ES2639035T3 - Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis - Google Patents

Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis Download PDF

Info

Publication number
ES2639035T3
ES2639035T3 ES11757949.0T ES11757949T ES2639035T3 ES 2639035 T3 ES2639035 T3 ES 2639035T3 ES 11757949 T ES11757949 T ES 11757949T ES 2639035 T3 ES2639035 T3 ES 2639035T3
Authority
ES
Spain
Prior art keywords
approximately
protein
subfamily
rlp2086
polysorbate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11757949.0T
Other languages
English (en)
Inventor
Lakshmi Khandke
Rasappa Arumugham
Bounthon Loun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44653380&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2639035(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wyeth LLC filed Critical Wyeth LLC
Application granted granted Critical
Publication of ES2639035T3 publication Critical patent/ES2639035T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4172Imidazole-alkanecarboxylic acids, e.g. histidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers

Abstract

Una composición inmunogénica que comprende un detergente, un polipéptido LP2086 (fHBP) de la subfamilia B, un polipéptido LP2086 (fHBP) de la subfamilia A y aluminio, en la que la proporción molar entre el detergente y la proteína está entre 0,5:1 y 10:1 y en la que la concentración de aluminio está entre 0,1 mg/ml y 1 mg/ml.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
potencia, en comparación con un patrón de referencia, durante al menos 1 año, 2 años, 3 años, 4 años o 5 años. Los términos “estable” y “estabilidad” también se refieren a la capacidad de un antígeno para mantener epítopos o inmunorreactividad durante un periodo de tiempo. Por ejemplo, un antígeno en una formulación estable de la invención puede mantener al menos un 50 %, 0,60 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 96 %, 97 %, 98 %, 99 5 % o 100 % de sus epítopos o inmunorreactividad, en comparación con un patrón de referencia, durante al menos 1 mes, 2 meses, 3 meses, 4 meses, 5 meses, 6 meses, 9 meses, 12 meses, 18 meses, 24 meses, 30 meses, 36 meses, 42 meses, 48 meses, 54 meses o 60 meses. En algunas realizaciones, la estabilidad se mide con respecto a una condición ambiental. Ejemplos no limitantes de condiciones ambientales incluyen la luz, la temperatura, los ciclos de congelación/descongelación, la agitación y el pH. Un experto en la técnica podría determinar la presencia de epítopos antigénicos o inmunorreactividad usando los procedimientos divulgados en el presente documento u otros procedimientos conocidos en la técnica. Véase, por ejemplo, McNeil y col. Vaccine, 27: 3417-3421 (2009). En algunas realizaciones, la estabilidad de un antígeno se mide desde la fecha de su formulación. En algunas realizaciones, la estabilidad de un antígeno se mide desde la fecha de un cambio en sus condiciones de almacenamiento. Ejemplos no limitantes de cambios en las condiciones de almacenamiento incluyen cambios de
15 congelado a refrigerado, cambios de congelado a temperatura ambiente, cambios de refrigerado a temperatura ambiente, cambios de refrigerado a congelado, cambios de temperatura ambiente a congelado, cambios de temperatura ambiente a refrigerado, cambios de luz a oscuridad o introducción de agitación.
El término “estabilizante” se refiere a un compuesto que se une a un antígeno y mantiene los epítopos o inmunorreactividad del antígeno durante un periodo de tiempo. Los estabilizantes se conocen en la técnica. Ejemplos de estabilizantes incluyen cationes multivalentes, por ejemplo de calcio o aluminio.
El término "sujeto" se refiere a un mamífero, ave, pez, reptil o cualquier otro animal. El término “sujeto” también incluye seres humanos. El término “sujeto” también incluye mascotas domésticas. Ejemplos no limitantes de mascotas domésticas incluyen: Perros, gatos, cerdos, conejos, ratas, ratones, jerbos, hámster, cobayas, hurones, aves, serpientes, lagartijas, peces, tortugas y ranas. El término “sujeto” también incluye animales de ganado.
25 Ejemplos no limitantes de animales de ganado incluyen: alpacas, bisontes, camellos, ganado vacuno, ciervos, cerdos, caballos, llamas, mulas, burros, ovejas, cabras, conejos, renos, yak, pollos, gansos y pavos.
Los términos "vacuna" o "composición de vacuna", que se usan de forma intercambiable, se refieren a composiciones farmacéuticas que comprenden al menos una composición inmunogénica que induce una respuesta inmunitaria en un sujeto.
Descripción general
La presente invención surge del nuevo descubrimiento de que los antígenos rLP2086 de la subfamilia B, pero no los antígenos rLP2086 de la subfamilia A, pierden potencia en el tiempo en una formulación de vacuna bivalente y, por tanto, son inestables. Variando los componentes de la formulación bivalente se determinó que proporciones molares altas entre detergente y proteína en la formulación de vacuna bivalente tenía como resultado inestabilidad específica
35 del antígeno rLP2086 de la subfamilia B. Reduciendo la proporción molar entre detergente y proteína en las formulaciones bivalentes y monovalentes se tuvo como resultado un incremento de la estabilidad, determinado por el mantenimiento de la potencia en el tiempo, del antígeno rLP2086 de la subfamilia B sin afectar a la estabilidad del antígeno rLP2086 de la subfamilia A. Este resultado es sorprendente porque las lipoproteínas normalmente se purifican y almacenan usando concentraciones de detergente altas para prevenir la agregación de sus restos lipídicos hidrófobos. En consecuencia, en algunas realizaciones, la invención proporciona una composición inmunogénica que comprende un antígeno rLP2086 de la subfamilia B y una proporción molar detergente-proteína baja. En algunas realizaciones, la invención proporciona un procedimiento de mantener la estabilidad de un antígeno rLP2086 de la subfamilia B en una composición inmunogénica que comprende la etapa de almacenar el antígeno rLP2086 de la subfamilia B en un tampón que comprende una proporción molar detergente-proteína baja.
45 En estudios adicionales se reveló que las formulaciones de proporción molar baja tenían como resultado la agregación de los antígenos rLP2086 de las subfamilias A y B tras agitación de las composiciones inmunogénicas de proporción molar baja. No obstante, el incremento de la concentración de aluminio en las composiciones de proporción molar baja previno la agregación de los antígenos rLP2086 de las subfamilias A y B, incluso con agitación. Además, los antígenos rLP2086 de la subfamilias A son más sensibles a los efectos de las proporciones molares del detergente bajas en ausencia de aluminio. En consecuencia, en algunas realizaciones, la invención proporciona una composición inmunogénica que comprende un antígeno rLP2086 de la subfamilia A, un antígeno rLP2086 de la subfamilia B, una concentración alta de aluminio y una proporción molar detergente-proteína baja. En algunas realizaciones, la invención proporciona un procedimiento de mantener la estabilidad de un antígeno rLP2086 de la subfamilia A y de de un antígeno rLP2086 de la subfamilia B en una composición inmunogénica que
55 comprende la etapa de almacenar el antígeno rLP2086 de la subfamilia A y el antígeno rLP2086 de la subfamilia B en un tampón que comprende una concentración alta de aluminio y una proporción molar detergente-proteína baja.
Composiciones inmunogénicas
En la técnica se conocen composiciones inmunogénicas que incluyen una proteína codificada por una secuencia de nucleótidos del ORF2086 de Neisseria meningitidis.
Ejemplos de composiciones inmunogénicas incluyen las descritas en las publicaciones de solicitud de patente de EE.UU. nº US 20060257413 y US 20090202593, que se incorporan en el presente documento por referencia en su totalidad. Dichas composiciones inmunogénicas descritas en ellas incluyen una proteína que exhibe actividad bactericida identificada como proteína ORF2086, porciones inmunogénicas de la misma y/o equivalentes biológicos
5 de la misma. La proteína ORF2086 se refiere a una proteína codificada por el marco de lectura abierto 2086 de especies de Neisseria.
La proteína puede ser una proteína recombinante o una proteína aislada de especies de Neisseria nativas. Por ejemplo, las proteínas ORF2086 de Neisseria se pueden aislar de cepas bacterianas, tales como de las especies de Neisseria, incluidas las cepas de Neisseria meningitidis (serogrupos A, B, C, D, W-135, X, Y, Z y 29E), Neisseria
10 gonorrhoeae y Neisseria lactamica, así como porciones inmunogénicas y/o equivalentes biológicos de dichas proteínas.
Las proteínas ORF2086 incluyen las proteínas 2086 de la subfamilia A y las proteínas de la subfamilia B, porciones inmunogénicas de las mismas y/o equivalentes biológicos de las mismas. Las proteínas ORF2086 o equivalentes de las mismas pueden estar lipidadas o no lipidadas. Preferentemente, la proteína ORF2086 de Neisseria está lipidada.
15 En una realización, la composición inmunogénica incluye una proteína aislada que tiene una identidad de secuencia de aminoácidos de al menos un 95 % con una proteína codificada por una secuencia de nucleótidos de ORF2086 de Neisseria.
En una realización, la composición inmunogénica incluye una proteína aislada que tiene una identidad de secuencia de aminoácidos de al menos un 95 % con una proteína de la subfamilia A codificada por una secuencia de
20 nucleótidos de ORF2086 de Neisseria. Preferentemente, la composición inmunogénica incluye una proteína aislada de la subfamilia A codificada por una secuencia de nucleótidos de ORF2086 de Neisseria.
En otra realización, la composición inmunogénica incluye una proteína aislada que tiene una identidad de secuencia de aminoácidos de al menos un 95 % con una proteína de la subfamilia B codificada por una secuencia de nucleótidos de ORF2086 de Neisseria. Preferentemente, la composición inmunogénica incluye una proteína aislada
25 de la subfamilia B codificada por una secuencia de nucleótidos de ORF2086 de Neisseria. En algunas realizaciones, la proteína ORF2086 de la subfamilia B es una variante B01.
En otra realización más, la composición inmunogénica incluye una proteína aislada que tiene una identidad de secuencia de aminoácidos de al menos un 95 % con una proteína de la subfamilia A codificada por una secuencia de nucleótidos de ORF2086 de Neisseria y una proteína aislada que tiene una identidad de secuencia de
30 aminoácidos de al menos un 95 % con una proteína de la subfamilia B codificada por una secuencia de nucleótidos de ORF2086 de Neisseria. Preferentemente, la composición inmunogénica incluye una proteína aislada de la subfamilia A codificada por una secuencia de nucleótidos de ORF2086 de Neisseria y una proteína aislada de la subfamilia B codificada por una secuencia de nucleótidos de ORF2086 de Neisseria.
En una realización, la composición inmunogénica incluye una proporción 1:1 entre una proteína de la subfamilia A y 35 una proteína de la subfamilia B.
La composición inmunogénica puede incluir una proteína codificada por una secuencia de nucleótidos de ORF2086 de Neisseria, polinucleótidos o equivalentes de la misma, como único inmunógeno activo en la composición inmunogénica. Como alternativa, la composición inmunogénica puede incluir además inmunógenos activos, incluidos polipéptidos inmunogénicos de Neisseria sp., o proteínas inmunológicamente activas de uno o más patógenos
40 microbianos distintos (p. ej., virus, prión, bacteria u hongo, sin limitaciones) o polisacárido capsular. Las composiciones pueden comprender una o más proteínas, fragmentos o compuestos farmacéuticos deseados, según se desee para una indicación escogida.
En la presente invención se contempla cualquier composición inmunogénica multiantígeno o multivalente. Por ejemplo, la composición inmunogénica puede incluir combinaciones de dos o más proteínas ORF2086, una
45 combinación de una proteína ORF2086 con una o más proteínas Por A, una combinación de una proteína ORF2086 con polisacáridos y/o conjugados polisacáridos del serogrupo A, C, Y y W135 de meningococcus, una combinación de una proteína ORF2086 con combinaciones de meningococcus y pneumococcus o una combinación de cualquiera de los anteriores en una forma adecuada para una administración deseada, por ejemplo para liberación en la mucosa. Los expertos en la técnica podrán formular fácilmente dichas composiciones multiantígeno o multivalentes.
50 La presente invención también contempla regímenes multi-inmunización en los que cualquier composición útil contra un patógeno se puede combinar en o con las composiciones de la presente invención. Por ejemplo, sin limitaciones, se puede administrar a un paciente la composición inmunogénica de la presente invención y otra composición inmunológica para inmunizar contra el papilomavirus humano (PVH), tal como la vacuna contra el PVH GARDASIL®, como parte de una régimen de multi-inmunización. Los expertos en la técnica podrán seleccionar fácilmente
55 composiciones inmunogénicas para usar junto con las composiciones inmunogénicas de la presente invención para los fines de desarrollar e implementar régimenes de multi-inmunización.
Los polipéptidos ORF2086, fragmentos y equivalentes se pueden usar como parte de una composición
imagen7
imagen8
aproximadamente 1,4, aproximadamente 1,5, aproximadamente 1,6, aproximadamente 1,7, aproximadamente 1,8, aproximadamente 1,9, aproximadamente 2,0, aproximadamente 2,1, aproximadamente 2,2, aproximadamente 2,3, aproximadamente 2,4, aproximadamente 2,5, aproximadamente 2,6, aproximadamente 2,7, aproximadamente 2,8, aproximadamente 2,9, aproximadamente 3,0, aproximadamente 3,1, aproximadamente 3,2, aproximadamente 3,3,
5 aproximadamente 3,4, aproximadamente 3,5, aproximadamente 3,6, aproximadamente 3,7, aproximadamente 3,8, aproximadamente 3,9, aproximadamente 4,0, aproximadamente 4,1, aproximadamente 4,2, aproximadamente 4,3, aproximadamente 4,4, aproximadamente 4,5, aproximadamente 4,6, aproximadamente 4,7, aproximadamente 4,8, aproximadamente 4,9, aproximadamente 5,0, aproximadamente 5,5, aproximadamente 6,0, aproximadamente 6,5, aproximadamente 7,0, aproximadamente 7,5, aproximadamente 8,0, aproximadamente 8,5, aproximadamente 9,0, aproximadamente 9,5, o aproximadamente 10. En algunas realizaciones, el detergente es un detergente no iónico. En algunas realizaciones, el detergente es un detergente de polisorbato. En algunas realizaciones, el detergente es polisorbato 80.
En algunas realizaciones, la composición inmunogénica comprende además un catión multivalente. En algunas realizaciones, el catión multivalente es calcio o aluminio. En algunas realizaciones, el aluminio está presente como 15 uno o más de AlPO4, Al(OH)3, Al2(SO4)3 y alumbre. En algunas realizaciones, la composición inmunogénica comprende entre aproximadamente 0,1 mg/ml y aproximadamente 1 mg/ml, entre aproximadamente 0,25 mg/ml y aproximadamente 0,75 mg/ml o entre aproximadamente 0,4 mg/ml y aproximadamente 0,6 mg/ml de aluminio. En algunas realizaciones, la composición inmunogénica comprende aproximadamente 0,1 mg/ml, aproximadamente 0,15 mg/ml; aproximadamente 0,2 mg/ml, aproximadamente 0,25 mg/ml, aproximadamente 0,3 mg/ml, aproximadamente 0,35 mg/ml, aproximadamente 0,4 mg/ml, aproximadamente 0,45 mg/ml, aproximadamente 0,5 mg/ml, aproximadamente 0,55 mg/ml, aproximadamente 0,6 mg/ml, aproximadamente 0,65 mg/ml, aproximadamente 0,7 mg/ml, aproximadamente 0,75 mg/ml, aproximadamente 0,8 mg/ml, aproximadamente 0,85 mg/ml, 0,9 mg/ml, aproximadamente 0,95 mg/ml, o aproximadamente 1 mg/ml de aluminio. En algunas realizaciones, hay al menos 90 %, al menos 95 %, al menos 96 %, al menos 97 %, al menos 98 %, al menos 99 % o
25 100 % de unión de aluminio a la proteína.
En algunas realizaciones, la composición inmunogénica comprende además tampón que comprende histidina. En algunas realizaciones, la concentración de histidina está entre aproximadamente 2mM y aproximadamente 20 mM, entre aproximadamente 5 mM y aproximadamente 15 mM o entre aproximadamente 8 mM y 12 mM. En algunas realizaciones, la concentración de histidina es aproximadamente 2 mM, aproximadamente 3 mM, aproximadamente 4 mM, aproximadamente 5 mM, aproximadamente 6 mM, aproximadamente 7 mM, aproximadamente 8 mM, aproximadamente 9 mM, aproximadamente 10 mM, aproximadamente 11 mM, aproximadamente 12 mM, aproximadamente 13 mM, aproximadamente 14 mM, aproximadamente 15 mM, aproximadamente 16 mM, aproximadamente 17 mM, aproximadamente 18 mM, aproximadamente 19 mM o aproximadamente 20 mM.
En algunas realizaciones, la composición inmunogénica comprende además tampón que comprende succinato. En
35 algunas realizaciones, la concentración de succinato está entre aproximadamente 2mM y aproximadamente 20 mM, entre aproximadamente 2 mM y aproximadamente 10 mM o entre aproximadamente 3 mM y 7 mM. En algunas realizaciones, la concentración de succinato es aproximadamente 2 mM, aproximadamente 3 mM, aproximadamente 4 mM, aproximadamente 5 mM, aproximadamente 6 mM, aproximadamente 7 mM, aproximadamente 8 mM, aproximadamente 9 mM, aproximadamente 10 mM, aproximadamente 11 mM, aproximadamente 12 mM, aproximadamente 13 mM, aproximadamente 14 mM, aproximadamente 15 mM, aproximadamente 16 mM, aproximadamente 17 mM, aproximadamente 18 mM, aproximadamente 19 mM o aproximadamente 20 mM.
En algunas realizaciones, el pH de la composición inmunogénica tiene un pH de entre aproximadamente 5,0 y aproximadamente 8,0 o entre aproximadamente 5,5 y aproximadamente 7,0; o entre aproximadamente 5,8 y aproximadamente 6,0. En algunas realizaciones, el pH de la composición inmunogénica tiene un pH de
45 aproximadamente 5,0, aproximadamente 5,1, aproximadamente 5,2, aproximadamente 5,3, aproximadamente 5,4, aproximadamente 5,5, aproximadamente 5,6, aproximadamente 5,7, aproximadamente 5,8, aproximadamente 5,9, aproximadamente 6,0, aproximadamente 6,1, aproximadamente 6,2, aproximadamente 6,3, aproximadamente 6,4 o aproximadamente 6,5.
En algunas realizaciones, la formulación de la composición inmunogénica del antígeno proteico MnB rLP2086 de la subfamilia B es solución salina tamponada con histidina 10 mM, a pH 6,0, que contiene 0,5 mg/ml de aluminio como fosfato se aluminio y una proporción polisorbato 80-proteína de 2,8.
En algunas realizaciones, la formulación de la composición inmunogénica del antígeno proteico MnB rLP2086 de la subfamilia B es solución salina tamponada con succinato 5 mM, a pH 6,0, que contiene 0,5 mg/ml de aluminio como fosfato se aluminio y una proporción polisorbato 80-proteína de 2,8.
55 En algunas realizaciones, la invención proporciona un procedimiento de estabilizar antígenos rLP2086 de la subfamilia B en el tiempo, que comprende almacenar los antígenos en un tampón con una proporción molar detergente-proteína baja.
En algunas realizaciones, la proporción molar detergente-proteína en el tampón está entre aproximadamente 0,5 y aproximadamente 10. En algunas realizaciones, la proporción molar detergente-proteína en el tampón está entre
imagen9
imagen10
subfamilia B es solución salina tamponada con succinato 5 mM, a pH 6,0, que contiene 0,5 mg/ml de aluminio como fosfato se aluminio y una proporción polisorbato 80-proteína de 2,8.
En algunas realizaciones, la invención proporciona un procedimiento de estabilizar los antígenos rLP2086 de la subfamilia A y/o los antígenos rLP2086 de la subfamilia B en el tiempo, que comprende almacenar los antígenos en 5 un tampón con una concentración de estabilizante alta y una proporción molar detergente-proteína baja.
En algunas realizaciones, la proporción molar detergente-proteína es inferior a 10:1. En el tampón algunas realizaciones, la proporción molar detergente-proteína en el tampón está entre aproximadamente 0,5 y aproximadamente 10. En algunas realizaciones, la proporción molar detergente-proteína en el tampón está entre aproximadamente 1 y aproximadamente 5. En algunas realizaciones, la proporción molar detergente-proteína en el
10 tampón está entre aproximadamente 1,4 y aproximadamente 4,2. En algunas realizaciones, la proporción molar detergente-proteína en el tampón es de aproximadamente 0,5,aproximadamente 0,6,aproximadamente 0,7, aproximadamente 0,8, aproximadamente 0,9, aproximadamente 1,0, aproximadamente 1,1, aproximadamente 1,2, aproximadamente 1,3, aproximadamente 1,4, aproximadamente 1,5, aproximadamente 1,6, aproximadamente 1,7, aproximadamente 1,8, aproximadamente 1,9, aproximadamente 2,0, aproximadamente 2,1, aproximadamente 2,2,
15 aproximadamente 2,3, aproximadamente 2,4, aproximadamente 2,5, aproximadamente 2,6, aproximadamente 2,7, aproximadamente 2,8, aproximadamente 2,9, aproximadamente 3,0, aproximadamente 3,1, aproximadamente 3,2, aproximadamente 3,3, aproximadamente 3,4, aproximadamente 3,5, aproximadamente 3,6, aproximadamente 3,7, aproximadamente 3,8, aproximadamente 3,9, aproximadamente 4,0, aproximadamente 4,1, aproximadamente 4,2, aproximadamente 4,3, aproximadamente 4,4, aproximadamente 4,5, aproximadamente 4,6, aproximadamente 4,7,
20 aproximadamente 4,8, aproximadamente 4,9, aproximadamente 5,0, aproximadamente 5,5, aproximadamente 6,0, aproximadamente 6,5, aproximadamente 7,0, aproximadamente 7,5, aproximadamente 8,0, aproximadamente 8,5, aproximadamente 9,0, aproximadamente 9,5, o aproximadamente 10. En algunas realizaciones, el detergente es un detergente no iónico. En algunas realizaciones, el detergente es un detergente de polisorbato. En algunas realizaciones, el detergente es polisorbato80.
25 En algunas realizaciones, el estabilizante en el tampón es un catión multivalente. En algunas realizaciones, el catión multivalente es calcio o aluminio. En algunas realizaciones, el aluminio está presente como uno o más de AlPO4, Al(OH)3, Al2(SO4)3 y alumbre. En algunas realizaciones, el estabilizante en el tampón está entre aproximadamente 0,1 mg/ml y aproximadamente 1 mg/ml, entre aproximadamente 0,25 mg/ml y aproximadamente 0,75 mg/ml o entre aproximadamente 0,4 mg/ml y aproximadamente 0,6 mg/ml de aluminio. En algunas realizaciones, el estabilizante
30 en el tampón es aproximadamente 0,1 mg/ml, aproximadamente 0,15 mg/ml; aproximadamente 0,2 mg/ml, aproximadamente 0,25 mg/ml, aproximadamente 0,3 mg/ml, aproximadamente 0,35 mg/ml, aproximadamente 0,4 mg/ml, aproximadamente 0,45 mg/ml, aproximadamente 0,5 mg/ml, aproximadamente 0,55 mg/ml, aproximadamente 0,6 mg/ml, aproximadamente 0,65 mg/ml, aproximadamente 0,7 mg/ml, aproximadamente 0,75 mg/ml, aproximadamente 0,8 mg/ml, aproximadamente 0,85 mg/ml, 0,9 mg/ml, aproximadamente 0,95 mg/ml, o
35 aproximadamente 1 mg/ml de aluminio. En algunas realizaciones, hay al menos 90 %, al menos 95 %, al menos 96 %, al menos 97 %, al menos 98 %, al menos 99 % o 100 % de unión de aluminio a la proteína.
En algunas realizaciones, el tampón comprende además histidina. En algunas realizaciones, la concentración de histidina está entre aproximadamente 2mM y aproximadamente 20 mM, entre aproximadamente 5 mM y aproximadamente 15 mM o entre aproximadamente 8 mM y 12 mM. En algunas realizaciones, la concentración de
40 histidina es aproximadamente 2 mM, aproximadamente 3 mM, aproximadamente 4 mM, aproximadamente 5 mM, aproximadamente 6 mM, aproximadamente 7 mM, aproximadamente 8 mM, aproximadamente 9 mM, aproximadamente 10 mM, aproximadamente 11 mM, aproximadamente 12 mM, aproximadamente 13 mM, aproximadamente 14 mM, aproximadamente 15 mM, aproximadamente 16 mM, aproximadamente 17 mM, aproximadamente 18 mM, aproximadamente 19 mM o aproximadamente 20 mM.
45 En algunas realizaciones, el tampón comprende además succinato. En algunas realizaciones, la concentración de succinato está entre aproximadamente 2mM y aproximadamente 20 mM, entre aproximadamente 2 mM y aproximadamente 10 mM o entre aproximadamente 3 mM y 7 mM. En algunas realizaciones, la concentración de succinato es aproximadamente 2 mM, aproximadamente 3 mM, aproximadamente 4 mM, aproximadamente 5 mM, aproximadamente 6 mM, aproximadamente 7 mM, aproximadamente 8 mM, aproximadamente 9 mM,
50 aproximadamente 10 mM, aproximadamente 11 mM, aproximadamente 12 mM, aproximadamente 13 mM, aproximadamente 14 mM, aproximadamente 15 mM, aproximadamente 16 mM, aproximadamente 17 mM, aproximadamente 18 mM, aproximadamente 19 mM o aproximadamente 20 mM.
En algunas realizaciones, el tampón tiene un pH de entre aproximadamente 5,0 y aproximadamente 8,0 o entre aproximadamente 5,5 y aproximadamente 7,0; o entre aproximadamente 5,8 y aproximadamente 6,0. En algunas
55 realizaciones, el tampón tiene un pH de aproximadamente 5,0, aproximadamente 5,1, aproximadamente 5,2, aproximadamente 5,3, aproximadamente 5,4, aproximadamente 5,5, aproximadamente 5,6, aproximadamente 5,7, aproximadamente 5,8, aproximadamente 5,9, aproximadamente 6,0, aproximadamente 6,1, aproximadamente 6,2, aproximadamente 6,3, aproximadamente 6,4 o aproximadamente 6,5.
En algunas realizaciones, el tampón en el que se almacenan los antígenos proteicos MnB rLP2086 de las 60 subfamilias A y B es solución salina tamponada con histidina 10 mM, a pH 6,0, que contiene 0,5 mg/ml de aluminio
como fosfato se aluminio y una proporción polisorbato 80-proteína de 2,8.
En algunas realizaciones, el tampón en el que se almacenan los antígenos proteicos MnB rLP2086 de las subfamilias A y B es solución salina tamponada con succinato 5 mM, a pH 6,0, que contiene 0,5 mg/ml de aluminio como fosfato se aluminio y una proporción polisorbato 80-proteína de 2,8.
5 Con el fin de que esta invención se entienda mejor, se exponen los ejemplos siguientes. Los ejemplos son con fines ilustrativos únicamente y no deben interpretarse como limitantes del ámbito de la invención.
Todas las referencias citadas se incorporan en el presente documento por referencia.
EJEMPLOS
Ejemplo 1: Procedimientos experimentales
10 Determinación de la unión a aluminio
Una composición que comprende aluminio y al menos un antígeno proteico se centrifugó de modo que sedimentó el aluminio. La centrifugación de las proteínas adsorbidas en aluminio se conoce en la técnica. Véase, por ejemplo, Egan y col., Vaccine, Vol. 27(24):3175-3180 (2009). La proteína unida a aluminio también sedimentó, mientras que la proteína no unida a aluminio permaneció en el sobrenadante. La proteína total en el sobrenadante y en el
15 sedimento se determinó mediante el ensayo de Lowry. El porcentaje de proteína unida se calculó dividiendo la proteína total en el sobrenadante por la proteína total añadida a la composición, y multiplicando por 100 %. De forma similar, el porcentaje de proteína no unida se calculó dividiendo la proteína total en el sobrenadante por la proteína total añadida a la composición, y multiplicando por 100 %.
Para las composiciones que comprenden antígenos de las dos subfamilias, A y B, las concentraciones individuales
20 de proteína de las subfamilias A y B en el sobrenadante se determinaron mediante cromatografía de intercambio iónico. La separación y la elución de las proteínas de las subfamilias A y B se llevaron a cabo usando una columna de aniones fuertes y un eluyente de concentración alta de sales. Las proteínas de las dos subfamilias A y B se detectaron y cuantificaron usando un equipo detector de fluorescencia a Excitación= 280 por ciclo y Emisión = 310 por ciclo. Las proteínas de la subfamilia A y de la subfamilia B eluyen a distintos tiempos de retención y se
25 cuantificaron usando una curva estándar generada contra un material de referencia proteico B rLP2086. El porcentaje de proteína no unida se calculó dividiendo la proteína total en el sobrenadante por la proteína total añadida a la composición, y multiplicando por 100 %. El porcentaje de proteína unida se calculó restando el porcentaje de proteína no unida del 100 %.
Ensayo de potencia in vitro
30 El ensayo de potencia de rLP2086 es un ensayo de captura homogénea o ensayo de tipo sándwich que depende de dos anticuerpos monoclonales funcionales que reconocen epítopos conformacionales y no solapantes sobre una molécula proteica sencilla de la sustancia farmacológica rLP2086. Un anticuerpo monoclonal purificado sirve como anticuerpo de captura (AcMo) y está químicamente conjugado a perlas de poliestireno carboxiladas que tienen un identificador único codificado por colores. El segundo anticuerpo está biotinilado y sirve como anticuerpo de
35 detección que se une posteriormente a estreptavidina conjugada con el fluróforo R-ficoeritrina (SA-PE). Las características de fluido de un instrumento de detección Bio-Plex cuantifican microesferas individuales y su señal SA-PE asociada. Una señal de fluorescencia de R-ficoeritrina asociada con la microesfera solo se detectará mediante la formación de un complejo ternario entre el anticuerpo conjugado con las perla, el antígeno y el anticuerpo de detección, y será proporcional al número funcional de epítopos en las muestras rLP2086. Un cambio
40 en uno o ambos epítopos que tiene como resultado una pérdida de fluorescencia con respecto al patrón de referencia indicará una pérdida de potencia.
Reactivos
 Microesferas conjugadas con anticuerpo monoclonal (conjugado a la región 12 de la esfera o a la región 66 de la espera de Luminex MicroPlex Microsphere)
45  Anticuerpo monoclonal biotinilado.  Materiales de referencia rLP2086, subfamilias a y B, 2 mg/ml. Almacenar a 70 ºC  rLP2086 Subfamilia A y B, catión bivalente  Estreptavidina, conjugado con R-ficoeritrina, liofilizado
Tampones
50  Histidina 10 mM, NaCl 150 mM, pH 6,0  Polisorbato 80 al 5 % p/v (PS-80) en solución salina al 0,85 % p/v.  Tampón de la matriz (Histidina 10 mM, polisorbato 80 al 0,02 %, NaCl 150 mM, pH 6,0).  Tampón de ensayo (PBS, pH 7,4 con BSA al 0,1 %, polisorbato 80 al 0,02 %, azida al 0,1 %).  100x Estreptavidina, conjugado con R-ficoeritrina(SA-PE) – Vial abierto de estreptavidina, R-ficoeritrina liofilizada,
imagen11
imagen12
imagen13
Las proteínas tanto de la subfamilia A como de la subfamilia B se unían al polisorbato 80. La unión de la subfamilia A fue la misma para las muestras almacenadas a 2-8°C y a 25°C, pero la unión de la subfamilia B fue casi el doble para las muestras almacenadas a 25°C. Además, el estudio de la proporción molar crítica indicó que las muestras de formulación a 200 μg/ml eran estables cuando contenían 0,008 % de polisorbato o menos, lo que es equivalente a
5 una proporción molar total de 4,2 o menor.
Ejemplo 5: Concentración del detergente y potencia del antígeno rLP2086 de la subfamilia B
Estudios de estabilidad adicionales con concentraciones variables de polisorbato 80 corroboraron la calidad de crítica de la proporción molar entre el polisorbato 80 y la proteína para mantener la potencia. En un experimento, la composición inmunogénica se formuló a la dosis de 200 μg (concentración de proteína total 400 μg/ ml)a pH 6,3 en 10 solución salina tamponada con histidina 10 mM (HBS) con 0,5 mg/ml de aluminio (como fosfato de aluminio) y con picos de 0,01 %, 0,02 %, 0,05 % o 0,1 % de polisorbato 80 (proporción molar correspondiente entre polisorbato 80 y la proteína rLP2086 a 5,3, 10,7, 26,7 y 53,4). Las muestras formuladas se incubaron a 25 ºC y las muestras control se almacenaron a 2-8ºC. No se observó ningún cambio significativo de la potencia a tiempo “0” a concentraciones de polisorbato de hasta 0,1 %. No obstante, para periodos más prolongados de 2-8 ºC, se observó una reducción de la
15 potencia como una función de la temperatura y la concentración de polisorbato 80. A medida que la concentración de polisorbato 80 aumentaba de 0,01 % a 0,1 % en la composición inmunogénica, el punto de estabilidad a 3 meses demostró una reducción de la potencia de la proteína de la subfamilia B a menos del 10 % y del 25 % a 25 ºC y a 2-8 ºC, respectivamente (Figura 1).
Se realizó un estudio de estabilidad adicional (Figura 2) en el que se evaluó la proteína de la subfamilia B a una
20 concentración de 4 mg/ml en HBS y con picos de polisorbato 80 hasta una concentración final de 0,06, 0,5 y 1 % (proporciones molares correspondientes de 3,3, 26,7 y 53,4). El control contenía 0,09 % de polisorbato 80. La proteína de la subfamilia B en 0,06 % de polisorbato 80 (proporción molar de 3,3) era estable. Las mismas muestras que contenían una concentración mayor de polisorbato 80 a 0,5 % y 1 % (proporciones molares de 26,7 y 53.4, respectivamente) eran inestables. Para las formulaciones de las composiciones inmunogénicas a 400 μg/ml, se
25 observó inestabilidad de la proteína de la subfamilia B en todas las formulaciones que contenían una concentración de polisorbato 80 de 0,01 % (proporción molar 5,3) o mayor. No obstante, a concentraciones de 4 mg/ml de proteína y de 0,06 % de polisorbato 80 no se observó reducción de la potencia porque la proporción entre el polisorbato 80 y la proteína (3,3) es mejor que a concentraciones de 400 μg/ml de proteína más 0,01 % de polisorbato 80 (proporción molar 5,3). Por tanto, la reducción de la potencia de la proteína de la subfamilia B por el polisorbato 80 se
30 correlaciona con la proporción molar entre el detergente polisorbato 80 y la proteína y no con la concentración absoluta del polisorbato 80 en la matriz.
De acuerdo con esto, la concentración de polisorbato 80 debe reducirse en la composición inmunogénica con el fin de mantener la estabilidad de la proteína de la subfamilia B en la vacuna y durante el posterior almacenamiento a 2--8°C. Se diseñó un estudio de estabilidad acelerada a 28 días para la composición inmunogénica con varias 35 proporciones molares de polisorbato 80 (0,1, 0,1, 0,2 y 5,3) a dosis de 20 y 200 μg (Figura 3 y Figura 4). Se preparó una formulación bivalente (subfamilia A y subfamilia B) en solución salina tamponada con histidina 10 mM a pH 6,0, 0,05 mg/ml de aluminio en forma de fosfato de aluminio con varias concentraciones de polisorbato 80. Las muestras se incubaron a 25 ºC junto con un grupo control a 2-8 ºC. En las muestras se analizó la potencia a 0, 7, 14, 28 y 8 días. Las proteínas tanto de la subfamilia A (datos no mostrados) como de la subfamilia B eran estables para todos
40 los grupos que contenían una proporción molar inferior a 5,3 entre el polisorbato 80 y la proteína. Un valor de potencia superior al 80 % se considera dentro de la variabilidad del ensayo. A la proporción molar de 5,3 se observó una tendencia descendente para la potencia de la proteína de la subfamilia B para las muestras a 25 ºC.
En un estudio exhaustivo se evaluó todas las posibles dosificaciones clínicas (20, 60, 120 y 200 μg) formuladas con varias proporciones molares entre el polisorbato 80 y la proteína en condiciones de estabilidad de almacenamiento 45 acelerado para investigar los efectos de las proporciones molares entre el polisorbato 80 y la proteína sobre la estabilidad de las proteínas MnB rLP2086. Se usaron composiciones inmunogénicas bivalentes de MnB rLP2086 formuladas a proporciones molares entre el polisorbato 80 y la proteína que varían de aproximadamente 1,4 a 10,7. Para generar composiciones inmunogénicas formuladas a proporciones molares entre el polisorbato 80 y la proteína crecientes (1,4, 2,4, 3,4, 3,9, 4,3, 4,7 y 10,7), los antígenos se ajustaron a proporciones molares variables añadiendo 50 polisorbato 80 de modo que, durante la formulación de la composición inmunogénica, no fuera necesario polisorbato 80 adicional. En este estudio se usaron dos grupos de lotes de antígenos. Un grupo de lotes de la subfamilia A y la subfamilia B se generó con una proporción molar entre el polisorbato 80 y la proteína de 1,4 y el otro grupo de 2,4. El grupo de proteínas con una proporción molar de 2,4 se usó para ajustar las proporciones molares de 3,4, 3,9, 4,3 y 10,7 con adiciones de polisorbato adicional. La matriz final de la composición inmunogénica fue histidina 10 mM,
55 NaCl 150 mM, a pH 6,0, 0,5 mg/ml de fosfato de aluminio con las proporciones molares entre el polisorbato 80 y la proteína mencionadas anteriormente. Tras almacenamiento a 2-8 ºC o a 25 ºC durante intervalos específicos se aplicó mezclado suave con un agitador 24 horas antes del ensayo. Se analizaron la proteína total mediante IEX-HPLC, la potencia, el aspecto, la densidad óptica a 320 nm de la fracción sobrenadante y el pH.
Los resultados de potencia de las dosis de 200 y 20 µg se muestran en la Figura 5 y la Figura 6, respectivamente. El
60 ensayo de potencia fue más sensible que otras pruebas usadas en el estudio. En general, no se observó una reducción significativa de la potencia para los antígenos ni de la subfamilia A ni de la subfamilia B, en comparación
con el punto de tiempo inicial para todas las dosificaciones con proporciones molares de 4,3 y menores. Las formulaciones con una proporción molar de 4,7 se consideraron en el mínimo debido a una ligera reducción de la potencia para las proteínas de la subfamilia B almacenadas a 25 ºC. Los resultados de potencia para el antígeno de la subfamilia B para formulaciones con una proporción molar de 10,7 fueron significativamente menores para las
5 muestra almacenadas a 25 ºC respecto a las almacenadas a 2-8 ºC.
Ejemplo 6: Concentración de aluminio y potencia del antígeno rLP2086 de la subfamilia A y B
Se realizó una serie de experimentos para determinar el nivel óptimo de fosfato de aluminio para asegurar más de un 95 % de unión de las proteínas de la subfamilia A y B. Los estudios iniciales se centraron en la optimización de la formulación a pH 6,5. Las formulaciones se prepararon con una dosificación diana de 200 μg/ml de cada proteína de 10 las proteínas de las subfamilias A y B en tampón de histidina 10 mM a pH 6,5 con 0,02 % de polisorbato 80 y 0,25 o 0,5 mg/ml de aluminio (como fosfato de aluminio). La proteína de la subfamilia B se unió al fosfato de aluminio en menor medida que la proteína de la subfamilia A (Figura 7). Aumentar el contenido de aluminio de 0,25 mg/ml a 0,5 mg/ml aumentó la unión de la proteína de la subfamilia B a > 80 %. Dado que el mecanismo de unión entre la proteína y la suspensión de aluminio es, principalmente, una interacción iónica, el pH de la suspensión es un factor
15 que influye sobre la unión.
El pH de la formulación se optimizó para asegurar una unión superior al 90-95 % de la proteína de la subfamilia B. Se analizaron múltiples formulaciones a 200 μg/ml de cada una de las proteínas a y B con un pH variable de 5,6 a 6,5 con lotes diferentes de composiciones inmunogénicas (Figura 8). En las formulaciones con un pH que varía de 5,6 a 6,4 se produjeron uniones de más del 90-95 % de ambas proteínas. A medida que el pH de las formulaciones 20 aumentaba a valores de 6,5 y mayores, la unión de la proteína de la subfamilia B se reducía significativamente. El pH diana recomendado es de 6,0 para asegurar una unión superior al 90 % de las proteínas de las subfamilias A y
B.
También se evaluó la solidez de la formulación bajo variables y/o límites de formulación variando el pH, el tampón, la proteína y las concentraciones de polisorbato 80 (Figura 9). Aunque la unión de la proteína de la subfamilia A fue
25 alta de un modo consistente (≥95 %) con la concentración de proteína hasta 500 µg/ml (250 µg/ml cada proteína), la unión de la proteína de la subfamilia B era más sensible a la concentración proteica y al pH. Dado que se usan formulaciones comerciales a una dosis de 200 μg, los resultados de este experimento avalaron también la formulación recomendada a un pH de 6,0 con 0,5 mg/ml de fosfato de aluminio.
Las formulaciones con y sin fosfato de aluminio se evaluaron para investigar la viabilidad de proporcionar una
30 formulación estable sin fosfato de aluminio a concentraciones de polisorbato 80 lo suficientemente bajas para la estabilidad de la proteína de la subfamilia B. Las composiciones inmunogénicas se formularon a dosis de 20 y 200 μg de tampón de solución salina tamponada con histidina con una concentración de polisorbato 80 que varía de 0 a 5,3 proporciones molares. La mitad de las muestras se sometieron a agitación con un agitador de tipo vórtex multitubos digital a 500 rpm en modo de pulsos (2 segundos con y 1 segundo sin) durante 24 horas antes del
35 análisis. Esta condición se adoptó para simular las pruebas ISTA (International Safe Transit Association) que normalmente se realizan en la última etapa de envío de la composición inmunogénica para imitar las vibraciones extremas durante las condiciones de envío.
Con agitación, las formulaciones sin fosfato de aluminio precipitaron, lo que, en última instancia, llevaron a la pérdida de potencia de los antígenos de la subfamilia A y la subfamilia B. Una prueba de aspecto (Figura 10) y las 40 mediciones de la absorbancia a λ = 320 nm (Figura 11) demostraron la formación de agregados y/o precipitados cuando se agitaron las formulaciones sin fosfato de aluminio. El análisis de la potencia de estas muestras (Figura 12 y Figura 13) demostró una pérdida significativa de potencia para ambas proteínas de la subfamilia A y la subfamilia B en todos los puntos de tiempo analizados. La pérdida de potencia fue más pronunciada en las formulaciones que contienen cantidades bajas de polisorbato 80. Dado que son necesarias cantidades bajas de polisorbato 80 para
45 mantener la estabilización de la proteína de la subfamilia B, la inclusión de fosfato de aluminio en la formulación es necesaria para conservar la estabilidad. Las composiciones inmunogénicas de rLP2086 se pueden formular con fosfato de aluminio, que funcionará reforzando la estabilidad de la potencia, medida mediante el ensayo de potencia in vitro.
Ejemplo 7: Succinato e histidina como tampones
50 Se preparó una serie de formulaciones para comparar la unión de las proteínas rLP2086 de las subfamilias A y B en succinato e histidina, así como los efectos del pH, el polisorbato 80 y el MgCl2 sobre la unión (Tabla 2). Se evaluó la solidez de la formulación bajo variables y/o límites de formulación variando el pH, el tampón, la proteína y las concentraciones de polisorbato 80 (Figuras 25 y 26). La unión de aluminio a la proteína de la subfamilia A y la subfamilia B fue similar, con independencia del tampón usado (histidina o succinato).
55
Tabla 2: Formulaciones para evaluar los tampones de histidina y succinato, MgCl2, Polisorbato y el pH 5,6 – 6,0 sobre la unión de rLP2086 con AlPO41
Solución
rLP2086 rLP2086 Histidina Succinato PS 80 MgCl2
salina pH diana
A (µg/ml) B (µg/ml) (mM) (mM) (%) (mM)
(%)
200
200
0 5 0,020 0,9 0 6,0
200
200
0 5 0,020 0,9 0 5,8
200
200
0 5 0,020 0,9 0 5,6
200
200
0 5 0,010 0,9 0 6,0
200
200
0 5 0,005 0,9 0 6,0
250
250
0 5 0,020 0,9 0 6,0
250
250
0 5 0,020 0,9 0 5,8
250
250
0 5 0,020 0,9 0 5,6
200
200
0 10 0,020 0,9 0 6,0
200
200
0 20 0,020 0,9 0 6,0
200
200
0 5 0,020 0,9 10 6,0
200
200
10 0 0,020 0,9 0 6,0
200
200
10 0 0,020 0,9 0 5,8
200
200
10 0 0,020 0,9 0 5,6
200
200
10 0 0,010 0,9 0 6,0
200
200
10 0 0,005 0,9 0 6,0
250
250
10 0 0,020 0,9 0 6,0
250
250
10 0 0,020 0,9 0 5,8
250
250
10 0 0,020 0,9 0 5,6
200
200
5 0 0,020 0,9 0 6,0
200
200
20 0 0,020 0,9 0 6,0
200
200
10 0 0,020 0,9 10 6,0
1Todas las formulaciones descritas en la Tabla 2 contienen 0,5 mg Al/ml.
El efecto de la sal tampón y el tiempo de mezclado sobre la unión a aluminio se evaluó con tres sales tampón de uso
5 habitual, escogidas porque sus pKa están dentro del intervalo fisiológico y porque estas sales se consideran, en general, seguras. Las proteínas rLP2086 de las subfamilias A y B se formularon con una de las tres sales tampón: succinato 5 mM, histidina 10 mM o fosfato 10 mM a un pH adecuado para la pKa de cada sal para determinar la unión en cada condición. El tiempo requerido para la finalización de la unión se evaluó dejando que las muestras se mezclaran durante 5 o 120 minutos antes de medir la cantidad de proteína unida.
10 Como se muestra en la Figura 27, la proteína de la subfamilia B exhibió una unión reducida a un pH 6,8 en tampón fosfato, mientras que la proteína de la subfamilia A no se vio significativamente afectada a las mismas condiciones. La cantidad de proteína unida a aluminio fue similar en las muestras formuladas con histidina o succinato. Por tanto, estas dos sales tampón se escogieron para su posterior evaluación. Aunque sin desear quedar ligado a teoría alguna, es posible que la menor unión en el tampón fosfato es el resultado de la competición por los sitios de unión
15 en AlPO4 con los iones fosfato añadidos.
En estas condiciones y concentraciones de proteína y AlPO4, la unión se completó tras 5 minutos de mezcla a temperatura ambiente, ya que se obtuvieron resultados similares tras mezclar durante 2 horas.
Para analizar después si la menor unión de la proteína de la subfamilia B en tampón fosfato a pH 6,8 se debía al pH
o a diferencias entre las sales tampón, se midió la unión en un intervalo de pH de 5,3 a 7,0 en formulaciones tamponados con histidina o con succinato. Se prepararon formulaciones bivalentes que contenían 0,2 mg/ml de las proteínas de cada subfamilia (0,4 mg/ml de proteína total), 0,02 % de PS80, 0,5 mg Al/ml y NaCl 150 mM. Las
5 muestras se formularon en histidina 10 mM o succinato 5 mM para comparar el efecto de la sal tampón. Tras la formulación, el pH de cada muestra se verificó de forma individual.
El perfil de la unión del pH 5,3 a 7,0 se muestra en la proteína de la subfamilia A en la Figura 28 y para la proteína de la subfamilia B en la Figura 28. La proteína de la subfamilia A exhibieron pocos cambios en la cantidad de la proteína unida, permaneciendo la unión por encima del 95 % en el intervalo de pH analizado. Una formulación que
10 contiene histidina con un pH 7,0 diana tuvo como resultado un pH de 6,8. El pH no se ajustó a 7,0 (p. ej., mediante la adición de base) para evitar los posibles efectos sobre la proteína o AlPO4 y, por tanto, los resultados para estos puntos de datos no están disponibles.
El perfil de unión de la proteína de la subfamilia B (mostrado en la Figura 29) exhibió una tendencia dependiente del pH. No obstante se realizará la unión en formulaciones tamponadas con histidina o con succinato, la cantidad de
15 proteína unida al aluminio fue similar. La unión dependía del pH de la formulación en lugar de de la sal tampón. La unión permaneció en un 95 % hasta un pH de 6,5 (94 % en histidina, 95 % en succinato), pero disminuyó cuando el pH era superior a 6,5. A pH 7,0, la unión disminuyó a aproximadamente 82 %, con diferencias pequeñas entre las sales tampón.
Para obtener una unión sólida de la proteína de la subfamilia B con AlPO4 a estas concentraciones se prefiere un pH 20 de 6,5 o menor.
Ejemplo 8: Estudio de seguridad, tolerabilidad e inmunogenicidad
Se realiza un estuido para evaluar la seguridad, toerabilidad e inmunogenicidad de la vacuna de rLP2086 administrada en una población de adolescentes sanos conforme a reg´menes de 0 y 2 meses; 0, 2 y 6 meses; 0 y 2 meses, seguido de una dosis de refuerzo de 12 meses.
25 La composición inmuogénica es una vacuna contra rLP2086 (lipidada recombinante). La composición inmunogénica incluye una proteína ORF2086 recombinante del serogrupo B de N. meningitidis que se expresó en Escherichia coli y se formuló en una vacuna bivalente compuesta por una cepa de la subfamilia A y una cepa de la subfamilia B de rLP2086. En particular, la composición inmunogénica es una dosis de 0,5 ml formulada para contener 60 μg, 120 μg
o 200 μg cada uno de una subfamilia A purificada y una proteína rLP2086 de la subfamilia B purificada, una relación
30 molar de 2,8 del polisorbato 80 y 0,25 mg de Al3+ como AlPO4, solución salina tamponada con histidina 10 mM de a pH 6,0. Una composición de control incluye una solución salina normal (cloruro de sodio al 0,9 %) en una dosis de 0,5 ml.
Los sujetos son asignados aleatoriamente a 5 grupos. Véase la Tabla 3. Los sujetos se clasifican en dos grupos de edad, ≥11 a <14 y ≥14 a <19 años de edad.
Tabla 3: Diseño del estudio
Vacunación 1
Vacunación 2 Extracción de sangre posvacunación 2 Vacunación 3 Extracción de sangre posvacunación 3 Vacunación 4 Extracción de sangre posvacunación 4
Número de visita
1 2 3 4 5 6 7
Mes aproximado
0 2 3 6 7 12 13
Grupo 1
rLP2086 rLP2086 Solución salina Solución salina
Grupo 2
rLP2086 rLP2086 rLP2086 Solución salina
Grupo 3
rLP2086 rLP2086 Solución salina rLP2086
Grupo 4
rLP2086 Solución salina rLP2086 Solución salina
Grupo 5
Solución salina Solución salina rLP2086 rLP2086
(continuación)
Tabla 3: Diseño del estudio
Vacunación 1
Vacunación 2 Extracción de sangre posvacunación 2 Vacunación 3 Extracción de sangre posvacunación 3 Vacunación 4 Extracción de sangre posvacunación 4
Extracción de sangre
20 ml 20 ml 20 ml 20 ml 20 ml
La solución salina se usa como placebo porque no existe una vacuna segura, inmunogénica y efectiva probada contra MnB que pueda servir como un control activo.
5 Los sujetos reciben una dosis de la vacunade rLP2086 o solución salina en cada una de las visitas de vacunación (por ejemplo, las visitas 1, 2, 4 y 6) de acuerdo con la Tabla 3. Se observan las prácticas estándar de vacunación y la vacuna no se inyecta en los vasos sanguíneos. La vacuna de rLP2086 se administra por vía intramuscular inyectando 0,5 ml en el músculo deltoides superior. La solución salina se administra por vía intramuscular en el músculo deltoides superior.
10 A. Visita 1
En la visita 1, día 1, vacunación 1, primero se extrae la sangre del sujeto y luego recibe una vacunación.. La extracción de sangre de la visita 1 y la vacunación 1 ocurren el mismo día. Antes de la vacunación, se recoge una muestra de sangre (aproximadamente 20 ml) del sujeto. Para los sujetos asignados al azar al grupo 1, 2, 3 y 4, se administra una sola inyección intramuscular de 0,5 ml de la vacuna de rLP2086 en el músculo deltoides superior.
15 Para los sujetos del grupo 5, se administra una sola inyección intramuscular de 0,5 ml de solución salina al músculo deltoides superior.
B. Visita 2 (de 42 a 70 días después de la Visita 1), vacunación 2
Para los grupos 1, 2 y 3, se administra una sola inyección intramuscular de 0,5 ml de la vacuna de rLP2086 en el músculo deltoides superior. Para los grupos 4 y 5, se administra una sola inyección intramuscular de 0,5 ml de
20 solución salina al músculo deltoides superior.
C. Visita 3 (de 28 a 42 días después de la visita 2), extracción de sangre posvacunación 2
Se recoge una muestra de sangre (aproximadamente 20 ml) del sujeto.
D. Visita 4 (de 105 a 126 días después de la Visita 2), vacunación 3
Para los grupos 2, 4 y 5, se administra una sola inyección intramuscular de 0,5 ml de la vacuna de rLP2086 en el
25 músculo deltoides superior. Para los grupos 1 y 3, se administra una sola inyección intramuscular de 0,5 ml de solución salina al músculo deltoides superior.
E. Visita 5 (de 28 a 42 días después de la visita 4), extracción de sangre posvacunación 3
Se recoge una muestra de sangre (aproximadamente 20 ml) del sujeto.
F. Visita 6 (de 161 a 175 días después de la Visita 4), vacunación 4
30 En la visita 6, primero se extrae sangre del sujeto y luego recibe una vacunación.. La extracción de sangre de la visita 6 y la vacunación 4 ocurren el mismo día. Antes de la vacunación, se recoge una muestra de sangre (aproximadamente 20 ml) del sujeto. Para los grupos 3 y 5, se administra una sola inyección intramuscular de 0,5 ml de la vacuna de rLP2086 en el músculo deltoides superior. Para los sujetos de los grupos 1, 2 y 4 se administra una sola inyección intramuscular de 0,5 ml de solución salina al músculo deltoides superior.
35 G. Visita 7 (de 28 a 42 días después de la visita 6), extracción de sangre posvacunación 4
Se recoge una muestra de sangre (aproximadamente 20 ml) del sujeto.
Resultados de inmunogenicidad
El objetivo principal de este estudio era evaluar la inmunogenicidad de 60 μg, 120 μg y 200 μg de la vacuna de rLP2086, medida mediante SBA realizada con cepas de MnB que expresan las proteínas LP2086 de la subfamilia A
40 y B.
El objetivo secundario de este estudio era evaluar la inmunogenicidad de 60 μg, 120 μg y 200 μg de la vacuna de rLP2086 determinada mediante cuantificación de la unión de Ig a las proteínas de la vacuna rLP2086 de la
imagen14
imagen15
imagen16
imagen17
imagen18
imagen19
imagen20

Claims (1)

  1. imagen1
ES11757949.0T 2010-08-23 2011-08-22 Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis Active ES2639035T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37616010P 2010-08-23 2010-08-23
US376160P 2010-08-23
PCT/IB2011/053684 WO2012025873A2 (en) 2010-08-23 2011-08-22 STABLE FORMULATIONS OF NEISSERIA MENINGITIDIS rLP2086 ANTIGENS

Publications (1)

Publication Number Publication Date
ES2639035T3 true ES2639035T3 (es) 2017-10-25

Family

ID=44653380

Family Applications (2)

Application Number Title Priority Date Filing Date
ES11757949.0T Active ES2639035T3 (es) 2010-08-23 2011-08-22 Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis
ES17172800T Active ES2850973T3 (es) 2010-08-23 2011-08-22 Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES17172800T Active ES2850973T3 (es) 2010-08-23 2011-08-22 Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis

Country Status (22)

Country Link
US (1) US9556240B2 (es)
EP (3) EP3246044B2 (es)
JP (1) JP5945538B2 (es)
KR (2) KR101594228B1 (es)
CN (3) CN103189071A (es)
AR (1) AR082529A1 (es)
AU (2) AU2011294776B2 (es)
BR (1) BR112013004236A2 (es)
CA (1) CA2808975C (es)
DK (2) DK2608805T3 (es)
ES (2) ES2639035T3 (es)
HK (2) HK1247083A1 (es)
HR (1) HRP20210242T1 (es)
HU (3) HUE034544T2 (es)
IL (1) IL224626A (es)
MX (1) MX350142B (es)
PL (2) PL3246044T3 (es)
PT (2) PT3246044T (es)
RU (1) RU2580620C2 (es)
SI (2) SI3246044T1 (es)
TW (1) TW201221138A (es)
WO (1) WO2012025873A2 (es)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX339524B (es) 2001-10-11 2016-05-30 Wyeth Corp Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica.
WO2012025873A2 (en) 2010-08-23 2012-03-01 Wyeth Llc STABLE FORMULATIONS OF NEISSERIA MENINGITIDIS rLP2086 ANTIGENS
PE20140173A1 (es) 2010-09-10 2014-02-20 Wyeth Llc Variantes no lipidadas de antigenos orf2086 de neisseria meningitidis
AU2011384634A1 (en) * 2011-12-29 2014-06-19 Novartis Ag Adjuvanted combinations of meningococcal factor H binding proteins
US10598666B2 (en) * 2012-03-08 2020-03-24 Glaxosmithkline Biologicals Sa In vitro potency assay for protein-based meningococcal vaccines
SA115360586B1 (ar) 2012-03-09 2017-04-12 فايزر انك تركيبات لعلاج الالتهاب السحائي البكتيري وطرق لتحضيرها
SG10201602558UA (en) 2012-03-09 2016-05-30 Pfizer Neisseria meningitidis compositions and methods thereof
EP2964665B1 (en) 2013-03-08 2018-08-01 Pfizer Inc Immunogenic fusion polypeptides
CA2923129C (en) * 2013-09-08 2020-06-09 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
EP2977759B1 (en) * 2014-07-25 2017-07-12 Serum Institute of India Private Limited Highly sensitive immunoassay for rapid quantification of meningococcal capsular polysaccharide antigens
BR112017017460A2 (pt) 2015-02-19 2018-04-10 Pfizer Inc. composições de neisseria meningitidis e métodos das mesmas
AR104847A1 (es) * 2015-06-17 2017-08-16 Lilly Co Eli Formulación de anticuerpo anti-cgrp
AU2018215585B2 (en) 2017-01-31 2022-03-17 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
EP3923982A1 (en) 2019-02-11 2021-12-22 Pfizer Inc. Neisseria meningitidiscompositions and methods thereof
US20220401544A1 (en) 2019-09-27 2022-12-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2024030931A1 (en) * 2022-08-03 2024-02-08 Sanofi Pasteur Inc. Adjuvanted immunogenic composition against neisseria meningitidis b

Family Cites Families (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4554101A (en) 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
CH660375A5 (it) 1983-02-08 1987-04-15 Sclavo Spa Procedimento per la produzione di proteine correlate alla tossina difterica.
US4708871A (en) 1983-03-08 1987-11-24 Commonwealth Serum Laboratories Commission Antigenically active amino acid sequences
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4650764A (en) 1983-04-12 1987-03-17 Wisconsin Alumni Research Foundation Helper cell
JPS6147500A (ja) 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法
EP0173494A3 (en) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by dna splicing and expression
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
GB8424757D0 (en) 1984-10-01 1984-11-07 Pasteur Institut Retroviral vector
SE8405493D0 (sv) 1984-11-01 1984-11-01 Bror Morein Immunogent komplex samt sett for framstellning derav och anvendning derav som immunstimulerande medel
FR2573436B1 (fr) 1984-11-20 1989-02-17 Pasteur Institut Adn recombinant comportant une sequence nucleotidique codant pour un polypeptide determine sous le controle d'un promoteur d'adenovirus, vecteurs contenant cet adn recombinant, cellules eucaryotes transformees par cet adn recombinant, produits d'excretion de ces cellules transformees et leurs applications, notamment a la constitution de vaccins
JPS61134325A (ja) 1984-12-04 1986-06-21 Teijin Ltd ハイブリツド抗体遺伝子の発現方法
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US4666829A (en) 1985-05-15 1987-05-19 University Of California Polypeptide marker for Alzheimer's disease and its use for diagnosis
WO1987001130A1 (en) 1985-08-15 1987-02-26 Stauffer Chemical Company Tryptophan producing microorganism
US5078996A (en) 1985-08-16 1992-01-07 Immunex Corporation Activation of macrophage tumoricidal activity by granulocyte-macrophage colony stimulating factor
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
AU606320B2 (en) 1985-11-01 1991-02-07 International Genetic Engineering, Inc. Modular assembly of antibody genes, antibodies prepared thereby and use
US4861719A (en) 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
US5514581A (en) 1986-11-04 1996-05-07 Protein Polymer Technologies, Inc. Functional recombinantly prepared synthetic protein polymer
US4980289A (en) 1987-04-27 1990-12-25 Wisconsin Alumni Research Foundation Promoter deficient retroviral vector
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
RU2023448C1 (ru) 1987-07-30 1994-11-30 Сентро Насьональ Де Биопрепарадос Способ получения вакцины против различных патогенных серотипов менингита нейссера группы в
WO1989007150A1 (en) 1988-02-05 1989-08-10 The Trustees Of Columbia University In The City Of Retroviral packaging cell lines and processes of using same
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
EP0432216A1 (en) 1988-09-01 1991-06-19 Whitehead Institute For Biomedical Research Recombinant retroviruses with amphotropic and ecotropic host ranges
US7118757B1 (en) 1988-12-19 2006-10-10 Wyeth Holdings Corporation Meningococcal class 1 outer-membrane protein vaccine
US5124263A (en) 1989-01-12 1992-06-23 Wisconsin Alumni Research Foundation Recombination resistant retroviral helper cell and products produced thereby
EP0606921B1 (en) 1989-03-09 2000-08-02 American Cyanamid Company Method of isolating haemophilus influenzae protein E
US5354844A (en) 1989-03-16 1994-10-11 Boehringer Ingelheim International Gmbh Protein-polycation conjugates
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
JPH0832638B2 (ja) 1989-05-25 1996-03-29 カイロン コーポレイション サブミクロン油滴乳剤を含んで成るアジュバント製剤
US5399346A (en) 1989-06-14 1995-03-21 The United States Of America As Represented By The Department Of Health And Human Services Gene therapy
US5585362A (en) 1989-08-22 1996-12-17 The Regents Of The University Of Michigan Adenovirus vectors for gene therapy
CA2039921A1 (en) 1990-04-16 1991-10-17 Xandra O. Breakefield Transfer and expression of gene sequences into central nervous system cells using herpes simplex virus mutants with deletions in genes for viral replication
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
WO1991018088A1 (en) 1990-05-23 1991-11-28 The United States Of America, Represented By The Secretary, United States Department Of Commerce Adeno-associated virus (aav)-based eucaryotic vectors
IE912559A1 (en) 1990-07-19 1992-01-29 Merck & Co Inc The class ii protein of the outer membrane of neisseria¹meningitidis, and vaccines containing same
BR9106879A (pt) 1990-09-25 1993-07-20 Cantab Pharma Res Virus mutuante nao retroviral,uso do mesmo,vacina e processo de manufaturar umvirus mutante
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
IL101715A (en) 1991-05-02 2005-06-19 Amgen Inc Recombinant dna-derived cholera toxin subunit analogs
EP0625052A4 (en) 1991-10-21 1995-07-19 Medimmune Inc SECRETION SIGNAL OF LIPOPROTEIN-ENCODING DNA CONTAINING BACTERIAL EXPRESSION VECTOR.
US5252479A (en) 1991-11-08 1993-10-12 Research Corporation Technologies, Inc. Safe vector for gene therapy
IT1253009B (it) 1991-12-31 1995-07-10 Sclavo Ricerca S R L Mutanti immunogenici detossificati della tossina colerica e della tossina lt, loro preparazione ed uso per la preparazione di vaccini
WO1993015115A1 (en) 1992-01-24 1993-08-05 Cornell Research Foundation, Inc. E. coli dna polymerase iii holoenzyme and subunits
AU680459B2 (en) 1992-12-03 1997-07-31 Genzyme Corporation Gene therapy for cystic fibrosis
DE69434079T2 (de) 1993-03-05 2005-02-24 Wyeth Holdings Corp. Plasmid zur Herstellung von CRM-Protein und Diphtherie-Toxin
WO1994021807A2 (en) 1993-03-19 1994-09-29 Cantab Pharmaceuticals Research Limited Defective mutant non-retroviral virus (e.g. hsv) as vaccine
ATE190502T1 (de) 1993-05-13 2000-04-15 American Cyanamid Co Herstellung und verwendungen von los-verminderten aussenmembran-proteinen von gram-negativen kokken
FR2705361B1 (fr) 1993-05-18 1995-08-04 Centre Nat Rech Scient Vecteurs viraux et utilisation en thérapie génique.
FR2705686B1 (fr) 1993-05-28 1995-08-18 Transgene Sa Nouveaux adénovirus défectifs et lignées de complémentation correspondantes.
NZ269156A (en) 1993-07-13 1996-03-26 Rhone Poulenc Rorer Sa Defective recombinant adenovirus vector incapable of replicating autonomously in a target cell and its use in gene therapy
CA2168202A1 (en) 1993-07-30 1995-03-16 Joseph Dougherty Efficient gene transfer into primary lymphocytes
FR2708622B1 (fr) 1993-08-02 1997-04-18 Raymond Hamers Vecteur recombinant contenant une séquence d'un gène de lipoprotéine de structure pour l'expression de séquences de nucléotides.
US5550213A (en) 1993-12-27 1996-08-27 Rutgers, The State University Of New Jersey Inhibitors of urokinase plasminogen activator
FR2714830B1 (fr) 1994-01-10 1996-03-22 Rhone Poulenc Rorer Sa Composition contenant des acides nucléiques, préparation et utilisations.
FR2715847B1 (fr) 1994-02-08 1996-04-12 Rhone Poulenc Rorer Sa Composition contenant des acides nucléiques, préparation et utilisations.
FR2716459B1 (fr) 1994-02-22 1996-05-10 Univ Paris Curie Système hôte-vecteur utilisable en thérapie génique.
WO1995026411A2 (en) 1994-03-25 1995-10-05 The Uab Research Foundation Composition and methods for creating syngeneic recombinant virus-producing cells
US5739118A (en) 1994-04-01 1998-04-14 Apollon, Inc. Compositions and methods for delivery of genetic material
WO1995028494A1 (en) 1994-04-15 1995-10-26 Targeted Genetics Corporation Gene delivery fusion proteins
US5571515A (en) 1994-04-18 1996-11-05 The Wistar Institute Of Anatomy & Biology Compositions and methods for use of IL-12 as an adjuvant
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5565204A (en) 1994-08-24 1996-10-15 American Cyanamid Company Pneumococcal polysaccharide-recombinant pneumolysin conjugate vaccines for immunization against pneumococcal infections
US5837533A (en) 1994-09-28 1998-11-17 American Home Products Corporation Complexes comprising a nucleic acid bound to a cationic polyamine having an endosome disruption agent
GB9422096D0 (en) 1994-11-02 1994-12-21 Biocine Spa Combined meningitis vaccine
FR2727679B1 (fr) 1994-12-05 1997-01-03 Rhone Poulenc Rorer Sa Nouveaux agents de transfection et leurs applications pharmaceutiques
BE1008978A5 (fr) 1994-12-27 1996-10-01 Solvay Adjuvants pour vaccins.
IL116816A (en) 1995-01-20 2003-05-29 Rhone Poulenc Rorer Sa Cell for the production of a defective recombinant adenovirus or an adeno-associated virus and the various uses thereof
FR2730637B1 (fr) 1995-02-17 1997-03-28 Rhone Poulenc Rorer Sa Composition pharmaceutique contenant des acides nucleiques, et ses utilisations
IL117483A (en) 1995-03-17 2008-03-20 Bernard Brodeur MENINGITIDIS NEISSERIA shell protein is resistant to proteinase K.
WO1996039036A1 (en) 1995-06-05 1996-12-12 The University Of Alabama At Birmingham Research Foundation Composition and methods for creating syngeneic recombinant virus-producing cells
PT832093E (pt) 1995-06-07 2006-12-29 Sanofi Pasteur Inc Expressão de lipoproteínas
FR2741358B1 (fr) 1995-11-17 1998-01-02 Centre Nat Rech Scient Production de vecteurs retroviraux par l'intermediaire de vecteurs viraux a base de virus a adn
US5846547A (en) 1996-01-22 1998-12-08 Regents Of The University Of Minnesota Streptococcal C5a peptidase vaccine
US6355255B1 (en) 1998-12-07 2002-03-12 Regents Of The University Of Minnesota Streptococcal C5a peptidase vaccine
JP4162267B2 (ja) 1996-08-27 2008-10-08 カイロン コーポレイション Neisseria meningitidis血清型B複合糖質およびその使用法
ATE252602T1 (de) 1996-08-27 2003-11-15 Chiron Corp Meningokokkus b-epitop ausbildende monoklonale antikoerper und deren verwendung zur herstellung von impfstoffzusammenstellungen
GB9622159D0 (en) 1996-10-24 1996-12-18 Solvay Sociutu Anonyme Polyanionic polymers as adjuvants for mucosal immunization
US6472518B1 (en) 1996-10-24 2002-10-29 Centers For Disease Control And Prevention, As Represented By The Secretary, Department Of Health And Human Services Invasion associated genes from Neisseria meningitidis serogroup B
GB9622660D0 (en) 1996-10-31 1997-01-08 Biocine Spa Immunogenic detoxified mutant toxin
US6113918A (en) 1997-05-08 2000-09-05 Ribi Immunochem Research, Inc. Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
DE69826124T3 (de) 1997-06-30 2007-10-11 Institut Gustave Roussy Verabreichung der nukleinsäure in den quergestreiften muskel
KR20010020570A (ko) 1997-06-30 2001-03-15 자끄 사비나 다세포 진핵 생물 세포중으로 개선된 핵산 전달방법 및이를 위한 콤비네이션
WO1999001175A1 (en) 1997-06-30 1999-01-14 Rhone-Poulenc Rorer S.A. Device for optimized electrotransfer of nucleic acid vectors to tissues in vivo
DK1007546T3 (da) 1997-08-27 2009-03-16 Novartis Vaccines & Diagnostic Molekylære mimetika af meningokok-B-epitoper
BR9813930A (pt) 1997-11-06 2006-12-19 Chiron Spa antìgeno neisserial
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
EP1047784B2 (en) 1998-01-14 2015-03-18 Novartis Vaccines and Diagnostics S.r.l. Neissera meningitidis antigens
PT1053329E (pt) 1998-02-03 2010-01-04 Ct Disease Contr & Prevention Proteína psaa lipidada recombinante, métodos de preparação e utilização
GB9806456D0 (en) 1998-03-25 1998-05-27 Smithkline Beecham Biolog Vaccine composition
GB9808734D0 (en) 1998-04-23 1998-06-24 Smithkline Beecham Biolog Novel compounds
GB9808932D0 (en) 1998-04-27 1998-06-24 Chiron Spa Polyepitope carrier protein
NZ532665A (en) 1998-05-01 2005-11-25 Inst Genomic Research Neisseria meningitidis antigens and compositions
JP5074644B2 (ja) 1998-05-29 2012-11-14 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド 組合わせの髄膜炎菌b/cワクチン
RU2249463C2 (ru) * 1998-08-19 2005-04-10 Бакстер Хелфкэа С.А. Иммуногенный конъюгат бета-пропионамид-связанного полисахарида с белком, использующийся в качестве вакцины
JP4673974B2 (ja) 1998-09-30 2011-04-20 ワイス・ホールディングズ・コーポレイション アジュバントとしての変異コレラホロトキシン
WO2000018355A2 (en) * 1998-09-30 2000-04-06 Walter Reed Army Institute Of Research Use of purified invaplex from gram negative bacteria as a vaccine
MXPA01003557A (es) 1998-10-09 2004-04-05 Chiron Corp Secuencias genomicas de neisseria y metodos para su uso.
US6281337B1 (en) 1998-11-12 2001-08-28 Schering Corporation Methods for conversion of protein isoforms
EP1144645A1 (en) 1999-01-15 2001-10-17 SMITHKLINE BEECHAM BIOLOGICALS s.a. Neisseria meningitidis polypeptide basb052
CA2360658A1 (en) 1999-01-22 2000-07-27 Smithkline Beecham Biologicals S.A. Neisseria meningitidis antigenic polypeptides, corresponding polynucleotides and protective antibodies
GB9902084D0 (en) 1999-01-29 1999-03-24 Smithkline Beecham Biolog Novel compounds
EP1150712B1 (en) 1999-02-05 2008-11-05 Merck & Co., Inc. Human papilloma virus vaccine formulations
EP1154790B1 (en) 1999-02-26 2004-10-20 Chiron S.r.l. Enhancement of bactericidal activity of neisseria antigens with oligonucleotides containing cg motifs
US6245568B1 (en) 1999-03-26 2001-06-12 Merck & Co., Inc. Human papilloma virus vaccine with disassembled and reassembled virus-like particles
US7115730B1 (en) 1999-04-27 2006-10-03 Chiron Srl Immunogenic detoxified mutant E. coli LT-A-toxin
NZ571167A (en) 1999-04-30 2010-05-28 Novartis Vaccines & Diagnostic Fragments from Neisseria protein ORF 953 and their use in medicaments and diagnostic reagents
ES2323845T3 (es) 1999-04-30 2009-07-27 Novartis Vaccines And Diagnostics, Inc. Secuencias genomicas de neisseria y procedimientos de uso.
GB9911683D0 (en) 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
CA2373236C (en) 1999-05-19 2014-08-26 Chiron S.P.A. Combination neisserial compositions
GB9916529D0 (en) 1999-07-14 1999-09-15 Chiron Spa Antigenic peptides
US7384640B1 (en) 1999-09-30 2008-06-10 Wyeth Holdings Corporation Mutant cholera holotoxin as an adjuvant
EP2975127A1 (en) 1999-10-29 2016-01-20 GlaxoSmithKline Biologicals SA Neisserial antigenic peptides
GB9928196D0 (en) 1999-11-29 2000-01-26 Chiron Spa Combinations of B, C and other antigens
EP1234039A2 (en) 1999-11-29 2002-08-28 Chiron Spa 85kDa NEISSERIAL ANTIGEN
ES2307553T3 (es) 1999-12-02 2008-12-01 Novartis Vaccines And Diagnostics, Inc. Composiciones y procedimientos para estabilizar moleculas biologicas tras liofilizacion.
EP2275129A3 (en) 2000-01-17 2013-11-06 Novartis Vaccines and Diagnostics S.r.l. Outer membrane vesicle (OMV) vaccine comprising N. meningitidis serogroup B outer membrane proteins
WO2001064920A2 (en) 2000-02-28 2001-09-07 Chiron Spa Hybrid expression of neisserial proteins
KR100799788B1 (ko) 2000-06-08 2008-01-31 인터셀 아게 면역촉진성 올리고디옥시뉴클레오티드
AT410635B (de) 2000-10-18 2003-06-25 Cistem Biotechnologies Gmbh Vakzin-zusammensetzung
PT2332581E (pt) 2001-01-23 2015-10-16 Sanofi Pasteur Inc Vacina meningocócica tri- ou tetravalente de conjugados de polissacárido e crm-197
GB0103424D0 (en) 2001-02-12 2001-03-28 Chiron Spa Gonococcus proteins
WO2002079246A2 (en) 2001-03-30 2002-10-10 Geneprot, Inc. Human arginine-rich protein-related compositions
AU2002258734A1 (en) 2001-04-13 2002-10-28 Wyeth Holdings Corporation Removal of bacterial endotoxin in a protein solution by immobilized metal affinity chromatography
CA2439428C (en) 2001-04-17 2012-01-24 Chiron Corporation Molecular mimetics of meningococcal b epitopes which elicit functionally active antibodies
IL159209A0 (en) 2001-06-07 2004-06-01 Wyeth Corp Mutant forms of cholera holotoxin as an adjuvant
IL159210A0 (en) 2001-06-07 2004-06-01 Wyeth Corp Mutant forms of cholera holotoxin as an adjuvant
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
GB0118249D0 (en) 2001-07-26 2001-09-19 Chiron Spa Histidine vaccines
WO2003009869A1 (en) 2001-07-26 2003-02-06 Chiron Srl. Vaccines comprising aluminium adjuvants and histidine
GB0121591D0 (en) 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
CA2460546A1 (en) 2001-09-14 2003-03-27 Invitrogen Corporation Dna polymerases and mutants thereof
MX339524B (es) 2001-10-11 2016-05-30 Wyeth Corp Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica.
GB0129007D0 (en) 2001-12-04 2002-01-23 Chiron Spa Adjuvanted antigenic meningococcal compositions
DE60325565D1 (de) 2002-03-26 2009-02-12 Novartis Vaccines & Diagnostic Modifizierte saccharide mit verbesserter stabilität in wasser
GB0302218D0 (en) 2003-01-30 2003-03-05 Chiron Sri Vaccine formulation & Mucosal delivery
MXPA04011249A (es) 2002-05-14 2005-06-06 Chiron Srl Vacunas mucosales con adyuvante de quitosano y antigenos meningococicos.
CA2485999C (en) 2002-05-14 2015-02-17 Chiron Srl Mucosal combination vaccines for bacterial meningitis
US7785608B2 (en) 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
GB0220194D0 (en) 2002-08-30 2002-10-09 Chiron Spa Improved vesicles
GB0220198D0 (en) 2002-08-30 2002-10-09 Chiron Spa Modified saccharides,conjugates thereof and their manufacture
ATE492288T1 (de) 2002-10-11 2011-01-15 Novartis Vaccines & Diagnostic Polypeptidimpstoffe zum breiten schutz gegen hypervirulente meningokokken-linien
PT2279746E (pt) 2002-11-15 2013-12-09 Novartis Vaccines & Diagnostic Proteínas de superfície de neisseria meningitidis
GB0227346D0 (en) 2002-11-22 2002-12-31 Chiron Spa 741
EP1590459A2 (en) 2003-01-15 2005-11-02 Wyeth Holdings Corporation Methods for increasing neisseria protein expression and compositions thereof
JP4827726B2 (ja) 2003-01-30 2011-11-30 ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル 複数の髄膜炎菌血清群に対する注射可能ワクチン
GB0302217D0 (en) * 2003-01-30 2003-03-05 Chiron Sri Injectable combination saccharide vaccines
CA2519511A1 (en) 2003-03-17 2004-09-30 Wyeth Holdings Corporation Mutant cholera holotoxin as an adjuvant and an antigen carrier protein
KR20060019515A (ko) 2003-04-16 2006-03-03 와이어쓰 홀딩스 코포레이션 수막구균 질환의 예방 및 치료용 신규 면역원성 조성물
ES2596553T3 (es) 2003-06-02 2017-01-10 Glaxosmithkline Biologicals Sa Composiciones inmunogénicas a base de micropartículas que comprenden toxoide adsorbido y un antígeno que contiene un polisacárido
EP2364725A3 (en) 2003-06-23 2012-05-09 Sanofi Pasteur Inc. Immunization method against neisseria meningitidis serogroups a and c
GB0316560D0 (en) 2003-07-15 2003-08-20 Chiron Srl Vesicle filtration
CN103357002A (zh) 2003-10-02 2013-10-23 诺华疫苗和诊断有限公司 多种脑膜炎球菌血清群的液体疫苗
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
CN1901935A (zh) 2003-12-30 2007-01-24 惠氏公司 具有改进耐受性的免疫原组合物中的疏水性蛋白调配物
GB0406013D0 (en) 2004-03-17 2004-04-21 Chiron Srl Analysis of saccharide vaccines without interference
GB0408977D0 (en) 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
GB0408978D0 (en) 2004-04-22 2004-05-26 Chiron Srl Meningococcal fermentation for preparing conjugate vaccines
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
GB0500787D0 (en) 2005-01-14 2005-02-23 Chiron Srl Integration of meningococcal conjugate vaccination
RU2379052C2 (ru) 2004-04-30 2010-01-20 Чирон С.Р.Л. Вакцинация менингококковыми конъюгатами
GB0410220D0 (en) 2004-05-07 2004-06-09 Kirkham Lea Ann Mutant pneumolysin proteins
GB0411387D0 (en) 2004-05-21 2004-06-23 Chiron Srl Analysis of saccharide length
GB0413868D0 (en) 2004-06-21 2004-07-21 Chiron Srl Dimensional anlaysis of saccharide conjugates
EP1778725B1 (en) 2004-07-23 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Polypeptides for oligomeric assembly of antigens
GB0419408D0 (en) 2004-09-01 2004-10-06 Chiron Srl 741 chimeric polypeptides
GB0419846D0 (en) 2004-09-07 2004-10-13 Chiron Srl Vaccine adjuvants for saccharides
GB0424092D0 (en) 2004-10-29 2004-12-01 Chiron Srl Immunogenic bacterial vesicles with outer membrane proteins
GB0428394D0 (en) 2004-12-24 2005-02-02 Chiron Srl Saccharide conjugate vaccines
JP4993750B2 (ja) 2005-01-27 2012-08-08 チルドレンズ ホスピタル アンド リサーチ センター アット オークランド 髄膜炎菌に起因する疾患に対する広域防御のための、gna1870を基にした小胞ワクチン
US20070014842A1 (en) 2005-03-07 2007-01-18 Denis Martin Pharmaceutical liposomal compositions
ES2533248T3 (es) 2005-05-06 2015-04-08 Novartis Ag Inmunógenos para vacunas contra Meningitidis A
US8431136B2 (en) 2005-06-27 2013-04-30 Glaxosmithkline Biologicals S.A. Immunogenic composition
RU2457858C2 (ru) 2005-09-01 2012-08-10 Новартис Вэксинес Энд Дайэгностикс Гмбх Унд Ко Кг Множественная вакцинация, включающая менингококки серогруппы с
CA2621578C (en) 2005-09-05 2014-07-22 Glaxosmithkline Biologicals S.A. Serum bactericidal assay for n. meningitidis specific antisera
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
CA2633789A1 (en) 2005-12-23 2007-06-28 Glaxosmithkline Biologicals Sa Conjugate vaccines
ES2670231T3 (es) 2006-03-22 2018-05-29 Glaxosmithkline Biologicals S.A. Regímenes para inmunización con conjugados meningocócicos
WO2007127668A2 (en) 2006-04-26 2007-11-08 Wyeth Novel processes for coating container means which inhibit precipitation of polysaccharide-protein conjugate formulations
TW200806315A (en) * 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
JP5275982B2 (ja) 2006-06-12 2013-08-28 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム ワクチン
GB0612854D0 (en) 2006-06-28 2006-08-09 Novartis Ag Saccharide analysis
CA2656474A1 (en) 2006-06-29 2008-01-03 Novartis Ag Polypeptides from neisseria meningitidis
EP3705579A1 (en) 2006-07-27 2020-09-09 Wyeth LLC High-cell density fed-batch fermentation process for producing recombinant protein
AR064642A1 (es) 2006-12-22 2009-04-15 Wyeth Corp Polinucleotido vector que lo comprende celula recombinante que comprende el vector polipeptido , anticuerpo , composicion que comprende el polinucleotido , vector , celula recombinante polipeptido o anticuerpo , uso de la composicion y metodo para preparar la composicion misma y preparar una composi
GB0700562D0 (en) 2007-01-11 2007-02-21 Novartis Vaccines & Diagnostic Modified Saccharides
EP2152302B1 (en) 2007-06-04 2015-10-07 GlaxoSmithKline Biologicals SA Formulation of meningitis vaccines
GB0713880D0 (en) 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
CA2695467A1 (en) * 2007-08-02 2009-03-26 Children's Hospital & Research Center At Oakland Fhbp- and lpxl1-based vesicle vaccines for broad spectrum protection against diseases caused by neisseria meningitidis
ES2383231T3 (es) * 2007-10-19 2012-06-19 Novartis Ag Formulaciones para vacunas meningocócicas
ES2532946T3 (es) * 2008-02-21 2015-04-06 Novartis Ag Polipéptidos PUfH meningocócicos
BRPI0909820A2 (pt) 2008-03-05 2015-08-11 Sanofi Pasteur Processo para estabilização de composição de vacina contra gripe, para estabilização de composição de vacina contendo adjuvante e para preparação de vacina, composições de vacina, kit de vacina e método de estocagem de uma matéria prima
EP2265640B1 (en) 2008-03-10 2015-11-04 Children's Hospital & Research Center at Oakland Chimeric factor h binding proteins (fhbp) containing a heterologous b domain and methods of use
US20100035234A1 (en) 2008-05-19 2010-02-11 Novartis Ag Vaccine assays
MX2010012999A (es) * 2008-05-30 2012-03-07 U S A As Represented By The Secretary Of The Army On Behalf Of Walter Reed Army Vacuna de vesícula de membrana externa nativa multivalente del meningococo, método para su fabricación y uso.
US20110229806A1 (en) 2008-07-16 2011-09-22 The Board Of Regents Of The University Of Texas System Phase mask and method of fabrication
US8476032B2 (en) 2008-08-27 2013-07-02 Children's Hospital & Research Center Oakland Complement factor H-based assays for serum bactericidal activity against Neisseria meningitidis
US8470340B2 (en) 2008-09-03 2013-06-25 Children's Hospital & Research Center Oakland Peptides presenting an epitope of a domain of factor H binding protein and methods of use
IT1394288B1 (it) 2008-09-12 2012-06-06 Novartis Vaccines & Diagnostic Immunogeni di proteine che legano il fattore h.
KR101581986B1 (ko) * 2008-10-29 2016-01-04 아블린쓰 엔.브이. 단일 도메인 항원 결합 분자의 제형
GB0822634D0 (en) 2008-12-11 2009-01-21 Novartis Ag Meningitis vaccines
US20100189737A1 (en) 2008-12-17 2010-07-29 Arico Beatrice Meningococcal vaccines including hemoglobin receptor
BRPI1009829A2 (pt) 2009-03-24 2016-11-16 Novartis Ag combinações de proteína de ligação de fator h meningocócico e conjugados de sacarídeos pneumocócicos
CN104548082A (zh) 2009-03-24 2015-04-29 诺华股份有限公司 为脑膜炎球菌因子h结合蛋白添加佐剂
WO2010127172A2 (en) 2009-04-30 2010-11-04 Children's Hospital & Research Center At Oakland Chimeric factor h binding proteins (fhbp) and methods of use
US9365885B2 (en) 2009-06-16 2016-06-14 Puiying Annie Mak High-throughput complement-mediated antibody-dependent and opsonic bactericidal assays
CN102596240B (zh) 2009-08-27 2015-02-04 诺华股份有限公司 包括脑膜炎球菌fHBP序列的杂交多肽
CN102724988B (zh) 2009-09-30 2014-09-10 诺华股份有限公司 脑膜炎球菌fHBP多肽的表达
GB0917647D0 (en) 2009-10-08 2009-11-25 Glaxosmithkline Biolog Sa Expression system
MX2012004850A (es) 2009-10-27 2012-05-22 Novartis Ag Polipeptidos fhbp meningococicos modificados.
ES2707778T3 (es) 2009-12-30 2019-04-05 Glaxosmithkline Biologicals Sa Inmunógenos polisacáridos conjugados con proteínas portadoras de E. coli
GB201003922D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Conjugation process
CN103002910A (zh) 2010-03-10 2013-03-27 葛兰素史密丝克莱恩生物有限公司 疫苗组合物
EP2547357A1 (en) 2010-03-18 2013-01-23 Novartis AG Adjuvanted vaccines for serogroup b meningococcus
BR122022015250B1 (pt) 2010-03-30 2023-11-07 Children´S Hospital & Research Center At Oakland Composições imunogênicas e seus usos
CA2803239A1 (en) * 2010-06-25 2011-12-29 Novartis Ag Combinations of meningococcal factor h binding proteins
WO2012025873A2 (en) 2010-08-23 2012-03-01 Wyeth Llc STABLE FORMULATIONS OF NEISSERIA MENINGITIDIS rLP2086 ANTIGENS
EP2612148B1 (en) 2010-09-04 2019-06-12 GlaxoSmithKline Biologicals SA Bactericidal antibody assays to assess immunogenicity and potency of meningococcal capsular saccharide vaccines
GB201015132D0 (en) 2010-09-10 2010-10-27 Univ Bristol Vaccine composition
US20120070457A1 (en) 2010-09-10 2012-03-22 J. Craig Venter Institute, Inc. Polypeptides from neisseria meningitidis
AU2011300418B2 (en) 2010-09-10 2016-05-12 Glaxosmithkline Biologicals Sa Meningococcus overexpressing NadA and/or NHBA and outer membrane vesicles derived therefrom
PE20140173A1 (es) 2010-09-10 2014-02-20 Wyeth Llc Variantes no lipidadas de antigenos orf2086 de neisseria meningitidis
GB201101665D0 (en) 2011-01-31 2011-03-16 Novartis Ag Immunogenic compositions
SG10201602558UA (en) 2012-03-09 2016-05-30 Pfizer Neisseria meningitidis compositions and methods thereof
EP2964665B1 (en) 2013-03-08 2018-08-01 Pfizer Inc Immunogenic fusion polypeptides
CA2923129C (en) 2013-09-08 2020-06-09 Pfizer Inc. Neisseria meningitidis compositions and methods thereof

Also Published As

Publication number Publication date
SI2608805T1 (sl) 2017-08-31
AU2016201346A1 (en) 2016-03-24
EP2608805A2 (en) 2013-07-03
CN103189071A (zh) 2013-07-03
CN107913396A (zh) 2018-04-17
CN107961367A (zh) 2018-04-27
JP5945538B2 (ja) 2016-07-05
AU2016201346B2 (en) 2017-10-12
KR20160017129A (ko) 2016-02-15
MX2013002175A (es) 2013-04-05
EP3246044B2 (en) 2024-04-10
KR101594228B1 (ko) 2016-02-15
IL224626A (en) 2016-12-29
PT3246044T (pt) 2021-02-15
HRP20210242T1 (hr) 2021-04-02
AU2011294776A1 (en) 2013-02-28
EP3246044A1 (en) 2017-11-22
PL3246044T3 (pl) 2021-08-23
HUS1700043I1 (hu) 2017-12-28
KR101817450B1 (ko) 2018-01-11
DK3246044T3 (da) 2021-01-18
EP3831406A1 (en) 2021-06-09
SI3246044T1 (sl) 2021-03-31
HUE034544T2 (hu) 2018-02-28
MX350142B (es) 2017-08-28
WO2012025873A3 (en) 2012-05-18
CA2808975C (en) 2018-10-30
TW201221138A (en) 2012-06-01
PT2608805T (pt) 2017-09-11
CN107913396B (zh) 2022-03-08
KR20130054384A (ko) 2013-05-24
CA2808975A1 (en) 2012-03-01
EP2608805B1 (en) 2017-07-05
US20130171194A1 (en) 2013-07-04
HK1254329A1 (zh) 2019-07-19
CN107961367B (zh) 2021-10-26
PL2608805T3 (pl) 2017-12-29
US9556240B2 (en) 2017-01-31
EP3246044B1 (en) 2020-12-30
DK2608805T3 (en) 2017-08-14
HK1247083A1 (zh) 2018-09-21
ES2850973T3 (es) 2021-09-01
RU2013105726A (ru) 2014-09-27
AU2011294776B2 (en) 2016-02-04
RU2580620C2 (ru) 2016-04-10
BR112013004236A2 (pt) 2016-07-12
WO2012025873A2 (en) 2012-03-01
AR082529A1 (es) 2012-12-12
JP2013540705A (ja) 2013-11-07
HUE052850T2 (hu) 2021-05-28

Similar Documents

Publication Publication Date Title
ES2639035T3 (es) Formulaciones estables de antígenos rLP2086 de Neisseria meningitidis
CN112057419B (zh) 单克隆抗体的配制品
ES2537737T3 (es) Composiciones de vacuna que comprenden lipooligosacáridos de inmunotipo L2 y/o L3 de Neisseria meningitidis de IgtB
ES2670231T3 (es) Regímenes para inmunización con conjugados meningocócicos
BRPI0615420A2 (pt) vacinação múltipla que inclui meningococo do sorogrupo c
JP2019507759A (ja) 外陰部膣カンジダ症の予防及び治療で使用するための方法及びキット
Burgess et al. A recombinant subunit vaccine for the control of ovine psoroptic mange (sheep scab)
BR112013004594B1 (pt) método para a determinação de um conteúdo de antígeno
US20200147198A1 (en) Novel Multivalent Polysaccharide-Protein Conjugate Vaccine Composition and Formulation Thereof
Zeigler et al. Epitope targeting with self-assembled peptide vaccines
JP2021066727A (ja) 髄膜炎菌組成物およびその方法
Plieskatt et al. Clinical formulation development of Plasmodium falciparum malaria vaccine candidates based on Pfs48/45, Pfs230, and PfCSP
Bo et al. Physicochemical properties and adsorption state of aluminum adjuvants with different processes in vaccines
Balks et al. Towards in vitro potency testing of inactivated erysipelas vaccines
WO2016105274A1 (en) A rabies composition comprising pika adjuvant