前記第1の内部ノードの電圧が前記第1のしきい値電圧以下の範囲において、前記第1のトランジスタが飽和領域で動作するように、前記第1のトランジスタのゲート電圧を設定する第1の電圧設定回路をさらに備える、不揮発性半導体記憶装置。
  2. 前記第1のトランジスタは、PチャネルMOSトランジスタであり、
    前記ゲート電圧に前記第1のトランジスタのしきい値電圧を加えた電圧は、前記第1のしきい値電圧より大きい、請求項1に記載の不揮発性半導体記憶装置。
  3. 前記第1の電圧設定回路は、カレントミラー回路である、請求項1に記載の不揮発性半導体記憶装置。
  4. 前記複数のメモリセルは、複数のブロックに分割され、
    前記データ線と、前記センスアンプ回路と、前記第1の電圧設定回路とは、前記ブロックごとに配置される、請求項1に記載の不揮発性半導体記憶装置。
  5. 前記複数のメモリセルは、複数のブロックに分割され、前記データ線と、前記センスアンプ回路とは、前記ブロックごとに配置され、前記第1の電圧設定回路は、前記複数のブロックによって共有される、請求項1に記載の不揮発性半導体記憶装置。
  6. 前記複数のメモリセルは、複数のブロックに分割され、前記データ線と、前記センスアンプ回路とは、前記ブロックごとに配置され、
    第2の電圧設定回路と、第2の電流源と、電源電圧と接地電圧の間の中間電圧を発生する中間電位発生回路とをさらに備え、
    前記第2の電圧設定回路と、前記第2の電流源とは、前記ブロックごとに配置され、
    前記第2の電圧設定回路は、前記各ブロックごとの前記センスアンプ回路内の前記第1の内部ノードの少なくとも1つの電圧が前記第1のしきい値電圧以下の範囲において、前記各ブロックごとの前記第1のセンスアンプ回路内の前記第1のトランジスタが飽和領域で動作するように、前記第1のトランジスタのゲート電圧をそれぞれ設定し、
    前記第2の電流源は、前記中間電位に応じた前記複数の第2の電圧設定回路へそれぞれ電流を供給する、請求項1に記載の不揮発性半導体記憶装置。
  7. 前記第1の変換回路は、前記データ読み出し時、前記データ線に電流を供給するための第3の電流源と、前記第3の電流源を所定の電流量に制限する電流制限回路とを含み、
    前記第3の電流源は、前記第1の内部ノードと電源電圧との間に電気的に結合される前記第2のトランジスタとを有し、
    前記第1の内部ノードの電圧が前記第1のしきい値電圧以下の範囲において、前記第2のトランジスタは、飽和領域で動作する、請求項1に記載の不揮発性半導体記憶装置。
  8. 前記データ読み出し時、前記第1のトランジスタと同じレベルの電流を供給する第4の電流源と、
    前記データ読み出し時、前記第4の電流源と電気的に結合される比較データ線と、
    前記比較データ線と電気的に結合される第5の電流源とをさらに備え、
    前記第4の電流源は、前記データ読み出し時、前記比較データ線と接続される第2の内部ノードと、前記第2の内部ノードと電源電圧との間に電気的に結合される第3のトランジスタとを含み、
    前記第2の内部ノードの電圧が前記第1のしきい値電圧以下の範囲において、前記第3のトランジスタが飽和領域で動作するように、前記第3のトランジスタのゲート電圧を設定する第3の電圧設定回路と、
    前記第1の内部ノードと前記第2の内部ノードとの電圧の差を検出するための差動増幅回路とをさらに備え、
    前記第5の電流源は、前記比較データ線から前記第3のトランジスタと同じレベルの電流を流出させ、
    前記データ読み出し時、前記選択された1つのセルは、記憶データに応じて、前記第1のトランジスタの供給する電流よりも大きい電流および小さい電流のいずれか一方を前記データ線から流出させる、請求項1に記載の不揮発性半導体記憶装置。
JP2002205784A 2002-07-15 2002-07-15 不揮発性半導体記憶装置 Withdrawn JP2004047016A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002205784A JP2004047016A (ja) 2002-07-15 2002-07-15 不揮発性半導体記憶装置
US10/337,342 US6788581B2 (en) 2002-07-15 2003-01-07 Non-volatile semiconductor memory device configured to reduce rate of erroneously reading data from memory cell
KR10-2003-0015614A KR100496782B1 (ko) 2002-07-15 2003-03-13 메모리 셀의 데이터 오판독률을 저감시키는 구성을 갖는비휘발성 반도체 기억 장치
TW092116949A TW200407890A (en) 2002-07-15 2003-06-23 Non-volatile semiconductor memory device
CNA031787177A CN1495800A (zh) 2002-07-15 2003-07-15 降低存储单元数据误读出率的非易失半导体存储装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205784A JP2004047016A (ja) 2002-07-15 2002-07-15 不揮発性半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2004047016A true JP2004047016A (ja) 2004-02-12

Family

ID=30112777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205784A Withdrawn JP2004047016A (ja) 2002-07-15 2002-07-15 不揮発性半導体記憶装置

Country Status (5)

Country Link
US (1) US6788581B2 (ja)
JP (1) JP2004047016A (ja)
KR (1) KR100496782B1 (ja)
CN (1) CN1495800A (ja)
TW (1) TW200407890A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044824A (ja) * 2008-08-12 2010-02-25 Seiko Instruments Inc 半導体不揮発性記憶装置
JP2014518431A (ja) * 2011-06-30 2014-07-28 クアルコム,インコーポレイテッド 検知回路
JP2017010604A (ja) * 2015-06-18 2017-01-12 イーエム・ミクロエレクトロニク−マリン・エス アー メモリ回路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026014A (en) * 1996-12-20 2000-02-15 Hitachi, Ltd. Nonvolatile semiconductor memory and read method
CN103366804B (zh) 2012-03-30 2017-10-13 硅存储技术公司 具有电流注入读出放大器的非易失性存储装置
KR102511901B1 (ko) * 2016-04-11 2023-03-20 에스케이하이닉스 주식회사 넓은 동작 영역을 갖는 불휘발성 메모리 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991974A (ja) 1995-09-25 1997-04-04 Hitachi Ltd 半導体メモリ装置
JP4043703B2 (ja) * 2000-09-04 2008-02-06 株式会社ルネサステクノロジ 半導体装置、マイクロコンピュータ、及びフラッシュメモリ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044824A (ja) * 2008-08-12 2010-02-25 Seiko Instruments Inc 半導体不揮発性記憶装置
KR101615377B1 (ko) 2008-08-12 2016-04-25 에스아이아이 세미컨덕터 가부시키가이샤 비휘발성 반도체 메모리 회로
JP2014518431A (ja) * 2011-06-30 2014-07-28 クアルコム,インコーポレイテッド 検知回路
JP2017010604A (ja) * 2015-06-18 2017-01-12 イーエム・ミクロエレクトロニク−マリン・エス アー メモリ回路

Also Published As

Publication number Publication date
US20040008540A1 (en) 2004-01-15
KR20040007233A (ko) 2004-01-24
KR100496782B1 (ko) 2005-06-22
TW200407890A (en) 2004-05-16
CN1495800A (zh) 2004-05-12
US6788581B2 (en) 2004-09-07

Similar Documents

Publication Publication Date Title
US6826074B2 (en) Semiconductor memory device
US6233189B1 (en) Semiconductor memory device
US7590003B2 (en) Self-reference sense amplifier circuit and sensing method
JP2001184881A (ja) 不揮発性半導体メモリの読み出し回路
US7656225B2 (en) Voltage generation circuit and semiconductor memory device including the same
US7184296B2 (en) Memory device
CN111433848B (zh) 输入缓冲电路
JP2005050421A (ja) 半導体記憶装置
JP3532721B2 (ja) 定電圧発生回路
JPH09147580A (ja) 半導体記憶装置
US7605633B2 (en) Level shift circuit which improved the blake down voltage
JP2004047016A (ja) 不揮発性半導体記憶装置
JP3607575B2 (ja) 書込可能な読出専用メモリ
US5815450A (en) Semiconductor memory device
JP3822410B2 (ja) 半導体集積回路
US6956781B2 (en) Amplifier and semiconductor storage device using the same
JPH09265786A (ja) 半導体記憶装置
JPWO2006011223A1 (ja) 半導体装置およびセンス信号の生成方法
JP3583052B2 (ja) 半導体記憶装置
JPH05101662A (ja) 半導体集積回路
JP2020173879A (ja) 半導体装置およびメモリの読み出し方法
JPH0196897A (ja) 不揮発性半導体記憶装置
JP3666782B2 (ja) 半導体メモリ装置
KR100196950B1 (ko) 정의 피드백 감지 증폭기를 갖는 반도체 메모리 디바이스
JP5533264B2 (ja) 半導体メモリ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004