JP2000073173A - 堆積膜形成方法及び堆積膜形成装置 - Google Patents

堆積膜形成方法及び堆積膜形成装置

Info

Publication number
JP2000073173A
JP2000073173A JP11166600A JP16660099A JP2000073173A JP 2000073173 A JP2000073173 A JP 2000073173A JP 11166600 A JP11166600 A JP 11166600A JP 16660099 A JP16660099 A JP 16660099A JP 2000073173 A JP2000073173 A JP 2000073173A
Authority
JP
Japan
Prior art keywords
substrate
deposited film
auxiliary
base
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11166600A
Other languages
English (en)
Other versions
JP4095205B2 (ja
Inventor
Yoshio Seki
好雄 瀬木
Hiroyuki Katagiri
宏之 片桐
Hideaki Matsuoka
秀彰 松岡
Yasuyoshi Takai
康好 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16660099A priority Critical patent/JP4095205B2/ja
Priority to US09/334,176 priority patent/US6335281B1/en
Publication of JP2000073173A publication Critical patent/JP2000073173A/ja
Application granted granted Critical
Publication of JP4095205B2 publication Critical patent/JP4095205B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】 【課題】基体以外に付着した膜等の生成物が基体へ飛散
することを防止して、膜厚および膜質が均一な堆積膜を
定常的に形成し、画像欠陥を激減しうること、また、膜
の諸物性、堆積膜形成速度、再現性及び膜の生産性を向
上させ、歩留まりを飛躍的に向上させることが可能な堆
積膜形成方法及び装置を提供すること。 【解決手段】補助基体に装着した基体の上部に補助基体
キャップを設け、減圧気相成長法により、該基体の表面
に堆積膜を形成するに際して、該基体の上端部における
温度と、該基体の上部に設けられている該補助基体キャ
ップの下端部における温度との最大温度差が、所定以下
となるようにして該補助基体キャップに堆積する堆積膜
の密着性を向上させ、堆積膜を形成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、堆積膜形成方法及
び装置に関し、特に、光(ここでは広義の光で、紫外
線、可視光線、赤外線、X線、γ線等を示す。)の様な
電磁波に感受性のある光受容部材を安定に形成するのに
適した堆積膜形成方法及び装置に関する。
【0002】
【従来の技術】固体撮像装置、あるいは像形成分野にお
ける電子写真用光受容部材や原稿読みとり装置における
光導電層を形成する材料として、高感度でSN比[光電
流(Ip)/(Id)]が高く、照射する電磁波のスペ
クトル特性にマッチングした吸収スペクトル特性を有す
ること、光応答性が速く、所望の暗抵抗値を有するこ
と、使用時において人体に無公害であること、さらには
固体撮像装置においては、残像を所定時間内に容易に処
理することができる等の特性が要求される。特に事務機
としてオフィスで使用される電子写真用光受容部材の場
合には、上記の使用時における無公害性は重要な点であ
る。この様な観点に立脚して注目されている材料に、水
素やハロゲン原子等の一価の元素でダングリングボンド
が修飾されたアモルファスシリコン(以後、「a−S
i」と表記する)があり、例えば特開昭54−8634
1号公報には電子写真用光受容部材への応用が記載され
ている。
【0003】電子写真用光受容部材としては種々の形態
が知られているが、所謂ドラム状の形態とするものが一
般的である。この場合、円筒状の基体の表面に光導電層
などの所望とする層、即ち光受容層、を形成して光受容
部材を形成する。円筒状基体上にa−Siからなる光受
容層を形成する場合には、スパッタリング法、熱により
原料ガスを分解する方法(熱CVD法)、光により原料
ガスを分解する方法(光CVD法)、プラズマにより原
料ガスを分解する方法(プラズマCVD法)等、多数知
られている。なかでもプラズマCVD法、すなわち、原
料ガスを直流または高周波、マイクロ波グロー放電等に
よって分解し、円筒状基体上に堆積膜を形成する方法は
電子写真用光受容部材の形成方法等、現在実用化が非常
に進んでいる。
【0004】図1は、プラズマCVD装置の一例を示す
断面略図である。図中、6100は真空反応容器全体を
示し、6111は真空反応容器の側壁を兼ねたカソード
電極であり、6123は真空反応容器の上壁となるゲー
ト、6121は真空反応容器の底壁である。前記カソー
ド電極6111と、上壁6123及び底壁6121と
は、夫々、碍子6122で絶縁されている。6112は
アルミニウム等の金属製の補助基体6113−aに装着
され、真空反応容器内に設置された基体であり、該基体
6112上端には補助基体キャップ6113−bが装着
されている。該基体6112は接地されてアノード電極
となるものである。補助基体6113−aの中には、基
体加熱用ヒーター6114が設置されており、成膜前に
基体を所定の温度に加熱したり、成膜中に基体を所定の
温度に維持したり、あるいは成膜後基体をアニール処理
したりするのに用いる。
【0005】6115は堆積膜形成用原料ガス導入管で
あって、真空反応空間内に該原料ガスを放出するための
ガス放出孔(図示せず)が多数設けられており、該原料
ガス導入管6115の他端は、ガス供給管6117、バ
ルブ6260を介して堆積膜形成用原料ガス供給系62
00に連通している。6124は、真空反応容器内を真
空排気するための排気管であり、排気バルブ6119を
介して真空排気装置(図示せず)に連通している。排気
管6124には真空計6120が接続され、また、真空
反応容器内を大気に解放する時などに利用される反応容
器リークバルブ6118がまた排気管6124に接続さ
れている。6116は、カソード電極6111への電力
印加手段である。堆積膜形成用原料ガス供給系6200
は所望の原料ガスを貯留する原料ガスボンベ6221〜
6226を有する。各原料ガスボンベ6221〜622
6はバルブ6231〜6236を介して配管に接続され
流入バルブ6241〜6246を通じてマスフローコン
トローラー6211〜6216に原料ガスを流入可能と
されている。マスフローコントローラー6211〜62
16からは流出バルブ6251〜6256を介してバル
ブ6260に各配管が集約されるように結合される。配
管の原料ガスボンベ6221〜6226と流入バルブ6
241〜6246の間には夫々圧力調整器6261〜6
266が接続されている。こうしたプラズマCVD法に
よる堆積膜形成装置の操作方法は次のようにして行なわ
れる。即ち、真空反応容器内のガスを、排気管6124
を介して真空排気すると共に、加熱用ヒーター6114
により基体6112を所定温度に加熱、保持する。次に
原料ガス導入管6115を介して、例えばa−SiH堆
積膜を形成する場合であれば、シラン等の原料ガスを真
空反応容器内に導入し、該原料ガスは、ガス導入管の原
料ガス放出孔(図示せず)から真空反応容器内に放出さ
れる。これと同時併行的に、電力印加手段6116か
ら、例えば高周波をカソード電極6111と基体(アノ
ード電極)6112間に印加しプラズマ放電を発生せし
める。かくして、真空反応容器内の原料ガスは励起され
励起種化し、Si*、SiH*等(*は励起状態を表わ
す。)のラジカル粒子、電子、イオン粒子等が生成さ
れ、これらの粒子間または、これらの粒子と基体表面と
の化学的相互作用により、基体表面上に堆積膜を形成す
る。
【0006】このような、例えばa−Siからなる電子
写真用光受容部材を形成する場合、円筒状基体を真空反
応容器内に運搬ならびに保持する必要があることから、
円筒状基体内部に補助基体を挿入することが行われる。
また例えば特開昭60−86276号公報などに開示さ
れているように、その特性を均一なものにする目的で、
基体上下に補助基体を設ける必要があること等の理由か
らも円筒状基体内部に補助基体を挿入することが、一般
に行われている。更に、例えば、特開平7−18170
0号公報によれば、画像欠陥を防ぎ、且つ電子写真特性
の向上を図り、更に均一な高品位の画像を得る目的で、
補助基体の母材は、基体に相対する部分は熱伝導度の大
きな材料を用い、補助基体上部又は/及び下部は熱膨張
係数及び熱伝導度の小さい材料で構成する技術が開示さ
れている。また、例えば、特開平7−230178号公
報によれば、画像欠陥を防ぎ、且つ電子写真特性の向上
を図り、更に均一な高品位の画像を得る目的で、補助基
体の内側の表面をセラミックスで形成する技術が開示さ
れている。これらの技術により電子写真用感光体の膜厚
や膜質の均一性が向上し、それに伴って歩留も向上して
きた。
【0007】
【発明が解決しようとする課題】このような装置で作成
された光受容部材は、膜厚、膜質が均一化され歩留の面
で改善されてきたが、総合的な特性向上を図る上でさら
に改良される余地が存在するのが実情である。特に、電
子写真装置の高画質、高速化、高耐久化は急速に進んで
おり、電子写真用感光体として用いる場合においては電
気的特性や光導電特性の更なる向上とともに、帯電能、
感度を維持しつつあらゆる環境下で大幅に性能を延ばす
ことが求められている。そして、電子写真装置の画像特
性向上のために電子写真装置内の光学露光装置、現像装
置、転写装置等の改良がなされた結果、電子写真用感光
体においても従来以上の画像特性の向上が求められるよ
うになった。このような状況下において、前述した従来
技術により上記課題についてある程度の膜厚、膜質の均
一化が可能になってはきたが、更なる画像品質の向上に
関しては未だ改善の余地がある。特にアモルファスシリ
コン系感光体(光受容部材)の更なる高画質化への課題
として、更に、均一な膜を得るとともに、微小な画像欠
陥の発生を抑制することが挙げられる。微小な画像欠陥
は、成膜中に基体以外、即ち反応空間内や、補助基体外
面に付着した膜等が基体上に飛散し、堆積膜が異常成長
し、画像上で微小な画像欠陥の発生するところとなる。
そのため、基体以外に付着した膜等の生成物が基体へと
飛散することを防止しなければならない。
【0008】そこで、本発明は、上記した従来技術にお
ける諸課題を解決し、基体以外に付着した膜等の生成物
が基体へ飛散することを防止して、膜厚および膜質が均
一な堆積膜を定常的に形成し、かつ、画像欠陥を激減し
うる堆積膜形成方法及び装置を提供することを目的とし
ている。また、本発明は、形成される膜の諸物性、堆積
膜形成速度、再現性及び膜の生産性を向上させ、量産化
を行う場合その歩留まりを飛躍的に向上させることが可
能な堆積膜形成方法及び装置を提供することを目的とし
ている。
【0009】
【課題を解決するための手段】本発明は、上記課題を達
成するために、堆積膜形成方法及び装置をつぎのように
構成したことを特徴とするものである。すなわち、本発
明の堆積膜形成方法は、補助基体に装着した基体の上部
に補助基体キャップを設け、減圧気相成長法により、該
基体の表面に堆積膜を形成する堆積膜形成方法におい
て、該基体の上端部における温度と、該基体の上部に設
けられている該補助基体キャップの下端部における温度
との最大温度差が、所定以下となるようにして該補助基
体キャップに堆積する堆積膜の密着性を向上させ、堆積
膜を形成することを特徴としている。また、本発明の堆
積膜形成装置は、補助基体に装着した基体の上部に補助
基体キャップを設け、減圧気相成長法により、該基体の
表面に堆積膜を形成する堆積膜形成装置において、基体
加熱手段からの輻射熱による該補助基体キャップの表面
温度が低下することを抑制し、該基体の上端部における
温度と、該補助基体キャップの下端部における温度との
最大温度差が、小さくなるように構成したことを特徴と
している。また、本発明のこれらの堆積膜形成方法及び
装置は、前記堆積膜が、シリコン原子を母材とする非晶
質材料からなる光受容部材を形成する堆積膜であること
を特徴としている。また、本発明のこれらの堆積膜形成
方法及び装置は、前記最大温度差が、15%以下、また
は10%以下であることを特徴としている。また、本発
明のこれらの堆積膜形成方法及び装置は、前記最大温度
差が、前記基体上端から20mm以内における該基体の
上端部における温度と、前記補助基体キャップ下端から
20mm以内における該補助基体キャップの下端部にお
ける温度との最大温度差であることを特徴としている。
また、本発明のこれらの堆積膜形成方法及び装置は、外
面の表面粗さがRzで、40μm以下、または30μm
以下であることを特徴としている。また、本発明のこれ
らの堆積膜形成方法及び装置は、前記補助基体及び補助
基体キャップの母体となる金属が、前記基体と同種類の
金属を含むことを特徴としている。また、本発明のこれ
らの堆積膜形成方法及び装置は、前記補助基体及び補助
基体キャップの母体となる金属が、Alであることを特
徴としている。また、本発明のこれらの堆積膜形成方法
及び装置は、前記補助基体内側の表面が、セラミックで
構成されていることを特徴としている。また、本発明の
これらの堆積膜形成方法及び装置は、前記補助基体内側
の表面のセラミックは、耐酸性に優れた材料、または熱
輻射を受け易い材料のうちの、少なくともいずれか一つ
から構成されていることを特徴としている。また、本発
明のこれらの堆積膜形成方法及び装置は、前記補助基体
内側の表面のセラミックが、Al23とCr23の混在
系であることを特徴としている。
【0010】
【発明の実施の形態】本発明者らは、堆積膜形成方法及
び装置における前述の本発明の目的を達成すべく鋭意研
究を重ねたところ、基体の上端部における温度に対し
て、該基体の上部に設けられている該補助基体キャップ
の下端部における温度の最大温度差を、所定以下となる
ように温度制御して堆積膜を形成することが、画像欠陥
の解消に大きく影響するという知見を得た。すなわち、
この最大温度差は、基体温度の好ましくは15%以下、
より好ましくは10%以下にすることにより、また、該
基体上端から20mm以内の温度に対する該補助基体キ
ャップ下端から20mm以内での温度の最大温度差が1
5%以下、好ましくは10%以下にすることにより、該
補助基体キャップに堆積した堆積膜の密着性が向上し、
堆積膜形成中の該補助基体キャップから基体への膜片等
の飛散が解消され、それらを核として堆積膜が異常成長
して起る画像欠陥を抑制して、画像欠陥を解消すること
ができるという知見を得た。本発明は、これらの知見に
基づいて完成に至ったものである。
【0011】以下に、これの点について、更に詳しく説
明する。本発明においては、基体上端から20mm以内
の最大温度に対して、該基体上部に設けられている補助
基体キャップ下端から20mm以内の温度差の最大を1
5%以下、好ましくは10%以下にすることにより、補
助基体キャップに堆積した堆積膜の密着性が向上された
ことで、堆積膜形成中の補助基体キャップから基体への
膜片等の飛散が解消され、それらを核として堆積膜が異
常成長して起る画像欠陥、いわゆる画像上での黒ぽちが
改善された。これらの理由については、以下のように考
えられる。プラズマCVD法により例えばアモルファス
シリコン堆積膜を基体上に形成する場合、反応は、気相
に於ける原料ガスの分解過程、放電空間から基体表面ま
での活性種の輸送過程、基体表面での表面反応過程の3
つに分けて考えることができる。中でも、表面反応過程
は完成した堆積膜の構造の決定に非常に大きな役割を果
たしている。そして、これらの表面反応は、基体表面の
温度、材質、形状、吸着物質などに大きな影響を受ける
のである。この基体上での成長過程を水素を含むアモル
ファスシリコンを例にしてもう少し詳細に説明すると以
下のようになる。プラズマ中で分解して輸送されてきた
分解種は基体上に付着してアモルファスシリコン膜のネ
ットワークを形成するが、まだ3次元的にネットワーク
が完成されていないアモルファスシリコンの成長面では
水素原子の脱離、ダングリングボンドヘの水素原子や珪
素原子の結合、エネルギー的に高い結合を持つ原子の再
配置などにより、構造欠陥の少なく、エネルギー的に安
定な方向への化学的反応(緩和過程)が起こる。これら
の結果、堆積膜としてはダングリングボンドの減少、ギ
ャップ準位密度の低下、Si−H2結合が減少してSi
−H結合が主となる等の減少が観察される。これらの反
応は基体の熱エネルギーにより制御されるため、堆積膜
形成中の基体温度が非常に重要となる。また、基体上端
に装着された補助基体キャップは、堆積膜形成中に分解
された化学種の基体裏側へのまわり込みを防止する目的
で装着されているが、基体上端に装着されているという
点で、密着性の面では、補助基体キャップに堆積される
堆積膜としては、基体に堆積される堆積膜とほぼ同等の
膜特性が要求される事から、堆積膜形成中の補助基体キ
ャップの温度も非常に重要となる。
【0012】該基体の加熱方法は、赤外線などを用いて
気相成長面を直接加熱することも可能であるが、気相成
長側に加熱手段を設けることは工業的にみて実際的でな
いため、通常は、補助基体の内側に加熱手段が設けられ
る。従って基体及び補助基体キャップを所定の温度に加
熱するためには、補助基体の内面で受けた熱を間接的に
基体及び補助基体キャップに伝達するようにする。ま
た、基体と補助基体及び補助基体キャップからなる基体
部材は、特性の均一化を図るために該基体部材を回転さ
せる等の理由から、基体部材と加熱手段は非接触状態に
することが望ましい。その場合、熱の伝達は主として加
熱手段から補助基体への熱輻射により行われ、その後補
助基体から基体、補助基体キャップヘの熱輻射及び、ま
たは、熱伝導で行われる。この際、基体及び補助基体キ
ャップの表面温度は、加熱手段の用いるヒーターの形状
や、反応炉の構成により、大きく影響される事がある。
更には、加熱された基体及び補助基体を運搬工程を経て
反応炉へ移送する際、補助基体の上部のチャッキング部
を、搬送手段である搬送機のチャッキング部とをドッキ
ングさせ補助基体を移送させるため、搬送機のチャッキ
ング部は通常金属製で常温状態であることから、補助基
体上部及び補助基体キャップは接触の際に生じる放熱作
用により基体に対して温度が下がり温度差が生じてしま
う。このため、補助基体キャップに堆積する堆積膜の、
堆積膜形成時の温度が低がために基体に堆積される堆積
膜とは異なり、非常に剥がれ易い膜となり、その結果、
堆積膜形成中に膜剥がれをおこし基体表面に飛散する事
で、その付着した部分が核となり、堆積膜が異常成長し
て起る画像欠陥、いわゆる画像上での黒ぽちが生じてし
まうことがある。更に、補助基体及び補助基体キャップ
は、連続生産でのコスト面から、堆積膜形成後真空反応
容器から取り出された後、毎回、ガラスビーズを用いた
液体ホーニングによりブラスト処理され付着している膜
等を取りのぞき再使用されている。この際、補助基体及
び補助基体キャップ表面は、ブラスト処理にて粗されて
しまう。そのため、補助基体については、表面はある程
度粗面化されていても基体及び補助基体キャップに熱を
伝導させるための熱輻射の点からは問題はないが、補助
基体キャップは、基体表面と比較すると、補助基体キャ
ップ表面は粗される事により表面積が大きくなり、その
結果基体と同等に加熱されても、表面積の違いによる表
面側からの放熱量が異なる事から補助基体キャップの温
度が低くなってしまう。特に補助基体キャップは基体上
端に装着されているという点から、特にその傾向が高く
なる。
【0013】本発明は、この温度差について鋭意研究を
行ったもので、基体上端部の温度に対して該基体上部に
設けられている該補助基体キャップ下端部の温度の最大
温度差が15%以下、好ましくは10%以下にする事
で、補助基体キャップからの堆積膜形成中に膜剥がれを
おこし基体表面に飛散し、その付着した部分が核とな
り、堆積膜が異常成長して起る画像欠陥、いわゆる画像
上での黒ぽちが生じてしまうという事を抑制する。特
に、基体と補助基体キャップ近傍での温度差が急激にあ
る場合は、堆積される膜の応力差等により、より顕著に
起こる事から、その温度差については、諸々の条件を考
慮する必要はあるが、一般的には該基体上端から20m
m以内と該補助基体キャップ下端から20mm以内での
最大温度差が重要である。この近傍での温度差について
は、本発明より、基体と補助基体キャップとの表面粗さ
の違いによる表面積差で起こっていることから、その温
度差を抑える目的で表面粗さに注目することは好まし
い。前記補助基体キャップの外面の表面粗さをRzで、
40μm以下、好ましくは30μm以下にする事で、補
助基体キャップの表面温度の低下が緩和され、基体の表
面温度に近い状態で堆積膜が形成される。これによって
基体及び補助基体キャップ表面に堆積される膜はほぼ同
等となり、補助基体キャップからの堆積膜形成中に膜剥
がれをおこし基体表面に飛散し、その付着した部分が核
となり、堆積膜が異常成長して起る画像欠陥、いわゆる
画像上での黒ぽちが生じてしまうという事が抑制される
ものである。また、補助基体キャップの表面組さは、粗
すぎると温度低下になるばかりでなく、ダストの付着を
招くため、前記の粗さとするのが望ましい。
【0014】また、前記補助基体及び補助基体キャップ
の母体となる金属が、前記基体と同種類の金属を含むこ
とが好ましい。一般に、光受容部材の基体としてはAl
又はAl合金が好んで用いられるので、前記補助基体及
び補助基体キャップの母体となる金属が、Alである事
は望ましい。更に、加熱手段からの熱を効率的に得るた
めに、前記補助基体内側の表面が、セラミックで構成さ
れていることは好ましい。前記補助基体内側の表面のセ
ラミックは、耐酸性に優れた材料、熱輻射を受け易い材
料のうちの、少なくともいずれか一つから構成されるの
が望ましい。前記補助基体内側の表面のセラミックの具
体的な一例としてはAl23とCr23の混在系を挙げ
ることができる。本発明は運搬工程を要する、例えば図
2に示すような、各処理毎に専用の真空容器を備えた光
受容部材の形成装置においても効果的である。
【0015】図2の装置について説明する。図2は堆積
膜形成装置全体の概略配置図であり、510は清浄な雰
囲気で基体を金属を母体とした補助基体に装着し、真空
にするための真空投入容器である。511は基体を所定
の温度に加熱、保持するための真空加熱容器、512は
堆積膜を形成するための真空反応容器、513は堆積膜
形成後の基体等を冷却し、取り出すための真空冷却容器
である。534は補助基体又は補助基体と基体を各処理
容器である真空投入容器510、真空加熱容器511、
真空反応容器512、真空冷却容器513の各位置に移
動するための真空搬送容器である。514、515、5
16、517は各処理容器を真空にするための排気装
置、518、519、520、521は真空搬送容器5
34が各真空処理容器である真空投入容器510、真空
加熱容器511、真空反応容器512、真空冷却容器5
13に接続されたときゲートバルブ535とゲートバル
ブ522、523、524、525の空間を真空にする
ための排気装置である。例えば真空反応容器512への
基体をセットした補助基体の出し入れは、次のようにし
て行われる。真空搬送容器534のゲートバルブ535
を真空加熱容器511のゲートバルブ523上に密着さ
せ、ゲートバルブ535とゲートバルブ523との間の
空間を排気装置519により真空にする。次いでゲート
バルブ523、535を開き、真空搬送容器534内に
設けられた上下移動機構(図示せず)により真空加熱容
器511内より加熱された基体を補助基体とともに真空
搬送容器534内に搬出する。その後ゲートバルブ52
3、524を閉じ真空搬送器534を真空反応容器51
2に対向する位置に移動する。次いで、同様の操作で次
に真空反応容器512内に基体をセットした補助基体を
搬入する。移送時間は、通常3〜10分程である。
【0016】その後は、前述のように真空反応容器51
2内で、基体上に堆積膜を形成する。そして最後に真空
冷却容器513へ基体をセットした補助基体を搬入し、
真空冷却容器513内で基体は冷却された後、真空冷却
容器513内を大気圧にし、基体を取り出す。このよう
な各処理毎に専用の真空容器を備えた光受容部材の形成
装置においても効果的である理由は以下のとおりであ
る。真空加熱容器511で加熱された補助基体は、補助
基体の上部のチャッキング部を、真空搬送容器534内
にある搬送機のチャッキング部とをドッキングさせ移送
される。搬送機のチャッキング部は金属製であり、且つ
常温状態であることから、補助基体上部及び補助基体キ
ャップは搬送機のチャッキング部との接触の際に生じる
放熱作用により部分的に温度が下がってしまう。このよ
うに堆積膜形成前に加熱された補助基体の移動は、移送
時間中に補助基体キャップの温度を基体よりも低下させ
てしまう。このような温度差に対しても補助基体キャッ
プの表面粗さをRzで、40μm以下、好ましくは30
μm以下にする事で、加熱及び移送段階での、補助基体
キャップからの放熱が軽減されることで、温度低下を抑
制する事がでる。つまり、基体と補助基体キャップとの
温度差が比較的無い状態でこれらが真空反応容器512
に投入され、堆積膜が形成されることになる。
【0017】以下、図面にしたがって本発明により光受
容部材を形成する方法について、具体例を挙げて、更に
詳細に説明する。図3(A)及び図3(B)は夫々、本
発明により光受容部材を形成する方法を説明するための
基体支持部の一例を一部を断面図として模式的に示した
構成図である。101は補助基体であり、103は補助
基体キャップ、102は基体を示している。補助基体1
01は、加熱手段105からの輻射熱を直接受ける。熱
は補助基体101内部を熱伝導で伝わり、さらには、補
助基体101の外面に伝わり、最終的に装着された基体
102及び補助基体キャップ103の表面に伝えられ
る。この熱伝導、輻射熱に対して基体102及び補助基
体キヤップ103の表面側では、放熱が起こる。基体1
02と補助基体キャップ103でそれらの表面粗さの違
いにより放熱量が異なるため、表面粗さの粗い補助基体
キャップ103では基体102よりその表面温度が低下
してしまう。これによって基体102と補助基体キャッ
プ103の基体102の近傍で温度差が生じてしまう。
このような点を考慮して、前述したように補助基体キャ
ップ103の表面粗さは、Rzで40μm以下、好まし
くは30μm以下にし、補助基体キャップ103の表面
温度低下を抑制し、基体102との温度差を小さくして
いる。また置き台部分106については、これに換えて
ヒーター105の支柱と兼用させるようにして用いるこ
とも出来る。また、基体102と補助基体101は、熱
伝導を良くするために接触させるのが望ましいが、許容
し得る程度の間隙(空間)があってもよい。また、図3
(B)に示す様に、補助基体101の内面107の表面
をセラミックで構成してもよい。
【0018】補助基体101及び補助基体キャップ10
3は、基体と同種類の材料を含有したほうが、熱膨張に
よる体積変化が等しくなり、基体との密着性あるいは基
体と間隔が安定して保たれるため、均一性の面から好ま
しい。補助基体101及び補助基体キャップ103の母
体となる金属の材質としては、例えば、Al,Cr,M
o,Au,In,Nb,Te,V,Ti,Pt,Pd,
Fe等の金属、およびこれらの合金、例えばステンレス
等が好適に使用できるものとして挙げられるが、基体が
Al又はAl合金であることを考慮すると、Al又はA
l合金が適している。補助基体101の外面の表面粗さ
に関しては、表面積を増し輻射熱を効率的に得るため
は、表面は粗い方がよい。一方であまり表面性を粗くし
表面積を増加させると、ダストが増加し、また発塵しや
すくなることがある。よって、表面性は十点平均粗さ
(Rz)で、5〜200μmが好ましく、10〜90μ
mがより好ましい。また、表面性は、内面全面において
均一であることが好ましいが、面内における最大値と最
小値の差が100μm以内であれば実用上問題ない。補
助基体101及び、補助基体キャップ103の厚さ(肉
厚)は基体を保持している間に変形することがなければ
特に制限はない。しかし、現実的な、コスト、取り扱い
性、強度、加熱時間、加熱温度などを考慮すると好まし
くは、0.5〜30mm、より好ましくは1〜20mm
とするのが望ましい。補助基体101は、少なくとも基
体102よりも長く形成されている方が形成される膜の
均一性や取り扱いの面から好ましい。補助基体101の
長さは取りつける装置によるもので一概には言えるもの
ではないが、コスト等を鑑みると一つの基体ホルダーに
一つの基体を配置する場合には、基体の長さを100と
すると好ましくは100〜200、より好ましくは11
0〜170とするのが望ましい。一つの基体ホルダーに
複数の基体を配する場合には、複数の基体の堆積膜形成
面の長さの合計が上述した関係とされればよい。
【0019】補助基体101には、補助基体の運搬や基
体の搬送のために図3(A)及び図3(B)に示されて
いるような運搬用チャッキング部104を形成すること
が望ましい。尚、運搬のためのチャッキングが正確で確
実に行われるのであれば、凸形状、凹形状等の様々な形
状とすることが可能である。本発明において、補助基体
101の内面107を、セラミックで構成することによ
り、さらに、温度を効率的に伝達する事が出来、特性の
均一性の向上および、画像欠陥の低減に効果的である。
補助基体101の内面107を構成するセラミック材料
としては、特に制限はなく、例えば、Al23、Cr2
3、MgO、TiO2、SiO2等が挙げられるが、A
23、TiO2、SiO2等の耐酸性の優れた材料が、
a−Siからなる光受容部材の製造工程において使用す
る例えばハロゲン原子を含む化合物ガス(F 2、Cl
3、SiF4 etc)等に対する耐食性の面から好ま
しい。また、WC、TaN、Cr23等の輻射熱を受け
易い材料も、多少表面の変質が生じても、その影響をほ
とんど受けないため好ましい。さらに、耐酸性の優れた
材料と幅射熱を受け易い材料の混在材料がより好まし
い。混合材料を用いる場合その混合比は、両者の機能を
得るために、耐酸性の優れた材料をa(g)、輻射熱を
受け易い材料をb(g)として、a:bが1:99〜9
9:1が好ましく、10:90〜90:10がより好ま
しい。
【0020】補助基体101の内面107を構成するセ
ラミック材料の気孔率は耐熱性の向上や、水分等の吸着
防止のために1〜20%が好ましく、1〜15%がより
好ましい。補助基体101の内面107を構成するセラ
ミックの表面性に関しては、表面積を増し輻射熱を効率
的に得るためは、表面は粗い方がよい。一方であまり表
面性を粗くし表面積を増加させると、ダストが増加し、
また発塵しやすくなることがある。よって、表面性は十
点平均粗さ(Rz)で、5〜200μmが好ましく、1
0〜90μmがより好ましい。また、表面性は、内面全
面において均一であることが好ましいが、面内における
最大値と最小値の差が100μm以内であれば実用上問
題ない。補助基体101の内面107をセラミック材料
で形成する手段としては特に制限はないが、CVD法、
メッキあるいは溶射手段等の表面コーテイング法が挙げ
られる。なかでも溶射手段がコスト面からあるいはコー
ティング対象物の大きさ形状の制限を受けにくいためよ
り好ましく、特にプラズマ溶射法は、気孔率が低く密着
性も良好なためより好ましい。また例えばセラミック材
料からなる円筒を、金属製の基体ホルダーの内面に密着
するように装着してもよい。補助基体101の内面10
7をセラミック材料で形成する際には、内面を清浄に処
理した後セラミックを上記手段により金属表面に形成す
るが、密着性を増すために、セラミックと金属表面の間
に例えばAlとTiの混合材等の下引き層を設ける方が
好ましい。セラミック材料は補助基体101の内面の全
面を覆うことが好ましいが、基体ホルダーの接地等のた
めに覆われない部分が一部存在してもよい。補助基体1
01の内面107を構成するセラミック材料の厚さは特
に制限はないが、耐久性及び均一性を増すために、また
伝熱性及び製造コストの面から10〜10000μmが
好ましく、20〜5000μmがより好ましい。
【0021】本発明において使用される基体102とし
ては、例えば、Al,Cr,Mo,Au,In,Nb,
Te,V,Ti,Pt,Pd,Fe等の金属、およびこ
れらの合金、例えばステンレス等が挙げられ、特にAl
又はAl合金は本発明には適している。また、ポリエス
テル、ポリエチレン、ポリカーボネート、セルロースア
セテート、ポリプロピレン、ポリ塩化ビニル、ポリスチ
レン、ポリアミド等の合成樹脂のフィルムまたはシー
ト、ガラス、セラミック等の電気絶縁性支持体の少なく
とも光受容層を形成する側の表面を導電処理した基体も
用いることができる。さらに、光導電層を形成する側と
は反対側の表面も導電処理することがより好ましい。基
体の形状は平滑表面あるいは凹凸表面であることがで
き、その厚さは、所望通りの光受容部材を形成し得るよ
うに適宜決定するが、光受容部材としての可撓性が要求
される場合には、基体としての機能が充分発揮できる範
囲内で可能な限り薄くすることができる。しかしなが
ら、基体に製造上および取り扱い上、機械的強度等の点
から通常は100μm以上とされる。特にレーザー光な
どの可干渉性光を用いて像記録を行う場合には、可視画
像において現われる、いわゆる干渉縞模様による画像不
良を解消するために、基体表面に凹凸を設けてもよい。
基体表面に設けられる凹凸は、特開昭60−16815
6号公報、同60−178457号公報、同60−22
5854号公報等に記載された公知の方法により作製す
ることができる。又、レーザー光などの可干渉光を用い
た場合の干渉縞模様による画像不良を解消する別の方法
として、基体表面に複数の球状痕跡窪み(たとえばディ
ンプル)による凹凸形状を設けてもよい。即ち、基体の
表面が光受容部材に要求される解像力よりも微少な凹凸
を有し、しかも該凹凸は、複数の球状痕跡窪みによるも
のである。基体表面に設けられる複数の球場痕跡窪みに
よる凹凸は、特開昭61−231561号公報に記載さ
れた公知の方法により作製される。
【0022】本発明の光受容部材のa−Siからなる光
受容部層はシリコン原子と、水素原子又はハロゲン原子
以外に、フェルミ準位や禁止帯幅等を調整する成分とし
てホウ素、ガリウム等のIII族原子、窒素、リン、ヒ素
等のV族原子、酸素原子、炭素原子、ゲルマニウム原子
等を単独もしくは適宜組み合わせて含有させてもよい。
また、光受容部層として、基体との密着性の向上あるい
は電荷受容能の調整等の目的で電荷注入阻止層や、表面
の保護あるいは表面からの電荷の注入の防止等の目的で
表面層を設けるなどの多層構成としてもよい。本発明に
おいて、光受容部層を形成するには、スパッタリング
法、熱CVD法、光CVD法、プラズマCVD法等、真
空堆積法が適用される。
【0023】以下、高周波プラズマCVD法、マイクロ
波プラズマCVD法およびVHFプラズマCVD法によ
って堆積膜を形成するための装置及び形成方法の一例に
ついて詳述する。図1は高周波プラズマCVD(以下
「RF−PCVD」と表記する)法による電子写真用光
受容部材の製造装置の一例を示す模式的な構成図であ
る。図1に示すRF−PCVD法による堆積膜の製造装
置の構成は前述した通りである。この装置は大別する
と、堆積装置6100、原料ガスの供給装置6200、
反応容器6111内を減圧にするための排気装置(図示
せず)から構成されている。堆積装置6100中の反応
容器6111内には、金属を母体とした補助基体611
3−aに装着された導電性円筒状基体6112があり、
該円筒状基体上には補助基体キャップ6113−bが装
着されている。基体加熱用ヒーター6114、原料ガス
導入管6115が設置され、更に高周波マッチングボッ
クス6116が接続されている。原料ガス供給装置62
00は、SiH4、H2、CH4、NO、B26、GeH4
等の原料ガスのボンベ6221〜6226とバルブ62
31〜6236、6241〜6246、6251〜62
56およびマスフローコントローラー6211〜621
6から構成され、各原料ガスのボンベはバルブ6260
を介して反応容器6111内のガス導入管6115に接
続されている。
【0024】この装置を用いた堆積膜の形成は、例えば
以下のように行なうことができる。まず、反応容器61
11内に金属を母体とし、ある特定の部分の外面が黒化
処理された基体ホルダー6113に装着された円筒状基
体6112を設置し、不図示の排気装置(例えば真空ポ
ンプ)により反応容器6111内を排気する。続いて、
基体加熱用ヒーター6114をONする。すると、基体
ホルダー6113の内面が基体加熱用ヒーター6114
からの輻射熱を直接受ける。内面で受けられた熱は補助
基体6113−aの母体の金属内部を熱伝導で伝わり、
更に補助基体6113−aの表面に伝わり、最終的に装
着された円筒状基体6112及び補助基体キャップ61
13−bの表面に伝えられる。この際に起こる熱伝導、
輻射熱を、円筒状基体6112の表面温度に対して、補
助基体キャップ6113−bの表面温度の最大温度差が
15%以下、好ましくは10%以下の所定の温度以下と
なるようにし、円筒状基体6112表面温度を50℃〜
500℃の所定の温度に制御する。堆積膜形成用の原料
ガスを反応容器6111に流入させるには、ガスボンベ
のバルブ6231〜6236、反応容器のリークバルブ
6118が閉じられていることを確認し、また、流入バ
ルブ6241〜6246、流出バルブ6251〜625
6、補助バルブ6260が開かれていることを確認し
て、まずメインバルブ6119を開いて反応容器611
1およびガス配管内6117を排気する。次に真空計6
120の読みが約6.7×10-4Paになった時点で補
助バルブ6260、流出バルブ6251〜6256を閉
じる。その後、ガスボンベ6221〜6226より各ガ
スをバルブ6231〜6236を開いて導入し、圧力調
整器6261〜6266により各ガス圧を(例えば2K
g/cm2)調整する。次に、流入バルブ6241〜6
246を徐々に開けて、各ガスをマスフローコントロー
ラー6211〜6216内に導入する。
【0025】以上のようにして成膜の準備が完了した
後、円筒状基体6112上に例えば電荷注入阻止層、感
光層、表面層等の各層の形成を行う。円筒状基体611
2が所定の温度になったところで流出バルブ6251〜
6256のうちの必要なものおよび補助バルブ6260
を徐々に開き、ガスボンベ6221〜6226から所定
のガスをガス導入管6115を介して反応容器6111
内に導入する。次にマスフローコントローラー6211
〜6216によって各原料ガスが所定の流量になるよう
に調整する。その際、反応容器6111内の圧力が13
3Pa以下の所定の圧力になるように真空計6120を
見ながらメインバルブ6119の開口を調整する。内圧
が安定したところで、電力印加手段6116のRF電源
(図示せず)を所望の電力に設定して、高周波マッチン
グボックス(図示せず)を通じて反応容器6111内に
RF電力を導入し、RFグロー放電を生起させる。この
放電エネルギーによって反応容器内に導入された原料ガ
スが分解され、円筒状基体6112上に所定のシリコン
を主成分とする堆積膜が形成されるところとなる。所望
の膜厚の形成が行われた後、RF電力の供給を止め、流
出バルブを閉じて反応容器へのガスの流入を止め、堆積
膜の形成を終える。同様の操作を複数回繰り返すことに
よって、所望の多層構造の光受容層が形成される。それ
ぞれの層を形成する際には必要なガス以外の流出バルブ
はすべて閉じられていることは言うまでもなく、また、
それぞれのガスが反応容器6111内、流出バルブ62
51〜6256から反応容器6111に至る配管内に残
留することを避けるために、流出バルブ6251〜62
56を閉じ、補助バルブ6260を開き、さらにメイン
バルブ6119を全開にして系内を一旦高真空に排気す
る操作を必要に応じて行う。また、膜形成の均一化を図
る場合は、膜形成を行なっている間は、円筒状基体61
12を駆動装置(図示せず)によって所定の速度で回転
させる。上述のガス種およびバルブ操作は各々の層の作
成条件にしたがって変更が加えられることは言うまでも
ない。
【0026】円筒状基体6112の加熱方法は、真空仕
様である発熱体であればよく、より具体的にはシース状
ヒーターの巻き付けヒーター、板状ヒーター、セラミッ
クヒーター等の電気抵抗発熱体、ハロゲンランプ、赤外
線ランプ等の熱放射ランプ発熱体、液体、気体等を温媒
とし熱交換手段による発熱体等が挙げられる。加熱手段
の表面材質は、ステンレス、ニッケル、アルミニウム、
銅等の金属類、セラミックス、耐熱性高分子樹脂等を使
用することができる。また、それ以外にも、例えば図2
に示す装置構成のように、反応容器6111以外に加熱
専用の容器を設け、円筒状基体6112を加熱した後、
反応容器6111内に真空中で円筒状基体6112を搬
送する等の方法が用いられる。RF−CVD法において
は、反応容器内のガス圧も同様に層設計にしたがって適
宜最適範囲が選択されるが、通常の場合1×10-2〜1
330Pa、好ましくは6.7×10-2〜670Pa、
最適には1×10-1〜133Paとするのが好ましい。
放電電力もまた同様に層設計にしたがって適宜最適範囲
が選択されるが、Si供給用のガスの流量に対する放電
電力を、通常の場合0.1〜7倍、好ましくは0.5〜
6倍、最適には0.7〜5倍の範囲に設定することが望
ましい。さらに、支持体の温度は、層設計にしたがって
適宜最適範囲が選択されるが、通常の場合200〜35
0℃とするのが望ましい。
【0027】次に、マイクロ波プラズマCVD(以下
「μW−PCVD」と表記する)法によって形成される
電子写真用光受容部材の製造方法について説明する。図
1に示した製造装置におけるRF−PCVD法による堆
積装置6100を、図4(A)、(B)に示す堆積装置
3100に交換して原料ガス供給装置6200と接続す
ることにより、μW−PCVD法による電子写真用光受
容部材製造装置を得ることができる。この装置は、真空
気密化構造を成した減圧にし得る反応容器3111、原
料ガスの供給装置、および反応容器内を減圧にするため
の排気装置(図示せず)から構成されている。反応容器
3111内にはマイクロ波電力を反応容器内に効率よく
透過し、かつ、真空気密を保持し得るような材料(例え
ば石英ガラス、アルミナセラミックス等)で形成された
マイクロ波導入窓3112、スタブチューナー(図示せ
ず)およびアイソレーター(図示せず)を介してマイク
ロ波電源(図示せず)に接続されているマイクロ波の導
波管3113を通してマイクロ波電力が導入可能とされ
ている。金属を母体とした補助基体3114−aに装着
された堆積膜を形成すべき円筒状基体3115、該円筒
状基体3115上には補助基体キャップ3114−bが
装着され、、基体加熱用ヒーター3116、原料ガス導
入と、プラズマ電位を制御するための外部電気バイアス
を与えるための電極を兼ねた原料ガス導入管3117が
設置されている。反応容器3111内は排気管3121
を通じて不図示の例えば拡散ポンプに接続されている。
原料ガス供給装置は、図1の原料ガス供給装置6200
を適用することができる。従って、SiH4、H2、CH
4、NO、B26、SiF4等の原料ガスのボンベ622
1〜6226とバルブ6231〜6236、6241〜
6246、6251〜6256およびマスフローコント
ローラー6211〜6216から構成することができ、
各原料ガスのボンベはバルブ6260を介して反応容器
内のガス導入管3117に接続される。また、円筒状基
体3115によって取り囲まれた空間3130が放電空
間を形成している。
【0028】μW−PCVD法によるこの装置での堆積
膜の形成は、以下のように行なうことができる。まず、
反応容器3111内に金属を母体とした補助基体311
4−aに装着された円筒状基体3115を設置し該円筒
状基体3115上には補助基体キャップ3114−bが
装着されている。駆動装置3120によって基体311
5を回転し、不図示の排気装置(例えば拡散ポンプ)に
より反応容器内3111を排気管3121を介して排気
し、反応容器3111内の圧力を1×10-6Torr以
下に調整する。続いて、基体加熱用ヒーター3116を
ONする。すると、補助基体3114−aの内面が基体
加熱用ヒーター3116からの輻射熱を直接受ける。内
面で受けられた熱は補助基体3114−aの母体の金属
内部を熱伝導で伝わり、更に補助基体3114−aの表
面に伝わり、最終的に装着された円筒状基体3115及
び補助基体キャップ3114−bの表面に伝えられる。
この際に起こる熱伝導、輻射熱を、円筒状基体3115
の表面温度に対して、補助基体キャップ3114−bの
表面温度の最大温度差が15%以下、好ましくは10%
以下の所定の温度以下となるようにし、円筒状基体31
15表面温度を50℃〜500℃の所定の温度に制御す
る。堆積膜形成用の原料ガスを反応容器3111に流入
させるには、ガスボンベのバルブ6231〜6236、
反応容器のリークバルブ(図示せず)が閉じられている
ことを確認し、また、流入バルブ6241〜6246、
流出バルブ6251〜6256、補助バルブ6260が
開かれていることを確認して、まずメインバルブ(図示
せず)を開いて反応容器3111およびガス配管(図示
せず)内を排気する。次に真空計(図示せず)の読みが
約6.7×10-4Paになった時点で補助バルブ626
0、流出バルブ6251〜6256を閉じる。その後、
ガスボンベ6221〜6226より各ガスをバルブ62
31〜6236を開いて導入し、圧力調整器6261〜
6266により各ガス圧を(例えば2Kg/cm2)調
整する。次に、流入バルブ6241〜6246を徐々に
開けて、各ガスをマスフローコントローラー6211〜
6216内に導入する。
【0029】以上のようにして成膜の準備が完了した
後、円筒状基体 3115上に電荷注入阻止層、感光層、
表面層の各層の形成を行う。円筒状基体3115が所定
の温度になったところで流出バルブ6251〜6256
のうちの必要なものおよび補助バルブ6260を徐々に
開き、ガスボンベ6221〜6226から所定のガスを
ガス導入管3117を介して反応容器3111内の放電
空間3130に導入する。次にマスフローコントローラ
ー6211〜6216によって各原料ガスが所定の流量
になるように調整する。その際、放電空間3130内の
圧力が133Pa以下の所定の圧力になるように真空計
(図示せず)を見ながらメインバルブ(図示せず)の開
口を調整する。圧力が安定した後、マイクロ波電源(図
示せず)により周波数500MHz以上の、好ましくは
2.45GHzのマイクロ波を発生させ、マイクロ波電
源(図示せず)を所望の電力に設定し、導波管311
3、マイクロ波導入窓3112を介して放電空間313
0にμWエネルギーを導入して、μWグロー放電を生起
させる。それと同時併行的に、電源3118から電極兼
ガス導入管3117に例えば直流等の電気バイアスを印
加する。かくして基体3115により取り囲まれた放電
空間3130において、導入された原料ガスは、マイク
ロ波のエネルギーにより励起されて解離し、円筒状基体
3115上に所定の堆積膜が形成される。この時、層形
成の均一化を図るため基体回転用モーター3120によ
って、所望の回転速度で回転させる。所望の膜厚の形成
が行われた後、μW電力の供給を止め、流出バルブを閉
じて反応容器へのガスの流入を止め、堆積膜の形成を終
える。同様の操作を複数回繰り返すことによって、所望
の多層構造の光受容層が形成される。
【0030】それぞれの層を形成する際には必要なガス
以外の流出バルブはすべて閉じられていることは言うま
でもなく、また、それぞれのガスが反応容器3111
内、流出バルブ6251〜6256から反応容器311
1に至る配管内に残留することを避けるために、流出バ
ルブ6251〜6256を閉じ、補助バルブ6260を
開き、さらにメインバルブ(図示せず)を全開にして系
内を一旦高真空に排気する操作を必要に応じて行う。上
述のガス種およびバルブ操作は各々の層の作成条件にし
たがって変更が加えられることは言うまでもない。円筒
状基体3115の加熱方法は、真空仕様である発熱体で
あればよく、より具体的にはシース状ヒーターの巻き付
けヒーター、板状ヒーター、セラミックヒーター等の電
気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の熱放
射ランプ発熱体、液体、気体等を温媒とし熱交換手段に
よる発熱体等が挙げられる。加熱手段の表面材質は、ス
テンレス、ニッケル、アルミニウム、銅等の金属類、セ
ラミックス、耐熱性高分子樹脂等を使用することができ
る。また、それ以外にも、反応容器3111以外に加熱
専用の容器を設け、円筒状基体3115を加熱した後、
反応容器3111内に真空中で円筒状基体3115を搬
送する等の方法が用いられる。
【0031】μW−PCVD法においては、放電空間内
の圧力としては、好ましくは1×10-1Pa以上13.
3Pa以下、より好ましくは4×10-1Pa以上6.7
Pa以下、最も好ましくは6.7×10-1Pa以上4P
a以下に設定することが望ましい。放電空間外の圧力
は、放電空間内の圧力よりも低ければよいが、放電空間
内の圧力が13.3Pa以下では、又、特に顕著には
6.7Pa以下では、放電空間内の圧力が放電空間外の
圧力の3倍以上の時、特に堆積膜特性向上の効果が大き
い。マイクロ波の反応炉までの導入方法としては導波管
による方法が挙げられ、反応炉内への導入は、1つまた
は複数の誘電体窓から導入する方法が挙げられる。この
時、炉内へのマイクロ波の導入窓の材質としてはアルミ
ナ(Al23)、窒化アルミニウム(AlN)、窒化ボ
ロン(BN)、窒化珪素(SiN)、炭化珪素(Si
C)、酸化珪素(SiO2)、酸化ベリリウム(Be
O)、テフロン、ポリスチレン等マイクロ波の損失の少
ない材料が通常使用される。電極兼ガス導入管3117
と円筒状基体3115間に発生させる電界は直流電界が
好ましく、又、電界の向きは電極兼ガス導入管3117
から円筒状基体3115に向けるのがより好ましい。電
界を発生させるために電極兼ガス導入管3117に印加
する直流電圧の平均の大きさは、15V以上300V以
下、好ましくは30V以上200V以下が適する。直流
電圧波形としては、特に制限はなく、種々の波形のもの
が本発明では有効である。つまり、時間によって電圧の
向きが変化しなければいずれの場合でもよく、例えば、
時間に対して大きさの変化しない定電圧はもちろん、パ
ルス状の電圧、及び整流機により整流された時間によっ
て大きさが変化する脈動電圧でも有効である。
【0032】また、交流電圧を印加することも有効であ
る。交流の周波数は、いずれの周波数でも問題はなく、
実用的には低周波では50Hzまたは60Hz、高周波
では13.56MHzが適する。交流の波形としてはサ
イン波でも矩形波でも、他のいずれの波形でもよいが、
実用的には、サイン波が適する。但し、この時電圧はい
ずれの場合も実効値を言う。電極兼ガス導入管3117
の大きさ及び形状は、放電を乱さないならばいずれのも
のでも良いが、実用上は直径0.1cm以上5cm以下
の円筒状の形状が好ましい。この時、電極兼ガス導入管
3117の長さも、基体に電界が均一にかかる長さであ
れば任意に設定できる。電極兼ガス導入管3117の材
質としては、表面が導電性となるものならばいずれのも
のでも良く、例えば、ステンレス,Al,Cr,Mo,
Au,In,Nb,Te,V,Ti,Pt,Pd,Fe
等の金属、これらの合金または表面を導電処理したガラ
ス、セラミック、プラスチック等が通常使用される。
【0033】次に、VHF帯の周波数を用いた高周波プ
ラズマCVD(以後「VHF−PCVD」と略記する)
法によって形成される電子写真用光受容部材の製造方法
について説明する。図1に示した製造装置におけるRF
−PCVD法による堆積装置6100を、図5に示す堆
積装置4100に交換して原料ガス供給装置6200と
接続することにより、VHF−PCVD法による電子写
真用光受容部材製造装置を得ることができる。この装置
は大別すると、真空気密化構造を成した減圧にし得る反
応容器4111、原料ガスの供給装置6200、および
反応容器内を減圧にするための排気装置(図示せず)か
ら構成されている。反応容器4111内には金属を母体
とする補助基体4113−aに装着された堆積膜を形成
すべき円筒状基体4112、該円筒状基体4112の上
には補助基体キャップ4113−bが装着され、支持体
加熱用ヒーター4114、原料ガス導入管(図示せ
ず)、電極4115が設置され、電極には更に高周波マ
ッチングボックス4116が接続されている。また、反
応容器4111内は排気管4121を通じて不図示の拡
散ポンプに接続されている。原料ガス供給装置6200
は、SiH4、GeH4、H2、CH4、B26、PH3
の原料ガスのボンベ6221〜6226とバルブ623
1〜6236、6241〜6246、6251〜625
6およびマスフローコントローラー6211〜6216
から構成され、各原料ガスのボンベはバルブ6260を
介して反応容器4111内のガス導入管(図示せず)に
接続されている。また、円筒状支持体4112によって
取り囲まれた空間4130が放電空間を形成している。
【0034】VHF−PCVD法によるこの装置での堆
積膜の形成は、以下のように行なうことができる。ま
ず、反応容器4111内に円筒状基体4112を設置
し、駆動装置4120によって円筒状基体4112を回
転し、不図示の排気装置(例えば拡散ポンプ)により反
応容器4111内を排気管4121を介して排気し、反
応容器4111内の圧力を1×10-7Torr以下に調
整する。続いて、支持体加熱用ヒーター4114により
円筒状基体4112の温度を200℃乃至350℃の所
定の温度に加熱保持する。堆積膜形成用の原料ガスを反
応容器4111に流入させるには、ガスボンベのバルブ
6231〜6236、反応容器のリークバルブ(不図
示)が閉じられていることを確認し、又 、流入バルブ
6241〜6246、流出バルブ6251〜6256、
補助バルブ6260が開かれていることを確認して、ま
ずメインバルブ(図示せず)を開いて反応容器4111
およびガス配管内を排気する。次に真空計(図示せず)
の読みが約6.7×10-4Paになった時点で補助バル
ブ6260、流出バルブ6251〜6256を閉じる。
その後、ガスボンベ6221〜6226より各ガスをバ
ルブ6231〜6236を開いて導入し、圧力調整器6
261〜6266により各ガス圧を2Kg/cm 2 に調
整する。次に、流入バルブ6241〜6246を徐々に
開けて、各ガスをマスフローコントローラー6211〜
6216内に導入する。
【0035】以上のようにして成膜の準備が完了した
後、以下のようにして円筒状支持体4112上に各層の
形成を行う。円筒状支持体4112が所定の温度になっ
たところで流出バルブ6251〜6256のうちの必要
なものおよび補助バルブ6260を徐々に開き、ガスボ
ンベ6221〜6226から所定のガスをガス導入管
(図示せず)を介して反応容器4111内の放電空間4
130に導入する。次にマスフローコントローラー62
11〜6216によって各原料ガスが所定の流量になる
ように調整する。その際、放電空間4130内の圧力が
133Pa以下の所定の圧力になるように真空計(図示
せず)を見ながらメインバルブ(図示せず)の開口を調
整する。圧力が安定したところで、例えば周波数105
MHzのVHF電源(図示せず)を所望の電力に設定し
て、マッチングボックス4116を通じて放電空間41
30にVHF電力を導入し、グロー放電を生起させる。
かくして支持体4112により取り囲まれた放電空間4
130において、導入された原料ガスは、放電エネルギ
ーにより励起されて解離し、支持体4112上に所定の
堆積膜が形成される。この時、層形成の均一化を図るた
め支持体回転用モーター4120によって、所望の回転
速度で回転させる。
【0036】所望の膜厚の形成が行われた後、VHF電
力の供給を止め、流出バルブを閉じて反応容器ヘのガス
の流入を止め、堆積膜の形成を終える。同様の操作を複
数回繰り返すことによって、所望の多層構造の光受容層
が形成される。それぞれの層を形成する際には必要なガ
ス以外の流出バルブはすべて閉じられていることは言う
までもなく、また、それぞれのガスが反応容器4111
内、流出バルブ6251〜6256から反応容器411
1に至る配管内に残留することを避けるために、流出バ
ルブ6251〜6256を閉じ、補助バルブ6260を
開き、さらにメインバルブ(不図示)を全開にして系内
を一旦高真空に排気する操作を必要に応じて行う。上述
のガス種およびバルブ操作は各々の層の作成条件にした
がって変更が加えられることは言うまでもない。いずれ
の方法においても、堆積膜形成時の支持体温度は、特に
200℃以上350℃以下、好ましくは230℃以上3
30℃以下、より好ましくは250℃以上300℃以下
が好ましい。
【0037】支持体の加熱方法は、真空仕様である発熱
体であればよく、より具体的にはシース状ヒーターの巻
き付けヒーター、板状ヒーター、セラミックヒーター等
の電気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の
熱放射ランプ発熱体、液体、気体等を温媒とし熱交換手
段による発熱体等が挙げられる。加熱手段の表面材質
は、ステンレス、ニッケル、アルミニウム、銅等の金属
類、セラミックス、耐熱性高分子樹脂等を使用すること
ができる。それ以外にも、反応容器以外に加熱専用の容
器を設け、加熱した後、反応容器内に真空中で支持体を
搬送する等の方法が用いられる。また、特にVHF−P
CVD法における放電空間の圧力として、好ましくは1
×10-1Pa以上67Pa以下、より好ましくは4×1
-1 Pa以上40Pa以下、最も好ましくは6.7×
10-1Pa以上13.3Pa以下に設定することが望ま
しい。VHF−PCVD法において放電空間に設けられ
る電極の大きさ及び形状は、放電を乱さないならばいず
れのものでも良いが、実用上は直径1mm以上10cm
以下の円筒状が好ましい。この時、電極の長さも、支持
体に電界が均一にかかる長さであれば任意に設定でき
る。電極の材質としては、表面が導電性となるものなら
ばいずれのものでも良く、例えば、ステンレス,Al,
Cr,Mo,Au,In,Nb,Te,V,Ti,P
t,Pb,Fe等の金属、これらの合金または表面を導
電処理したガラス、セラミック等が通常使用される。本
発明においては、堆積膜を形成するための支持体温度、
ガス圧の望ましい数値範囲として前記した範囲が挙げら
れるが、これらの条件は通常は独立的に別々に決められ
るものではなく、所望の特性を有する電子写真用感光体
を形成すべく相互的且つ有機的関連性に基づいて最適値
を決めるのが望ましい。
【0038】
【実験例、実施例】以下、本発明の実験例、実施例につ
いて説明するが、本発明はこれらによって何ら限定され
るものではない。
【0039】[実験例1]図1に示す電子写真用光受容
部材の製造装置を用い、アルミニウムよりなる直径80
mm、長さ358mm、肉厚5mmの円筒状基体を、表
1に示す作製条件で加熱した。この時、補助基体及び補
助基体キャップは、表2の条件のものを使用し、基体及
び補助基体キャップ表面温度測定のため、熱電対を長手
方向に取り付け、表面温度測定を行った。その結果を図
6に示す。図6において、温度むらを、基体設定温度を
100とした時の相対値で示す。
【0040】
【表1】
【0041】
【表2】 図6の結果より、基体上端部20mm以内の温度に対し
て、補助基体キャップ下端部20mm以内の温度は低
く、その最大温度差は18%であった。
【0042】[実施例1]実施例1においては、図1に
示す電子写真用光受容部材の製造装置を用い、アルミニ
ウムよりなる直径80mm、長さ358mm、肉厚5m
mの円筒状基体を、表1に示す作製条件で加熱した。こ
の時、補助基体及び補助基体キャップは表3の条件のも
のを使用し、表4に示すような温度差をつけるため、加
熱用のヒーターを改造して行った。熱電対は基体上端部
20mm位置と補助基体キャップ下端部20mm位置に
取り付け、表面温度測定を行った。表4において、基体
上端部20mm位置の温度に対する補助基体キャップの
温度の最大温度差を、基体上端部20mm位置の温度を
100とした時の相対値で示す。
【0043】
【表3】
【0044】
【表4】 また、上記の条件で加熱された円筒状基体上に、図1に
示す電子写真用光受容部材の製造装置を用い、さきに詳
述した手順にしたがって、RFグロー放電法により表5
に示す作製条件で電子写真用光受容部材を作製した。作
成した電子写真用光受容部材について、比較例1を用い
て下記の評価を行なった。その結果を表6に示す。 『欠陥』光学顕微鏡を用いて50倍の倍率で9cm2
範囲で電子写真用感光体の表面を観察し、20ミクロン
以上の欠陥が10個未満のものを◎、20ミクロン以上
の欠陥が20個未満のものを○、20ミクロン以上の欠
陥が30個未満のものを△、20ミクロン以上の欠陥が
30個を超えるのものを×とした4段階評価を行った。 『黒ぽち』作成した電子写真用光受容部材をキヤノン製
複写機NP−9330を高速対応に改造した電子写真装
置にセットし、キヤノン製中間調チャート(FY9−9
042)を原稿台に置きコピーした時に得られた画像の
同一画像内にある直径0.2mm以下の黒ぽちについて
評価した。 ◎は、「特に良好」即ち、黒ぽちが殆どない事を確認し
た。 ○は「良好」 △は「実用上問題なし」 ×は「実用上問題有り」
【0045】
【表5】
【0046】
【表6】 表6の結果より、基体上端部20mm以内の温度に対し
て、補助基体キャップ下端部20mm以内の温度の最大
温度差が、15%以下、好ましくは10%以下にする事
で、欠陥の少ない良好な画像を得る事が出来た。
【0047】[実施例2]実施例2においては、図1に
示す電子写真用光受容部材の製造装置を用い、アルミニ
ウムよりなる直径80mm、長さ358mm、肉厚5m
mの円筒状基体を、表1に示す作製条件で加熱した。こ
の時、補助基体及び補助基体キャップは表7の条件のも
のを使用し、表8に示すように補助基体キャップ外面の
粗さを変化させた時の基体及び補助基体キャップの表面
温度を測定した。熱電対は基体上端部20mm位置と補
助基体キャップ下端部20mm位置に取り付け、表面温
度測定を行った。その結果を図7に示す。図7におい
て、基体上端部20mm位置の温度に対する補助基体キ
ャップの温度の最大温度差を、基体上端部20mm位置
の温度を100とした時の相対値で示す。
【0048】
【表7】
【0049】
【表8】 図7の結果より、補助基体キャップの表面粗さが粗くな
るにつれて、基体上端部20mm以内の温度に対して、
補助基体下端部20mm以内の温度の最大温度差が大き
くなる。また、上記の条件で加熱された円筒状基体上
に、図1に示す電子写真用光受容部材の製造装置を用
い、さきに詳述した手順にしたがって、RFグロー放電
法により表5に示す作製条件で電子写真用光受容部材を
作製した。作成した電子写真用光受容部材について、比
較例2を用いて実施例1と同様の評価を行った。その結
果を表9に示す。
【0050】
【表9】 表9の結果より、補助基体キャップ表面粗さがRzで、
40μm以下、好ましくは30μm以下にする事で基体
上端部20mm以内の温度に対して、補助基体キャップ
下端部20mm以内の温度の温度差を抑制することがで
き、その結果欠陥の少ない良好な画像を得る事が出来
た。
【0051】[実施例3]実施例3においては、図1に
示す電子写真用光受容部材の製造装置を用い、アルミニ
ウムよりなる直径80mm,長さ358mm,肉厚3m
mの円筒状導電性基体上に、さきに詳述した手順にした
がって、RFグロー放電法により表10に示す作製条件
で電子写真用光受容部材を作製した。この時、補助基体
及び補助基体キャップは表11の寸法形状のものを用い
て行い、実施例1と同様、欠陥、黒ぽちについて評価し
た。その結果を表12に示す。表12の結果より、基体
ホルダー内面をセラミックで構成した場合においても、
同様に良好な結果が得られた。
【0052】
【表10】
【0053】
【表11】
【0054】
【表12】 [実施例4]実施例4においては、図4に示す電子写真
用光受容部材の製造装置を用い、アルミニウムよりなる
直径108mm、長さ358mm、肉厚5mmの円筒状
導電性基体上に、さきに詳述した手順にしたがって、マ
イクロ波グロー放電法により表13に示す作製条件で電
子写真用光受容部材を作製した。この時、補助基体及び
補助基体キャップは実施例3と同様のものとした。作製
した電子写真用感光体を、実施例1と同様、温度特性、
光メモリーについて評価したところ、実施例3と同様非
常に良好な結果であった。
【0055】
【表13】 [実施例5]実施例5においては、図5に示す電子写真
用光受容部材の製造装置を用い、アルミニウムよりなる
直径80mm、長さ358mm、肉厚5mmの円筒状導
電性基体上に、さきに詳述した手順にしたがって、VH
F−PCVD法により表14に示す作製条件で電子写真
用光受容部材を作製した。この時、補助基体及び補助基
体キャップは実施例4と同様のものとした。作製した電
子写真用感光体を、実施例1と同様、欠陥、黒ぽちにつ
いて評価したところ、実施例4と同様非常に良好な結果
であった。
【0056】
【表14】
【0057】
【発明の効果】以上説明したように、本発明によれば、
基体の上端部における温度と、該基体の上部に設けられ
ている補助基体キャップの下端部における温度との最大
温度差が、所定以下となるように構成することによっ
て、該補助基体キャップに堆積する堆積膜の密着性を向
上させ、基体以外に付着した膜等の生成物が基体へ飛散
することを防止することが可能となり、膜厚および膜質
が均一な堆積膜を定常的に形成することができ、また、
画像欠陥を激減しうる堆積膜形成方法及び装置を実現す
ることができる。その結果、特に、a−Siで構成され
た従来の光受容部材における諸問題を解決することがで
き、極めて優れた電気的特性、光学的特性、光導電特
性、画像特性、耐久性および使用環境特性を示す光受容
部材を形成することができる。また、本発明によると、
形成される膜の諸物性、堆積膜形成速度、再現性及び膜
の生産性を向上させ、量産化を行う場合その歩留まりを
飛躍的に向上させることが可能となる。
【図面の簡単な説明】
【図1】高周波プラズマCVD法による電子写真用光受
容部材の製造装置の一例を示す模式的構成図である。
【図2】電子写真用光受容部材を形成するための装置の
一例を示すものである。
【図3】本発明による光受容部材の形成方法の好適な実
施態様例の構成を説明するための模式的構成図である。
【図4】本発明における電子写真用光受容部材を形成す
るための装置の一例を示すものであり、μWグロー放電
法による電子写真用光受容部材の製造装置の模式的説明
図である。(A)は、装置の側断面図であり、(B)
は、X−X’における横断面図である。
【図5】本発明における電子写真用光受容部材を形成す
るための装置の一例を示すものであり、VHFグロー放
電法による電子写真用光受容部材の製造装置の模式的説
明図である。
【図6】本発明の実験例1における温度むらを、基体設
定温度を100とした時の相対値を示すものである。
【図7】本発明の実施例2における基体上端部20mm
位置の温度に対する補助基体キャップの温度の最大温度
差を、基体上端部20mm位置の温度を100とした時
の相対値を示すものである。
【符号の説明】
101:補助基体 102:基体 103:補助基体キャップ 104:運搬用取っ手 105:加熱手段 106:置き台 107:補助基体内面 3100:μWグロー放電法による堆積膜形成装置 3111:反応容器 3112:マイクロ波導入窓 3113:導波管 3114−a:補助基体 3114−b:補助基体キャップ 3115:円筒状基体 3116:基体加熱用ヒーター 3117:原料ガス導入管兼バイアス電極 3118:バイアス電源 3120:基体回転用モーター 3121:排気管 3130:放電空間 4100:VHFグロー放電法による堆積膜形成装置 4111:反応容器 4112:円筒状基体 4113−a:補助基体 4113−b:補助基体キャップ 4114:基体加熱用ヒーター 4115:電極 4116:マッチングボックス 4121:排気管 4130:放電空間 510:真空投入容器 511:真空加熱容器 512:真空反応容器 513:真空冷却容器 514〜517:排気装置 518〜521:真空排気装置 522〜525:ゲート 526〜529:真空バルブ 530〜533:排気バルブ 534:真空搬送容器 535:ゲート 6100:RFグロー放電法による堆積膜形成装置 6111:反応容器 6112:円筒状基体 6113−a:補助基体 6113−b:補助基体キャップ 6114:基体加熱用ヒーター 6115:原料ガス導入管 6116:マッチングボックス 6117:原料ガス配管 6118:反応容器リークバルブ 6119:メイン排気バルブ 6120:真空計 6121:底壁 6122:碍子 6123:ゲート 6124:排気管 6200:原料ガス供給装置 6211〜6216:マスフローコントローラー 6221〜6226:原料ガスボンベ 6241〜6246:ガス流入バルブ 6251〜6256:ガス流出バルブ 6261〜6266:圧力調整器
フロントページの続き (72)発明者 松岡 秀彰 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 高井 康好 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内

Claims (20)

    【特許請求の範囲】
  1. 【請求項1】補助基体に装着した基体の上部に補助基体
    キャップを設け、減圧気相成長法により、該基体の表面
    に堆積膜を形成する堆積膜形成方法において、該基体の
    上端部における温度と、該基体の上部に設けられている
    該補助基体キャップの下端部における温度との最大温度
    差が、所定以下となるようにして該補助基体キャップに
    堆積する堆積膜の密着性を向上させ、堆積膜を形成する
    ことを特徴とする堆積膜形成方法。
  2. 【請求項2】前記堆積膜が、シリコン原子を母材とする
    非晶質材料からなる光受容部材を形成する堆積膜である
    ことを特徴とする請求項1に記載の堆積膜形成方法。
  3. 【請求項3】前記最大温度差が、15%以下、または1
    0%以下であることを特徴とする請求項1または請求項
    2に記載の堆積膜形成方法。
  4. 【請求項4】前記最大温度差は、前記基体上端から20
    mm以内における該基体の上端部における温度と、前記
    補助基体キャップ下端から20mm以内における該補助
    基体キャップの下端部における温度との最大温度差であ
    ることを特徴とする請求項1から請求項3のいずれか1
    項に記載の堆積膜形成方法。
  5. 【請求項5】前記補助基体キャップは、外面の表面粗さ
    がRzで、40μm以下、または30μm以下であるこ
    とを特徴とする請求項1から請求項4のいずれか1項に
    記載の堆積膜形成方法。
  6. 【請求項6】前記補助基体及び補助基体キャップの母体
    となる金属が、前記基体と同種類の金属を含むことを特
    徴とする請求項1から請求項5のいずれか1項に記載の
    堆積膜形成方法。
  7. 【請求項7】前記補助基体及び補助基体キャップの母体
    となる金属が、Alであることを特徴とする請求項6項
    に記載の堆積膜形成方法。
  8. 【請求項8】前記補助基体内側の表面が、セラミックで
    構成されていることを特徴とする請求項1から請求項5
    のいずれか1項に記載の堆積膜形成方法。
  9. 【請求項9】前記補助基体内側の表面のセラミックは、
    耐酸性に優れた材料、または熱輻射を受け易い材料のう
    ちの、少なくともいずれか一つから構成されていること
    を特徴とする請求項8に記載の堆積膜形成方法。
  10. 【請求項10】前記補助基体内側の表面のセラミック
    が、Al23とCr23の混在系であることを特徴とす
    る請求項8または請求項9のいずれか1項に記載の堆積
    膜形成方法。
  11. 【請求項11】補助基体に装着した基体の上部に補助基
    体キャップを設け、減圧気相成長法により、該基体の表
    面に堆積膜を形成する堆積膜形成装置において、基体加
    熱手段からの輻射熱による該補助基体キャップの表面温
    度が低下することを抑制し、該基体の上端部における温
    度と、該補助基体キャップの下端部における温度との最
    大温度差が、小さくなるように構成したことを特徴とす
    る堆積膜形成装置。
  12. 【請求項12】前記堆積膜が、シリコン原子を母材とす
    る非晶質材料からなる光受容部材を形成する堆積膜であ
    ることを特徴とする請求項11に記載の堆積膜形成装
    置。
  13. 【請求項13】前記最大温度差が、15%以下、または
    10%以下であることを特徴とする請求項11または請
    求項12に記載の堆積膜形成装置。
  14. 【請求項14】前記最大温度差は、前記基体上端から2
    0mm以内における該基体の上端部における温度と、前
    記補助基体キャップ下端から20mm以内における該補
    助基体キャップの下端部における温度との最大温度差で
    あることを特徴とする請求項11から請求項13のいず
    れか1項に記載の堆積膜形成装置。
  15. 【請求項15】前記補助基体キャップは、外面の表面粗
    さがRzで、40μm以下、または30μm以下である
    ことを特徴とする請求項11から請求項14のいずれか
    1項に記載の堆積膜形成装置。
  16. 【請求項16】前記補助基体及び補助基体キャップの母
    体となる金属が、前記基体と同種類の金属を含むことを
    特徴とする請求項11から請求項15のいずれか1項に
    記載の堆積膜形成装置。
  17. 【請求項17】前記補助基体及び補助基体キャップの母
    体となる金属が、Alであることを特徴とする請求項1
    6項に記載の堆積膜形成装置。
  18. 【請求項18】前記補助基体内側の表面が、セラミック
    で構成されていることを特徴とする請求項11から請求
    項17のいずれか1項に記載の堆積膜形成装置。
  19. 【請求項19】前記補助基体内側の表面のセラミック
    は、耐酸性に優れた材料、または熱輻射を受け易い材料
    のうちの、少なくともいずれか一つから構成されている
    ことを特徴とする請求項18に記載の堆積膜形成装置。
  20. 【請求項20】前記補助基体内側の表面のセラミック
    が、Al23とCr23の混在系であることを特徴とす
    る請求項18または請求項19のいずれか1項に記載の
    堆積膜形成装置。
JP16660099A 1998-06-18 1999-06-14 堆積膜形成方法 Expired - Fee Related JP4095205B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16660099A JP4095205B2 (ja) 1998-06-18 1999-06-14 堆積膜形成方法
US09/334,176 US6335281B1 (en) 1998-06-18 1999-06-16 Deposited film forming process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18819298 1998-06-18
JP10-188192 1998-06-18
JP16660099A JP4095205B2 (ja) 1998-06-18 1999-06-14 堆積膜形成方法

Publications (2)

Publication Number Publication Date
JP2000073173A true JP2000073173A (ja) 2000-03-07
JP4095205B2 JP4095205B2 (ja) 2008-06-04

Family

ID=26490901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16660099A Expired - Fee Related JP4095205B2 (ja) 1998-06-18 1999-06-14 堆積膜形成方法

Country Status (2)

Country Link
US (1) US6335281B1 (ja)
JP (1) JP4095205B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286742A (ja) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd 水素分離膜
JP2010134056A (ja) * 2008-12-02 2010-06-17 Canon Inc 光受容部材の形成方法
JP2011257657A (ja) * 2010-06-10 2011-12-22 Canon Inc 電子写真感光体の形成方法及び形成装置
JP2014026101A (ja) * 2012-07-26 2014-02-06 Canon Inc 電子写真感光体の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212720A (ja) 2001-01-23 2002-07-31 Canon Inc スパッタリング方法およびスパッタリング装置
EP1293587A1 (en) * 2001-09-14 2003-03-19 Kabushiki Kaisha Kobe Seiko Sho Vacuum coating apparatus with central heater
JP2003257875A (ja) * 2002-03-05 2003-09-12 Fujitsu Ltd 半導体装置の製造方法および成膜方法
US7150792B2 (en) * 2002-10-15 2006-12-19 Kobe Steel, Ltd. Film deposition system and film deposition method using the same
US7501305B2 (en) * 2006-10-23 2009-03-10 Canon Kabushiki Kaisha Method for forming deposited film and photovoltaic element
JP6867102B2 (ja) * 2014-10-22 2021-04-28 Jx金属株式会社 銅放熱材、キャリア付銅箔、コネクタ、端子、積層体、シールド材、プリント配線板、金属加工部材、電子機器、及び、プリント配線板の製造方法
TWI686106B (zh) * 2019-01-25 2020-02-21 國立清華大學 場發射手持式常壓電漿產生裝置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035059B2 (ja) 1977-12-22 1985-08-12 キヤノン株式会社 電子写真感光体およびその製造方法
FR2551244B1 (fr) * 1983-08-26 1985-10-11 Thomson Csf Procede de fabrication d'un substrat pour dispositif a commande electrique et ecran de visualisation elabore a partir d'un tel substrat
JPS6086276A (ja) 1983-10-17 1985-05-15 Canon Inc 放電による堆積膜の形成方法
JPS60168156A (ja) 1984-02-13 1985-08-31 Canon Inc 光受容部材
JPS60178457A (ja) 1984-02-27 1985-09-12 Canon Inc 光受容部材
JPS60225854A (ja) 1984-04-24 1985-11-11 Canon Inc 光受容部材用の支持体及び光受容部材
JPS61189626A (ja) * 1985-02-18 1986-08-23 Canon Inc 堆積膜形成法
JPS61231561A (ja) 1985-04-06 1986-10-15 Canon Inc 光導電部材用の支持体及び該支持体を有する光導電部材
JPH0689456B2 (ja) * 1986-10-01 1994-11-09 キヤノン株式会社 マイクロ波プラズマcvd法による機能性堆積膜形成装置
DE3742110C2 (de) * 1986-12-12 1996-02-22 Canon Kk Verfahren zur Bildung funktioneller aufgedampfter Filme durch ein chemisches Mikrowellen-Plasma-Aufdampfverfahren
US5016565A (en) * 1988-09-01 1991-05-21 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus for forming functional deposited film with means for stabilizing plasma discharge
US5223453A (en) * 1991-03-19 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination
JP3076414B2 (ja) * 1991-07-26 2000-08-14 キヤノン株式会社 マイクロ波プラズマcvd法による堆積膜形成装置
JPH07181700A (ja) 1993-12-22 1995-07-21 Canon Inc 電子写真感光体の製造方法
JP3563789B2 (ja) 1993-12-22 2004-09-08 キヤノン株式会社 電子写真感光体の製造方法及び該製造方法に用いられる治具
GB9412918D0 (en) * 1994-06-28 1994-08-17 Baxendine Alar R Apparatus for uniformly heating a substrate
JP3368109B2 (ja) * 1995-08-23 2003-01-20 キヤノン株式会社 電子写真用光受容部材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286742A (ja) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd 水素分離膜
JP2010134056A (ja) * 2008-12-02 2010-06-17 Canon Inc 光受容部材の形成方法
JP2011257657A (ja) * 2010-06-10 2011-12-22 Canon Inc 電子写真感光体の形成方法及び形成装置
JP2014026101A (ja) * 2012-07-26 2014-02-06 Canon Inc 電子写真感光体の製造方法

Also Published As

Publication number Publication date
JP4095205B2 (ja) 2008-06-04
US6335281B1 (en) 2002-01-01

Similar Documents

Publication Publication Date Title
EP0717127B1 (en) Plasma processing method and apparatus
JP2000073173A (ja) 堆積膜形成方法及び堆積膜形成装置
JP3745095B2 (ja) 堆積膜形成装置および堆積膜形成方法
JPH08232070A (ja) 堆積膜形成装置及びそれに用いられる電極
JP2768539B2 (ja) 堆積膜形成装置
JPH11125924A (ja) 光受容部材の形成装置及び形成方法
JP3135031B2 (ja) 堆積膜形成装置
JP2907404B2 (ja) 堆積膜形成装置
JP3606399B2 (ja) 堆積膜形成装置
JP5058510B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP2994658B2 (ja) マイクロ波cvd法による堆積膜形成装置及び堆積膜形成方法
JPH09244284A (ja) 光受容部材の製造方法
JPH1126388A (ja) 堆積膜の形成装置及び堆積膜形成方法
JPH09127714A (ja) 光受容部材の製造方法および製造装置
JP3459700B2 (ja) 光受容部材および光受容部材の製造方法
JP2925291B2 (ja) 堆積膜形成装置
JP2925310B2 (ja) 堆積膜形成方法
JPH06324505A (ja) 光受容部材の形成装置
JP2020002419A (ja) 堆積膜形成装置および堆積膜形成方法
JP3323681B2 (ja) 電子写真感光体の製造方法
JP3402952B2 (ja) 堆積膜形成方法及び堆積膜形成装置
JPH0897161A (ja) 高周波プラズマcvd法による堆積膜形成方法及び堆積膜形成装置
JPH0943884A (ja) 電子写真感光体の形成方法
JP2009108370A (ja) 堆積膜形成装置
JP2004193419A (ja) 真空処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees