JP2004031697A - 熱電モジュール - Google Patents

熱電モジュール Download PDF

Info

Publication number
JP2004031697A
JP2004031697A JP2002186854A JP2002186854A JP2004031697A JP 2004031697 A JP2004031697 A JP 2004031697A JP 2002186854 A JP2002186854 A JP 2002186854A JP 2002186854 A JP2002186854 A JP 2002186854A JP 2004031697 A JP2004031697 A JP 2004031697A
Authority
JP
Japan
Prior art keywords
solder
thermoelectric
thermoelectric element
thermoelectric module
thermoelectric elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002186854A
Other languages
English (en)
Inventor
Masaki Terasono
寺園 正喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002186854A priority Critical patent/JP2004031697A/ja
Publication of JP2004031697A publication Critical patent/JP2004031697A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】接合の信頼性が高い熱電モジュールを提供する。
【解決手段】支持基板1、2と、該支持基板1、2上に複数配列された熱電素子5と、該複数の熱電素子5間を電気的に接続する配線導体3、4と、該配線導体3、4と電気的に連結され、前記支持基板1、2上に設けられた外部接続端子9とを具備し、前記複数の熱電素子5の各々と前記配線導体3、4が、酸素含有量500ppm以下のAu−Sn半田からなる半田層6を介して接合されてなることを特徴とし、前記半田層6に含まれるAuが10〜85質量%、前記半田層の厚みが10〜100μmであることが好ましい。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体等の発熱体の冷却等に好適に使用され、熱電特性に優れる熱電モジュールに関する。
【0002】
【従来技術】
ペルチェ効果を利用した熱電モジュールは、電流を流すことにより一端が発熱するとともに他端が吸熱するため、冷却用の熱電素子として用いられている。この熱電モジュールは、構造が簡単で、取り扱いが容易であるのみでなく、安定な特性を維持することが出来るため、広範囲にわたる利用が注目されている。
【0003】
特に、熱電モジュールを用いると局所冷却ができ、室温付近の精密な温度制御が可能であるため、レーザーダイオードの温度制御、小型で構造が簡単でありフロンレスの冷却装置、冷蔵庫、恒温槽、光検出素子、半導体製造装置等の電子冷却素子、レーザーダイオードの温度調節等への幅広い利用が期待されている。利用されている。
【0004】
一般にこのような熱電モジュールは、図1に示すように、支持基板1、2の表面に、それぞれ配線導体3、4が形成され、熱電素子5が配線導体3、4によって挟持されるとともに、電気的に直列に連結されるように構成されている。
【0005】
これらのN型熱電素子5a及びP型熱電素子5bは、交互に配列し、電気的に直列になるように配線導体3、4で接続され、さらに外部接続端子9に接続しており、外部接続端子9に固定される外部配線を通じて、外部から熱電素子5に直流電圧を印加することができ、その電流の向きに応じて吸熱あるいは発熱を生じせしめることが出来る。
【0006】
上記の配線導体3、4は、大電流に耐え得るように、通常は銅が用いられ、配線導体3、4に熱電素子5が半田で接合されている。
【0007】
上記のような熱電モジュールは、構造が簡単で、取扱が容易であるにもかかわらず、安定な特性を維持することが出来るため、広範囲にわたる利用が注目されている。特に、小型で局所冷却ができ、室温付近の精密な温度制御が可能であるため、半導体レーザや光集積回路等に代表される一定温度に精密制御される装置や小型冷蔵庫等に利用されている。
【0008】
このような小型の熱電モジュールを作製する手段として、P型熱電素子とN型熱電素子の原料粉末をそれぞれホットプレスによって焼結体を作製し、得られた焼結体一定厚みにスライスした後、このスライス材にメッキし、チップ状にダイシングすることによってN型熱電素子5a及びP型熱電素子5bを得る方法が、特開平1−106478号公報に開示されている。
【0009】
このP型とN型の熱電素子5a、5bを使って熱電モジュールを作製するにあたっては、複数の配線導体を設けた支持基板1、2上にハンダペーストを塗布し、前記チップ状のN型熱電素子5a及びP型熱電素子5bを交互に載置したのち、もう一枚の配線導体付きの支持基板1で挟持するようにしてハンダペーストを溶融(リフロー)させると、図1に示すような熱電モジュールを製造することが特開平10−215005号公報に示されている。このとき使用するハンダはハンダペーストに限らず、特開平4−23368号公報に示すようにハンダメッキであっても良い。
【0010】
ところが、従来の半田にはPbが含まれ、熱放散性が低いという問題があった。
【0011】
そこで、最近、熱放散性に優れたAu−Sn半田を使用することが注目されている。例えば、Au−Sn半田を用いて基板とAlN製のサブマウントを接合することが、特開平11−266053号公報に記載されている。
【0012】
【発明が解決しようとする課題】
しかしながら、特開平11−266053号公報に記載のAu−Sn半田による熱電素子と配線導体との接合方法では、接合部が不完全であるために、繰り返しの温度変化によって、抵抗が変化し、信頼性が低いという問題が生じていた。
【0013】
即ち、熱電モジュールは度重なる温度変化や外的な振動・衝撃によって、熱電素子の側面やハンダ接合部分が、熱電素子や支持基板の熱膨張差の内部応力に耐えきれずにクラックが生じたりして、抵抗が大きくなっていく傾向があり、そのために、熱電モジュールとしての寿命が短くなるという問題があった。
【0014】
従って、本発明の目的は、接合の信頼性が高い熱電モジュールを提供することにある。
【0015】
【課題を解決するための手段】
本発明は、Au−Sn半田の接合において、半田層に含まれる酸素含有量が熱電モジュールの信頼性に大きな影響を与えるという新規な知見に基づくもので、半田層中の酸素含有量を制御することによって、使用中の熱サイクルに対する耐久性が高く、接合の信頼性が高い熱電モジュールを実現した。
【0016】
即ち、本発明品の熱電モジュールは、支持基板と、該支持基板上に複数配列された熱電素子と、該複数の熱電素子間を電気的に接続する配線導体と、該配線導体と電気的に連結され、前記支持基板上に設けられた外部接続端子とを具備し、前記複数の熱電素子の各々と前記配線導体が、酸素含有量500ppm以下のAu−Sn半田からなる半田層を介して接合されてなることを特徴とするものである。
【0017】
特に、前記半田層に含まれるAuが10〜85%であることが好ましい。これにより、比較的低い処理温度で半田付けが可能となり、しかも特性に優れた熱電モジュールを提供できる。
【0018】
また、前記半田層の厚みが10〜100μmであることが好ましい。これにより、コストの上昇を抑制しつつ、安定した特性が得られ、信頼性をさらに高めることができる。
【0019】
さらに、前記熱電素子が、Bi、Sb、Te及びSeのうち少なくとも2種を含むことが好ましい。これにより、熱電素子の特性を高めることができ、それによって冷却性能の高い熱電モジュールを得ることができる。
【0020】
【発明の実施の形態】
本発明品の熱電モジュールは、図1に示したように、支持基板1、2の主面にそれぞれ配線導体3、4が設けられ、複数の熱電素子5が配線導体3、4によって挟持され、且つ複数の熱電素子5は、N型熱電素子5aとP型熱電素子5bが交互に配列し、電気的に直列に接続されたが設けられている。なお、N型熱電素子5aとP型熱電素子5bは、複数対となっている。
【0021】
図1における一対の熱電素子5は、支持基板1、2に配線導体3、4を介して固定される。即ち、図2に示すように、配線導体3、4と熱電素子5a、5bの接合部は、配線導体3、4の表面に、半田層6、メッキ層7(金メッキ層7a、ニッケルメッキ層7b)を介して、N型熱電素子5aおよびP型熱電素子5bを交互にそれぞれ1対ずつ固着し、PNPNPNの順に直列に接続されるように構成され、直流電圧を印加することによって、その電流の向きに応じて吸熱あるいは発熱を生じせしめることが出来る。
【0022】
本発明によれば、半田層6に含まれる酸素含有量が500ppm以下のAu−Sn半田であることが重要である。酸素含有量を500ppm以下にすることで、高温と低温の温度負荷及び温度サイクルが繰り返されることによって発生する半田層6の電気抵抗の変化率を改善することができる。
【0023】
この理由は明確ではないが、恐らく、半田の酸素含有量を制御することによって、半田層6内部に生成される異相(例えば、スズの酸化物化合物)を少なく押さえることができるためと考えられる。
【0024】
このように半田層6の抵抗変化率を抑制できる結果、冷却能力、消費電力等の熱電素子としての特性が劣化するのを抑制し、熱電モジュールとしての寿命を延ばすことになり、信頼性を向上することができる。特に、酸素含有量を350ppm以下、さらには200ppm以下にすることによってこの効果をさらに高めることが可能となる。
【0025】
本発明において、半田層6に用いる材料はAu−Sn合金であることが重要であるが、これは、熱電素子と配線導体を付ける半田の融点を上げることにより熱電モジュールとサブマウントを接合する半田の種類を選択する範囲が広がること、Au−Sn半田は、熱電導度が大きく熱の拡散に有利に働く等の理由で用いる事が重要である。
【0026】
半田層6の組成は、Au含有量の上限値が85質量%、特に83質量%であることが、下限値が10質量%、特に40質量%、更には60質量%であることが好ましい。Au含有率をこのように設定することによって、半田層6を形成するための処理温度を550℃以下、特に500℃以下、更には400℃以下にすることができ、半田形成時に熱電素子に対する熱的負荷を低減でき、クラック発生やその結果として生じる特性劣化の影響を低減することができる。
【0027】
また、半田層6の厚みの上限値は100μm、特に70μm、更には60μmとすることが好ましい。また、下限値は10μm、特に15μm、更には20μmであることが好ましい。Au−Snからなる半田層の厚みをこのような範囲に設定することによって、高価なAu−Sn半田の使用によるコストアップを抑制することができ、また、熱電素子5の厚みバラツキから生じる配線導体3、4と熱電素子5間の間隔が大きい空間が生じても、その空間を半田層6が十分に埋めることができ、電気的接続性を高めると共に、高温と低温との温度サイクルによる抵抗変化を小さくし、熱電モジュールとしての寿命を短くすることが可能性となる。
【0028】
熱電素子5a、5bは、Bi、Sb、Te及びSeのうち少なくとも2種を主成分とすることが好ましい。BiTe、SbTe、BiSe等のカルコゲナイト型結晶を使用した熱電素子5は、室温付近の熱電特性に優れ、情報通信関連の冷却用熱電モジュールとして好適に使用され得る。
【0029】
また、N型熱電素子5aは、I及び/又はBrを含むことが好ましい。即ち、半導体を形成するため、ハロゲン元素の添加によって電子濃度の調整がなされ、キャリア濃度の制御されたN型熱電素子5aとして優れた特性を示すことができる。
【0030】
なお、N型熱電素子5a及びP型熱電素子5bは、溶製材料であっても焼結体であっても良いが、N型熱電素子5aを溶製材料、特に単結晶からなり、P型熱電素子5bが焼結体、特に平均結晶粒径が5μm以下の焼結体からなることが、特性及びコストの点で好ましい。
【0031】
支持基板1、2には、耐振動、衝撃性、配線導体の密着強度を大きく、また、冷却面と放熱面の熱抵抗を小さくする必要があることから、アルミナ、ムライト、窒化アルミニウム、窒化珪素、炭化珪素が強度及び熱電導性などの理由から好適に使用される。特にコストの点からアルミナを、熱電導率の点で窒化アルミニウムを、衝撃性や強度の点で窒化珪素を好適に使用できる。
【0032】
特に、支持基板1、2の強度は、200MPa以上、特に250MPa以上、更には300MPa以上にすることが好ましく、これにより、配線導体3、4の形成や半田層6の形成に伴う応力集中に対しても基板の破損を防止する効果を高め、より高い信頼性を得ることができる。
【0033】
配線導体3、4は、Cu、Al、Au、Pt、Ni及びW等の金属を用いることが可能である。これらのうち、特にCuが電気電導性、コスト及び支持基板1、2への密着強度の点で望ましい。
【0034】
以上のように、本発明の熱電モジュールは、特に優れた接合信頼性を有するため、特に半導体レーザや光集積回路などの恒温化、小型冷蔵庫として好適に使用することができる。
【0035】
次に、本発明品の製造方法について説明する。
【0036】
まず、アルミナ、ムライト、窒化アルミニウム、窒化珪素、炭化珪素等の絶縁性を有するセラミックスと高伝導性の絶縁性有機材料等の支持基板1、2を準備し、この支持基板1、2の主面にCu、Ni、W等の導電性の材料で配線導体3、4を形成する。さらにその上に、所望により、Niメッキ、Auメッキ等を順次施しても良い。
【0037】
また、接合する熱電素子5を用意する。熱電素子5には、例えば、Bi、Sb、Te、Seのうち少なくとも2種を含む化合物からり、A型金属間化合物及びその固溶体である材料を用いることができる。ここで、AがBi及び/又はSb、BがTe及び/又はSeからなる半導体結晶であって、特に組成比B/Aが1.4〜1.6であることが、室温における熱電特性を高めるために好ましい。
【0038】
型金属間化合物としては、公知であるBiTe、SbTe、BiSeの少なくとも1種であることが好ましく、固溶体としてBiTeとBiSeの固溶体であるBiTe3−xSe(x=0.05〜0.25)、又はBiTeとSbTeの固溶体であるBiSb2−xTe(x=0.1〜0.6)等を例示できる。
【0039】
N型熱電素子5aには、金属間化合物を効率よく半導体化するために、ドーパントとしてSbIのように、I、Cl及びBr等のハロゲン元素を含むことが好ましい。このハロゲン元素は、半導体化の点で、上記の金属間化合物原料100重量部に対して0.01〜5重量部、特に0.01〜0.1重量部の割合で含まれることが好ましい。
【0040】
P型熱電素子5bには、キャリア濃度調整のためにTeを含むことが好ましい。これにより、N型熱電素子1と同様に、熱電特性を高めることができる。
【0041】
このようにして作製された熱電素子5は、加工されて所望の形状とし、配線導体と接合する面に支持基板1、2と同様にNiメッキ、Auメッキを必要に応じて施しても構わない。
【0042】
なお、半田接合を強固なものとするため、熱電素子5と半田の濡れ性を改善し、半田成分の拡散を防止するため、銅表面に金メッキを施したり、熱電素子5の接続面にはNiメッキ及び金メッキ等を施し、図2のような構造を有する熱電モジュールを作製することにより、密着性と半田との濡れ性を改善していても良い。
【0043】
次に、準備した支持基板1、2と熱電素子5を、Au−Sn半田を用いて接合する。即ち、支持基板1にAu−Snペーストを印刷し、その上に熱電素子5を載置し、さらにその上にAu−Snペーストを印刷した支持基板2を載せ、加重を加えて、Au−Sn半田の融点以上の温度で溶融させて図1の様な本発明の熱電モジュールを作製することができる。
【0044】
半田ペーストは、例えば、Au−Sn半田粉末と流れ性および酸化をコントロールするためにロジンや有機溶媒(例えばジエチレングリコール・モノ・ヘキシルエーテル)からなるフラックスとを混合して作製する事ができる。
【0045】
Au−Sn半田粉末は、酸素含有量が600ppm以下であることが好ましい。この半田粉末を用いることによって、酸素含有量が500ppm以下の半田層を形成することができる。
【0046】
なお、半田粉末中の酸素含有量を低減するには、酸処理等で表面の酸素を取り除いたり、還元処理を行って酸化層を除去したり、あるいは、半田の粒子を製造する際に、不活性な雰囲気や還元性の雰囲気で行うようにすればよい。
【0047】
また、上記半田粉末の平均粒径は10μm以上、特に20μm以上が好ましく、また、200μm以下、特に150μm以下であることが好ましい。このような平均粒径の半田粉末を用いることにより、体積に対する表面積が大きくなることによって生じる表面酸化量を抑制でき、ペーストを形成しやすく、取扱いが容易で、Au−Sn粉末を安定に保存するとともに、半田層の酸素含有量を500ppm以下にすることが容易となり、熱電モジュールの寿命を長くすることができる。
【0048】
Au−Sn半田粉末に対して、フラックスを使用し、することができる。このフラックスの量は、1質量%〜20質量%、特に3〜15質量%が好ましい。この範囲にフラックスの量を設定することにより、酸素除去を効果的に行うことができ、また、フラックス過剰による溶融時の半田の飛散やボイドの発生を抑制できる。
【0049】
半田接合は、半田の酸化等を防止するため、不活性雰囲気又は還元雰囲気を選ぶことが好ましい。また、加熱に際しては、昇温を制御したり、途中で温度保持を設けるなどして、ハンドボール等の不良が発生しないように注意する。
【0050】
なお、半田の形成には、半田ペーストを印刷する例を用いて説明したが、半田ペーストを用いる代わりに、半田を接合部にメッキすることもでき、また、Au−Sn箔を接合部に塗布することも可能である。さらに、半田ペーストを印刷し、一回溶融して接合部の一方に固着させたものでも使用できる。
【0051】
【実施例】
支持基板として、長さ8mm、幅8mm、厚み0.3mmの大きさで、表1のセラミックスを用意した。また、配線導体も表1の材料を支持基板の主面に形成した。所望により、熱電素子の接合面に表1の材料をメッキした。なお、熱電素子表面に直接形成されたメッキ層を熱電素子側として、さらにその表面にメッキし、半田層と当接するメッキを配線導体側として表示した。
【0052】
熱電素子を作製するため、出発原料には、平均粒径35μm、純度99.99%以上のBiTeとSbTe、及びBiSeを準備した。これらの化合物からN型熱電素子としてBiTe2.85Se0.15、P型熱電素子としてBi0.4Sb1.6Teとなるように秤量し、混合粉とした。なお、N型熱電素子にはドーパントとしてSbIを0.09重量部添加した。
【0053】
これらの原料粉末をそれぞれイソプロピルアルコール溶媒中で30時間振動ミルで粉砕した後、スタンプミルを使って原料粉末の粒径を35〜72μmに分級した。これを乾燥後、一軸プレスにてプレス圧49MPaの圧力で直径20mm、厚み5mmの成形体を作製し、雰囲気炉にて水素気流中400℃で5時間の還元処理を行った。
【0054】
次いで、還元処理を行った成形体をカーボン製で円柱状のダイスにセットし、同じくカーボン製の圧縮通電用パンチで上下から挟み込み、焼結炉内にセッティングし、炉内をArで置換した後、焼成を開始した。焼成は100℃/minで昇温し、300℃〜500℃で10分間×50Mpa保持した。保持終了後は炉冷し、50℃以下になった時点でφ30×3mmのインゴット状の熱電素子を得た。
【0055】
得られたインゴット状の熱電素子は、相対密度が98.2%以上であり、マイクロビッカース硬度Hvは0.71GPa以上と非常に高いものであった。しかるのち、ワイヤーソーと平面研削盤を使って、このインゴットを厚さ0.9mmになるようにウェハ状に薄肉加工した。この加工面の表面粗さRaは0.1μm未満であった。
【0056】
この後、熱電素子全体に対し硝酸で表面エッチングを施した。その後、ダイシングソーを使って、縦0.7mm、横0.7mm、高さ0.9mmの形状に加工した。これにも支持基板1、2と同様に、所望によりメッキ層を形成した。
【0057】
得られた熱電素子及び上記の支持基板を用いて、Au−Sn半田接合を行った。半田接合では、使用する半田の平均粒径粒径、酸素含有量、フラックス量を変えてテストした。半田付けは、窒素ガス雰囲気中において、表1に示す半田接合温度(溶融温度)で2分間溶融して処理を行った。
【0058】
得られた熱電モジュールを用いて、信頼性テストを行った。テストは、作製した熱電モジュールに−40〜100℃の熱サイクルを1000回加え熱サイクルテスト前後の抵抗の変化率が5%以下のものを合格とした。抵抗の変化率とは、サイクル後の抵抗をサイクル前の抵抗で割った値に100を乗じたものである。各々20サンプルずつ実施し不合格となったものの割合(不良率)が20%以下のものを本発明品とした。結果を表1に示した。
【0059】
【表1】
Figure 2004031697
【0060】
半田層の酸素含有量が500ppm以下である本発明の試料No.1〜3及び5〜26は、信頼性テストにおける不良率が20%以下で、信頼性の高いものでることがわかった。特に、酸素含有量を変化させた試料No.1〜4のうち、Au−Sn半田の酸素含有量が300ppm以下の試料No1、2は不良率が10%以下と飛躍的に改善されていた。
【0061】
一方、本発明の範囲外であるAu−Sn半田の含有酸素含有量が650ppmと酸素含有量の多い試料No.4では、不良率が40%と高く、熱電モジュールとしての信頼性が低下し、寿命として短いことがわかった。
【0062】
【発明の効果】
本発明の熱電モジュールは、P型熱電素子及びN型熱電素子と配線導体とがAu−Sn半田からなる半田層を介して接合され、しかも半田層に含まれる酸素含有量を500ppm以下とすることによって、信頼性が高く、寿命を改善した熱電モジュールを提供することが可能となった。
【0063】
特に、前記Au−Sn半田のAu含有量を85質量%以上とすること、Au−Sn半田層の厚みを100μm以下とすること、10μm以上の粒径のAu−Snペーストおよび含有酸素含有量が600ppm以下のAu−Snペーストを溶融し、P型およびN型のそれぞれの熱電素子と配線導体との間を接合してなること、これらを適宜組み合わせることにより、極めて接合信頼性の高い熱電モジュールを得ることができる。
【図面の簡単な説明】
【図1】本発明の熱電モジュールを示す断面図である。
【図2】本発明の熱電モジュールの一部を示す断面図である。
【符号の説明】
1、2・・・支持基板
3、4・・・配線導体
5・・・熱電素子
5a・・・N型熱電素子
5b・・・P型熱電素子
6・・・半田層
7・・・メッキ層
7a・・・金メッキ層
7b・・・ニッケルメッキ層
9・・・外部配線端子

Claims (4)

  1. 支持基板と、該支持基板上に複数配列された熱電素子と、該複数の熱電素子間を電気的に接続する配線導体と、該配線導体と電気的に連結され、前記支持基板上に設けられた外部接続端子とを具備し、前記複数の熱電素子の各々と前記配線導体が、酸素含有量500ppm以下のAu−Sn半田からなる半田層を介して接合されてなることを特徴とする熱電モジュール。
  2. 前記半田層に含まれるAuが10〜85質量%であることを特徴とする請求項1記載の熱電モジュール。
  3. 前記半田層の厚みが10〜100μmであることを特徴とする請求項1又は2記載の熱電モジュール。
  4. 前記熱電素子が、Bi、Sb、Te及びSeのうち少なくとも2種を含むことを特徴とする請求項1乃至3のいずれかに記載の熱電モジュール。
JP2002186854A 2002-06-26 2002-06-26 熱電モジュール Pending JP2004031697A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186854A JP2004031697A (ja) 2002-06-26 2002-06-26 熱電モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186854A JP2004031697A (ja) 2002-06-26 2002-06-26 熱電モジュール

Publications (1)

Publication Number Publication Date
JP2004031697A true JP2004031697A (ja) 2004-01-29

Family

ID=31182084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186854A Pending JP2004031697A (ja) 2002-06-26 2002-06-26 熱電モジュール

Country Status (1)

Country Link
JP (1) JP2004031697A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067145A (ja) * 2005-08-31 2007-03-15 Mitsubishi Materials Corp Au−Sn合金はんだペーストを用いた基板と素子の接合方法
JP2007266404A (ja) * 2006-03-29 2007-10-11 Mitsubishi Materials Corp Au−Sn合金はんだペーストを用いた基板と素子の接合方法
JP2007266405A (ja) * 2006-03-29 2007-10-11 Mitsubishi Materials Corp Au−Sn合金はんだペーストを用いた基板と素子の接合方法
JP2008137017A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp 濡れ性に優れかつボイド発生の少ないSn−Au合金はんだペースト
JP2008137018A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp ボイド発生の少ないAu−Sn合金はんだペースト
JP2008161913A (ja) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp ボイド発生の少ないSn−Au合金はんだペースト
DE102007010577A1 (de) * 2007-02-26 2008-08-28 Micropelt Gmbh Verfahren zum Herstellen eines thermoelektrischen Bauelements und thermoelektrisches Bauelement
JP2010108958A (ja) * 2008-10-28 2010-05-13 Kyocera Corp 熱電モジュールおよびその製造方法
JP2011167761A (ja) * 2010-01-25 2011-09-01 Mitsubishi Materials Corp Au−Sn合金はんだペースト、およびこれにより形成されるAu−Sn合金はんだ
JP2013118355A (ja) * 2011-12-01 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc ナノ粒子を含む三成分熱電材料及びその製造方法
WO2016076353A1 (ja) * 2014-11-13 2016-05-19 三菱マテリアル株式会社 Au-Sn合金はんだペースト、Au-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層
JP2016097420A (ja) * 2014-11-19 2016-05-30 三菱マテリアル株式会社 Au−Sn合金はんだペースト、Au−Sn合金はんだ層の製造方法、及びAu−Sn合金はんだ層
JP2016174117A (ja) * 2015-03-18 2016-09-29 ヤマハ株式会社 熱電変換モジュール及びその製造方法
KR20180034130A (ko) * 2016-09-27 2018-04-04 주식회사 엘지화학 열전 모듈 및 그 제조 방법
KR20180044722A (ko) * 2016-10-24 2018-05-03 주식회사 엘지화학 금속 페이스트 및 열전 모듈

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067145A (ja) * 2005-08-31 2007-03-15 Mitsubishi Materials Corp Au−Sn合金はんだペーストを用いた基板と素子の接合方法
JP2007266404A (ja) * 2006-03-29 2007-10-11 Mitsubishi Materials Corp Au−Sn合金はんだペーストを用いた基板と素子の接合方法
JP2007266405A (ja) * 2006-03-29 2007-10-11 Mitsubishi Materials Corp Au−Sn合金はんだペーストを用いた基板と素子の接合方法
JP2008137017A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp 濡れ性に優れかつボイド発生の少ないSn−Au合金はんだペースト
JP2008137018A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp ボイド発生の少ないAu−Sn合金はんだペースト
JP2008161913A (ja) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp ボイド発生の少ないSn−Au合金はんだペースト
DE102007010577A1 (de) * 2007-02-26 2008-08-28 Micropelt Gmbh Verfahren zum Herstellen eines thermoelektrischen Bauelements und thermoelektrisches Bauelement
DE102007010577B4 (de) * 2007-02-26 2009-02-05 Micropelt Gmbh Verfahren zum Herstellen eines thermoelektrischen Bauelements
JP2010108958A (ja) * 2008-10-28 2010-05-13 Kyocera Corp 熱電モジュールおよびその製造方法
JP2011167761A (ja) * 2010-01-25 2011-09-01 Mitsubishi Materials Corp Au−Sn合金はんだペースト、およびこれにより形成されるAu−Sn合金はんだ
JP2013118355A (ja) * 2011-12-01 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc ナノ粒子を含む三成分熱電材料及びその製造方法
WO2016076353A1 (ja) * 2014-11-13 2016-05-19 三菱マテリアル株式会社 Au-Sn合金はんだペースト、Au-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層
JP2016093821A (ja) * 2014-11-13 2016-05-26 三菱マテリアル株式会社 Au−Sn合金はんだペースト、Au−Sn合金はんだ層の製造方法、及びAu−Sn合金はんだ層
TWI723966B (zh) * 2014-11-13 2021-04-11 日商三菱綜合材料股份有限公司 Au-Sn合金焊料糊、Au-Sn合金焊料層之製造方法及Au-Sn合金焊料層
JP2016097420A (ja) * 2014-11-19 2016-05-30 三菱マテリアル株式会社 Au−Sn合金はんだペースト、Au−Sn合金はんだ層の製造方法、及びAu−Sn合金はんだ層
TWI673372B (zh) * 2014-11-19 2019-10-01 日商三菱綜合材料股份有限公司 Au-Sn合金焊膏、Au-Sn合金焊料層之製造方法及Au-Sn合金焊料層
JP2016174117A (ja) * 2015-03-18 2016-09-29 ヤマハ株式会社 熱電変換モジュール及びその製造方法
KR20180034130A (ko) * 2016-09-27 2018-04-04 주식회사 엘지화학 열전 모듈 및 그 제조 방법
KR102134378B1 (ko) * 2016-09-27 2020-07-15 주식회사 엘지화학 열전 모듈 및 그 제조 방법
KR20180044722A (ko) * 2016-10-24 2018-05-03 주식회사 엘지화학 금속 페이스트 및 열전 모듈
KR102121439B1 (ko) * 2016-10-24 2020-06-10 주식회사 엘지화학 금속 페이스트 및 열전 모듈

Similar Documents

Publication Publication Date Title
JP2004031696A (ja) 熱電モジュール及びその製造方法
JP5656962B2 (ja) 電子部品モジュール
JP2004031697A (ja) 熱電モジュール
WO2010050455A1 (ja) 熱電モジュール
US7939744B2 (en) Thermoelectric element
JP5120653B2 (ja) 半田層及びそれを用いたデバイス接合用基板並びに該デバイス接合用基板の製造方法
JP4401754B2 (ja) 熱電変換モジュールの製造方法
JP4873888B2 (ja) 熱電変換モジュール及び、これを用いた発電装置及び冷却装置
JP3550390B2 (ja) 熱電変換素子及び熱電モジュール
JP4363958B2 (ja) 熱電変換モジュール及びその製造方法
JP2004235367A (ja) 熱電モジュール
JP2004063585A (ja) 熱電素子用電極材およびそれを用いた熱電素子
JP2003197981A (ja) 熱電モジュール
JP3526563B2 (ja) 熱電素子及びその製造方法及び熱電モジュール
JP3588355B2 (ja) 熱電変換モジュール用基板及び熱電変換モジュール
JP3840132B2 (ja) ペルチェ素子搭載用配線基板
JP4005937B2 (ja) 熱電モジュールのパッケージ
JP3457958B2 (ja) 光伝送モジュール用パッケージ
JP3548560B2 (ja) 熱電モジュール
JP2004193356A (ja) 熱電モジュール及びその製造方法
JP7248091B2 (ja) 熱電変換モジュール、および、熱電変換モジュールの製造方法
JP2005161397A (ja) はんだおよびその製造方法
JP3935062B2 (ja) 熱電モジュール
EP4290594A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
JP5289451B2 (ja) 熱電素子および熱電モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515