JP2000185914A - 炭酸バリウムの製造方法及び生成炭酸バリウム並びに該炭酸バリウムによるチタン酸バリウム - Google Patents

炭酸バリウムの製造方法及び生成炭酸バリウム並びに該炭酸バリウムによるチタン酸バリウム

Info

Publication number
JP2000185914A
JP2000185914A JP10365357A JP36535798A JP2000185914A JP 2000185914 A JP2000185914 A JP 2000185914A JP 10365357 A JP10365357 A JP 10365357A JP 36535798 A JP36535798 A JP 36535798A JP 2000185914 A JP2000185914 A JP 2000185914A
Authority
JP
Japan
Prior art keywords
barium
carbonate
barium carbonate
surface area
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10365357A
Other languages
English (en)
Other versions
JP4378522B2 (ja
Inventor
Masahiko Oguma
政彦 小熊
Hirobumi Nakamura
博文 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BARAITO KOGYO KK
Dowa Holdings Co Ltd
Nippon Chemical Industrial Co Ltd
Original Assignee
BARAITO KOGYO KK
Nippon Chemical Industrial Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BARAITO KOGYO KK, Nippon Chemical Industrial Co Ltd, Dowa Mining Co Ltd filed Critical BARAITO KOGYO KK
Priority to JP36535798A priority Critical patent/JP4378522B2/ja
Publication of JP2000185914A publication Critical patent/JP2000185914A/ja
Application granted granted Critical
Publication of JP4378522B2 publication Critical patent/JP4378522B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

(57)【要約】 【課題】 粒度が小さく、積層コンデンサ用チタン酸バ
リウムの原料としても好適な微細な炭酸バリウムを比較
的安価な手段で製造する方法を提供する。 【解決手段】 硫化バリウム等バリウム塩水溶液と炭酸
アンモニウム等炭酸塩水溶液または二酸化炭素をアスコ
ルビン酸および/またはピロリン酸の存在下で反応させ
る炭酸バリウムの製造方法とする。また、好ましくは、
バリウム塩水溶液が当量以上の過剰バリウム塩を含む方
法とする。容易に5〜40 m2/gの比表面積をもつ微
細な炭酸バリウムを製造できる。さらに、この炭酸バリ
ウムと微細な二酸化チタンとの混合焼成により、電子部
品用として好適なチタン酸バリウムを製造できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はチタン酸バリウム等
電子材料の原料としても好適な炭酸バリウムの製造方法
に関し、また、該炭酸バリウムによって得られるチタン
酸バリウムに関する。
【0002】
【従来の技術】炭酸バリウムは、光学ガラス、ブラウン
管ガラス、ガラスファイバー等ガラス用途の他、バリウ
ムフェライトやセラミックコンデンサー用チタン酸バリ
ウムの製造材料として用いられ、また、電解塩水等にお
ける硫酸イオンの除去剤、タイル・陶磁器・ホウロウの
釉薬等窯業用等にも利用されている。特に、この炭酸バ
リウムと二酸化チタンとの混合焼成によってつくられる
前記チタン酸バリウムは、誘電率が高く容易に焼結でき
るので、小型化あるいは薄型化と共に高性能化がますま
す要求されてきている電子機器用の積層コンデンサー等
電子部品材料として注目されている。
【0003】従来、この炭酸バリウム(BaCO3 )の
製造方法としては、 (1) 重晶石(BaSO4 )を無煙炭等の炭素と共に還元
焙焼して硫化バリウムを得、この硫化バリウムの水溶液
に、炭酸ソーダ等可溶性炭酸塩の水溶液を反応させるか
または二酸化炭素ガスを作用させて炭酸バリウム殿物を
得る方法が知られている。これらの反応は次式のように
表される。 BaSO4 +2C→BaS+2CO2 ↑ BaS+Na2 CO3 →BaCO3 +Na2 S BaS+CO2 +H2 O→BaCO3 +H2 S↑ この方法は硫化バリウムを中間体として工業的に炭酸バ
リウムを得る方法として知られている。
【0004】(2) 炭酸バリウムの他の製法として、前記
の硫化バリウムに塩酸を作用させて得られる塩化バリウ
ムを炭酸アンモニウムまたは炭酸水素アンモニウムと反
応させる方法が知られている。これらの反応は次式のよ
うに表される。 BaCl2 +(NH42 CO3 →BaCO3 +2NH
4 Cl BaCl2 +NH4 HCO3 +NH3 →BaCO3 +2
NH4 Cl
【0005】(3) また、炭酸バリウムの他の製造方法と
して、塩化バリウムとカセイソーダとの反応によって得
られる水酸化バリウムに二酸化炭素ガスを反応させる方
法が知られている。この反応は次式のように表される。 Ba(OH)2 +CO2 →BaCO3 +H2
【0006】
【発明が解決しようとする課題】しかしながら、前記し
たような電子機器の小型薄型化志向に対処して、コンデ
ンサー等電子部品用としてのチタン酸バリウムおよびそ
の素材についても微粒化が要望されている。すでに二酸
化チタンについてはBET吸着法により測定した比表面
積が40 m2/g程度までの微粒化が可能となり、その
要望が満たされているが、炭酸バリウムについてはBE
T吸着法により測定した比表面積が2 m2/g程度のも
のが使用されているに過ぎず、その微粒度については未
だ満足するべき状況にない。即ち、炭酸バリウムの比表
面積が小で粒子径が大きいと、これを原料とするチタン
酸バリウムの微細化が達し得られず、比表面積5 m2
g以上の微粒炭酸バリウムが求められていた。また、比
表面積が40 m2/gを越えて粒子径が小さくなり過ぎ
ると、チタン酸バリウム製造の際、固まり易く、均一混
合が困難になり、作業性に影響する。
【0007】以上のような状況に鑑み、本発明の目的
は、比較的安価な手段で、粒度が小さく且つ微粒チタン
酸バリウムの製造に適した炭酸バリウムを得ることにあ
る。
【0008】
【課題を解決するための手段】上記の目的を達成するた
め、本発明は、第1に、バリウム塩水溶液と炭酸塩水溶
液をアスコルビン酸の存在下で反応させることを特徴と
する炭酸バリウムの製造方法;第2に、バリウム塩水溶
液と二酸化炭素をアスコルビン酸の存在下で反応させる
ことを特徴とする炭酸バリウムの製造方法;第3に、バ
リウム塩水溶液と炭酸塩水溶液をピロリン酸の存在下で
反応させることを特徴とする炭酸バリウムの製造方法;
第4に、バリウム塩水溶液と二酸化炭素をピロリン酸の
存在下で反応させることを特徴とする炭酸バリウムの製
造方法;第5に、バリウム塩水溶液と炭酸塩水溶液をア
スコルビン酸とピロリン酸の存在下で反応させることを
特徴とする炭酸バリウムの製造方法;第6に、バリウム
塩水溶液と二酸化炭素をアスコルビン酸とピロリン酸の
存在下で反応させることを特徴とする炭酸バリウムの製
造方法;第7に、前記バリウム塩水溶液が当量以上に過
剰量のバリウム塩を含むことを特徴とする前記第1〜第
6のいずれかに記載の炭酸バリウムの製造方法;第7
に、前記第1〜第7のいずれかに記載の製造方法で得ら
れた比表面積が5〜40 m2/gの粒子からなることを
特徴とする炭酸バリウム;二酸化チタンと前記第8記載
の炭酸バリウムとから製造されることを特徴とするチタ
ン酸バリウムを提供するものである。
【0009】
【発明の実施の態様】アスコルビン酸および/またはピ
ロリン酸の存在下で、バリウム塩水溶液と炭酸塩水溶液
または二酸化炭素ガスと反応させることにより、微粒炭
酸バリウムが沈殿する。即ち、可溶性バリウム塩と可溶
性炭酸塩および/または二酸化炭素の反応により炭酸バ
リウムが生成すると同時に、添加されたアスコルビン酸
またはピロリン酸はバリウム塩を生成して生成炭酸バリ
ウム粒子の表面に沈着し、炭酸バリウム塩粒子の成長を
抑制するものと考えられる。アスコルビン酸とピロリン
酸の選択については、作業性およびコストを考えると、
ピロリン酸の方が優れているが、後工程がリンの存在を
嫌う場合には、アスコルビン酸の方が好ましい。両者の
選択および混合使用については、作業性、コスト及び後
工程の要請によって適宜決定を行えばよい。
【0010】アスコルビン酸および/またはピロリン酸
は、その添加時期は特に限定されないが、予めバリウム
塩水溶液に添加しておくか、あるいは炭酸塩水溶液およ
び/または二酸化炭素の添加・吹き込み時に添加する等
により反応系に存在させることができる。得られた炭酸
バリウム殿物は、ろ過、水洗、乾燥、粉砕の工程を経て
製品とする。
【0011】これにより、硫化バリウム等可溶性バリウ
ム塩を出発原料として、比表面積が大きく、従ってチタ
ン酸バリウムの原料としても好適な比表面積が約5〜4
0m 2/gの平均粒子径の小さい炭酸バリウムを得るこ
とができる。
【0012】なお、微粒子の粒子径を直接求めるのは難
しく、一般に粒子の比表面積から平均粒子径が求められ
ている。即ち、通常、粉末試料に気体または液体等の分
子圧を作用させ、その圧力と粉体表面の分子吸着量との
関係式から求めるBET吸着法による比表面積が微細度
の指標として採用されている。このように粒子の平均粒
子径は比表面積の関数であり、比表面積が大になるに従
って、平均粒子径は小となる。
【0013】本発明の可溶性バリウム塩は、硫化バリウ
ム、塩化バリウム、水酸化バリウム、硝酸バリウム等が
挙げられる。このような可溶性バリウム塩は工業的に入
手できるものであれば特に制限されるものではないが、
例えば、重晶石から還元焙焼で得られる硫化バリウム
は、比較的安価であり、現在、殆どすべてのバリウム化
合物の場合と同様、炭酸バリウムの製造においてもこの
可溶性硫化バリウムを中間体として有利に利用できる。
【0014】また、炭酸塩水溶液としては、炭酸アンモ
ニウム、炭酸水素アンモニウムが挙げられる。炭酸ソー
ダは、硫化バリウムを原料とする場合、硫化ソーダが副
生し不純物として取り込まれるので高品位の炭酸バリウ
ムを得るには不利である。
【0015】反応は、前記のように予め硫化バリウム水
溶液等のバリウム塩水溶液を調製しておき、攪拌下で炭
酸塩水溶液または二酸化炭素を吹き込むかまたは添加す
ることにより行われるが、微粒炭酸バリウムを得るに
は、可溶性バリウム塩は可溶性炭酸塩または二酸化炭素
に対して理論当量以上に過剰な状態とすることが望まし
い。過剰量の可溶性バリウム塩の添加により、アスコル
ビン酸やピロリン酸のバリウム塩の生成が迅速に行わ
れ、同時に析出する炭酸バリウムへの沈着が早期に行わ
れるため、炭酸バリウムの微細化が促進されるものと考
えられる。
【0016】アスコルビン酸またはピロリン酸は、可溶
性バリウム塩と可溶性炭酸塩および/または二酸化炭素
との反応時に反応系に存在していればよく、添加方法と
しては、通常、アスコルビン酸においては粉末を、ピロ
リン酸においては300〜500g/l程度の水溶液を
調製しておき、この粉末あるいは水溶液を必要時に添加
する。また、アスコルビン酸またはピロリン酸の添加量
は、生成する炭酸バリウムに対して0.1〜10wt%、
好ましくは、1〜5wt%程度である。アスコルビン酸と
ピロリン酸は上記の添加量の範囲内で混用することもで
きる。
【0017】反応条件は、原料の可溶性バリウム塩や可
溶性炭酸塩また二酸化炭素によって異なり、特に限定さ
れることはないが、反応温度は低温であればある程、得
られる炭酸バリウムの粒子径は小さくなることが確認さ
れており、可溶性バリウム塩と可溶性炭酸塩および/ま
たは二酸化炭素は30℃以下で反応させることが望まし
い。上記方法で得られる炭酸バリウムのBET吸着法に
より測定した比表面積は約5〜40 m2/gで、この比
表面積から算出された平均粒子径は約0.006〜0.
135μmであり、粒度が微細な炭酸バリウムが得られ
る。また、得られた微粒炭酸バリウムは表面活性度が維
持され、チタン酸バリウムの原料として使用する場合、
極めて反応性の高いものとなる。本発明により得られた
比表面積5〜40 m2/gの炭酸バリウムと比表面積4
0 m2/g程度の二酸化チタンを混合し、仮焼、粉砕、
本焼成することで、比表面積5 m2/gを越える微粒のチ
タン酸バリウムを得ることができる。
【0018】
【実施例】〔実施例1〕5個の反応容器内の硫化バリウ
ム115g/lを含有する水溶液500mlにアスコル
ビン酸を各々粉末で0.1g、0.25g、0.5g、
2.5gを添加して溶解させ、試料番号1、2、3、4
の反応液とした。なお、前記アスコルビン酸の添加濃度
は、それぞれ、0.2g/l、0.5g/l、1.0g
/l、5.0g/lであり、化学反応式から予想される
炭酸バリウム量に対する添加率はそれぞれ0.15wt
%、0.38wt%、0.75wt%および3.75wt%に
相当する。
【0019】次いで、各反応液中に炭酸ガスを0.7 l
/分の速度で吹き込んで反応させた。この時の反応温度
は35〜40℃で、pH7.0の中和した時点で反応終
了とした。反応終了後、ろ過水洗し、乾燥を行い、ユア
サアイオニクス社製の比表面積測定器モノソープを用い
てBET吸着法による比表面積の測定を行った。その結
果を表1に示した。また、比較例として、アスコルビン
酸を添加しない反応液を試料番号5として同様処理を行
い、得られた炭酸バリウムについて比表面積を測定した
結果を表1に示した。
【0020】
【表1】
【0021】以上のように、アスコルビン酸を0.2〜
5.0g/lの濃度(得られる炭酸バリウム量に対して
は0.15〜3.75wt%)で添加したものは、比表面
積が5.5 m2/g以上、特に、添加濃度が5.0g/
lを添加したものは、比表面積が17.0 m2/gの微
細な炭酸バリウムを得ることができた。アスコルビン酸
を添加しなかったものは、同じ処理条件でも、比表面積
が3.9 m2/gであり、アスコルビン酸の添加効果が
確かめられた。
【0022】〔実施例2〕塩化バリウムの二水塩166
g/l、水溶液500mlとアスコルビン酸を各々粉末
で、2.5g、5.0gをそれぞれ別個の反応容器に仕
込み、塩化バリウムとアスコルビン酸を溶解させ、試料
番号6、7の反応液とした。なお、前記アスコルビン酸
の添加濃度は、それぞれ、5.0g/l、10.0g/
lであり、反応式から予想される生成炭酸バリウム量に
対する添加率はそれぞれ3.75、7.50wt%に相当
する。
【0023】炭酸ガスとの反応で塩酸が生成されるた
め、この酸を中和する目的で25wt%アンモニア水を当
量分添加した。次いで、当該反応液中に炭酸ガスを0.
5 l/分の速度で吹き込み、反応を行わせた。この時の
反応温度は20〜28℃で、pH7.0の中和した時点
で反応終了とした。反応終了後、ろ過水洗し、乾燥を行
い、ユアサアイオニクス社製の比表面積測定器モノソー
プを用いてBET吸着法による比表面積を測定した。結
果を表2に示した。また、比較例として、アスコルビン
酸を添加しない反応液を試料番号8として同様処理を行
ない、得られた炭酸バリウムについて、比表面積を測定
した結果を表2に示した。
【0024】
【表2】
【0025】以上のように、塩化バリウム水溶液に、ア
スコルビン酸を5.0、10.0g/lの濃度(得られ
る炭酸バリウムの量に対して3.75,7.50wt%)
で添加することにより、比表面積が7.0、9.7 m2
/gの微細な炭酸バリウムを得ることができた。なお、
アスコルビン酸を添加しなかったものは、比表面積が
1.8 m2/gで、アスコルビン酸の添加効果が確認さ
れた。
【0026】〔実施例3〕塩化バリウムの二水塩166
g/l水溶液500mlと、ピロリン酸400g/l水
溶液12.5mlを反応容器に仕込み、塩化バリウムと
ピロリン酸を溶解させ、試料番号9の反応液とした。な
お、前記ピロリン酸の添加濃度は、10.0g/lであ
り、化学反応式から予想される炭酸バリウム生成量に対
する添加率は、7.50wt%に相当する。なお、炭酸ガ
スとの反応で塩酸が生成されるため、この酸を中和する
目的で25%アンモニア水を当量分添加した。
【0027】次いで、当該反応液中に炭酸ガスを0.5
l/分の速度で吹き込み、反応を行わせた。この時の反
応温度は20〜28℃で、pH8.5の中和時点で反応
終了とした。反応終了後、ろ過水洗し、乾燥を行い、ユ
アサアイオニクス社製の比表面積測定器モノソープを用
いてBET吸着法による比表面積を測定した。結果を表
3に示した。また、比較例として、ピロリン酸を添加し
ない反応液を試料番号10として、同様処理を行い、得
られた炭酸バリウムについて、比表面積を測定した結果
を表3に示した。
【0028】
【表3】
【0029】以上のように、塩化バリウム水溶液にピロ
リン酸を10.0g/lの濃度(得られる炭酸バリウム
の量に対して7.50wt%)で添加することにより、比
表面積が9.0 m2/gの炭酸バリウムが得られた。ピ
ロリン酸を添加しなかったものは、同じ処理条件で、得
られた炭酸バリウムの比表面積が1.8 m2/gで、ピ
ロリン酸の添加効果が確かめられた。
【0030】[実施例4]硝酸バリウム100g/l水
溶液500mlとアスコルビン酸を各々0.5g、2.
5gをそれぞれ別個の反応容器に仕込み、硝酸バリウム
とアスコルビン酸を溶解させ、試料番号11、12の反
応液とした。なお、前記アスコルビン酸の添加濃度は、
それぞれ、1.0g/l、5.0g/lであり、化学反
応式から予想される生成炭酸バリウム量に対する添加率
はそれぞれ0.75wt%と3.75wt%に相当する。炭
酸ガスとの反応で硝酸が生成するため、この酸を中和す
る目的で25%アンモニア水を当量分添加した。次い
で、該反応液中に炭酸ガスを0.5 l/分の速度で吹込
み、反応を行わせた。この時の反応温度は28〜31℃
で、pH8.5の中和時点で反応終了とした。反応終了
後、濾過水洗し、乾燥を行い、ユアサアイオニクス社製
の比表面積測定器モノソープを用いてBET吸着法の比
表面積を測定した。結果を表4に示した。なお、比較例
として、アスコルビン酸を添加しない反応液を試料番号
13として調製し、同様処理を行い、得られた炭酸バリ
ウムについて比表面積を測定した結果を同じく表4に示
した。
【0031】
【表4】
【0032】以上のように、硝酸バリウム水溶液にアス
コルビン酸を1.0g/lと5.0g/lの濃度(得ら
れる炭酸バリウムの量に対して0.75wt%と3.75
wt%)で添加したことにより比表面積が5.5 m2/g
と6.9 m2/gの炭酸バリウムが得られた。アスコル
ビン酸を添加しなかったものは、同じ処理条件で、得ら
れた炭酸バリウムの比表面積は3.7 m2/gで、アス
コルビン酸の添加効果が確かめられた。
【0033】〔実施例5〕水酸化バリウムの八水塩75
g/l水溶液500mlとアスコルビン酸を各々粉末で
0.5g、2.5g、5.0gをそれぞれ別個の反応容
器に仕込み、水酸化バリウムとアスコルビン酸を溶解さ
せ、試料番号14、15、16の反応液とした。なお、
前記アスコルビン酸の添加濃度は1.0g/l、5.0
g/l、10.0g/lであり、化学反応式から予想さ
れる生成炭酸バリウム量に対する添加率はそれぞれ0.
75wt%、3.75wt%、7.50wt%に相当する。
【0034】次いで当該反応液中に炭酸ガスを0.5 l
/分の速度で吹き込み、反応を行わせた。この時の反応
温度は38〜40℃で、pH7.0の中和時点で反応終
了とした。反応終了後、ろ過水洗し、乾燥を行い、ユア
サアイオニクス社製の比表面積測定器モノソープを用い
てBET吸着法による比表面積を測定した。結果を表5
に示した。また、比較例として、アスコルビン酸を添加
しない反応液を試料番号17として調製し、同様処理を
おこない、得られた炭酸バリウムについて比表面積を測
定した結果を表5に示した。
【0035】
【表5】
【0036】以上のように、水酸化バリウム水溶液にア
スコルビン酸を1.0g/l、5.0g/l、10.0
g/lの濃度(得られる炭酸バリウムの量に対して0.
75wt%、3.75wt%、7.50wt%)で添加したこ
とにより比表面積が14.7m2/g、30.6 m2
g、36.4 m2/gという微細な炭酸バリウムを得る
ことができた。なお、アスコルビン酸を添加しなかった
ものは、同じ処理条件で、得られた炭酸バリウムの表面
積は4.0 m2/gで、アスコルビン酸の添加効果が確
かめられた。
【0037】〔実施例6〕水酸化バリウムの八水塩75
g/l水溶液500mlと、ピロリン酸400g/lの
水溶液1.25ml、6.25ml、12.5mlをそ
れぞれ別個の反応容器に仕込み、水酸化バリウムとピロ
リン酸を溶解させ、試料番号18、19、20の反応液
とした。なお、前記ピロリン酸の添加濃度は、それぞ
れ、1.0g/l、5.0g/l、10.0g/lであ
り、化学反応式から予想される生成炭酸バリウム量に対
する添加率はそれぞれ0.75wt%、3.75wt%、
7.50wt%に相当する。
【0038】次いで、当該反応液中に炭酸ガスを0.5
l/分の速度で、吹き込み、反応させた。この時の反応
温度は、38〜40℃で、pH7.0の中和時点で反応
終了とした。反応終了後、ろ過水洗し、乾燥を行い、ユ
アサアイオニクス社製の比表面積測定器モノソープを用
いてBET吸着法による比表面積を測定した。結果を表
6に示した。また、比較例として、ピロリン酸を添加し
ない反応液を試料番号21として調製し、同様処理を行
い、得られた炭酸バリウムについて比表面積を測定した
結果を表6に示した。
【0039】
【表6】
【0040】以上のように、水酸化バリウム水溶液にピ
ロリン酸を1.0g/l、5.0g/l、10.0g/
lの濃度(得られる炭酸バリウムの量に対して0.75
wt%、3.75wt%、7.50wt%)で添加したことに
より、比表面積が17.4m2/g、17.7 m2
g、9.9 m2/gの微細な炭酸バリウムを得ることが
できた。 なお、ピロリン酸を添加しなかったものは、
同じ処理条件で、得られた炭酸バリウムの比表面積は
4.0 m2/gで、ピロリン酸の添加効果が確かめられ
た。
【0041】
【発明の効果】以上のように、本発明によれば、可溶性
バリウム塩水溶液と可溶性炭酸塩水溶液または二酸化炭
素との反応系に、アスコルビンおよび/またはピロリン
酸を添加する簡単な処理操作で、安価に、ほぼ5 m2
g以上の比表面積を有する微細な微粒炭酸バリウムを製
造することができるという効果を奏し、従って、小型・
薄型化を志向する電子部品用コンデンサ等に用いられる
チタン酸バリウムの好適な原料を製造することができる
という効果を奏する。また、本発明の方法において、可
溶性バリウム塩の過剰添加により、炭酸バリウムの微細
化が促進できるという効果を奏する。さらに、この炭酸
バリウムにより得られる微細なチタン酸バリウムによ
り、電子機器用として高性能の積層コンデンサー等電子
部品材料が得られるという効果を奏する。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小熊 政彦 東京都千代田区丸の内1丁目8番2号 バ ライト工業株式会社内 (72)発明者 中村 博文 東京都千代田区丸の内1丁目8番2号 バ ライト工業株式会社内 Fターム(参考) 4G047 CA02 CA07 CB09 CC02 CD03 4G076 AA02 AA16 AA18 AB03 AB04 AB06 AB07 AC02 BA15 BA39 BA43 BA46 BB06 BB08 BC02 BD01 CA02 CA28 DA03 DA07 DA11 DA14 DA30

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 バリウム塩水溶液と炭酸塩水溶液をアス
    コルビン酸の存在下で反応させることを特徴とする炭酸
    バリウムの製造方法。
  2. 【請求項2】 バリウム塩水溶液と二酸化炭素をアスコ
    ルビン酸の存在下で反応させることを特徴とする炭酸バ
    リウムの製造方法。
  3. 【請求項3】 バリウム塩水溶液と炭酸塩水溶液をピロ
    リン酸の存在下で反応させることを特徴とする炭酸バリ
    ウムの製造方法。
  4. 【請求項4】 バリウム塩水溶液と二酸化炭素をピロリ
    ン酸の存在下で反応させることを特徴とする炭酸バリウ
    ムの製造方法。
  5. 【請求項5】 バリウム塩水溶液と炭酸塩水溶液をアス
    コルビン酸とピロリン酸の存在下で反応させることを特
    徴とする炭酸バリウムの製造方法。
  6. 【請求項6】 バリウム塩水溶液と二酸化炭素をアスコ
    ルビン酸とピロリン酸の存在下で反応させることを特徴
    とする炭酸バリウムの製造方法。
  7. 【請求項7】 前記バリウム塩水溶液が当量以上に過剰
    量のバリウム塩を含むことを特徴とする請求項1〜6の
    いずれかに記載の炭酸バリウムの製造方法。
  8. 【請求項8】 請求項1〜7のいずれかに記載の製造方
    法によって得られる比表面積が5〜40 m2/gの粒子
    からなることを特徴とする炭酸バリウム。
  9. 【請求項9】 二酸化チタンと請求項8記載の炭酸バリ
    ウムから製造されることを特徴とするチタン酸バリウ
    ム。
JP36535798A 1998-12-22 1998-12-22 炭酸バリウムの製造方法 Expired - Lifetime JP4378522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36535798A JP4378522B2 (ja) 1998-12-22 1998-12-22 炭酸バリウムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36535798A JP4378522B2 (ja) 1998-12-22 1998-12-22 炭酸バリウムの製造方法

Publications (2)

Publication Number Publication Date
JP2000185914A true JP2000185914A (ja) 2000-07-04
JP4378522B2 JP4378522B2 (ja) 2009-12-09

Family

ID=18484062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36535798A Expired - Lifetime JP4378522B2 (ja) 1998-12-22 1998-12-22 炭酸バリウムの製造方法

Country Status (1)

Country Link
JP (1) JP4378522B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049609A2 (de) * 1999-12-30 2001-07-12 Solvay Barium Strontium Gmbh Hochreaktives bariumcarbonat
JP2003002739A (ja) * 2001-06-19 2003-01-08 Murata Mfg Co Ltd チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびその評価方法、誘電体セラミック、ならびに積層セラミックコンデンサ
JP2005306640A (ja) * 2004-04-20 2005-11-04 Fuji Photo Film Co Ltd アルカリ土類金属の炭酸塩結晶の製造方法およびアルカリ土類金属の炭酸塩結晶
JP2007176789A (ja) * 2005-12-01 2007-07-12 Ube Material Industries Ltd 炭酸バリウム粉末及びその製造方法
WO2008111611A1 (ja) * 2007-03-13 2008-09-18 Ube Material Industries, Ltd. 高分散性アルカリ土類金属炭酸塩微粉末及びその製造方法
JP2008222496A (ja) * 2007-03-13 2008-09-25 Ube Material Industries Ltd 高分散性炭酸ストロンチウム微粉末
EP2055676A2 (en) 2007-11-05 2009-05-06 Nippon Chemical Industrial Co., Ltd. Barium carbonate particle powder, production method thereof, and production method of perovskite barium titanate
WO2010113757A1 (ja) 2009-04-03 2010-10-07 堺化学工業株式会社 略球状炭酸バリウム及び略球状炭酸バリウムの製造方法
EP2666753A3 (en) * 2012-05-21 2014-01-15 Guizhou Redstar Developing Co., Ltd. A method for preparing barium carbonate and the product obtained by the method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049609A2 (de) * 1999-12-30 2001-07-12 Solvay Barium Strontium Gmbh Hochreaktives bariumcarbonat
WO2001049609A3 (de) * 1999-12-30 2001-12-27 Solvay Barium Strontium Gmbh Hochreaktives bariumcarbonat
JP2003002739A (ja) * 2001-06-19 2003-01-08 Murata Mfg Co Ltd チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびその評価方法、誘電体セラミック、ならびに積層セラミックコンデンサ
JP2005306640A (ja) * 2004-04-20 2005-11-04 Fuji Photo Film Co Ltd アルカリ土類金属の炭酸塩結晶の製造方法およびアルカリ土類金属の炭酸塩結晶
JP2007176789A (ja) * 2005-12-01 2007-07-12 Ube Material Industries Ltd 炭酸バリウム粉末及びその製造方法
WO2008111611A1 (ja) * 2007-03-13 2008-09-18 Ube Material Industries, Ltd. 高分散性アルカリ土類金属炭酸塩微粉末及びその製造方法
JP2008222496A (ja) * 2007-03-13 2008-09-25 Ube Material Industries Ltd 高分散性炭酸ストロンチウム微粉末
EP2055676A2 (en) 2007-11-05 2009-05-06 Nippon Chemical Industrial Co., Ltd. Barium carbonate particle powder, production method thereof, and production method of perovskite barium titanate
JP2009114015A (ja) * 2007-11-05 2009-05-28 Nippon Chem Ind Co Ltd 炭酸バリウム粒子粉末、その製造方法およびペロブスカイト型チタン酸バリウムの製造方法
WO2010113757A1 (ja) 2009-04-03 2010-10-07 堺化学工業株式会社 略球状炭酸バリウム及び略球状炭酸バリウムの製造方法
US9169126B2 (en) 2009-04-03 2015-10-27 Sakai Chemical Industry Co., Ltd. Generally spherical barium carbonate particles, and method for producing generally spherical barium carbonate particles
EP2666753A3 (en) * 2012-05-21 2014-01-15 Guizhou Redstar Developing Co., Ltd. A method for preparing barium carbonate and the product obtained by the method

Also Published As

Publication number Publication date
JP4378522B2 (ja) 2009-12-09

Similar Documents

Publication Publication Date Title
EP1415955A1 (en) Barium titanate and its production method
WO2000035811A1 (fr) Oxyde composite de type perovskite renfermant du titane
JP5694847B2 (ja) 高純度炭酸カルシウムの製造方法
JP2000185914A (ja) 炭酸バリウムの製造方法及び生成炭酸バリウム並びに該炭酸バリウムによるチタン酸バリウム
JPH0812333A (ja) 水和タンタルおよび/またはニオブ酸化物の製造および得られるタンタル酸塩およびニオブ酸塩
JP2002356326A (ja) 酸化物粉末の製造方法
JP3357420B2 (ja) 酸化ニオブゾル及びその製造方法
JP7342227B2 (ja) タンタル酸分散液及びタンタル酸化合物
US5013538A (en) Preparation of alkaline earth metal titanates
JPS6016372B2 (ja) チタン酸バリウム(BaTio↓3)の製造方法
JP2017202942A (ja) チタン酸バリウム粒子の製造方法
JP2005008445A (ja) チタン酸バリウム粉末の製造方法
JPS59223204A (ja) 球状無水第二リン酸カルシウム
JPS62191423A (ja) 易焼結性鉛含有酸化物粉末の製造方法
WO2022059367A1 (ja) チタン酸水溶液
KR101761923B1 (ko) 티탄산바륨 표면에 코팅층을 형성하는 방법 및 그로부터 제조된 티탄산바륨
JPS63265805A (ja) リン酸アルミニウムの製造方法
JPH0635329B2 (ja) 酸化ジルコニウム粉体の製造方法
KR101751070B1 (ko) 산-염기 반응을 이용한 티탄산바륨의 제조방법
JPH1036105A (ja) 耐水性窒化ホウ素及びその製造方法
JPH04260612A (ja) 微細なα−アルミナ粉末の製造方法
WO2020195261A1 (ja) アルカリ土類金属炭酸塩の製造方法
JP4328190B2 (ja) チタン酸バリウムの製造方法
JP2000344519A (ja) チタン酸バリウム粉末の製造方法
JPH10101334A (ja) イットリウムアルミニウムガーネット原料粉末の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150