JP2003522621A - 分解性コロイド原型上のナノ複合多層の静電的自己集成体による多層被覆粒子及び中空シェルの製造 - Google Patents

分解性コロイド原型上のナノ複合多層の静電的自己集成体による多層被覆粒子及び中空シェルの製造

Info

Publication number
JP2003522621A
JP2003522621A JP2000536481A JP2000536481A JP2003522621A JP 2003522621 A JP2003522621 A JP 2003522621A JP 2000536481 A JP2000536481 A JP 2000536481A JP 2000536481 A JP2000536481 A JP 2000536481A JP 2003522621 A JP2003522621 A JP 2003522621A
Authority
JP
Japan
Prior art keywords
particles
nanoparticles
pdadmac
coated
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000536481A
Other languages
English (en)
Inventor
カルソ フランク
アン カルソ レイチェル
ドナト エドウィン
メーヴァルト ヘルムート
スホルコフ グレーブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998112083 external-priority patent/DE19812083A1/de
Priority claimed from EP98113181A external-priority patent/EP0972563A1/en
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of JP2003522621A publication Critical patent/JP2003522621A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Printing Methods (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 本発明は、コロイド粒子を反対荷電のナノ粒子及び高分子電解質の交互の層で被覆し、場合によりコロイドコアーを除去することによって被覆粒子及び中空シェルを製造する新規方法に関する。

Description

【発明の詳細な説明】
【0001】 本発明は、コロイド粒子を反対荷電のナノ粒子及び高分子電解質の交互の層で
被覆することによって被覆カプセル及び中空シェルを製造する方法に関する。
【0002】 超分子的な規則正しい機能構造がそこでは主目標である薄手フィルム(thi
n film)工業の分野は、最近のレイヤー−バイ−レイヤー(layer−
by−layer)(LbL)自己集成法の導入によって著しい影響を受けてい
る(Decher,Science 1997,277,1232)。LbL法
は、反対荷電種を稀薄水溶液から帯電支持体へ自然に逐次的に吸着することによ
って固体支持体上に多層の薄手フィルム集成体を製造することを許す。層成され
る多層フィルムの駆動力は、主として静電的引力及び付着された荷電種の間の複
合体形成による。LbLアプローチは当初は高分子電解質の多層フィルムを構成
するために使用された(Decher,Science 1997,277,1
232)が、後に、高分子イオンの1つを同様な荷電種と交換することによって
高分子電解質多層集成体中にタンパク質(Lvov et al,J.Am.C
hem.Soc.1995,117,6117;Onda et al,T.B
iotech.Bioeng.1996,51,163;Caruso et
al,Langmuir 1997,13,3427)、核酸(Decher
et al,J.Biosens.Bioelectron.1994,9,6
77;Sukhorukov et al,Thin Solid Films
1996,284/285,220;Caruso et al,Anal.
Chem.1997,69,2043)、染料(Araki et al,La
ngmuir 1996,12,5393;Yoo et al,Synthe
tic Metals 1997,85,1425;Ariga et al,
J.Am.Chem.Soc.1997,119,2224)、デンドリマー(
dendrimers)(Tsukruk et al,Langmuir 1
997,13,2171)、及び種々の無機ナノ粒子(Kleinfeld e
t al,Science 1994,265,370;Keller et
al,J.Am.Chem.Soc.1994,116,8817;Kotov
et al,J.Am.Chem.Soc.1997,119,6821;K
otov et al,J.Phys.Chem.1995,99,13065
;Feldheim et al,J.Am.Chem.Soc.1996,1
18、7640;Schmitt et al,Adv.Mater 1997
,9,61;Lvov et al,Langmuir 1997,13,61
95)を包含するまで拡張された。
【0003】 LbL法に関する膨大な研究は、多層フィルム形成のための支持体として肉眼
的に平たい荷電表面を使用している。例えば米国特許第5,716,709号明
細書には、平面支持体、例えばケイ素ウエファー上の有機及び無機イオンの交互
の層から成る多層化されたナノ構造が記載されている。最近、ケラー等(Kel
ler et al)が、(3−アミノプロピル)−トリエトキシシラン−変性
シリカ粒子上に剥離リン酸ジルコニウムシート及び荷電レドックスポリマーの交
互の複合多層を製造することを報告した(Keller et al,J.Am
.Chem.Soc.1995,117,12879)。
【0004】 さらに最近の研究(Caruso et al,J.Phys.Chem.B
.1998,102,2011;Sukhorukov et al.,Col
loids Surf.A:Physicochem.Eng.Aspects
1998,137,253)では、LbLアプローチが、コロイドを支持体と
する高分子電解質多層フィルムを製造するための吸着支持体としてミクロン以下
及びミクロンの大きさの荷電コロイド粒子を使用するためにうまく適用された。
規則的で段階的な高分子電解質の多層成長がコロイド上で観察された。
【0005】 異なる化学的組成のシェルで被覆された有機又は無機コアーから成る複合ミク
ロ−及びナノ粒子の製造に少なからぬ科学的努力が集中している(Kawaha
shi and Matijevic,J.Colloid Interfac
e Sci.1991,143,103;Garg and Matijevi
c,J.Colloid Interface Sci.1988,126;K
awahashi and Matijevic,J.Colloid Int
erface Sci.1990,138,534;Ohmori and M
atijevic,J.Colloid Interface Sci.199
2,150,594;Giersig et al.,Adv.Mater.1
997,9,570;Liz−Marzan et al.,Langmuir
1996,12,4329;Liz−Marzan et al.,J.Ch
em.Soc.Chem.Commun.1996,731;Giersig
et al.,Ber.Bunsenges.Phys.Chem.1997,
101,1617;Correa−Duarte et al.,Chem.P
hys.Lett.1998,286,497;Bamnolker et a
l.,J.Mater.Sci.Lett.1997,16,1412;Mar
gel and Weisel,J.Polym.Sci.Chem.Ed.1
984,22,145;Philipse et al.,Langmuir
1994,10,92)。これらのコアー−シェル粒子はしばしば原型化された
コアーの特性とは著しく異なる特性(例えば異なる表面の化学的組成、増大され
た安定性、より高い表面積、ならびに異なる磁気的及び光学的特性)を示し、か
くしてこれらの特性が科学的及び技術的観点から該粒子を魅力的にしている。該
粒子の使用は多様であり、その範囲は、ドラッグデリバリーのためのカプセル剤
、触媒、塗料、複合材料にわたり、同様に感受性作用物質、例えば酵素及びタン
パク質を保護するために使用される。種々の研究によれば、ポリマーミクロ粒子
及び無機コアーが種々の物質(シリカ、イットリウム塩基性炭酸塩、ジルコニウ
ム含水酸化物を包含)の均一層で、コアー粒子上の表面沈殿反応の調節又は直接
の表面反応によって被覆されうることが証明された。
【0006】 米国特許第5,705,222号明細書は、複合粒子分散液を製造する方法を
開示しているが、同方法では多数のコアー粒子を第一溶液中で分散し、このコア
ー粒子は不可逆的には自己凝集せず、コアー粒子の分散液にはある量のポリマー
を加えるが、同ポリマーは分散されたコアー粒子に対する親和性を有しており、
過剰のポリマーは固体/液体分離法、すなわち遠心分離又はデカンテーションに
よって除去する。
【0007】 コアー−シェル粒子の重要な拡張は、コアーのその後の除去であり、これによ
って中空粒子又はシェルができる。原型コアーの除去は従来は被覆された粒子を
高温でカ焼するか又はコアー物質の溶解を惹起する化学反応によって達成してい
た。イットリウム化合物のミクロン以下の大きさの中空シェルは陽イオンポリス
チレンラテックスをイットリウム塩基性炭酸塩で被覆し、次ぎにカ焼することに
よって製造された(Kawahashi and Matijevic,199
1,supra)。もっと最近では、ポリスチレン粒子の表面上でテトラエトキ
シシランを播種重合し、次いでカ焼することによってシリカシェルが製造された
(Bamnolker et al.,1997,supra)。同様な方法を
用いて、金ナノ粒子をシリカで被覆し、コアーを化学的に溶解することによって
単分散の中空シリカナノ粒子が製造されている(Giersig et al.
,Ber.Bunsenges.Phys.Chem.,1997,supra
)。中空粒子は特殊な種類の物質である:その低密度及び光学的性質が該粒子を
医学、薬剤学、材料科学及び塗料工業の分野で重要にしている。
【0008】 しかし被覆されたナノ粒子又は中空ナノシェルを製造する慣用方法はいくつか
の欠点を有している、それというのも多くの場合十分な粒子の被覆面積を有する
一様で平滑な層構造の形成ならびに厚さの調整は達成するのが極めて困難である
【0009】 さらに、高分子電解質の逐次的付着のための原型として可溶性コロイドコアー
の使用が新規の三次元中空ポリマーシェルを製造するために使用されうることも
示唆された(DE 19812083.4)。
【0010】 ここで本発明者等は、ミクロン以下の大きさのコロイド粒子上にナノ粒子及び
高分子電解質を稀薄溶液から逐次的に静電吸着することによりナノ粒子及び反対
荷電の高分子電解質の複合多層を形成することを報告する。種々の厚さを有する
ナノ粒子−高分子電解質の交互多層が製造された。さらに、コロイドを原型とし
、ナノ粒子−ポリマー多層から成る静電LBL自己集成体によりミクロン以下の
大きさの無機又は複合有機−無機中空粒子を製造し、次ぎに原型コアーを除去す
る、新規で、しかも簡単な方法も提供し、場合により集成法で使用されるポリマ
ーも提供する。
【0011】 かくして本発明の第一の態様は、次ぎの: (a)原型粒子を供給し、 (b)前記原形粒子を、(i)反対荷電のナノ粒子及び高分子電解質の交互の層
及び/又は(ii)反対荷電のナノ粒子の交互の層から成る多層で被覆する 工程から成る被覆粒子の製造方法である。
【0012】 好ましくは原型粒子は10μm以下、もっと好ましくは≦5μm、最も好まし
くは≦2μmの平均直径を有する。原型粒子の最小直径は好ましくは10nmで
あり、もっと好ましくは100nmであり、最も好ましくは200nmである。
【0013】 適当な原型粒子は有機粒子、無機粒子又はこれらの任意の組み合わせから選択
することができる。例えば原型粒子は無機構造を含む無機粒子であってよい。好
ましい実施態様では原型粒子は有機ポリマーラテックス、例えばポリスチレン又
はスチレンコポリマーラテックスから選択する。他方また部分的に架橋したメラ
ミン−ホルムアルデヒド原型粒子も使用できるが、該粒子は穏やかな条件下で、
例えばpH値を例えば≦1.5の酸性値に調節することによって、DMSOのよ
うな穏やかな有機溶剤中に溶解することによって又は化学反応によって、例えば
アルカリ亜硫酸塩、アルカリ重亜硫酸塩等によるスルホン化によって崩壊させる
ことができる。部分的に架橋したメラミン−ホルムアルデヒド原型粒子の製造に
関してはDE 19812083.4、特に例1を参照されたい、ここにはメラ
ミン−ホルムアルデヒド初期縮合物の重縮合(参照:DD224602)におい
て重縮合法が若干時間後に、例えば反応開始後1分〜1時間で中断される可能性
があり、その結果不溶性の部分的に架橋したメラミン−ホルムアルデヒド原型粒
子が得られることが記載されている。
【0014】 他の有機原型粒子、例えばポリスチレンラテックスはTHFのような適当な有
機溶剤中で溶かすか又は例えば500℃以上の温度に加熱することによって崩壊
させることができる。
【0015】 本発明の方法は、原型粒子を高分子電解質分子及びナノ粒子の交互の被覆で被
覆することから成る。高分子電解質は通常ポリマー鎖の成分又は置換分であって
よいイオンにより解離できる基を有するポリマーである、好ましくは線状の又は
/及び水溶性の高分子電解質を使用する。高分子電解質は解離可能な基の種類に
より多酸及び多塩基に再分される。解離すると多酸はプロトンを分離して高分子
陰イオンを生じる。多酸の例はポリリン酸、ポリビニル又はポリスチレン硫酸、
ポリビニル又はポリスチレンスルホン酸、ポリビニル又はポリスチレンホスホン
酸及びポリアクリル酸である。それぞれの塩(高分子塩とも称される)の例は、
ポリ燐酸塩、ポリ硫酸塩、ポリスルホン酸塩、ポリホスホン酸塩及びポリアクリ
ル酸塩である。高分子電解質が高分子陽イオンである場合にはナノ粒子は好まし
くは全陰イオン電荷を有する。
【0016】 多塩基は、プロトンを引受けることができ、例えば酸と反応して塩を生じる基
を有する。多塩基の例はポリアミン、例えばポリエチレンアミン、ポリビニルア
ミン及びポリビニルピリジン又はポリ(アンモニウム塩)、例えばポリ(ジアリ
ルジメチルアンモニウムクロリド)である。多塩基はプロトンを引受けることに
よって高分子陽イオンを形成する。多塩基(すなわち高分子陽イオン)は高分子
電解質として使用する。高分子電解質が高分子陰イオンである場合には、ナノ粒
子が好ましくは全陽イオン電荷を有する。
【0017】 ナノ粒子は好ましくは無機物質であり、セラミック粒子、例えば酸化物セラミ
ック粒子、例えば二酸化ケイ素、二酸化チタン、場合により他の金属酸化物の添
加された二酸化ジルコニウム、磁気粒子、例えばFe34のような酸化鉄を含有
する粒子、磁気光学的粒子、窒化物セラミック粒子、例えばSi34、炭化物セ
ラミック粒子、金属粒子、例えば金、銀、パラジウム及び硫黄又はセレンを含有
する粒子、例えば硫化カドミウム、セレン化カドミウム等から選択することがで
きる。特に二酸化ケイ素のような酸化物セラミック粒子が好ましい。しかし本発
明を実施するためには、有機又は生物学的ナノ粒子、例えば高分子、例えばポリ
ペプチド、タンパク質、核酸等も適当であることも注目すべきである。特に好ま
しい生物学的ナノ粒子はタンパク質、例えば免疫学的反応性タンパク質、すなわ
ち抗原又は抗体、例えばIgGであり、これらは高分子電解質分子と交互しなが
ら原型粒子上に付着されうる。生物学的ナノ粒子は標識基、例えばフルオレセイ
ンのような蛍光基を有する接合体(conjugates)として付着されうる
。生じる粒子は分析法、例えば免疫学的検出法にとって適当である。さらに単一
層又は異なる層における酵素、単一酵素又は多数の酵素、例えば酵素カスケード
の要素(member)の固定化も特に重要である、それというのも触媒作用の
効率を増大させることができるからである。基質は容易にフィルムを通して拡散
し、固定化酵素と反応して生成物を産生する。
【0018】 本発明の被覆粒子を製造するためには、好ましくは適当な大きさの原型粒子の
水性分散液を供給する。水性分散液は塩、例えばNaClを、好ましくは50m
モル/l〜1モル/lの範囲にある濃度で含有することができる。反対荷電の成
分、すなわち高分子電解質分子及びナノ粒子、異なる種類のナノ粒子又はそれら
の組合わせ粒子の交互する層を次ぎに前記原型粒子上に付着させる。水性分散液
のpHは、各交互層における分子、例えば高分子電解質分子及びナノ粒子がそれ
ぞれ反対の全電荷を有するように調節する。層の数によって決まる被覆の厚さは
好ましくは2〜1000nmであり、2〜40、特に2〜20の被覆、例えば3
〜10の被覆を適用する。適当には、各層は単一種の高分子電解質又はナノ粒子
又は少なくとも2種類の高分子電解質又はナノ粒子から成る混合物から構成され
ていてもよい。また各層に関しては、異なる種類の高分子電解質又はナノ粒子を
使用してもよい。
【0019】 各層の適用後、層を形成するために寄与しなかった過剰分子(例えば高分子電
解質又はナノ粒子)は、次ぎの層を適用する前に好ましくは分離除去する。この
ような分離は任意の公知法、特に遠心分離、濾過又は/及び透析によって行うこ
とができる。
【0020】 本発明の好ましい実施態様においては、先ず第一に原型粒子を反対荷電の陽イ
オン及び陰イオン高分子電解質の数層で被覆し、次ぎにナノ粒子及び高分子電解
質の交互層又は交互のナノ粒子層を適用する。原型粒子を反対荷電の高分子電解
質の数層で被覆することは、明白に参照されているDE 19812083.4
に記載されている。好ましくは原型粒子を、反対荷電の陽イオン及び陰イオン高
分子電解質の少なくとも2層及び6以下の層、例えば3層で被覆する。最外の高
分子電解質層は好ましくは付着すべきナノ粒子に関して反対の電荷を有する。
【0021】 原型粒子はどんな任意の形状であってもよく、例えば球状又は棒状であってよ
い。原型粒子は結晶構造を含む任意の規則的又は不規則的構造を有していてもよ
い。また原型粒子は幾つかの小さい下位粒子(sub−particles)か
ら成っていてもよい。
【0022】 原型粒子の周りのシェル壁の厚さは付着サイクルの数を変えることによって容
易に調節することができるが、シェルの大きさ及び形状は使用される原型粒子の
寸法によって予め決定される。シェルの厚さは広い範囲、例えば2〜1000n
m、特に5〜250nmの範囲で変化してよい。
【0023】 好ましくは原型粒子は、被覆が完成された後少なくとも部分的に崩壊させる。
該粒子を適当な溶剤中で又は熱により(例えば少なくとも500℃の温度にカ焼
することによって)又は例えば部分的に架橋したメラミン−ホルムアルデヒド原
型粒子を使用する場合には、例えばDMSO中での穏やかな化学的方法により又
はpH値の変化によって溶解することができる。原型粒子の溶解後に中空シェル
が残るが、これはナノ粒子物質及び場合により高分子電解質物質から構成されて
いる。生じる中空シェルはコアー除去の方法により無機又は有機シェルか又は複
合無機−有機シェル又は複合無機−有機シェルであってよい。例えば熱処理(カ
焼)を使用する場合には、全ての有機物質を除去し、したがって無機シェルのみ
が得られる。溶剤又は低pH溶液に暴露してコアーを除去すると、複合中空粒子
を生じるが、該粒子においてコアーは除去されているが、ナノ粒子層の間に集成
された高分子電解質はシェル中に残っている。
【0024】 中空シェルは、任意の公知法、例えば走査及び透過電子顕微鏡及び原子力顕微
鏡によって特性表示することができる。好ましくは該シェルは規則的な厚さを有
する均一な層であり、多数の分野、例えば医学、薬剤学、触媒、光学、磁気学、
分離及び検出法で用途を見出だすことができる。本発明の中空シェル中には有効
成分、例えば無機又は/及び有機物質が被包されうる。有効成分の例は薬学的作
用物質であり、その結果シェルは生体の所望の部位に有効成分を輸送するために
ドラッグデリバリー(drug delivery)系として使用することがで
きる。さらにまた造影剤をシェル中に封入して、例えば超音波検査によって得ら
れる画像の質を改良することができる。また中空シェル自体を造影剤として使用
することもできる。
【0025】 さらに可能な用途は充填剤又は塗料中の顔料、印刷又はコーティングにおける
トナーである。さらに他の分野の用途は触媒用の高表面積物質、例えばSiO2
又はTiO2シェルとして、太陽エネルギー用途、例えばTiO2シェルのための
使用であり、この際必要ならばシェルの内側及び/又は外側に有効成分を適用し
てもよい。さらに他の用途は、例えばジルコニアナノ粒子又は他の金属酸化物の
添加されたジルコニアナノ粒子を用いる高温セラミックの製造である。さらにま
たナノ粒子は化学物質(殺虫剤、除草剤等を包含する)の遅い放出のため、例え
ば医学的適用のための磁気シェルとして又は分離及び検出法のために使用しても
よい。最後に該シェルは微小反応器(microreactor)として、例え
ば被包されたコロイド粒子、例えば金属粒子、例えば金又は銀粒子、セラミック
粒子、磁気粒子又は半導体粒子を製造するために使用することもできる。
【0026】 シェルの使用に関しては特に、シェル壁の透過性が重要である。シェル壁の透
過性はシェルのために使用した高分子電解質、肉厚及び周囲条件の選択によって
影響されうる。したがって透過性を選択的に決定し、変化させることができる。
【0027】 さらに透過性は少なくとも1個の層における細孔によって改良することができ
る。このような細孔は、適当に選択される場合には高分子電解質又はナノ粒子自
体によって形成することができる。選択的輸送系、例えばキャリヤー又は流路を
高分子電解質シェル中に組込むことによってシェルの横輸送特性(transv
ersal transport properties)をそれぞれの適用に
適合させることができる。シェル壁の細孔又は流路は、それぞれ化学的な変性に
よって及び/又は周囲条件を変えることによって選択的に開閉することができる
。高分子電解質の付着のために使用する媒体の高い塩濃度は結果としてシェル壁
の低い充填密度及び高い透過度をもたらす。他方ナノ粒子(SiO2)の付着の
ために使用する媒体の高い塩濃度はシリカ粒子の高い充填密度をもたらす。かく
して付着媒体の中の塩濃度を調節することによってシェルの透過度を所望のよう
に調節することができる。またシェルの透過性は、コアーを分解する条件を選択
することによって、例えばカ焼工程における温度及び加熱条件を選択することに
よって改良することもできる。
【0028】 本発明の他の態様は、原型粒子であるコアー及び(i)反対荷電の無機ナノ粒
子及び高分子電解質又は(ii)反対荷電のナノ粒子の交互する層から成る多層
シェルを有する被覆粒子である。好ましくは被覆粒子の平均直径は15μm以下
、さらに好ましくは100〜10μmである。
【0029】 さらに本発明の他の態様は、上記のような被覆粒子の原型粒子を崩壊させるこ
とによって得られる中空シェルである。中空シェルはコアーを除去するために使
用した方法に依存している無機構造又は複合有機−無機構造であってよい。
【0030】 好ましくは該シェルは、医薬、造影剤、除草剤、殺虫剤、触媒及び顔料から選
択することができる有効成分を含有する。
【0031】 該シェルは、活性物質、例えば医薬、除草剤、殺虫剤等の緩慢な及び/又は向
標的(targeted)放出のための系として使用することができる。さらに
該シェルは高い表面積適用のために、例えば触媒又は光起電性物質用担体として
又は触媒自体として使用することもできる。
【0032】 本発明方法は、コロイド原型コアー上に複合ナノ粒子−ポリマー又はナノ粒子
−ナノ粒子の多層を製造し、続いてコアーの除去を行うために適用する場合には
、新規の中空シェルを製造する上首尾の方法を提供する。この方法による重要な
利点は次のとおりである: (i)付着サイクルの数を変えることによってシェル壁の厚さを容易に調節する
ことができる。(ii)使用される原型を与えるコロイドの寸法によってシェル
の大きさ及び形状を予め決定する。(iii)該方法は一般に多種類の荷電ナノ
粒子に適用することができ、これによって種々の無機シェル構造、複合−無機構
造(例えば磁気ナノ粒子及びSiO2又はTiO2)及び複合無機−有機シェル構
造を、ポリマーと交互した荷電粒子の簡単な溶液吸着によって製造することを可
能にする。(iv)該方法は、中空シェルを製造するために一般に使用されてい
る方法(例えば表面沈殿反応)の適当な代替法であり、さらに多くの複合体(c
omplex)製造の工程の必要を除くという利点も付加される。(v)該方法
は、現今の方法がそれに対して不適当である系にも適用することができる。
【0033】 本発明をさらに次ぎの図面及び実施例により説明する: 図1は、コロイドラテックス及び次ぎのコロイド上の複合多層の集成体、高分
子電解質の(任意の)除去、その結果生じる中空無機又は複合シェルの略示図で
ある。第1段階は、平滑にして均一に正に荷電された外面を作って負に荷電され
たSiO2ナノ粒子の吸着を容易にするために反対荷電の高分子電解質、例えば
Pr3被覆〔ポリ(ジアリルジメチルアンモニウムクロリド)(PDADMAC
)/ポリ(スチレンスルホネート)、ナトリウム塩(PSS)/PDADMAC
〕を逐次的に吸着する(ステップ1)ことを包含している。次ぎにSiO2(ス
テップ2)及びPDADMAC(ステップ3)を交互に吸着させることによりラ
テックス上に形成されるSiO2−PDADMACの多層を生じる。ラテックス
はカ焼又は低pH又は溶剤に暴露することによって分解することができ、これに
よって中空の無機シェル又は複合無機−有機シェルが得られる。
【0034】 図2は、Pr3で被覆したPSラテックス(正方形)及びPr3/(SiO2
PDADMAC)N(ここでN=1(円)、N=2(三角形)、N=4(ダイヤ
モンド形))で被覆したPSラテックスの標準化した光の散乱強度の分布を示す
。多層の成長はSPLS強度分布における系統的シフトによって確認される。
【0035】 図3は、未被覆PSラテックス(a)及びPr3/(SiO2/PDADMAC
N(ここでN=1(b)、N=2(c)、N=4(d))で被覆したPSラテ
ックスの透過電子顕微鏡写真(TEM)である。SiO2−PDADMAC多層
の規則的成長は被覆したPSラテックスの直径の増大によって判る。スケールバ
ーは図示の4つのTEMの全てに当てはまる。
【0036】 図4は、1個のSiO2/PDADMAC多層で被覆したPSラテックスのカ
焼前(a)及びカ焼後(b)の走査電子顕微鏡写真(SEM)を示す。(a)に
おいては均一かつ平滑な多層被覆は明らかである。PSラテックスにおいてはカ
焼工程の結果コアーが除去される(b)。:1個のSiO2層を有するシェル壁
の厚さはPSラテックスの原球形を維持するために必ずしも十分ではない(また
中空シェルの破損もSEMでは真空によって惹起されるであろう)。また1個の
SiO2層については若干の無傷のシェルも観察された。
【0037】 図5は、3個のSiO2/PDADMAC多層で被覆したPSラテックスのカ
焼前(a)及びカ焼後(b)のSEM顕微鏡写真を示す。PSラテックス(a)
上には均一な被覆を製造する。(b)には完全で無傷なシェル及び破損シェルの
両方が認められる:無傷な球は3個のSiO2層を有するカ焼試料について観察
される;若干のシェルはこれらに力を加える結果として破損される。またシリカ
壁の厚さも、SiO2/PDADMACの逐次的付着の結果として図4(画像a
)で示される厚さから著しく増大している。
【0038】 図6は図5bのより高い拡大図である。
【0039】 図7は破損球状壁の原子力画像(AFM)である。
【0040】 図8は2個のSiO2/PDADMAC多層で被覆したPSラテックスのカ焼
によって製造された中空シリカ球のTEM顕微鏡写真を示す。
【0041】 図9は3個のSiO2/PDADMAC多層で被覆したPSラテックスのカ焼
後得られた中空シリカカプセルの横断面のTEM顕微鏡写真を示す。
【0042】 図10は中空磁鉄鉱球のSEM多層画像を示す。これらの中空磁性球は640
nmPSラテックス上にPDADMACと交互して磁鉄鉱(Fe34)ナノ粒子
の4個の層を付着して、同試料をカ焼することによって形成される。
【0043】 図11は、3対のSiO2/PDADMAC層で被覆し、次いでpH=1の溶
液に暴露した3μmのメラミン−ホルムアルデヒド粒子のTEM顕微鏡写真を示
す。
【0044】 図12は、高分子電解質変性PSラテックス粒子の上のFITC−BSA/P
DADMAC(開放四角形)及びIgG/PSS(充填四角形)多層に関する高
分子電解質の層数の関数としてのゼータポテンシャル及び電気泳動移動度の関係
を示す。FITC−BSA多層はPDADMAC/PSS/PDADMACで被
覆したPSラテックス粒子上に形成され、IgG多層は(PAH/PSS)2
被覆した粒子上に形成された。奇数の層数はタンパク質の吸着に対応し、偶数の
層数は高分子電解質の吸着に対応する。
【0045】 図13は、(PAH/PSS)2で被覆したPSラテックス粒子上に吸着され
た単分子IgG層のpHの関数としてのゼータポテンシャル及び電気泳動移動度
を示す。
【0046】 図14は、PDADMAC/PSS/PDADMACで予め被覆したPSラテ
ックス粒子上に集成したFITC−BSA/PDADMACの多層フィルムにお
けるFITC−BSAの蛍光スペクトルを示す。実線は、FITC−BSAが外
部層を形成する場合の多層フィルムのスペクトルに対応し、ダッシュ線は上部に
付着されたPDADMACを有する同フィルムのスペクトルに対応する。
【0047】 図15は、PDADMAC/PSS/PDADMACで被覆したPSラテック
ス粒子(a)及び1個(b)及び3個(c)のFITC−BSA/PDADMA
Cの多層を有する同粒子の標準化された、単一粒子の光の散乱(SLPS)強度
の分布を示す。コロイド上の最終多層フィルムの構造:〔PDADMAC/PS
S/PDADMAC/(FITC−BSA/PDADMAC)N〕(ここで(a
)N=0、(b)N=1、(c)=3)。
【0048】 図16は、PDADMAC/PSS/PDADMACで被覆したPSラテック
ス粒子上に集成したFITC−BSA多層の蛋白質層数の関数としてのFITC
−BSA層の厚さ(SPLSから測定)を示す。FITC−BSA多層はPDA
DMACと交互に付着された。
【0049】 図17は、(PAH/PSS)2で被覆したPSラテックス粒子上に集成した
IgG/PSS多層の層数の関数としての全フィルム厚さ(SPLSから測定)
を示す。奇数及び偶数の層数はそれぞれタンパク質及び高分子電解質の付着に対
応する。
【0050】 図18は、(PAH/PSS)2で被覆したPSラテックス粒子上にPSSと
交互して付着したIgG多層のタンパク質層数の関数としてのIgGの層厚(S
PLSから測定)を示す。
【0051】 図19は、PDADMAC/PSS/PDADMACで被覆したPSラテック
ス粒子(a及びc)及び〔(FITC−BSA/PDADMAC)2/FITC
−BSA〕(b及びd)でさらに被覆した同粒子のTEM顕微鏡写真を示す。
【0052】 図20は、(PAH/PSS)2で被覆したPSラテックス粒子上に集成した
IgG多層のTEM顕微鏡写真を示す。該粒子上の最終多層フィルム構造は〔(
PAH/PSS)2/(IgG/PSS)2/IgG〕である。画像(b)は(a
)より大きく拡大してある。
【0053】 例1 SiO2−ポリ(ジアリルジメチルアンモニウムクロリド)(PDADMAC
)の交互多層を、先ず負荷電の直径640nmのポリスチレン(PS)ラテック
ス上に先駆物質である3層のPDADMAC及びポリ(スチレンスルホネート)
ナトリウム塩(PSS)フィルム(Pr3)を集成し、次ぎにSiO2−PDAD
MAC多層をPr3で被覆したPSラテックス上に集成することによって製造し
た。
【0054】 Pr3フィルム(PDADMAC/PSS/PDADMAC)を、PDADM
AC(オルドリッチ(Aldrich、MW<200,000)及びPSS(オ
ルドリッチ、MW70,000)を水溶液から交互に吸着することによって形成
した:1mg ml-1の高分子電解質の水溶液(NaCl0.5モルを含有する
)0.5mlをPSラテックス(H2O 0.5ml中の1010粒子)に加え、
吸着のために20分を与え、過剰の高分子電解質を遠心分離(13500×g)
/洗浄/再分散のサイクルを4回反復して除去した。(SPLS測定は、PS粒
子の約0.5%が洗浄/遠心分離/再分散の各段階で失われることを示す)。P
3で被覆したPSラテックスは、電気泳動移動度(EPM)測定から決定され
るように、正の表面電荷を示す。負電荷を有するスルフェート安定化PSラテッ
クスはFurusawa et al,Kolloid−Z.u.Z.Poly
mer 1972,250,908に記載されているように製造した。
【0055】 PSラテックス上のSiO2−PDADMAC多層は、40質量%のSiO2
水性懸濁液(Ludox TM,DuPont)50μlを、0.1モルNaC
l(吸着溶液がNaClを含有する場合には多量のSiO2を吸着する)中に分
散されたPr3−被覆PSラテックスに加え、SiO2の吸着のために15分を与
え、過剰のSiO2を遠心分離(13500×g)/洗浄/再分散のサイクルを
4回反復し、次いでPDADMAC(1mg ml-1/0.5モルNaCl)を
付着することによって形成した。SiO2粒子の等電点は3であり、したがって
SiO2は吸着条件(pH5〜6)下では負に荷電されている。
【0056】 マールバーン・ゼータサイザー(Malvern Zetasizer)4を
用いる電気泳動移動度(EPM)測定は、多層被覆粒子の表面電荷がSiO2
びPDADMACのそれぞれの各吸着によって負から正に変わることを示す。こ
れは複合SiO2−PDADMAC多層がSiO2及びPDADMACの段階的吸
着によって形成されることを定性的に証明している。
【0057】 PSラテックス上のSiO2−PDADMAC多層の成長は初めは単一粒子の
光の散乱(SPLS)の方法によって追跡された(Lichtenfeld e
t al,Progr.Colloid Polym.Sci.1997,10
4,148)。Pr3で被覆したPSラテックス及び1、2及び4個のSiO2
PDADMAC多層で被覆した同ラテックスに関する標準化されたSPLS強度
分布は図2に図示してある。PSラテックス上へのSiO2−PDADMAC多
層の付着はSPLS強度分布においてシフト(x軸方向おけける)として明示さ
れ、多層の成長を確認する。またSPLS法を用いると一重項(singlet
)、二重項(doublet)及び三重項(triplet)を区別することも
できる(Lichtenfeld et al,Progr.Colloid
Polym.Sci.1997,104,148):多層被覆粒子の凝集も観察
されず、同様により高い強度でも強度ピークは認められない。
【0058】 ローリー−デバイ−ガンス理論(Raleigh−Debye−Gans t
heory)(Kerker,The Scattering of Ligh
t and Other Electromagnetic Radiatio
n:Academic Press:New York,London,196
9)及び吸着層の推定屈折率1.4を用いると、PS/Pr3/(SiO2/PD
ADMAC)N(N=1〜5)の多層のSiO2−PDADMAC層の各対に関し
て計算した平均厚さは30±6nmである。この値はSiO2粒子の平均直径(
26±4nm、TEMから測定)にぴったり一致しかつ平均してほぼ各SiO2
の吸着と共にSiO2の単層が付着されることを示唆する。層厚はSiO2又はP
Sラテックス上に付着したSiO2−PDADMAC層の数と共に直線的に増大
する。
【0059】 多層成長の直接的観察は120kVで操作するフィリップス(Philips
)CM12顕微鏡を用いる透過電子顕微鏡(TEM)によって提供される:未被
覆PSラテックス及びSiO2−PDADMAC多層で被覆したPr3変性PSラ
テックスの代表的なTEM画像は図3で表示されている。未被覆PSラテックス
(a)は平滑な表面を示す。Pr3で被覆したPSラテックスに関して得られた
TEM画像は未被覆PSラテックスの画像と殆ど同じである:厚さの増大(約4
nm、SPLSの実験から測定)は識別できない。PSラテックス上のSiO2
−PDADMAC多層の存在は、表面の粗さの増大及びPSラテックス(b〜d
)の直径の増大の両方をもたらす。表面粗さの増大の原因は吸着されたSiO2
に帰せられる。SiO2の最外層へのPDADMACの吸着が多層の表面粗さを
低減することが判明した。この発見は予備的な走査電子顕微鏡(SEM)測定に
よって確証される。
【0060】 被覆したPSラテックスのSiO2−PDADMAC多層数の増大のよる直径
の増大(未被覆PSラテックスaに相対して)は、1、2及び4個のSiO2
PDADMAC多層のそれぞれに関してほぼ60nm(b)、140nm(c)
及び250nm(d)である。PS/Pr3/(SiO2/PDADMAC)N
N=1〜5)の多層のTEMデータの評価により平均の直径増分65±5nmが
得られ、これはSiO2−PDADMACの層対に関しては約32nmの層厚に
相当する。
【0061】 PSラテックスを除去するためには、始めに溶液を室温で乾燥し、N2下でオ
ーブンに入れ、5K/分の速度で500℃に加熱する。この温度で4時間後にガ
スをO2に変え、試料はさらに8時間500℃で存在していた。次ぎに該試料を
2下で室温に冷却する。次ぎに試料を、20kVの加速電圧で操作されるツア
イス(Zeiss)DSM計器を用いるSEMによって検査した。
【0062】 図4及び5は、コアーの除去前及び除去後の異なるシェル厚さを有するSiO 2 /PDADMAC多層被覆ラテックス粒子を比較している。図6は中空シェル
の拡大図である。これらの結果から排出すべき分解コアーの内容物に対する十分
な透過性を有する無傷の中空シェルが得られると判断することができる。図7は
原子力顕微鏡(AFM)によって得られた破損した球壁の画像を示し、同壁がシ
リカナノ粒子から構成されていることを示す。2個のSiO2/PDADMAC
で被覆されたPSラテックスのカ焼によって製造された、図8の中空シリカ球の
TEM顕微鏡写真は壁厚の均一性を示す。注意深く調べると、2層のシリカナノ
粒子を認めることができる。またシェルの壁厚の均一性は、図9で示されるよう
な樹脂埋め込みシリカ中空カプセルのTEM顕微鏡からも認められる。中空球の
内部及び外部の同様なコントラストは、これらの球が樹脂に対して透過性である
ことを示す。
【0063】 例2 例1に記載した手順により640nmのPSラテックス粒子上に交互のFe3
4−PDADMAC多層を付着した。該試料をカ焼した後中空の磁性球が形成
された。これらの球のSEM画像は図10で示してある。
【0064】 例3 例1で記載した手順により、3μmの部分的に架橋されたメラミンホルムアル
デヒド粒子上に、DE 19812083.4に記載されたように交互のSiO 2 −PDADMAC多層を付着した。メラミンホルムアルデヒド粒子をpH=1
の溶液に暴露することによって溶解させた。図11には生じる中空粒子のTEM
顕微鏡写真を図示してある。中空の複合球の直径は試料を固体支持体上で乾燥す
ることによりMFコロイド原型の大きさよりも著しく大きい。粗い表面組織は、
ポリマー層に埋め込まれたSiO2ナノ粒子の存在に帰せられる。
【0065】 例4 コロイド粒子上に交互のタンパク質−高分子電解質多層を付着させた。
【0066】4.1 材料 フルオレセインイソチオシアネートで標識化したウシ血清アルブミン(FIT
C−BSA)及びヒツジ免疫グロブリンG(IgG)をSigmaから入手した
。ポリ(アリルアミンヒドロクロリド)(PAH)(MW=8,000〜11,
000又は50,000〜65,000)、ポリ(ジアリルジメチル−アンモニ
ウムクロリド)(PDADMAC)(MW<200,000)及びポリ(ナトリ
ウム4−スチレンスルホネート)(PSS)(MW=70,000)をAldr
ichから購入した。すべてのタンパク質及び高分子電解質は、水に対して透析
した70,000MWPSS(MWのカットオフ14,000)を除いて、受取っ
たまま使用し、使用前に凍結乾燥した。負荷電のスルフェート安定化ポリスチレ
ン(PS)ラテックス粒子(直径640nm)を例1に記載したように製造した
【0067】4.2 コロイド上にタンパク質多層の集成 PAH及びPSS又はPDADMAC及びPSSから成る先駆物質の高分子電
解質多層フィルムを先ず均一に荷電された表面を供給し、次ぎのタンパク質吸着
を容易にするために付着させた。先駆物質フィルムは例1で記載したように形成
した。
【0068】 タンパク質多層は、タンパク質及び粒子が反対電荷を有するという条件下で高
分子電解質被覆PSラテックス粒子をタンパク質溶液に暴露し、次ぎに高分子電
解質及びタンパク質を交互に吸着することによって製造した。FITC−BSA
を(PDADMAC/PSS/PDADMAC)で予備被覆したPSラテックス
粒子上に付着し、IgGを(PAH/PSS)2予備被覆粒子上に付着した。粒
子は、PAH又はPDADMACが最外層を形成する場合には正の表面電荷を有
し、PSSが最外層である場合には負電荷を有する。FITC−BSA多層は、
FITC−BSA(pH7.0のPBS緩衝液中の0.5mg/ml、30分の
吸着又はpH=5.6の水中1mg/ml、20分の吸着)及びPDADMAC
(1mg/ml/0.5モルNaCl、20分)を、被覆PSラテックス粒子(
5×109粒子)上に交互に吸着することによって形成した。IgG多層は、I
gG(0.05モルの2−(N−モルホリノ)エタンスルホン酸(MES)緩衝
液中1mg/ml、NaOHを用いてpH6.0に調節、45分の吸着)及びP
SS(MW8,000〜11,000、1mg/ml/0.5モルのNaCl、
20分)の層を、被覆PSラテックス粒子(6×109粒子)上に逐次的に吸着
することによって製造した。(すべての場合においてタンパク質の濃度は粒子表
面の飽和吸着のために要する濃度のほぼ10倍である)。タンパク質又は高分子
電解質層のそれぞれの吸着後に、該試料を約5000×gで10分間遠心分離し
、上澄みを除去し、少なくとも3回水洗浄を行った。
【0069】4.3 電気泳動移動度(EPM)測定 裸及び被覆PSラテックス粒子の電気泳動移動度を、マルバーン・ゼータサイ
ザー(Malvern Zetasizer)4を用いて例1で記載したように
測定した。すべてのゼータポテンシャル測定は、空気平衡純水(pH=5.6)
中に再分散した被覆PSラテックス上で行った。
【0070】4.4 単一粒子の光の散乱(SPLS)実験 SPLS実験系及び測定原理の詳細は例1で記載した通りである。要約すれば
(未被覆又は被覆PSラテックス粒子の)分散液を末端に0.1mm直径のオリ
フィスを有する毛管中を通す。流体力学的集束(focussing)を適用す
ると分散流が、単一粒子のみ又は凝集体を特定時間に焦点にいれておくために集
束されるレーザービーム中に向けられる。これは3×108粒子/ml未満の粒
子濃度を要求する。レーザー焦点を通って動く粒子によって散乱された光は前方
方向で5〜10°の角度範囲で記録する。0.5%の分解度で得られる強度分布
を多重チャンネル分析器(multichannel analyser)によ
って集め、次ぎにPCに貯蔵する。
【0071】4.5 透過電子顕微鏡(TEM) TEM測定は、120kVで操作するフィリップス(Philips)CM1
2顕微鏡により行った。TEM用試料は、炭素被覆銅グリッド上に被覆PSラテ
ックス粒子の水溶液を付着することによって製造した。混合物を1分間空気乾燥
し、余分な溶液を次ぎに吸取った。
【0072】4.6 定常状態の蛍光測定 励起及び発光バンド幅セット(emission bandwidths s
et)を有するスペックス・フルオロローグ(Spex Fluorolog)
1680分光計を用いて蛍光スペクトルを1.0nmで記録した。代表的には、
タンパク質多層被覆PSラテックスの懸濁液(約109粒子ml-1)約50〜1
00μlを、蛍光光度計セル中の水3ml中にピペットで取り、この分散液を0
.5分間撹拌した。次いでこの分散液の蛍光スペクトルを記録した。
【0073】4.7 結果 タンパク質多層の集成体を先ずEPM測定によって追跡した。タンパク質多層
の形成前に、先駆物質である3又は4層の高分子電解質多層フィルムをPSラテ
ックス粒子上に付着した。先駆物質フィルムは均一に荷電された表面(次ぎのタ
ンパク質吸着を容易にする)を提供するのみならず、表面電荷も変化させ(高分
子陽イオン又は高分子陰イオンが最外層を形成するかどうかに依存する)、その
結果タンパク質を、このものが吸着表面に対して反対に荷電されるような条件下
で付着することができる。3層の(PDADMAC/PSS/PDADMAC)
フィルムはFITC−BSAの付着前に負荷電のPSラテックス上に集成したが
、4層の(PDADMAC/PSS)2フィルムはIgG吸着前に該粒子上に付
着した。負荷電の(未被覆の)PSラテックス粒子は水中で約−65mVのゼー
タポテンシャルを有する。PDADMAC/PSS/PDADMAC被覆粒子の
ゼータポテンシャルは約+50mVであるが、これは最外層が高分子陽イオンで
あることによる。(PDADMAC/PSS)2被覆PSラテックス粒子に関し
ては、ゼータポテンシャルは約−40mVであるが、これは最外層が高分子陰イ
オンPSSであることに一致している。図12は、FITC−BSA/PDAD
MAC又はIgG/PSS多層で被覆した高分子電解質変性PSラテックスの層
数の関数としてのゼータポテンシャルを図示する。FITC−BSA及びPDA
DMACの交互の集成体は、10層までの各付着とともにゼータポテンシャルの
符号の反転を起こす。FITC−BSAが最外層を形成する場合には、被覆粒子
のゼータポテンシャルはわずかに負である(−10〜−20mV)。引続くPD
ADMAC及びFITC−BSAの付着はそれぞれ正及び負のゼータポテンシャ
ルを生じる。IgG/PSS多層系に関しては、IgGが最外層である場合0に
近いゼータポテンシャルの値又はわずかに負の値が観察される。かくして表面電
荷の反転は、単粒子/単電解質多層、例えばIgG/PSSの付着の場合には要
求されない。
【0074】 ゼータポテンシャルをpHの関数として記録するEPM測定は、1層のIgG
で被覆した(PAH/PSS)2変性PSラテックス粒子について行った(図1
3)。結果は約5.5の等電点を示す。
【0075】 さらにFITC−BSA/PDADMAC多層の成長の証拠も蛍光測定によっ
て提供した。FITC−BSA/PDADMAC多層の蛍光スペクトルが、FI
TC−BSA又はPDADMACが最外層を形成する場合に関して、図14に図
示してある。最外層がFITC−BSAの場合には、最大発光は515nmで起
こる。PDADMACが最外層である場合には、最大発光は約6〜7nmだけ赤
色移動して(red−shift)521〜522nmになる。FITC−BS
A及PDADMACの付着ごとに最大振動が再現的に認められた。
【0076】 段階的なタンパク質多層成長の定量的証拠を得るためには、SPLS法を用い
た。SPLSはコロイド上に集成された層の厚さならびに被覆されたコロイドの
凝集に関する状態及び程度を測定できる感度の良い光学的な方法である。被覆し
た粒子の分散液を毛管中を通過させ、分散液を流体力学的に集束することによっ
て、所定の時間に1個の粒子から散乱される光を記録する。このプロセスの反復
によって、得られる散乱強度に対する粒子数のヒトグラムができる。図15は、
(PDADMAC/PSS/PDADMAC)変性PSラテックス粒子(a)、
1個(b)及び3個(c)のFITC−BSA/PDADMAC多層で被覆され
た同粒子に関する標準化されたSPLS強度分布を示す。増大する多層の層数に
よる、SPLS強度分布おける系統的シフト(x軸方向)が認められ、これによ
ってPSラテックス粒子上のFITC−BSA/PDADMAC多層の成長が確
認される。PS粒子上のIgG/PSS多層に関しても同様なSPLS強度分布
が得られた。図15に図示されたSPLSで認められるピークは、一重項(si
nglets)、すなわち未凝集タンパク質多層−被覆粒子に相応する。データ
の分析により、被覆粒子は主として一重項として存在し、該粒子の20%未満は
二重項(2個の粒子の凝集体)として存在する。二重項の画分は高分子電解質が
最外層である場合には相当に減少された(<5%)。これは高分子電解質の吸着
が弱くかつ可逆的に凝集されたタンパク質多層−被覆粒子の若干を分離すること
を示す。
【0077】 PSラテックス粒子上のタンパク質/高分子電解質多層の平均厚さ(d)は、
ローリー−デバイ−ガンス理論及びタンパク質及び高分子電解質層それぞれに関
する屈折率(n)1.43及び1.47を使用することによって決めることがで
きる。FITC−BSA多層に関しては、層厚は付着されたタンパク質層の数と
共に直線的に増大する(図16)。FITC−BSA層に関する計算された平均
層厚の増分は,FITC−BSAを純水から付着させる場合には3.3±1.1
nmであり、PBSから付着させる場合には5.8±2.5nmである。厚さの
相違は、タンパク質がその下で付着される異なる条件に帰せられる。これらのデ
ータは明らかに、BSA多層が、PSラテックス粒子上にタンパク質及びPDA
DMACを段階的に吸着することによって成長されうることを示す。
【0078】 図17は、層数の関数としての、(PAH/PSS)2被覆PSラテックス粒
子上に集成されたIgG/PSS多層の層厚を示す。規則的な段階的多層成長が
認められる。IgG多層のフィルムの成長は、図18に図示されているように初
めの付着段階後には線状である。付着された第1のIgG層の厚さはほぼ11n
mである。第1回の付着サイクル(IgG及びPSSのサイクル)後のIgG平
均厚さの増分は37±7nmである。
【0079】 タンパク質多層成長プロセスの直接的視覚化はTEMによって提供される。図
19は、PDADMAC/PSS/PDADMAC変性PSラテックス粒子(a
及びb)及び(FITC−BSA/PDADMAC)2/FITC−BSA多層
で被覆した同粒子(b及びd)のTEM顕微鏡写真を示す。高分子電解質被覆P
Sラテックス粒子は外観上未被覆PSラテックスに極めて似ている:該粒子は平
滑な表面を示す。高分子電解質を被覆する(PDADMAC/PSS/PDAD
MAC)の厚さは約3〜4nm(SPLS実験から)である。PSラテックス上
のFITC−BSA多層の存在は表面粗さの増大及び高分子電解質被覆PSラテ
ックスの直径の増大を生じる(b及びd)。表面粗さの増大はより高い倍率で最
も顕著である(画像a及びbを比較せよ)。(FITC−BSA/PDADMA
C)2/FITC−BSA層を有する粒子の直径増大は約20nmでり、これは
約10nmの層厚の増大に相当する。この値は同一多層のSPLS厚さ(11n
m)とほぼ一致する。FITC−BSA多層−被覆PSラテックス粒子のTEM
画像により、FITC−BSA多層の付着によって粒子の均一な被覆が得られる
ことが確認される(図19a及び19b)。
【0080】 IgG/PSS多層被覆PSラテックス粒子のTEM顕微鏡写真(図20)は
、タンパク質多層による粒子表面の規則的積層(layering)を明らかに
証明する。IgG多層粒子の直径は、多層がその上に形成される粒子よりも著し
く大きい。1個、3個及び5個のIgG層の付着は、それぞれほぼ16、164
及び296nmの直径の増大をもたらした。これらの値は8、82及び148n
mの層厚の増大に相当しかつSPLS測定から計算される直径(それぞれ1個、
3個及び5個のIgG層に関して11、90及び160nm)と非常に良く一致
している。
【0081】 例5 PSラテックス粒子(直径640nm)を高分子電解質及び酵素層の付着用支
持体として使用した。積層手順はPSラテックス上に交互する4個のPAH(M W 50〜65kD)及びPSS(MW約70kD)層を付着することから始め、そ
の結果最外層の被覆にPSSを有する負荷電粒子を生じる。高分子電解質は20
分以内に吸着させた。各積層段階の後に脱イオン水を用いる4回の洗浄サイクル
を行った。積層及び洗浄段階の終わるごとに、混合物を7000rpmで8分間
遠心分離し、上澄みを除去した。最後のPSS層上にSigma社製のカルドセ
ルム・サッカロリテイクム(Caldocellum saccharolyt
icum)から得たβ−グルコシダーゼ(EC3.2.1.21)を1時間で吸
着した。同酵素を0.1モル酢酸塩緩衝液(pH=4.8)中の1.4mg/m
l溶液として使用した。前記手順を、1個のPSS層によってそれぞれ分離され
た4個の酵素層が該粒子上に集成されるまで反復した。最外被覆として酵素又は
PSSを有する1〜4個の酵素層を有する試料を生じる各積層段階後に試料を取
った。これらの試料は酵素的グルコシド分解反応(glucosidation
)における触媒として使用した。
【0082】 グルコシド分解は40℃で振盪した(200回/分)2mlの試験官で行った
。酵素変性ラテックス粒子をリン酸塩緩衝液(pH=6.8)100μl中で懸
濁した。代表的実験では、n−ドデカノール(Fluka)413mg(2.2
2mモル)、アセトニトリル(Merck)600μl及び無水グルコース(M
erck)100mg(0.55mモル)を加えた。この混合物を十分に振盪し
て均質化し、次ぎに振盪しながら40℃で72時間保った。同混合物を次いで5
000rpmで10分間遠心分離した。上澄みを除去し、残留物をアセトニトリ
ル500μlで洗浄した。各試料の合した有機相から溶剤を留去した。濃縮した
粗製生成物を分取クロマトグラフィー分離にかけて過剰のドデカノールを除去し
た。
【0083】 分取液体クロマトグラフィーは、クロマトグラフィーポンプ、勾配形成器、画
分コレクター及びクナウアー(Knauer)極性モニター検出器から成る、ビ
ュキ(Buechi)−680HPLC装置を用いて行った。カラムは、15μ
m球状シリカ10gで充填したクロンラーブビオ−カート(Kronlabbi
o−cart)(20mm×120mm)であった。酢酸エチル/メタノール勾
配プログラムを有する画分10mlを集める(0〜100%メタノール、34分
)ことによって、過剰のドデカノールをすべて粗製生成物から分離することがで
きた。残っている画分を合し、濃縮し、次ぎに水/プロパン−2−オール(1:
33v/v)混合物を加えることによって1mlの容積に固定した。形成された
ドデシルグルコシドの量を測定するために、これらのストック溶液のアリコート
を光の散乱検出器及びシリカカラムを備えたJASCOクロマトグラフによるH
PLCによって分析した。ドデシルグルコシドの定性的測定のために検量線を作
成した。
【0084】 最外層として酵素又はPSSを有する粒子の場合には、ドデシルグルコシドを
検出することができた。かくして酵素は被覆処理によって不活性化されていない
。最外層としてPSSを有する粒子の場合には、粒子上の付着酵素層の数の増大
とともに増大するドデシルグルコシドの収量が認められた。これも、下部の層が
触媒過程に関与していることを示す。
【図面の簡単な説明】
【図1】 本発明による多層被覆粒子及び中空シェルを製造するステップを説明する略示
図である。
【図2】 SiO2−PDADMAC多層で被覆したPSラテックスの光の散乱強度の分
布を示すグラフである。
【図3】 未被覆PSラテックス粒子(a)及び(SiO2/PDADMAC)Nで被覆し
たPSラテックス粒子(b、c、d)の透過電子顕微鏡写真である。
【図4】 SiO2/PDADMACの1層で被覆したPSラテックス粒子のカ焼前(a
)及びカ焼後(b)の走査電子顕微鏡写真である。
【図5】 SiO2/PDADMACの3層で被覆したPSラテックス粒子のカ焼前(a
)及びカ焼後(b)の走査電子顕微鏡写真である。
【図6】 図5.bの中空シェルの拡大写真である。
【図7】 中空シェルの破壊した球壁の原子力顕微鏡写真である。
【図8】 SiO2/PDADMACの2層で被覆したPSラテックス粒子のカ焼後に得
られる中空シリカ球の透過電子顕微鏡写真である。
【図9】 SiO2/PDADMACの3層で被覆したPSラテックス粒子のカ焼後に得
られる中空シリカカプセルの横断面の透過電子顕微鏡写真である。
【図10】 Fe34/PDADMACの4層を付着した中空多層球の走査電子顕微鏡写真
である。
【図11】 SiO2/PDADMACの3層で被覆したメラミンホルムアルデヒド粒子の
透過電子顕微鏡写真である。
【図12】 FITC−BSA/PDADMAC(開放四角形)及びIgG/PSS(充填
四角形)で被覆した高分子電解質変性PSラテックス粒子の層数の関数としての
ゼータポテンシャル及び電気泳動移動度を示すグラフである。
【図13】 単分子IgG層を有する(PAH/PSS)2 で被覆したPSラテックス粒子
のpHの関数としてのゼータポテンシャル及び電気泳動移動度を示すグラフであ
る。
【図14】 PDADMAC/PSS/PDADMACで被覆したPSラテックス粒子上の
FITC−BSA/PDADMAC多層の蛍光強度を示すグラフである。
【図15】 PDADMAC/PSS/PDADMACで被覆されたPSラテックス粒子(
a)及びその上にFITC−BSA/PDADMACの1層(b)及び3層(c
)を有する同粒子の光の散乱強度の分布を示すグラフである。
【図16】 PDADMAC/PSS/PDADMACで被覆したPSラテックス粒子上の
FITC−BSA層の層厚がタンパク質層数の関数として増大することを示すグ
ラフである。
【図17】 (PAH/PSS)2で被覆したPSラテックス粒子上のIgG/PSS層の
層厚が層数の関数として増大することを示すグラフである。
【図18】 (PAH/PSS)2で被覆したPSラテックス粒子上のIgG/PSS層の
IgGの層厚がタンパク質層数の関数として増大することを示すグラフである。
【図19】 PDADMAC/PSS/PDADMACで被覆したPSラテックス粒子(a
及びb)及び〔(FITC−BSA/PDADMAC)2/FITC−BSA〕
(b及びd)でされに被覆した同粒子の透過電子顕微鏡写真である。
【図20】 (PAH/PSS)2で被覆したPSラテックス粒子上のIgG多層の透過電
子顕微鏡写真である。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),JP,US (72)発明者 エドウィン ドナト ドイツ連邦共和国 ギーゼンホルスト ド レーツァー シュトラーセ 1 (72)発明者 ヘルムート メーヴァルト ドイツ連邦共和国 ビンゲン ドクトル− ゲーバウアー−シュトラーセ 21 (72)発明者 グレーブ スホルコフ ロシア国 モスカウ ディストリクト ミ クロレイオン エービー 533 プスチノ Fターム(参考) 4C076 AA63 AA65 DD21H DD29H EE25H EE41H FF31 GG16 GG36 4G005 AA01 AB02 AB13 BA20 BB24 BB25 DA05Z DA12Z DD04X DD07X DD08X DD10X DD12X DD37X DD53X EA03 EA04 EA06 EA08 4H011 AB01 AC01 BC18 BC19 BC20 DA02 DC10 DH11 4H045 AA20 DA70 DA75 FA82 4J037 AA30 CA03 CA24 CA30 CB30 CC01 DD01 DD05 DD30 EE04 EE13 EE15 EE46

Claims (26)

    【特許請求の範囲】
  1. 【請求項1】 次ぎの工程: (a)原型粒子の供給、 (b)(i)反対荷電のナノ粒子及び高分子電解質の交互の層及び/又は(ii
    )反対荷電のナノ粒子の交互の層から成る多層による前記原形粒子の被覆 から成る被覆粒子の製造方法。
  2. 【請求項2】 前記原型粒子が10μm以下の平均直径を有する、請求項1
    記載の方法。
  3. 【請求項3】 前記原型粒子を有機粒子、無機粒子又はこれらの任意の組み
    合わせから選択する、請求項1又は2記載の方法。
  4. 【請求項4】 前記原型粒子を有機ポリマーラテックス及び部分的に架橋し
    たメラミンーホルムアルデヒド粒子から選択する、請求項1から3までのいずれ
    か1項記載の方法。
  5. 【請求項5】 高分子電解質が線状分子である、請求項1から4までのいず
    れか1項記載の方法。
  6. 【請求項6】 高分子電解質が高分子陽イオンであり、ナノ粒子が全陰イオ
    ン電荷を有する、請求項1から5までのいずれか1項記載の方法。
  7. 【請求項7】 高分子電解質が高分子陰イオンであり、ナノ粒子が全陽イオ
    ン電荷を有する、請求項1から5までのいずれか1項記載の方法。
  8. 【請求項8】 前記ナノ粒子が1〜100nmの平均直径を有する、請求項
    1から7までのいずれか1項記載の方法。
  9. 【請求項9】 前記ナノ粒子が無機粒子である、請求項1から8までのいず
    れか1項記載の方法。
  10. 【請求項10】 前記ナノ粒子をセラミック及び金属粒子から選択する、請
    求項9記載の方法。
  11. 【請求項11】 前記ナノ粒子が二酸化ケイ素粒子である、請求項10記載
    の方法。
  12. 【請求項12】 前記ナノ粒子が生体分子である、請求項1から8までのい
    ずれか1項記載の方法。
  13. 【請求項13】 前記生体分子がポリペプチドである、請求項12記載の方
    法。
  14. 【請求項14】 さらに、(c)原型粒子を少なくとも部分的に崩壊させる
    工程を含む、請求項1から13までのいずれか1項記載の方法。
  15. 【請求項15】 前記崩壊を熱処理、化学的処理又はpH調整によって行う
    、請求項14記載の方法。
  16. 【請求項16】 原型粒子であるコアー及び(i)反対荷電のナノ粒子及び
    高分子電解質又は(ii)反対荷電のナノ粒子の交互の層から成る多層シェルを
    有する被覆粒子。
  17. 【請求項17】 15μm以下の平均直径を有する、請求項16記載の粒子
  18. 【請求項18】 請求項16又は17記載の被覆粒子の原型粒子を崩壊させ
    ることによって得られる中空シェル。
  19. 【請求項19】 無機構造である、請求項16記載の中空シェル。
  20. 【請求項20】 有機構造である、請求項16記載の中空シェル。
  21. 【請求項21】 複合有機−無機構造である、請求項16記載の中空シェル
  22. 【請求項22】 複合無機−無機構造である、請求項16記載の中空シェル
  23. 【請求項23】 有効成分を含有する、請求項18から22までのいずれか
    1項記載のシェル。
  24. 【請求項24】 前記有効成分を医薬、造影剤、除草剤、殺虫剤、触媒及び
    顔料から選択する、請求項23記載のシェル。
  25. 【請求項25】 請求項18から24までのいずれか1項記載のシェルの、
    活性物質の緩慢な及び/又は向標的放出のための系としての使用。
  26. 【請求項26】 請求項18から24までのいずれか1項記載のシェルの、
    高表面積適用のための使用。
JP2000536481A 1998-03-19 1999-03-19 分解性コロイド原型上のナノ複合多層の静電的自己集成体による多層被覆粒子及び中空シェルの製造 Pending JP2003522621A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1998112083 DE19812083A1 (de) 1998-03-19 1998-03-19 Herstellung von Nano- und Mikrokapseln durch schichtweise Polyelektrolyt-Selbstassemblierung
DE19812083.4 1998-03-19
EP98113181.6 1998-07-15
EP98113181A EP0972563A1 (en) 1998-07-15 1998-07-15 Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates
PCT/EP1999/001854 WO1999047253A1 (en) 1998-03-19 1999-03-19 Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates

Publications (1)

Publication Number Publication Date
JP2003522621A true JP2003522621A (ja) 2003-07-29

Family

ID=26044762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000536481A Pending JP2003522621A (ja) 1998-03-19 1999-03-19 分解性コロイド原型上のナノ複合多層の静電的自己集成体による多層被覆粒子及び中空シェルの製造

Country Status (6)

Country Link
US (1) US6479146B1 (ja)
EP (1) EP1064088B1 (ja)
JP (1) JP2003522621A (ja)
AT (1) ATE228883T1 (ja)
DE (1) DE69904307T2 (ja)
WO (1) WO1999047253A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520151A (ja) * 1998-07-15 2002-07-09 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 生物学的テンプレート上の高分子電解質
JP2003519565A (ja) * 2000-01-13 2003-06-24 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 重合体多層による固体粒子の鋳型化
JP2007529303A (ja) * 2004-03-19 2007-10-25 カプサルーション ナノサイエンス アクチェン ゲゼルシャフト 多孔質テンプレートを用いたcs粒子およびマイクロカプセルの製造方法、cs粒子およびマイクロカプセル、およびそれらの使用
JP2007325850A (ja) * 2006-06-09 2007-12-20 Kyushu Institute Of Technology 温熱治療用マイクロカプセル発熱体及びその製造方法
WO2008078970A1 (en) * 2006-12-27 2008-07-03 Daegu Gyeongbuk Institute Of Science & Technology In situ preparation of substrates with di spersed gold nanoparticles
JP2008255318A (ja) * 2007-02-19 2008-10-23 Sanyo Chem Ind Ltd 多層構造樹脂粒子の製造方法
JP2009503056A (ja) * 2005-08-02 2009-01-29 ソル − ゲル テクノロジーズ リミテッド 水不溶性成分の金属酸化物被覆
JP2009507592A (ja) * 2005-09-16 2009-02-26 カプサルーション ナノサイエンス アクチェン ゲゼルシャフト 難水溶性(疎水性)液体および固体活性成分のカプセル化および放出制御のための方法
JP2009529583A (ja) * 2006-03-10 2009-08-20 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ 腐食防止剤のナノレザーバーを含む腐食防止顔料
JP2009196913A (ja) * 2008-02-20 2009-09-03 Ihi Corp 磁性を有する薬剤、薬剤の誘導システム、並びに磁気検出装置
JP2010504187A (ja) * 2006-09-20 2010-02-12 バイオカルテイス・エス・エイ マイクロキャリアのためのコーティング
JP2010516336A (ja) * 2007-01-22 2010-05-20 アーティフィシャル セル テクノロジーズ インコーポレイテッド ポリペプチドフィルムおよび方法
JP2010517997A (ja) * 2007-02-01 2010-05-27 ソル − ゲル テクノロジーズ リミテッド 金属酸化物コーティングを含む粒子の製造方法及び金属酸化物コーティングを有する粒子
JP2010131593A (ja) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd 中空状無機粒子の前駆体、中空状無機粒子及びこの製造方法、並びに中空状無機粒子を用いた光学部材及び光学部材体
JP2010131592A (ja) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd 中空状無機粒子の前駆体、中空状無機粒子及びこの製造方法、並びに中空状無機粒子を用いた光学部材及び光学部材体
WO2010074063A1 (ja) 2008-12-25 2010-07-01 電気化学工業株式会社 複合粒子及びその製造方法、中空粒子、その製造方法及び用途
JP2011507950A (ja) * 2007-12-27 2011-03-10 株式會社アモーレパシフィック カロチノイドを安定化した二重層構造の高分子カプセル、その製造方法及びこれを含有する化粧料組成物
WO2011096408A1 (ja) * 2010-02-02 2011-08-11 国立大学法人 東京大学 複合体微粒子およびその製造方法、ならびに該複合体微粒子を用いた薬学組成物
WO2011096230A1 (ja) * 2010-02-08 2011-08-11 学校法人慈恵大学 磁性粒子、及びその製造方法、並びに磁性粒子含有製剤
US8435475B2 (en) 2007-06-26 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods

Families Citing this family (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101575B2 (en) * 1998-03-19 2006-09-05 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
US6409907B1 (en) 1999-02-11 2002-06-25 Lucent Technologies Inc. Electrochemical process for fabricating article exhibiting substantial three-dimensional order and resultant article
JP4970678B2 (ja) * 1999-06-10 2012-07-11 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 多層コーティングによる結晶のカプセル化
US7045049B1 (en) * 1999-10-01 2006-05-16 Nanoplex Technologies, Inc. Method of manufacture of colloidal rod particles as nanobar codes
US6919009B2 (en) 1999-10-01 2005-07-19 Nanoplex Technologies, Inc. Method of manufacture of colloidal rod particles as nanobarcodes
AU2131701A (en) * 1999-12-02 2001-06-12 Olga Kalinina Polymeric nanocomposite materials with a functional matrix and a method of reading and writing thereto
US7033524B2 (en) 2000-02-22 2006-04-25 Eugenia Kumacheva Polymer-based nanocomposite materials and methods of production thereof
CA2309575A1 (en) * 2000-05-26 2001-11-26 James E. Guillet Internally cross-linked macromolecules
DK1305109T3 (da) * 2000-08-02 2004-12-20 Max Planck Gesellschaft Fremstilling af polyelektrolytkapsler ved overfladepræcipitation
CA2420523C (en) * 2000-08-28 2010-05-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Controlled and sustained release properties of polyelectrolyte multilayer capsules
KR100867391B1 (ko) * 2000-09-21 2008-11-06 롬 앤드 하스 캄파니 가볍게 개질된 점토 및 이를 포함하는 조성물의 에멀젼중합 방법
US6720007B2 (en) 2000-10-25 2004-04-13 Tufts University Polymeric microspheres
JP4093532B2 (ja) 2001-03-13 2008-06-04 独立行政法人理化学研究所 アモルファス状金属酸化物の薄膜材料の製造方法
WO2002074431A1 (en) * 2001-03-21 2002-09-26 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften Hollow spheres from layered precursor deposition on sacrificial colloidal core particles
US20030211129A1 (en) * 2001-04-13 2003-11-13 Spillman William B Self-assembled thin film coating to enhance biocompatibility of materials
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
WO2003062372A2 (en) * 2001-10-02 2003-07-31 The Regents Of The University Of California Nanoparticle assembled hollow spheres
ATE295155T1 (de) * 2001-10-05 2005-05-15 Surmodics Inc Beschichtungen mit immobilisierten partikeln sowie verwendungen derselben
US7112361B2 (en) * 2001-10-25 2006-09-26 Massachusetts Institute Of Technology Methods of making decomposable thin films of polyelectrolytes and uses thereof
US8367013B2 (en) 2001-12-24 2013-02-05 Kimberly-Clark Worldwide, Inc. Reading device, method, and system for conducting lateral flow assays
US20030119203A1 (en) 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
WO2003082232A1 (en) 2002-03-28 2003-10-09 The Procter & Gamble Company Particle stabilizing compositions
US7101947B2 (en) * 2002-06-14 2006-09-05 Florida State University Research Foundation, Inc. Polyelectrolyte complex films for analytical and membrane separation of chiral compounds
ES2295674T3 (es) * 2002-08-02 2008-04-16 Capsulution Nanoscience Ag Microcapsulas capa por capa codificadas cromaticamente como bibliotecas de analisis combinatorias y como sensores optico especificos.
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
US8105652B2 (en) * 2002-10-24 2012-01-31 Massachusetts Institute Of Technology Methods of making decomposable thin films of polyelectrolytes and uses thereof
US7781172B2 (en) 2003-11-21 2010-08-24 Kimberly-Clark Worldwide, Inc. Method for extending the dynamic detection range of assay devices
US20040101822A1 (en) * 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
US7247500B2 (en) 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
US6780896B2 (en) 2002-12-20 2004-08-24 Kimberly-Clark Worldwide, Inc. Stabilized photoinitiators and applications thereof
US8409618B2 (en) 2002-12-20 2013-04-02 Kimberly-Clark Worldwide, Inc. Odor-reducing quinone compounds
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US20040134631A1 (en) * 2003-01-15 2004-07-15 Crooks Evon Llewellyn Smoking article wrapping materials comprising ultrafine particles
JP4684991B2 (ja) 2003-01-31 2011-05-18 ボストン サイエンティフィック リミテッド 薬物添加ナノカプセルを用いる局所的薬物デリバリー
US7090783B1 (en) 2003-03-13 2006-08-15 Louisiana Tech University Research Foundation As A Division Of The Louisiana Tech University Foundation Lithography-based patterning of layer-by-layer nano-assembled thin films
US7851209B2 (en) 2003-04-03 2010-12-14 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in assay devices
US20040197819A1 (en) * 2003-04-03 2004-10-07 Kimberly-Clark Worldwide, Inc. Assay devices that utilize hollow particles
JP2007500210A (ja) * 2003-04-10 2007-01-11 スリーエム イノベイティブ プロパティズ カンパニー 金属含有微粒子担体材料を使用した免疫反応調節物質化合物の送達
US20050058603A1 (en) * 2003-05-02 2005-03-17 Case Western Reserve University Drug delivery system based on polymer nanoshells
US7189454B2 (en) * 2003-05-19 2007-03-13 Engelhard Corporation Carbon coated high luster materials
US6916514B2 (en) * 2003-07-18 2005-07-12 Eastman Kodak Company Cationic shelled particle
US7364585B2 (en) * 2003-08-11 2008-04-29 Boston Scientific Scimed, Inc. Medical devices comprising drug-loaded capsules for localized drug delivery
US7348399B2 (en) * 2003-08-29 2008-03-25 Louisiana Tech University Foundation, Inc. Nanofabricated polypeptide multilayer films, coatings, and microcapsules
US7544770B2 (en) * 2003-08-29 2009-06-09 Louisiana Tech Foundation, Inc. Multilayer films, coatings, and microcapsules comprising polypeptides
US7615530B2 (en) * 2003-08-29 2009-11-10 Artificial Cell Technologies, Inc. Immunogenic compositions and methods of use
US7550557B2 (en) 2003-08-29 2009-06-23 Louisiana Tech University Foundation, Inc. Multilayer films, coatings, and microcapsules comprising polypeptides
US7829119B2 (en) * 2003-10-20 2010-11-09 William Marsh Rice University Method to fabricate microcapsules from polymers and charged nanoparticles
US20090253220A1 (en) * 2003-10-28 2009-10-08 Sukanta Banerjee Absorbing Biomolecules into Gel-Shell Beads
US7713748B2 (en) 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US20050112703A1 (en) 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
DE10356159A1 (de) * 2003-12-02 2005-07-07 Schardey, Arnd, Dr. Verfahren zur Temperierung von gasförmigen, flüssigen oder schüttgutförmigen Medien
US7943089B2 (en) 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
WO2005077330A1 (en) * 2004-02-17 2005-08-25 The University Of Melbourne Electromagnetic radiation addressable materials
US8137728B2 (en) * 2004-03-11 2012-03-20 University Of Massachusetts Biopolymer encapsulation and stabilization of lipid systems and methods for utilization thereof
ATE431620T1 (de) * 2004-03-18 2009-05-15 Fiat Ricerche Leuchtelement, das eine dreidimensionale perkolationsschicht verwendet, und herstellungsverfahren dafür
EP1593374A1 (en) * 2004-05-07 2005-11-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Remote control release of encapsulated material
WO2005107679A2 (en) * 2004-05-07 2005-11-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Protective microcontainers
US8728525B2 (en) 2004-05-12 2014-05-20 Baxter International Inc. Protein microspheres retaining pharmacokinetic and pharmacodynamic properties
US20060100696A1 (en) * 2004-11-10 2006-05-11 Atanasoska Ljiljana L Medical devices and methods of making the same
US20050274390A1 (en) * 2004-06-15 2005-12-15 Banerjee Chandra K Ultra-fine particle catalysts for carbonaceous fuel elements
US7130106B2 (en) * 2004-07-12 2006-10-31 Xerox Corporation Sol-gel nanocoated particles for magnetic displays
CN1320953C (zh) * 2004-08-04 2007-06-13 中国科学院化学研究所 一种基于聚合型囊泡模板的可控空心纳米金球的制备方法
US20060083694A1 (en) 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
CN100464833C (zh) * 2004-11-11 2009-03-04 中国科学院化学研究所 用模板法制备中空球和复合结构的中空球的方法
AU2004325199B2 (en) * 2004-11-22 2011-09-08 Louisiana Tech University Foundation Method for designing polypeptides for the nanofabrication of thin films, coatings and microcapsules by electrostatic layer-by-layer self assembly.
KR20080016780A (ko) * 2004-11-24 2008-02-22 테라킨 리미티드 안내 약물 전달용 임플란트
US7700312B2 (en) * 2004-12-16 2010-04-20 Kansas State University Research Foundation Preparation containing nanoscale particles with electrostatically adhered enzyme
CN101115807A (zh) * 2004-12-17 2008-01-30 卡伯特公司 包含多层颜料的喷墨油墨
WO2006078777A2 (en) * 2005-01-19 2006-07-27 William Marsh Rice University Method to fabricate inhomogeneous particles
JP5080445B2 (ja) 2005-04-13 2012-11-21 アボット ゲーエムベーハー ウント コー. カーゲー 超微粒子懸濁液及び超微粒子を穏やかに製造する方法並びにその使用
DE102005053462A1 (de) * 2005-11-05 2007-05-10 Pharmasol Gmbh Verfahren zur tensidfreien Herstellung von Wirkstoffnanopartikeln mit modifizierten Oberflächeneigenschaften mittels Hochdruckhomogenisation
US8084001B2 (en) * 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
FR2885618B1 (fr) * 2005-05-12 2007-06-29 Colas Sa Composition solide, destinee a accelerer le temps de sechage d'une peinture aqueuse, et procedes d'application correspondants
US20070111002A1 (en) * 2005-07-25 2007-05-17 University Of Washington Polymer hollow particles with controllable holes in their surfaces
US8133249B2 (en) * 2005-07-28 2012-03-13 Ethicon Endo-Surgery, Inc. Devices and methods for stricture dilation
US20100222501A1 (en) * 2005-08-11 2010-09-02 Wm. Marsh Rice University Scalable process for synthesizing uniformly-sized composite nanoparticles
AU2006296165B2 (en) * 2005-09-27 2012-11-08 Sol-Gel Technologies Ltd. Methods for crop protection
WO2007050569A2 (en) * 2005-10-25 2007-05-03 Donald Templeton Haynie Polypeptide multilayer films and methods
CA2628574C (en) * 2005-11-14 2014-05-06 Louisiana Tech University Research Foundation Polypeptide films and methods
US8003408B2 (en) * 2005-12-29 2011-08-23 Intel Corporation Modification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS)
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
EP1991203A2 (en) * 2006-02-13 2008-11-19 Advanced Materials Technology, Inc. Porous microparticles solid cores
ES2345452T3 (es) 2006-03-15 2010-09-23 Clariant Finance (Bvi) Limited Pigmentos encapsulados con polielectrolitos.
US9220301B2 (en) 2006-03-16 2015-12-29 R.J. Reynolds Tobacco Company Smoking article
CN100427200C (zh) * 2006-03-23 2008-10-22 中国科学院化学研究所 一种聚合型中空囊泡与聚合型中空囊泡/纳米金属空心球
DE102006016907A1 (de) * 2006-04-11 2007-10-25 Cognis Ip Management Gmbh Zur Insektenabwehr ausgerüstete Fasern und textile Flächengebilde
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
GB0610562D0 (en) * 2006-05-30 2006-07-05 Givaudan Sa Microcapsules
US7670679B2 (en) * 2006-05-30 2010-03-02 General Electric Company Core-shell ceramic particulate and method of making
CA2654593A1 (en) * 2006-06-08 2007-12-13 Bayer Schering Pharma Aktiengesellschaft Functionalized, solid polymer nanoparticles for diagnostic and therapeutic applications
EP2043773B1 (de) * 2006-07-13 2009-12-16 Basf Se Polyelektrolyt-modifizierte mikrokapseln
JP2009545407A (ja) 2006-08-02 2009-12-24 ボストン サイエンティフィック サイムド,インコーポレイテッド 三次元分解制御を備えたエンドプロテーゼ
AU2007281737B2 (en) 2006-08-04 2013-09-19 Baxter Healthcare S.A. Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes
US7842352B2 (en) * 2006-08-09 2010-11-30 Massachusetts Institute Of Technology Nanoparticle coatings and methods of making
US20080268229A1 (en) * 2006-08-09 2008-10-30 Daeyeon Lee Superhydrophilic coatings
US20100055459A1 (en) * 2006-08-30 2010-03-04 Liquidia Technologies, Inc. Nanoparticles Having Functional Additives for Self and Directed Assembly and Methods of Fabricating Same
GB0617480D0 (en) * 2006-09-06 2006-10-18 Univ Sheffield Novel nanoparticles
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
EP2081616B1 (en) 2006-09-15 2017-11-01 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
JP2010503491A (ja) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 生物学的安定性無機層を有する生浸食性エンドプロスシーシス
EP2068964B1 (en) 2006-09-15 2017-11-01 Boston Scientific Limited Medical devices and methods of making the same
EP2068962B1 (en) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
DE102006049837A1 (de) 2006-10-23 2008-04-24 Apg Medical Ltd. Verwendung von magnetischen CS-Kapseln und/oder Mikrokapseln für die Behandlung von Aneurysmen
CN101168597B (zh) * 2006-10-25 2010-07-14 中国科学院理化技术研究所 金壳包覆的中空聚合物亚微米球及其制备方法和用途
ES2356274T3 (es) 2006-12-28 2011-04-06 Boston Scientific Limited Endoprótesis biodegradables y procedimientos de fabricación de las mismas.
JP4947288B2 (ja) * 2006-12-28 2012-06-06 Jsr株式会社 磁性粒子およびその製造方法、ならびに生化学用担体
US7531471B2 (en) 2007-01-30 2009-05-12 Kimberly-Clark Worldwide, Inc. Substrate containing a deodorizing ink
WO2008093346A2 (en) 2007-02-01 2008-08-07 Sol-Gel Technologies Ltd. Compositions for topical application comprising a peroxide and retinoid
WO2008135828A2 (en) 2007-05-03 2008-11-13 Pfizer Products Inc. Nanoparticles comprising a drug, ethylcellulose, and a bile salt
WO2008135855A2 (en) 2007-05-03 2008-11-13 Pfizer Products Inc. Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and a nonionizable polymer
DE102007024642A1 (de) 2007-05-24 2008-11-27 Eyesense Ag Hydrogel-Implantat für Sensorik von Metaboliten am Auge
WO2008146711A1 (ja) * 2007-05-25 2008-12-04 Ishihara Sangyo Kaisha, Ltd. 複合体及びその製造方法並びにそれを含む組成物
US7563508B2 (en) * 2007-05-30 2009-07-21 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Diffusion beads with core-shell structure
WO2008149192A2 (en) 2007-06-04 2008-12-11 Pfizer Products Inc. Nanoparticles comprising a non-ionizable cellulosic polymer and an amphiphilic non-ionizable block copolymer
US9545384B2 (en) 2007-06-04 2017-01-17 Bend Research, Inc. Nanoparticles comprising drug, a non-ionizable cellulosic polymer and tocopheryl polyethylene glocol succinate
WO2008157372A2 (en) 2007-06-14 2008-12-24 Massachusetts Institute Of Technology Self assembled films for protein and drug delivery applications
US9446953B2 (en) * 2007-07-12 2016-09-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of metallic hollow nanoparticles
EP2164475A2 (en) * 2007-07-16 2010-03-24 NorthEastern University Therapeutic stable nanoparticles
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8968699B2 (en) 2007-11-15 2015-03-03 The Regents Of The University Of California Switchable nano-vehicle delivery systems, and methods for making and using them
KR100932979B1 (ko) * 2007-11-28 2009-12-21 삼성에스디아이 주식회사 중공형 캡슐 구조체 및 이의 제조 방법
WO2009073215A1 (en) 2007-12-06 2009-06-11 Bend Research, Inc. Pharmaceutical compositions comprising nanoparticles and a resuspending material
EP2240162A4 (en) 2007-12-06 2013-10-09 Bend Res Inc NANOTE PARTICLES WITH A NON-IONIZABLE POLYMER AND AN AMIN-FUNCTIONALIZED METHACRYLATE COPOLYMER
US20090169866A1 (en) * 2007-12-31 2009-07-02 Agnes Ostafin Nanocomposite materials with dynamically adjusting refractive index and methods of making the same
US20090219509A1 (en) * 2008-02-29 2009-09-03 Hiroshi Nomura Optical sensor with enhanced reflectance
US8008068B2 (en) * 2008-02-29 2011-08-30 Light Pointe Medical, Inc. Nonhemolytic optical sensor with enhanced reflectance
FR2929863B1 (fr) * 2008-04-10 2013-09-27 Centre Nat Rech Scient Recouvrement d'un substrat par un film de polymere stable en milieu liquide
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US9198875B2 (en) 2008-08-17 2015-12-01 Massachusetts Institute Of Technology Controlled delivery of bioactive agents from decomposable films
US8367427B2 (en) 2008-08-20 2013-02-05 Baxter International Inc. Methods of processing compositions containing microparticles
US8323685B2 (en) 2008-08-20 2012-12-04 Baxter International Inc. Methods of processing compositions containing microparticles
US8323615B2 (en) 2008-08-20 2012-12-04 Baxter International Inc. Methods of processing multi-phasic dispersions
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
CN101721372B (zh) * 2008-10-10 2012-02-01 陈东 金壳包覆的中空介孔二氧化硅球及其制备方法和在肿瘤治疗方面的用途
DE102008043682B4 (de) * 2008-11-12 2014-01-23 Chemetall Gmbh Verfahren zum Beschichten von metallischen Oberflächen mit Partikeln, nach diesem Verfahren hergestellte Beschichtung und Verwendungder nach diesem Verfahren beschichteten Substrate
US9457034B2 (en) * 2008-11-17 2016-10-04 The Hong Kong University Of Science And Technology Magnetic microsphere and method of forming a microsphere
DE102009004368A1 (de) 2009-01-08 2010-07-15 Heraeus Kulzer Gmbh Dentalmaterialien enthaltend antimikrobielle Wirkstoffe zur Verhinderung von Plaque-Anlagerungen
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
US20120015211A1 (en) * 2009-03-16 2012-01-19 Zhiyong Gu Methods for the fabrication of nanostructures
US20110085968A1 (en) * 2009-10-13 2011-04-14 The Regents Of The University Of California Articles comprising nano-materials for geometry-guided stem cell differentiation and enhanced bone growth
CN101789297B (zh) * 2009-11-06 2012-01-25 中国科学院苏州纳米技术与纳米仿生研究所 磁性氧化硅球及其合成方法
DE202009016978U1 (de) 2009-12-16 2010-03-18 Cognis Ip Management Gmbh Sprühcontainer
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
EP2625718B1 (en) * 2010-10-06 2020-12-16 3M Innovative Properties Company Method of coating optical components of solar energy systems
EP2625227A4 (en) 2010-10-06 2017-12-27 3M Innovative Properties Company Coating composition and method of making and using the same
DE102011000264B4 (de) 2011-01-21 2019-01-17 Surflay Nanotec Gmbh Mikrogasbläschen mit PVA-Wand, Herstellung und Verwendung von solchen Mikrogasbläschen
RU2567320C2 (ru) * 2011-01-28 2015-11-10 Учреждение Российской академии наук Институт теоретической и Экспериментальной биофизики РАН (ИТЭБ РАН) Способ получения подложек с мнонослойным покрытием на основе полиэлектролитных микрокапсул, содержащих биологически активные материалы
CN103608285B (zh) 2011-04-14 2016-07-06 加利福尼亚大学董事会 多功能纳米颗粒设计和应用
JP4932054B1 (ja) * 2011-04-28 2012-05-16 学校法人慈恵大学 放射性物質類除染システム、及び放射性物質類の除染方法、及び除染用磁性複合粒子
EP2742134A2 (en) 2011-08-11 2014-06-18 Qiagen GmbH Cell- or virus simulating means comprising encapsulated marker molecules
CN102430372B (zh) * 2011-08-29 2013-08-28 浙江理工大学 一种草莓状有机-无机纳米复合微球的制备方法
DE102011082891A1 (de) 2011-09-16 2013-03-21 Wacker Chemie Ag Konservierungsmittel enthaltend Glykolipide
EP2620137B1 (de) 2012-01-30 2017-11-15 Symrise AG Zubereitungen
EP2641477B2 (de) 2012-03-19 2022-06-08 Symrise AG Stoffgemische
EP2841056A4 (en) 2012-04-23 2015-09-16 Massachusetts Inst Technology COATED PARTICLES LAYER BY LAYER STABLE
HUE045654T2 (hu) 2012-05-04 2020-01-28 Symrise Ag Anyagkeverékek
EP2852641B1 (en) 2012-05-22 2018-08-08 DSM IP Assets B.V. Composition and process for making a porous inorganic oxide coating
EP2682005A1 (en) 2012-07-05 2014-01-08 Symrise AG A dietary supplement composition
EP2725026B1 (de) 2012-10-29 2017-09-06 Symrise AG Heterozyklische neoflavonoide mit geschmacksmaskierenden eigenschaften
WO2014074323A1 (en) * 2012-11-06 2014-05-15 Empire Technology Development, Llc Paintable photowetting coatings
US9687465B2 (en) 2012-11-27 2017-06-27 Sol-Gel Technologies Ltd. Compositions for the treatment of rosacea
DE202012013357U1 (de) 2012-12-12 2016-07-29 Symrise Ag Zubereitungen
US10182584B2 (en) 2012-12-12 2019-01-22 Symrise Ag Cooling preparations
WO2014134029A1 (en) 2013-02-26 2014-09-04 Massachusetts Institute Of Technology Nucleic acid particles, methods and use thereof
WO2014131532A1 (de) 2013-02-27 2014-09-04 Symrise Ag Stoffgemische enthaltend vanillin und vanillylvanillat
WO2014150074A1 (en) 2013-03-15 2014-09-25 Massachusetts Institute Of Technology Compositions and methods for nucleic acid delivery
CN103170648B (zh) * 2013-04-09 2014-11-12 厦门大学 一种中空金属微球的制备方法
EP2792410A1 (en) * 2013-04-15 2014-10-22 Goldemar Solutions, S.L. Method of manufacturing a catalyst comprising gold nanoparticles, the catalyst and its use
US10478802B2 (en) * 2013-05-09 2019-11-19 Massachusetts Institute Of Technology Anti-fingerprint photocatalytic nanostructure for transparent surfaces
WO2014205000A1 (en) * 2013-06-17 2014-12-24 University Of North Carolina At Chapel Hill Polymer coated particles and methods thereof
CN104519875A (zh) * 2013-08-14 2015-04-15 佛罗里达大学研究基金会公司 纳米酶、制备纳米酶的方法、以及使用纳米酶的方法
EP2883459B1 (de) 2013-12-16 2018-04-04 Symrise AG Zubereitungen zur oralen Aufnahme
ES2759797T3 (es) 2014-04-01 2020-05-12 Symrise Ag Mezclas de sustancias
EP2990036B1 (de) 2014-07-30 2019-04-10 Symrise AG Hydroxyflavone als Appetitanreger
EP2993221B1 (de) 2014-09-08 2019-01-09 Symrise AG Verkapselte Duftstoffmischungen
US9819015B2 (en) * 2014-09-18 2017-11-14 Toyota Motor Engineering & Manufacturing North America, Inc. Encapsulated sulfur sub-micron particles as electrode active material
JP2018502950A (ja) 2014-12-23 2018-02-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア メソゲンリガンドで機能化されたナノ粒子の三次元構造、及びこれを作製して使用する方法
EP3061500B1 (de) 2015-02-25 2019-07-10 Symrise AG Stabile Dispersion
EP3072582A1 (en) 2015-03-27 2016-09-28 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for encapsulating a nanostructure, coated nanostructure and use of a coated nanostructure
EP3078273A1 (de) 2015-04-08 2016-10-12 DMK Deutsches Milchkontor GmbH Sauermilcherzeugnis als basis für cocktail-desserts
EP3093002B1 (de) 2015-05-15 2018-04-25 Symrise AG Flüssige kühlstoffzubereitungen
DE102015209594A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Widerstandsbelag für einen Glimmschutz einer elektrischen Maschine
US20170056834A1 (en) * 2015-08-24 2017-03-02 Ohio State Innovation Foundation Multilayer coatings and methods of making and using thereof
WO2017071784A1 (de) 2015-10-29 2017-05-04 Symrise Ag Nahrungsmittel (iii)
CN105396522B (zh) * 2015-12-09 2018-01-12 天津大学 一种囊壁厚度为纳米级的聚烯丙基胺‑氧化硅杂化微囊的制备方法
EP3181150A1 (de) 2015-12-19 2017-06-21 Analyticon Discovery GmbH Pharmazeutische zubereitungen
CN109152711B (zh) 2016-02-29 2021-10-22 西姆莱斯股份公司 生产具备改善的表面活性剂稳定性的香料胶囊的方法
DE202016008770U1 (de) 2016-03-18 2019-08-06 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft und Energie, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialforschung und –prüfung (BAM) Hybride Kern-Schale-Mikropartikel umfassend einen Polymerkern und eine Siliziumdioxidschale mit kontrollierter Struktur und Oberfläche
WO2017184085A1 (en) * 2016-04-21 2017-10-26 Agency For Science, Technology And Research Core-shell particles
US20200122378A1 (en) * 2016-12-27 2020-04-23 Case Western Reserve University Multilayered anisotropic microparticles
EP3641564B1 (de) 2017-06-22 2024-05-22 Symrise AG Geschmacksmodulierende aromastoffe
EP3668931A4 (en) 2017-08-17 2021-04-07 Khalifa University of Science and Technology MESOPOREOUS CARBON-BASED NANOCONTENANT COATINGS FOR PROTECTION AGAINST CORROSION OF METAL STRUCTURES
US11285097B2 (en) 2017-09-26 2022-03-29 Symrise Ag Fruit flavorings producing a yellow taste sensation
KR101960616B1 (ko) * 2017-09-28 2019-03-21 (주)바이오스퀘어 다중 양자점 기반 고감도 생체분자 검출법
DE102017009236A1 (de) 2017-10-04 2019-04-04 Dr. Albin Maisch High Performance LC GmbH Oberflächenporöse Trägermaterialien sowie das Verfahren zu deren Herstellung
US11419947B2 (en) 2017-10-30 2022-08-23 Massachusetts Institute Of Technology Layer-by-layer nanoparticles for cytokine therapy in cancer treatment
CN107828715A (zh) * 2017-11-15 2018-03-23 佛山科学技术学院 一种用于沉积纳米二氧化硅的植物根边缘细胞处理方法
CN108003966A (zh) * 2017-11-28 2018-05-08 青岛海澄知识产权事务有限公司 一种二硫化钼与二氧化钛修饰四氧化三铁纳米复合材料
RU2683115C1 (ru) * 2017-12-07 2019-03-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Способ формирования многослойного покрытия на частицах и устройство для его реализации (варианты)
CN108715842B (zh) * 2018-06-04 2021-06-01 浙江工业大学 一种高活性β-葡萄糖苷酶的制备方法
EP3689324A1 (de) 2019-02-04 2020-08-05 Symrise AG Neue kühlstoffe und zubereitungen, die diese enthalten
US11747341B2 (en) 2019-03-04 2023-09-05 Waters Technologies Corporation Methods of use for low-bind polypropylene plates and vials
WO2022105986A1 (de) 2020-11-17 2022-05-27 Symrise Ag Neue kühlstoffe und zubereitungen, die diese enthalten
JP2024508373A (ja) 2021-01-28 2024-02-27 ガルフィータ アーゲー 固体医薬組成物および固体医薬組成物を生成する方法
WO2023143741A1 (de) 2022-01-28 2023-08-03 Symrise Ag Neue kühlstoffe und zubereitungen, die diese enthalten
EP4311543A1 (en) 2022-07-27 2024-01-31 Galvita AG Methods for loading template inverted carriers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190229A (ja) * 1984-02-13 1985-09-27 デイモン・バイオテツク・インコーポレーテツド カプセル化方法
JPS62213839A (ja) * 1986-03-14 1987-09-19 Hoechst Gosei Kk 均一に被覆された複合体粒子の製造方法
JPS635019A (ja) * 1986-06-24 1988-01-11 Res Dev Corp Of Japan 生体成分を担持したマイクロカプセル化磁性体超微粒子
JPH05138009A (ja) * 1991-11-22 1993-06-01 Japan Synthetic Rubber Co Ltd 球状無機質中空粒子の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL270701A (ja) 1960-10-28
US3855172A (en) 1972-04-07 1974-12-17 Du Pont Uniform oxide microspheres and a process for their manufacture
DD160393A3 (de) 1980-11-14 1983-07-27 Horst Dautzenberg Mikrokapseln und verfahren zu ihrer herstellung
DE3929052A1 (de) 1989-09-01 1991-03-07 Basf Ag Verfahren zur herstellung von kugelfoermigen, harten mono- oder oligodispersen teilchen aus melaminharz
US5462915A (en) 1989-09-28 1995-10-31 Sandoz Ltd. Process for producing microcapsules
JP2539690B2 (ja) 1990-02-19 1996-10-02 株式会社ホーネンコーポレーション 均一な粒子径を有するメラミン樹脂架橋粒子の製造法
DE4026978A1 (de) 1990-08-25 1992-02-27 Bayer Ag Auf traegern angebrachte ein- oder mehrlagige schichtelemente und ihre herstellung
US5487390A (en) 1990-10-05 1996-01-30 Massachusetts Institute Of Technology Gas-filled polymeric microbubbles for ultrasound imaging
US5344487A (en) * 1992-02-12 1994-09-06 Whalen Shaw Michael Layered composite pigments and method of making same
DK0667148T3 (da) 1992-11-06 2002-07-22 Hisamitsu Pharmaceutical Co Peroralt farmaceutisk præparat, der udløses i den nedre del af mavetarmkanalen
WO1997028968A1 (fr) 1996-02-08 1997-08-14 Sony Chemicals Corp. Encre a transfert thermique et ruban encreur a transfert thermique
DE69802430T2 (de) * 1997-01-09 2002-07-18 Ciba Sc Holding Ag Kompositpigment
DK1064087T3 (da) 1998-03-19 2006-05-29 Max Planck Gesellschaft Fremstilling af nano- og mikrokapsler ved lagvis polyelektrolyt-selvassemblering
DE59914547D1 (de) * 1998-07-15 2007-12-20 Max Planck Gesellschaft Polyelektrolythüllen auf biologischen templaten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190229A (ja) * 1984-02-13 1985-09-27 デイモン・バイオテツク・インコーポレーテツド カプセル化方法
JPS62213839A (ja) * 1986-03-14 1987-09-19 Hoechst Gosei Kk 均一に被覆された複合体粒子の製造方法
JPS635019A (ja) * 1986-06-24 1988-01-11 Res Dev Corp Of Japan 生体成分を担持したマイクロカプセル化磁性体超微粒子
JPH05138009A (ja) * 1991-11-22 1993-06-01 Japan Synthetic Rubber Co Ltd 球状無機質中空粒子の製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520151A (ja) * 1998-07-15 2002-07-09 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 生物学的テンプレート上の高分子電解質
JP4650976B2 (ja) * 1998-07-15 2011-03-16 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 生物学的テンプレート上の高分子電解質
JP2003519565A (ja) * 2000-01-13 2003-06-24 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 重合体多層による固体粒子の鋳型化
JP2007529303A (ja) * 2004-03-19 2007-10-25 カプサルーション ナノサイエンス アクチェン ゲゼルシャフト 多孔質テンプレートを用いたcs粒子およびマイクロカプセルの製造方法、cs粒子およびマイクロカプセル、およびそれらの使用
JP2009503056A (ja) * 2005-08-02 2009-01-29 ソル − ゲル テクノロジーズ リミテッド 水不溶性成分の金属酸化物被覆
JP2009507592A (ja) * 2005-09-16 2009-02-26 カプサルーション ナノサイエンス アクチェン ゲゼルシャフト 難水溶性(疎水性)液体および固体活性成分のカプセル化および放出制御のための方法
JP2009529583A (ja) * 2006-03-10 2009-08-20 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ 腐食防止剤のナノレザーバーを含む腐食防止顔料
JP2007325850A (ja) * 2006-06-09 2007-12-20 Kyushu Institute Of Technology 温熱治療用マイクロカプセル発熱体及びその製造方法
JP2010504187A (ja) * 2006-09-20 2010-02-12 バイオカルテイス・エス・エイ マイクロキャリアのためのコーティング
WO2008078970A1 (en) * 2006-12-27 2008-07-03 Daegu Gyeongbuk Institute Of Science & Technology In situ preparation of substrates with di spersed gold nanoparticles
JP2010516336A (ja) * 2007-01-22 2010-05-20 アーティフィシャル セル テクノロジーズ インコーポレイテッド ポリペプチドフィルムおよび方法
JP2010517997A (ja) * 2007-02-01 2010-05-27 ソル − ゲル テクノロジーズ リミテッド 金属酸化物コーティングを含む粒子の製造方法及び金属酸化物コーティングを有する粒子
JP2008255318A (ja) * 2007-02-19 2008-10-23 Sanyo Chem Ind Ltd 多層構造樹脂粒子の製造方法
US8435475B2 (en) 2007-06-26 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods
JP2011507950A (ja) * 2007-12-27 2011-03-10 株式會社アモーレパシフィック カロチノイドを安定化した二重層構造の高分子カプセル、その製造方法及びこれを含有する化粧料組成物
JP2009196913A (ja) * 2008-02-20 2009-09-03 Ihi Corp 磁性を有する薬剤、薬剤の誘導システム、並びに磁気検出装置
JP2010131593A (ja) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd 中空状無機粒子の前駆体、中空状無機粒子及びこの製造方法、並びに中空状無機粒子を用いた光学部材及び光学部材体
JP2010131592A (ja) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd 中空状無機粒子の前駆体、中空状無機粒子及びこの製造方法、並びに中空状無機粒子を用いた光学部材及び光学部材体
WO2010074063A1 (ja) 2008-12-25 2010-07-01 電気化学工業株式会社 複合粒子及びその製造方法、中空粒子、その製造方法及び用途
WO2011096408A1 (ja) * 2010-02-02 2011-08-11 国立大学法人 東京大学 複合体微粒子およびその製造方法、ならびに該複合体微粒子を用いた薬学組成物
JPWO2011096408A1 (ja) * 2010-02-02 2013-06-10 国立大学法人 東京大学 複合体微粒子およびその製造方法、ならびに該複合体微粒子を用いた薬学組成物
WO2011096230A1 (ja) * 2010-02-08 2011-08-11 学校法人慈恵大学 磁性粒子、及びその製造方法、並びに磁性粒子含有製剤
JP5526156B2 (ja) * 2010-02-08 2014-06-18 学校法人慈恵大学 磁性粒子、及びその製造方法、並びに磁性粒子含有製剤

Also Published As

Publication number Publication date
EP1064088A1 (en) 2001-01-03
DE69904307D1 (de) 2003-01-16
EP1064088B1 (en) 2002-12-04
US6479146B1 (en) 2002-11-12
ATE228883T1 (de) 2002-12-15
DE69904307T2 (de) 2003-09-04
WO1999047253A1 (en) 1999-09-23

Similar Documents

Publication Publication Date Title
JP2003522621A (ja) 分解性コロイド原型上のナノ複合多層の静電的自己集成体による多層被覆粒子及び中空シェルの製造
EP0972563A1 (en) Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates
US6833192B1 (en) Encapsulation of crystals via multilayer coatings
Caruso et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach
Sukhorukov et al. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design
Yin et al. Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces
Schuetz et al. Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles
Yang et al. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications
Caruso et al. Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids
Gittins et al. Tailoring the polyelectrolyte coating of metal nanoparticles
US7829119B2 (en) Method to fabricate microcapsules from polymers and charged nanoparticles
Angelatos et al. Bioinspired colloidal systems via layer-by-layer assembly
Voigt et al. Novel polyelectrolyte multilayer micro-and nanocapsules as magnetic carriers
US8007829B2 (en) Method to fabricate inhomogeneous particles
Radtchenko et al. Inorganic particle synthesis in confined micron-sized polyelectrolyte capsules
JP2002520151A (ja) 生物学的テンプレート上の高分子電解質
GB2427157A (en) Coated microspheres
Möhwald et al. Smart capsules
Wang et al. The preparation of CdTe nanoparticles and CdTe nanoparticle‐labelled microspheres for biological applications
Caruso et al. Coated colloids: preparation, characterization, assembly and utilization
Shchukin et al. Spatially confined tungstate ion polymerization in microcapsules
Li et al. A study of properties of “micelle-enhanced” polyelectrolyte capsules: structure, encapsulation and in vitro release
Caruso Nanoscale particle modification via sequential electrostatic assembly
Zhu et al. From layer-by-layer assembled core-shell particles to medical/biochemical diagnostics and drug delivery
Shchukin et al. Synthesis of binary polyelectrolyte/inorganic composite capsules of micron size

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100318

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110407

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110412

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110811