ES2425781T3 - Análogos de CAP de ARNm - Google Patents
Análogos de CAP de ARNm Download PDFInfo
- Publication number
- ES2425781T3 ES2425781T3 ES09759412T ES09759412T ES2425781T3 ES 2425781 T3 ES2425781 T3 ES 2425781T3 ES 09759412 T ES09759412 T ES 09759412T ES 09759412 T ES09759412 T ES 09759412T ES 2425781 T3 ES2425781 T3 ES 2425781T3
- Authority
- ES
- Spain
- Prior art keywords
- indicated
- rna
- group
- translation
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 37
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 23
- -1 methylenenaphthyl Chemical group 0.000 claims abstract description 18
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims abstract description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims abstract description 3
- 230000014616 translation Effects 0.000 claims description 51
- 238000013519 translation Methods 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 37
- 230000015572 biosynthetic process Effects 0.000 claims description 36
- 238000003786 synthesis reaction Methods 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 238000000338 in vitro Methods 0.000 claims description 29
- 102000004169 proteins and genes Human genes 0.000 claims description 21
- 108090000623 proteins and genes Proteins 0.000 claims description 21
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 16
- 238000013518 transcription Methods 0.000 claims description 12
- 230000035897 transcription Effects 0.000 claims description 12
- 238000001727 in vivo Methods 0.000 claims description 9
- 230000005764 inhibitory process Effects 0.000 claims description 9
- 229910052711 selenium Inorganic materials 0.000 claims description 9
- 108700026244 Open Reading Frames Proteins 0.000 claims description 8
- 210000004748 cultured cell Anatomy 0.000 claims description 8
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 claims description 5
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 claims description 5
- 230000036961 partial effect Effects 0.000 claims description 4
- 108091033319 polynucleotide Proteins 0.000 claims description 4
- 102000040430 polynucleotide Human genes 0.000 claims description 4
- 239000002157 polynucleotide Substances 0.000 claims description 4
- 238000001243 protein synthesis Methods 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 108020004999 messenger RNA Proteins 0.000 description 76
- 229920002477 rna polymer Polymers 0.000 description 47
- 239000011669 selenium Substances 0.000 description 35
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 34
- 229910000085 borane Inorganic materials 0.000 description 34
- 239000000047 product Substances 0.000 description 33
- 239000005089 Luciferase Substances 0.000 description 32
- 108060001084 Luciferase Proteins 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 239000000243 solution Substances 0.000 description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 26
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 26
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 22
- 229910001868 water Inorganic materials 0.000 description 22
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 20
- 239000011541 reaction mixture Substances 0.000 description 20
- 201000003639 autosomal recessive cerebellar ataxia Diseases 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 238000005481 NMR spectroscopy Methods 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- AFQIYTIJXGTIEY-UHFFFAOYSA-N hydrogen carbonate;triethylazanium Chemical compound OC(O)=O.CCN(CC)CC AFQIYTIJXGTIEY-UHFFFAOYSA-N 0.000 description 15
- 229920005654 Sephadex Polymers 0.000 description 14
- 239000012507 Sephadex™ Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 14
- 238000004679 31P NMR spectroscopy Methods 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 13
- 235000017557 sodium bicarbonate Nutrition 0.000 description 13
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 13
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 239000001226 triphosphate Substances 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 229910001629 magnesium chloride Inorganic materials 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 159000000000 sodium salts Chemical class 0.000 description 11
- 101150087322 DCPS gene Proteins 0.000 description 10
- 101100386724 Schizosaccharomyces pombe (strain 972 / ATCC 24843) nhm1 gene Proteins 0.000 description 10
- 230000007062 hydrolysis Effects 0.000 description 10
- 238000006460 hydrolysis reaction Methods 0.000 description 10
- JRPHGDYSKGJTKZ-UHFFFAOYSA-N selenophosphoric acid Chemical group OP(O)([SeH])=O JRPHGDYSKGJTKZ-UHFFFAOYSA-N 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 9
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 9
- 229940029575 guanosine Drugs 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 235000011178 triphosphate Nutrition 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000012512 characterization method Methods 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000006166 lysate Substances 0.000 description 8
- 239000002777 nucleoside Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- JRPHGDYSKGJTKZ-UHFFFAOYSA-K selenophosphate Chemical compound [O-]P([O-])([O-])=[Se] JRPHGDYSKGJTKZ-UHFFFAOYSA-K 0.000 description 8
- 238000005160 1H NMR spectroscopy Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 150000007928 imidazolide derivatives Chemical class 0.000 description 7
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 210000001995 reticulocyte Anatomy 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 241000180579 Arca Species 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 238000011894 semi-preparative HPLC Methods 0.000 description 5
- 101100223333 Caenorhabditis elegans dcap-2 gene Proteins 0.000 description 4
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 4
- 108090000331 Firefly luciferases Proteins 0.000 description 4
- 229920000388 Polyphosphate Polymers 0.000 description 4
- 102000009609 Pyrophosphatases Human genes 0.000 description 4
- 108010009413 Pyrophosphatases Proteins 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000003833 nucleoside derivatives Chemical class 0.000 description 4
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 239000003161 ribonuclease inhibitor Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical group [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 208000005623 Carcinogenesis Diseases 0.000 description 3
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 3
- OVBJJZOQPCKUOR-UHFFFAOYSA-L EDTA disodium salt dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O OVBJJZOQPCKUOR-UHFFFAOYSA-L 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 3
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 3
- 101710141795 Ribonuclease inhibitor Proteins 0.000 description 3
- 229940122208 Ribonuclease inhibitor Drugs 0.000 description 3
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- TVYLOQJEHUAACN-UHFFFAOYSA-N bis(trimethylsilyl) hydrogen phosphite Chemical compound C[Si](C)(C)OP(O)O[Si](C)(C)C TVYLOQJEHUAACN-UHFFFAOYSA-N 0.000 description 3
- 238000006664 bond formation reaction Methods 0.000 description 3
- 230000036952 cancer formation Effects 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000007515 enzymatic degradation Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VMZOBROUFBEGAR-UHFFFAOYSA-N tris(trimethylsilyl) phosphite Chemical compound C[Si](C)(C)OP(O[Si](C)(C)C)O[Si](C)(C)C VMZOBROUFBEGAR-UHFFFAOYSA-N 0.000 description 3
- 108020003589 5' Untranslated Regions Proteins 0.000 description 2
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 108091036407 Polyadenylation Proteins 0.000 description 2
- 108091000106 RNA cap binding Proteins 0.000 description 2
- 102000028391 RNA cap binding Human genes 0.000 description 2
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- SIOVKLKJSOKLIF-UHFFFAOYSA-N bis(trimethylsilyl)acetamide Chemical compound C[Si](C)(C)OC(C)=N[Si](C)(C)C SIOVKLKJSOKLIF-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- LULXBAGMGMJJRW-UHFFFAOYSA-N n,2-bis(trimethylsilyl)acetamide Chemical compound C[Si](C)(C)CC(=O)N[Si](C)(C)C LULXBAGMGMJJRW-UHFFFAOYSA-N 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- WMQJKUSCPVAVPX-UHFFFAOYSA-N triethylazanium;selenophosphate Chemical compound [O-]P([O-])([O-])=[Se].CC[NH+](CC)CC.CC[NH+](CC)CC.CC[NH+](CC)CC WMQJKUSCPVAVPX-UHFFFAOYSA-N 0.000 description 2
- SYUQQUMHOZQROL-UHFFFAOYSA-N trimethylsilyl dihydrogen phosphite Chemical compound C[Si](C)(C)OP(O)O SYUQQUMHOZQROL-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- HNTAOTWBCIFHIR-KQYNXXCUSA-O 2-amino-9-[(2R,3R,4S,5R)-5-(dihydroxyphosphinoselenoyloxymethyl)-3,4-dihydroxyoxolan-2-yl]-7-methyl-1H-purin-9-ium-6-one Chemical compound P(O)(O)(=[Se])OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=[N+](C)C=2C(=O)NC(N)=NC1=2)O)O HNTAOTWBCIFHIR-KQYNXXCUSA-O 0.000 description 1
- CJRPFMAFZQADLD-IOSLPCCCSA-O 2-amino-9-[(2r,3r,4r,5r)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]-7-methyl-3h-purin-9-ium-6-one Chemical compound CO[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1[N+]1=CN(C)C2=C1NC(N)=NC2=O CJRPFMAFZQADLD-IOSLPCCCSA-O 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- 125000001417 5'-guanylyl group Chemical group C=12N=C(N([H])[H])N([H])C(=O)C=1N=C([H])N2[C@@]1([H])[C@@](O[H])([H])[C@@](O[H])([H])[C@](C(OP(=O)(O[H])[*])([H])[H])([H])O1 0.000 description 1
- 101150100998 Ace gene Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000244186 Ascaris Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical group OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- KGQZICWZJFINKK-IOSLPCCCSA-N C[N+]1=CN([C@@H]([C@@H]2OC)O[C@H](COP([O-])([Se]P(O)(O)=O)=O)[C@H]2O)C(N=C(N)N2)=C1C2=O Chemical compound C[N+]1=CN([C@@H]([C@@H]2OC)O[C@H](COP([O-])([Se]P(O)(O)=O)=O)[C@H]2O)C(N=C(N)N2)=C1C2=O KGQZICWZJFINKK-IOSLPCCCSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102100022466 Eukaryotic translation initiation factor 4E-binding protein 1 Human genes 0.000 description 1
- 108050000946 Eukaryotic translation initiation factor 4E-binding protein 1 Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000871498 Homo sapiens m7GpppX diphosphatase Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 101000819572 Mus musculus Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 102000002298 Purinergic P2Y Receptors Human genes 0.000 description 1
- 108010000818 Purinergic P2Y Receptors Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- FHHZHGZBHYYWTG-INFSMZHSSA-N [(2r,3s,4r,5r)-5-(2-amino-7-methyl-6-oxo-3h-purin-9-ium-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl [[[(2r,3s,4r,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] phosphate Chemical compound N1C(N)=NC(=O)C2=C1[N+]([C@H]1[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=C(C(N=C(N)N4)=O)N=C3)O)O1)O)=CN2C FHHZHGZBHYYWTG-INFSMZHSSA-N 0.000 description 1
- HETSHOUSYUCGPQ-MCDZGGTQSA-O [N-]1C=NC=C1.C[N+]1=CN([C@H]2[C@H](O)[C@H](O)[C@@H](CO)O2)C=2N=C(NC(C12)=O)N Chemical class [N-]1C=NC=C1.C[N+]1=CN([C@H]2[C@H](O)[C@H](O)[C@@H](CO)O2)C=2N=C(NC(C12)=O)N HETSHOUSYUCGPQ-MCDZGGTQSA-O 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical group [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 108091092330 cytoplasmic RNA Proteins 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- VPRCZJANGAJOFU-UHFFFAOYSA-N dihydroxy-selanylidene-trimethylsilyloxy-lambda5-phosphane Chemical compound C[Si](C)(C)OP(O)(O)=[Se] VPRCZJANGAJOFU-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- MWEQTWJABOLLOS-UHFFFAOYSA-L disodium;[[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-oxidophosphoryl] hydrogen phosphate;trihydrate Chemical compound O.O.O.[Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP([O-])(=O)OP(O)([O-])=O)C(O)C1O MWEQTWJABOLLOS-UHFFFAOYSA-L 0.000 description 1
- IIRVGTWONXBBAW-UHFFFAOYSA-M disodium;dioxido(oxo)phosphanium Chemical compound [Na+].[Na+].[O-][P+]([O-])=O IIRVGTWONXBBAW-UHFFFAOYSA-M 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 102000050769 human DcpS Human genes 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- IIWVFLOQEJCOIX-UHFFFAOYSA-N oxathiaphospholane Chemical compound C1CPSO1 IIWVFLOQEJCOIX-UHFFFAOYSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- FABFYINDVWMPMY-UHFFFAOYSA-N phosphonoselanylphosphonic acid Chemical compound P(=O)(O)(O)[Se]P(=O)(O)O FABFYINDVWMPMY-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000012898 sample dilution Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XQTLDIFVVHJORV-UHFFFAOYSA-N tecnazene Chemical compound [O-][N+](=O)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl XQTLDIFVVHJORV-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-O tributylazanium Chemical compound CCCC[NH+](CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-O 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- SIOVKLKJSOKLIF-HJWRWDBZSA-N trimethylsilyl (1z)-n-trimethylsilylethanimidate Chemical compound C[Si](C)(C)OC(/C)=N\[Si](C)(C)C SIOVKLKJSOKLIF-HJWRWDBZSA-N 0.000 description 1
- 125000002264 triphosphate group Chemical group [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/02—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Public Health (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Obesity (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Uno o más de los siguientes compuestos, o un estereoisómero de uno o más de los siguientes compuestos, omezclas de estereoisómeros de uno o más de los siguientes compuestos, o una sal o sales de cualquiera de ellos:**Fórmula** 1donde Y1, Y2, Y3 y Y4 se seleccionan del grupo que consiste en O, BH3 y Se; los diversos grupos Yi pueden seriguales o diferentes, donde i es 1, 2, 3 ó 4; y al menos un Yi es BH3 o Se; n es 0 ó 1; R se selecciona del grupo que consiste en:**Fórmula** R3 y R4 se seleccionan del grupo que consiste en H, OH, OCH3 y OCH2CH3; y R3 y R4 pueden ser iguales odiferentes. W se selecciona del grupo que consiste en: **Fórmula** R1 y R2 se seleccionan del grupo que consiste en H, OH, OCH3 u OCH2CH3; y R1 y R2 pueden ser iguales odiferentes; y X se selecciona del grupo que consiste en metilo, etilo, propilo, butilo, bencilo, bencilo sustituido, metilennaftilo ymetilennaftilo sustituido.
Description
El desarrollo de esta invención fue subvencionado parcialmente por el gobierno de los Estados Unidos de América bajo el subsidio número R01GM20818 otorgado por el Instituto Nacional de Ciencias Médicas Generales de los Institutos Nacionales de la Salud (National Institute of General Medical Sciences of the National lnstitutes of Health). El gobierno de los Estados Unidos de América posee determinados derechos sobre esta invención.
El desarrollo de esta invención fue subvencionado parcialmente por el gobierno de Polonia bajo el subsidio número PBZ-MNiSW-07/1/2007 otorgado por el Proyecto Nacional de Apoyo a las Ciencias 2008-2010.
Esta invención se refiere a los nuevos análogos de caperuza de dinucleótidos y sus usos, las moléculas de ARN que contienen estos análogos, el uso de estos análogos en la síntesis de ARN, el uso de estos análogos en la síntesis de péptidos y proteínas, el uso de estos análogos para inhibir la traducción y otros usos.
El ácido ribonucleico (ARN) es un polímero lineal de cadena sencilla de nucleótidos. Cada unidad de nucleótido contiene una base nitrogenada, un azúcar de ribosa y un grupo fosfato. Existen diferentes tipos de moléculas de ARN. Las moléculas de ARN mensajero (ARNm) son aquellas cuya secuencia de nucleótidos determina la composición aminoácida de las proteínas. En eucariotes, los extremos 5' de la mayoría de los ARNm están bloqueados, o "encaperuzados" con un nucleótido modificado de guanina. La caperuza contiene un enlace 5'-5' de trifosfato entre dos nucleósidos y un grupo 7-metilo en un anillo de guanina distal a la cadena polimérica de ARN. Otras formas del ARN también llevan caperuza, por ejemplo, los pequeños ARNnucleares (ARNpn). El uso de caperuzas en el ARN regula las actividades moleculares intracelulares, incluidas la estabilidad del ARN y la eficiencia de la traducción.
La capacidad de sintetizar in vitro moléculas de ARN con caperuza es útil porque permite la preparación de moléculas de ARN que funcionarán correctamente en una variedad de aplicaciones biológicas. Estas aplicaciones incluyen tanto aplicaciones en la investigación como en la producción comercial de polipéptidos, por ejemplo la producción de polipéptidos en un sistema acelular de traducción que contiene un aminoácido "no natural" en un lugar específico, o la producción de polipéptidos en células cultivadas que requieren la modificación posttraduccional de la actividad o estabilidad. Debido a que las moléculas con caperuza de ARN son más estables y se enlazan más fácilmente a la maquinaria celular traduccional, la traducción de los ARN con caperuza continúa durante un período considerablemente más largo que en el caso de los ARN sin caperuza, lo que tiene como resultado una producción mayor de proteínas.
El método usado con mayor frecuencia para la preparación in vitro de ARN con caperuza es la transcripción de una plantilla de ADN con una polimerasa de ARN bacteriano o bacteriófago en presencia de los cuatro trifosfatos de ribonucleósido y un dinucleótido bloqueado como m7G(5')ppp(5')G (también conocido como m7GpppG). La polimerasa de ARN inicia la transcripción con un ataque nucleofílico por el 3'-OH del grupo Guo de m7GpppG sobre el a-fosfato del siguiente trifosfato de nucleósido en la plantilla, produciendo el producto intermedio m7GpppGpN. La formación del producto competidor iniciado por GTP pppGpN se suprime al definir el cociente molar entre m7GpppG y GTP como de 5 a 10 en la mezcla de reacción de transcripción. Los ARNm con caperuza en 5' producidos con m7GpppG pueden adoptar una de las siguientes dos formas: una que contiene el análogo con caperuza incorporado en la orientación correcta hacia el frente [m7G(5')ppp(5')GpNp...] y otra que contiene el análogo en la posición inversa [G(5')ppp(5')m7GpNp...]. La maquinaria traduccional de la célula no reconoce a éste último como un ARNm con caperuza y disminuye la eficiencia de traducción de las preparaciones sintéticas de ARNm. Este problema puede evitarse mediante el uso de análogos de caperuza que poseen modificaciones O-metilo o desoxi en la posición C2' ó C3' de m7GuO. Véase J. Stepinski et al., "Synthesis and properties of mRNAs containing the novel "anti-reverse" cap analogues 7-methyl(3'-O-methyl)GpppG y 7-methyl(3'-deoxy)GpppG", RNA, vol. 7, págs. 1.486
1.495 (2001); y J. Jemielity et al., "Novel "anti-reverse" cap analogues with superior translational properties", RNA, vol. 9, págs. 1108-1122 (2003). Estos análogos de caperuza se incorporan a los transcriptos de ARN exclusivamente en la orientación hacia el frente y por lo tanto se conocen como "análogos de caperuza anti-inversos" (ARCA, por sus siglas en inglés). En un lisado de reticulocito de conejo (LRC), los ARNm con caperuza de ARCA poseen eficiencias traduccionales que son dos veces más altas que las de los transcriptos con caperuza de m7GpppG (Stepinski et al., 2001). En células mamíferas cultivadas, los ARNm con caperuza de ARCA se traducen entre 2 y 2,5 veces más eficientemente que los que llevan caperuza de m7GpppG. Véase E. Grudzien et al., "Differential inhibition of mRNA degradation pathways by novel cap analogs", J. Biol. Chem., vol. 281, págs. 1.857-1.867 (2006).
La cantidad de proteína producida a partir de ARNm sintéticos introducidos a células mamíferas cultivadas está limitada por la degradación natural del ARNm. Una ruta in viva para la degradación del ARNm se inicia con la
eliminación del bloqueo del ARNm. Esta eliminación está catalizada por una pirofosfatasa heterodimérica, que contiene una subunidad reguladora (Dcp1) y una subunidad catalítica (Dcp2). La subunidad catalítica se escinde entre los grupos fosfato a y � del puente trifosfato.
E. Grudzien et al. (2006) describieron un análogo de caperuza, m27,3'-OGppCH2pG, en donde el átomo de oxígeno fue reemplazado con un grupo metileno entre los grupos a y 13 de fosfato. Los ARNm con caperuza de este análogo fueron resistentes a la hidrólisis con Dcp2 recombinante humano in vitro. Cuando se introducen a células cultivadas, los ARNm con caperuza del análogo m27,3'-OGppCH2pG fueron más estables que los que llevan caperuza de m27,3'-OGpppG. Sin embargo, el ARNm con caperuza de m27,3'-OGppCH2pG posee una eficiencia traduccional general más baja, posiblemente debido a que m27,3'-OGppCH2pG tiene una afinidad de enlace más baja por elF4E que la del m27,3'-OGpppG. El factor de iniciación de la traducción eucariótica elF4E participa en llevar el ARNm con caperuza al ribosoma para la traducción.
J. Kowalska et al., "Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to elF4E and are resistant to the decapping pyrophosphatase DcpS", RNA, vol. 14, págs. 1.119-1.131 (2008), describió las síntesis de tres ARCA en donde uno de los tres átomos de O no enlazantes en la cadena de trifosfato se reemplazó con un átomo de S. Cada uno de estos análogos de fosforotioato (también conocidos como S-ARCA) se sintetizó como una mezcla de diaestereoisómeros que pueden separarse cromatográficamente para producir diaestereoisómeros puros. La afinidad de enlace de los análogos de caperuza de fosforotioato al elF4E fue igual o, en algunos casos, superior a la del m7GpppG.
E. Grudzien et al., "Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells", RNA, vol. 13, págs. 1.745-1.755 (2007), demostraron que los ARNm bloqueados con S-ARCA modificados en el �-fosfato fueron resistentes a la hidrólisis con Dcp2 recombinante humano in vitro. Asimismo, el ARNm bloqueado con un diaesteroisómero � S-ARCA tiene una vida media más larga cuando se introduce a células mamíferas que la del ARNm correspondiente bloqueado con ARCA, y además presenta una mayor eficiencia traduccional en las células. Probablemente, la primera de estas propiedades se debe a la resistencia del � S-ARCA a la hidrólisis por Dcp2, y probablemente la segunda propiedad se debe la mayor afinidad de �-S-ARCA por elF4E.
Otro uso de los análogos sintéticos de caperuza de ARNm es inhibir la traducción dependiente de la caperuza mediante la competencia con el ARNm con caperuza por enlace a elF4E. Véase A. Cai et al., "Quantitative assessment of mRNA cap analogues as inhibitors of in vitro translation", Biochemistry, vol. 38, págs. 8.538-8.547 (1999); y E. Grudzien et al., "Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency", RNA, vol. 10, págs. 1.479-1.487 (2004).
La capacidad de los análogos de caperuza de inhibir la traducción posee una importancia terapéutica potencial. Muchos tipos de células de cáncer sobreexpresan elF4E, lo que puede ocasionar una expresión mayor de las proteínas que promueven la oncogénesis y metástasis. Véase A De Benedetti et al., "elF-4E expression and its role in malignancies and matastases", Oncogene, vol. 23, págs. 3.189-3.199 (2004). la reducción de la expresión de elF4E con ARNsi, oligonucleótidos anti-sentido, o un represor especifico de elF4E podría inhibir el crecimiento de un tumor y la oncogénesis. Véase J.R. Graff et al., "Therapeutic suppression of translation initiation factor elF4E expression reduces tumor growth without toxicity", J. Clin. lnvestigation, vol. 117, págs. 2.638-2.648 (2007); y T. Herbert, "Rapid induction of apoptosis by peptides that bind initiation factor elF4E", Curr. Biol., vol. 10, págs. 793-796 (2000). Además, la actividad traduccional de elF4E puede suprimirse saturando las células con análogos de caperuza competidores traduccionalmente deficientes.
Algunos análogos de caperuza sintéticos son inhibidores específicos de la actividad de elF4E y por lo tanto, son potencialmente útiles como agentes para el tratamiento de oncogénesis y metástasis, inmunosupresión en el trasplante de órganos y otras condiciones médicas. Sin embargo, estos usos potenciales de los análogos de caperuza nunca han sido previamente demostrados in vivo, en parte debido a la inestabilidad de los análogos de caperuza en condiciones intracelulares.
J. Kowalska et al. (2008) demostraron que los y-S-ARCA son fuertes inhibidores de la traducción en un sistema acelular, posiblemente debido a su alta afinidad de enlace con elF4E. los análogos y-modificados son resistentes a la hidrólisis por la enzima humana DcpS, que es una pirofosfatasa secuestrante responsable de la degradación de este tipo de compuesto.
Otras modificaciones pueden ayudar a proteger el ARNm con caperuza contra la degradación enzimática. Un ejemplo es una modificación con boranofosfato, en donde uno de los átomos no enlazantes de O se reemplaza con un grupo borano (BH3) (ocasionalmente llamados análogos de BH3). Otro ejemplo es una modificación con fosforoselenoato, en donde uno de los átomos no enlazantes de O se reemplaza con un átomo de selenio (ocasionalmente llamados análogos de Se). Los grupos fosforotioato, boranofosfato y fosforoselenoato reemplazan los átomos de oxígeno y comparten algunas propiedades químicas y bioquímicas. Sin embargo, también existen diferencias entre estos grupos. Por ejemplo, las longitudes de la cadena P-X difieren (donde X denota S, Se o BH3), los radios de Van der Waals de los grupos X difieren, y la afinidad de dichos grupos X por varios cationes divalentes y otros cationes metálicos difiere. Estas propiedades químicas diversas alteran las actividades biológicas de los análogos de caperuza con estos grupos, incluidas sus interacciones con las proteínas de enlace de caperuza y su susceptibilidad a la degradación enzimática.
Los mononucleótidos de boranofosfato y los dinucleótidos de polifosfato boranofosfato fueron revisados por P. Li et al., "Nucleoside and oligonucleoside boranophosphates: chemistry and properties", Chem. Rev., vol. 107, págs. 4.746-4.796 (2007).
Los análogos del dinucleósido de polifosfato boranofosfato se describen en la solicitud de patente publicada US2006/0287271, al igual que su uso contra enfermedades moduladas por los receptores P2Y, por ejemplo la diabetes tipo 2 y el cáncer.
Los análogos de nucleótidos de boranofosfato presentan similitudes con los análogos de fosforotioato debido a los ángulos de enlace, valores de pK8, y P-diaestereoisomeria similares. Sin embargo, en algunos casos son hasta 10 veces más resistentes a la hidrólisis enzimática que sus fosforotioatos homólogos. También son más lipofílicos que los fosforotioatos, lo que podría ayudarles a penetrar las membranas celulares y alcanzar la maquinaria traduccional intracelular. Los análogos de boranofosfato también pueden usarse en la terapia de captura neutrónica de boro (TCNB). Véase B.R. Shaw et al., "Reading, Writing and Modulating Genetic Information with Boranophosphate Mimics of Nucleotides, DNA and RNA", Ann. N. Y. Acad. Sci., vol. 1201, págs. 23-29 (2003); y J. Summers et al., "Boranophosphates as Mimics of Natural Phosphodiesters in DNA", Current Medicinal Chemistry, vol. 8, págs. 1.147
1.155 (2001).
K. Misiura et al., "Synthesis of nucleoside a-thiotriphosphates via an oxathiaphospholane approach", Org. Lett., vol. 7, págs. 2.217-2.220 (2005); P. Li et al., "Synthesis of a-P-modified nucleoside diphosphates with ethylendiamine", J. Am. Chem. Soc., vol. 127, págs. 16.782-16.783 (2005); N. Carrasco et al., "Enzimatic synthesis of phosphoroselenoate DNA using thymidine 5'-(a-P-seleno)triphosphate and DNA polymerase for x-ray crystallography via MAD", J. Am. Chem. Soc., vol. 126, págs. 448-449 (2004) y N. Carrasco et al., "Efficient enzima tic synthesis of phosphoroselenoate RNA by using adenosine 5'-(a-P-seleno)triphosphate", Angew. Chem. Int. Ed., vol. 45, págs. 9497 (2006), describieron los análogos fosforoselenoato de di- y tri-fosfatos de nucleósidos modificados en la posición
a. Sin embargo, hasta donde los inventores saben, no existen informes previos de análogos de polifosfato de nucleósido modificados en cualquier posición aparte de la posición a, ni de polifosfatos de dinucleósidos modificados en cualquier posición.
Los análogos de nucleótidos de fosforoselenoato son parecidos a los fosforotioatos y boranofosfatos debido a sus ángulos de enlace, valores de pKa, p-diaestereoisomeria y resistencia a la degradación enzimática similares. Los fosforoselenoatos pueden ser muy útiles en la cristalografía de los ácidos nucleicos ya que puede usarse Se en la técnica de dispersión anómala múltiple (MAD). Véase J. Wilds et al., "Selenium-assisted nucleic acid crystallography: use of phosphoroselenoatos for MAD phasing of a DNA structure", J. Am. Chem. Soc., vol. 124, págs. 14.910-14.916 (2002); N. Carrasco et al., (2004); N. Carrasco et al., (2006); y P. S. Pallan et al., "Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic a cid structures", Nat. Protoc., vol. 2, págs. 640-646 (2007).
Véase también nuestro trabajo sobre análogos de caperuza de ARNm anti-inverso descritos en la Patente estadounidense nº 7.074.596, así como la solicitud de patente internacional publicada WO 2008/157688.
Hemos descubierto una nueva clase de análogos de caperuza de dinucleótidos. Los análogos nuevos de caperuza de dinucleótidos se modificaron en diversas posiciones de fosfato con un grupo boranofosfato o un grupo fosforoselenoato. Los análogos nuevos poseen una gran utilidad como reactivos en la preparación de ARNm con caperuza. Han aumentado la estabilidad tanto in vitro como in vivo. Pueden usarse como inhibidores de la traducción dependiente de la caperuza. Opcionalmente, el grupo boranofosfato o fosforoselenoato tiene un grupo 2'-O ó 3'O-alquilo, preferentemente un grupo metilo, produciéndose análogos llamados BH3-ARCAs o Se-ARCAs. Los ARCAs pueden modificarse con grupos a-, �- o y-boranofosfato o fosforoselenoato. La selección del tipo y ubicación de la modificación modulan la actividad de proteínas que reconocen la caperuza durante la síntesis, el procesamiento, la exportación nucleo-citoplásmica y la degradación del ARNm.
En la Tabla 1 se enumeran varios análogos de BH3 y de Se que han sido o serán sintetizados y caracterizados mediante métodos químicos, biofísicos, bioquímicos y biológico moleculares. Los compuestos que son especialmente favorables en las caperuzas del ARNm incluyen �-BH3-ARCAs y �-Se-ARCAs. Los compuestos que son especialmente favorables como inhibidores de la traducción incluyen los análogos �- y y-BH3 y los análogos y-Se.
Tabla 1
Análogos de BH3 y Se
En los siguientes párrafos se describen los diversos aspectos y realizaciones de la invención.
Uno o más de los siguientes compuestos, o un estereoisómero de uno o más de los siguientes compuestos, o 15 mezclas de estereoisómeros de uno o más de los siguientes compuestos, o una sal o sales de cualquiera de ellos:
donde Y1, Y2, Y3 e Y4 se seleccionan del grupo formado por O, BH3 y Se; los diversos grupos Y1 pueden ser iguales
o diferentes, mientras que i es 1, 2, 3 ó 4; y al menos un Y1 es BH3 o Se.
n es 0 ó 1;
R se selecciona del grupo formado por:
R3 y R4 se seleccionan del grupo formado por H, OH, OCH3 y OCH2CH3; y R3 y R4 pueden ser iguales o diferentes; 20 W se selecciona del grupo formado por:
R1 y R2 se seleccionan del grupo formado por H, OH, OCH3, u OCH2CH3; y R1 y R2 pueden ser iguales o diferentes; y
X se selecciona del grupo formado por metilo, etilo, propilo, butilo, bencilo, bencilo sustituido, metilen-naftilo, y 30 metilen-naftilo substituido.
Un compuesto como el descrito, donde Y1, Y2, Y3 e Y4 se seleccionan del grupo formado por O, Se y BH3; los diversos grupos Y1 pueden ser iguales o diferentes, mientras que i es 1, 2, 3, ó 4; y al menos un Y1 es BH3 o Se.
35 Un compuesto como el descrito, donde R se selecciona del grupo formado por Un compuesto como el descrito, donde W es
R2 es OH; R1 es H u OCH3; X es metilo; yn = 0; y sólo uno de Y1, Y2 e Y3 es BH3 o Se.
10 Un compuesto como el descrito, donde, si n = 0, entonces Y2 o Y3 es BH3 o Se, y donde, si n = 1, entonces Y2, Y3 o Y4 es BH3 o Se. Una molécula de ARN cuyo extremo 5' incorpora un compuesto como el descrito.
15 Una molécula de ARN cuyo extremo 5' incorpora un compuesto como el descrito. Una molécula de ARN como se describe, donde R se selecciona del grupo formado por:
20 Un método de síntesis, in vitro o in vivo, de una molécula de ARN como se describe, y dicho método comprende hacer reaccionar ATP, CTP, UTP y GTP, una composición como la antes mencionada, y una plantilla de polinucleótido en presencia de ARN poli me rasa, bajo condiciones adecuadas para la transcripción por la ARN polimerasa de la plantilla de polinucleótido para producir una copia del ARN; donde algunas de las copias de ARN
25 incorporarán el compuesto para formar una molécula de ARN como se describe.
Un método de síntesis de una proteína o péptido in vitro, donde dicho método comprende la traducción de una molécula de ARN como se describe en un sistema acelular de síntesis de proteína, donde la molécula de ARN comprende un marco de lectura abierta, bajo condiciones adecuadas para la traducción del marco de lectura abierta
30 de la molécula de ARN en la proteína o péptido codificado por el marco de lectura abierto.
Un método de síntesis de una proteína o péptido in vivo o en células cultivadas, donde dicho método comprende la traducción de una molécula de ARN como se describe en un sistema in vivo o en células cultivadas, donde la molécula de ARN comprende un marco de lectura abierta, bajo condiciones adecuadas para la traducción del marco
35 de lectura abierta de la molécula de ARN en la proteína o péptido codificado por el marco de lectura abierto.
Un compuesto como el descrito para el uso en un método de inhibición total o parcial de la traducción del ARN en la proteína o péptido en un sistema que traduce el ARN en una proteína o péptido.
40 Un compuesto como el descrito para el uso en un método como el descrito, donde el sistema es un sistema nativo de traducción del ARN de un organismo vivo.
Una composición como la descrita, donde R1 es OCH3; R2 es OH; R3 es OH; R4 es OH; n es 0; Y1 es O; Y2 es Se; Y3 es O; W es
y R es
10 La Figura 1 muestra una síntesis de análogos de caperuza con un grupo boranofosfato en la posición a del puente del 5',5'-trifosfato.
La Figura 2 muestra una síntesis de análogos de caperuza con un grupo boranofosfato en la posición � del puente del 5',5'-trifosfato.
La Figura 3 muestra una síntesis de m7GppBH3pm7G (método II).
La Figura 4 muestra una síntesis de m7,2'-OGppBH3pG.
20 La Figura 5 muestra una síntesis de m7,2'-OGppSepG. La Figura 6 muestra una síntesis de m7GpSeppG. La Figura 7 muestra las eficiencias traduccionales relativas in vitro del ARNm de luciferasa de luciérnaga bloqueado
25 con ApppG (análogo de caperuza no funcional), m7GpppG, m7,3-OGpppG, los análogos de caperuza de boranofosfato
m7GppBH3pG (mezcla diaestereomérica 1:1) y m7GppBH3pm7G.
La Figura 8 muestra la inhibición de la traducción in vitro del ARNm de luciferasa por los análogos de caperuza de
boranofosfato.
La Figura 9 muestra la inhibición de la traducción in vitro del ARNm de luciferasa por los análogos de caperuza de boranofosfato incubados en lisado de reticulocito de conejo durante 60 m in antes de iniciarse la traducción.
La Figura 10 muestra las eficiencias traduccionales in vitro del ARNm de luciferasa de luciérnaga bloqueado con 35 ApppG, m7GpppG, m27,3-OGpppG, y los análogos de caperuza de fosforoselenoato m27,2'-OGppSepG (D1) y (D2).
La Figura 11 muestra la inhibición de la traducción in vitro del ARNm de luciferasa por los análogos de caperuza de fosforoselenoato.
40 La Figura 12 muestra la inhibición de la traducción in vitro del ARNm de luciferasa por los análogos de caperuza de fosforoselenoato incubados en lisado de reticulocito de conejo durante 60 min antes de iniciarse la traducción.
La Figura 13 muestra las eficiencias traduccionales relativas in vitro del ARNm de luciferasa de luciérnaga que posee una cola A31 poli-A, con caperuza en 5' con varios análogos.
La Figura 14 muestra mediciones de la estabilidad de los ARNm de luciferasa bloqueados con varios análogos y con una cola poli(A) de 60 bases en células cultivadas HeLa después de la nucleoporación.
La Figura 15 muestra la eficiencia traduccional de los ARNm de luciferasa bloqueados con diversos análogos y con una cola poli(A) de 60-nt en células cultivadas HeLa después de la nucleoporación.
Síntesis y aislamiento de los análogos de caperuza
La síntesis química de los análogos de caperuza de boranofosfato y fosforoselenoato fue una modificación de los esquemas sintéticos indicados para otros análogos. Véase M. Kadkura et al., "Efficient synthesis of y-methyl-cappedguanosine 5'-triphosphate as a 5'-terminal unique structure of U6 RNA via a new triphosphate bond formation involving activation of methyl phosphorimidazolidate using ZnCI2 as a catalyst in DMF under anhydrous conditions", Tetrahedron Lett., vol. 38. págs. 8.359-8.362 (1997); J. Stepinski et al. (2001); M. Kalek et al., "Enzymatically stable 5' mRNA cap analogs", Biorg. Med. Chem., vol. 14, págs. 3.223-3.230 (2006); y J. Kowalska et al. (2008).
Se convierte un mononucleótido a un derivado reactivo de imidazolida, que después se acopla a otro mononucleótido en DMF en presencia de un exceso de ZnCI2. El ZnCI2 potencia significativamente la solubilidad de los reactivos en disolventes orgánicos, inhibe la hidrólisis de los derivados de imidazolida y acelera la velocidad de reacción. También podrán emplearse otros cloruros metálicos tales como MnCI2, CdCI2 o MgCI2 para mediar la formación del enlace pirofosfato, pero generalmente son menos eficientes que el ZnCI2. Véase M. Kadokura et al., "Efficient synthesis of y-methyl-capped-guanosine 5'-triphosphate as a 5'-terminal unique structure of U6 RNA via a new triphosphate bond formation involving activation of methyl phosphorimidazolidate using ZnCI2 as a catalyst in DMF under anhydrous conditions", Tetrahedron Lett, vol. 38. págs. 8.359-8.362 (1997).
Un esquema sintético similar en términos generales se empleó para sintetizar análogos de caperuza que contenían enlaces fosfato-boranofosfato y fosfato-fosforoselenoato. Sin embargo, para los análogos de boranofosfato, los mejores resultados se obtuvieron usando MgCI2 en lugar de ZnCI2 como el mediador de acoplamiento. En presencia de ZnCI2 también ocurrieron reacciones de acoplamiento, pero estuvieron acompañadas de reacciones secundarias significativas relacionadas con la ruptura del enlace P-BH3 bajo las condiciones ácidas producidas por el ZnCI2.
En la Figura 1 se muestra la síntesis de análogos modificados en la posición a.. Inicialmente desarrollamos un método de síntesis del producto intermedio guanosina 5'-boranofosfato. Guanosina 5'-(H-fosfonato) fue sililado con N,O-bis(trimetilsilil)acetamida (BSA). El producto intermedio resultante, bis(trimetilsilil)fosfito, fue boronado por tratamiento con un complejo BH3·SMe2, sin aislarse. La desililación y purificación posteriores por cromatografía de intercambio iónico produjeron el compuesto deseado, guanosina-5' -boranofosfato, con un rendimiento de ~30%. Para obtener el análogo de caperuza m7GpppBH3G, o su ARCA equivalente, m7,2'-OGpppBH3G, se acopló guanosina 5'-boranofosfato con el derivado de imidazolida de m7GDP o de m7,2'-OGDP, respectivamente, en una mezcla de DMF/agua al 9:1 en presencia de un exceso de MgCI2. En los dos casos, el resultado fue una mezcla de dos Pdiaestereoisómeros que después se separaron por HPlC en fase inversa (FI). los diaestereoisómeros se llamaron D1 y D2, de acuerdo con su orden de elución en la columna de HPLC Fl.
En la Figura 2 se muestra la síntesis de análogos modificados en la posición �. la sal boranofosfato trietilamonio se obtuvo mediante una modificación del procedimiento de V. Nahum et al., "Boranophosphate salts as an excellent mimic of phosphate salts: preparation, characterization, and properties", Eur. J. Inorg. Chem., vol. 20, págs. 4.124
4.131 (2004). En el procedimiento original, el tris(trimetilsilil)fosfito se boronó con el complejo BH3·SMe2. La destilación posterior en metanol en presencia de una base apropiada (por ejemplo, amoniaco, tributilamina, etc.), seguida de la evaporación a sequedad, produjo el boranofosfato como la sal correspondiente (amonio, tributilamonio, etc.). Sin embargo, el producto estaba contaminado con la sal del ácido fosfónico (hasta un 20%). Probablemente esta contaminación se debió a la hidrólisis parcial de tris(trimetilsilil)fosfito a bis(trimetilsilil)fosfito bajo condiciones de reacción que no eran perfectamente anhidras (el compuesto bis no paso por una boronación posterior). Solucionamos este problema añadiendo un exceso del reactivo de sililación (BSA) a la mezcla de reacción, lo que inhibió la formación de bis(trimetilsilil)fosfito. La sal boranofosfato trietilamonio obtenida de esta manera se acopló con un exceso del derivado guanosina monofosfato imidazolida para producir un diguanosina 5',5"-(2-boranotrifosfato) simétrico (GppBH3pG, Figura 2).
Posteriormente, este compuesto se trató con yoduro de metilo en DMSO para introducir un grupo metilo en la posición N7 de la guanosina. La reacción produjo una mezcla de análogos de caperuza monometilados y dimetilados (m7GppBH3pG y m 7GppBH3pm7G). La relación entre estos productos puede controlarse ajustando las condiciones de reacción. En presencia de un exceso de ~4X del yoduro de metilo, se formó m7GppBH3pG como el producto principal (rendimiento de ~70%). Con un exceso de ~8X-10X de yoduro de metilo, el producto predominante fue m7GppBH3pm7G (~50%). Sin embargo, una ruta preferida para obtener este último producto fue el acoplamiento de boranofosfato con un derivado de 7-metilguanosina imidazolida, lo que nos permitió aislar el producto con un rendimiento del 34%, pero en una síntesis de un solo paso. Véase la Figura 3.
72'-O
Inicialmente, al tratar de obtener el producto intermedio 7,2'-O-dimetilguanosina 5'-(2-boranodifosfato) (m2 GDP�BH3), útil en la síntesis de �-BH3-ARCAs (m27,2'-OGppBH3pG), se tuvo poco éxito. Acoplamos m27,2'-OGMP-Im y un exceso de sal de boronafosfato trietilamonio en presencia de MgCI2. Aunque al hacerse un análisis por MS ESI(-) de los productos de acoplamiento se demostró que se había formado el producto deseado, no fue posible aislarlo en cantidades suficientes. El compuesto puede sufrir una hidrólisis relativamente rápida en soluciones acuosas, haciendo que la separación por cromatografía de intercambio iónico sea prácticamente imposible. Por esta razón, desarrollamos una síntesis alternativa de m27,2'-OGppBH3pG, mediante la reacción de m27,2'-OGMP-Im con boranofosfato en exceso en presencia de MgCI2 para producir m27,2'-OGDP�BH3, que después, sin aislarse, se acopló con GMP-Im en exceso. Véase la Figura 4.
En la Figura 5 se muestra la síntesis de m27,2'-OGppSepG. Se preparó el selenofosfato (PSeO3-3) mediante una modificación del método descrito en R. Glass et al., "Selenophosphate", Meth. Enzymol., vol. 252, págs. 309-315 (1995). Se trató trimetilsilil fosfito con selenio en piridina para producir trimetilsilil selenofosfato, que entonces se desililizó con metanol en presencia de trietilamina para producir la sal de seleno fosfatotrietilamonio. Este compuesto se acopló con el derivado imidazolida de 7,2'-O-dimetilguanosina 5'-monofosfato (m27,2'-OGMP-Im) para producir 7,2'O-dimetilguanosina 5'-O-(2-selenodifosfato) (m27,2'-OGDP�Se). Se empleó ZnCl2, anhidro para mediar la reacción de acoplamiento; el ZnCI2 aumentó dramáticamente la solubilidad de los reactivos en DMF, y también aceleró la velocidad de reacción. La reacción fue muy rápida; fundamentalmente después de 15 min, usando HPLC Fl, se
7,2'-OGDP�Se
observó una conversión del 100% de m27,2'-OGMP-Im a m27,2'-OGDP� Se. El m2 es inestable en soluciones acuosas ácidas (hidrolizándose a m27,2'-OGMP), y sólo moderadamente estable en soluciones neutras o básicas. Por esto, se tuvo cuidado en mantener el pH a 7 o más durante la purificación de m27,2'-OGDP�Se, lo que permite el aislamiento del producto con un rendimiento del 80% después de la cromatografía de intercambio iónico. Después, el m27,2'-OGDP�Se se acopló con el derivado imidazolida de GMP en presencia de un exceso de ZnCI2. En el HPLC Fl se observaron dos picos, que corresponden a dos diaestereoisómeros de m27,2'-OGppSepG, que se designaron D1 y D2 según su orden de elución. Sin embargo, el acoplamiento se realizó lentamente, y la desaparición completa del m27,2'-OGDP�Se tardó unos dos días. El tiempo de reacción extendido permitió una hidrólisis parcial de m27,2'-OGDP�Se a m27,2'-OGMP y sólo un rendimiento de reacción moderado (conversión del 40% por HPLC, aislamiento del 25%). La mezcla diaestereomérica de m27,2'-OGppSepG después de aislarse por cromatografía de intercambio iónico se resolvió con éxito en los diaestereoisómeros puros por HPLC Fl. Los productos se caracterizaron mediante espectrometría de masa, 1H RMN y 31P RMN para confirmar las estructuras y homogeneidad. Los isómeros D1 y D2 de m27,2'-OGppSepG son estables en solución acuosa, no se hidrolizan u oxidan apreciativamente, y pueden almacenarse como sólidos, protegidos de la humedad a -20ºC, durante al menos tres meses.
También se han producido y serán producidos otros análogos de BH3- y Se- mediante reacciones generalmente análogas a las indicadas en las Figuras 1-6.
Ejemplo 1
Procedimientos generales para el aislamiento y la caracterización de análogos de caperuza.
Los nucleótidos intermedios se separaron usando cromatografía de intercambio iónico usando una columna DEAE-Sephadex A-2S (forma HCO3) con un gradiente lineal de bicarbonato de trietilamonio (TEAB) en agua desionizada. Después de la evaporación bajo presión reducida con la adición de etanol, los productos intermedios se aislaron, como por ejemplo las sales de trietilamonio. Los productos finales (análogos de caperuza) se separaron adicionalmente mediante HPLC Fl semi-preparativa y, después de la liofilización repetida, se aislaron como sales de amonio. El HPLC analítico se llevó a cabo con un equipo Agilent Technologies 1200 Series, usando una columna Supelcosil LC-18-T RP (4,6 x 250 mm, velocidad de flujo 1,3 ml/min) con un gradiente lineal de 0%-25% de m etanol en tampón de acetato de amonio 0,05M (pH 5,9). Los compuestos de elución se detectaron usando un detector UVvis (a 260 nm), y un detector fluorescente (excitación a 280 nm y emisión a 337 nm). Se hizo la HPLC semi-preparativa usando el equipo Waters 600E Multisolvent Delivery System y una columna Waters Discovery RP Amide C16 en fase inversa (21,2 mm x 250 mm, velocidad de flujo 5,0 ml/min) con un gradiente lineal de metanol en un tampón de acetato de amonio 0,05M (pH 5,9) y detección de UV a 260 nm. Se registraron los espectros de 1H y31P RMN a 25ºC usando un espectrómetro Varían UNITY-plus a 399,94 M Hz y 161,90 M Hz, respectivamente. Se determinaron los desplazamientos químicos en el 1H RMN relativos a sodio 3-trimetilsilil-[2,2,3,3-D4]-propionato (TSP) en D2O como patrón interno. Se determinaron los desplazamientos químicos en el 31P RMN relativos al ácido fosfórico 20% en D2O como patrón externo. Se determinaron los desplazamientos químicos 31P RMN con relación a ácido fosforoso al 20% en D2O como el patrón externo. Los espectros de masa en modo de ión negativo por electrospray [(ESI MS(-)] se obtuvieron con un espectrómetro Micromass QToF 1MS. Los disolventes y otros reactivos se compraron en Sigma-Aldrich, y se usaron sin tratamiento adicional alguno, a menos que se indique lo contrario. El acetonitrilo y la acetona se destilaron sobre P2O5 y se almacenaron sobre mallas moleculares 4 Å antes de usarse. GMP y GDP se convirtieron en sales de trietilamonio con una resina de intercambio iónico Dowex 50 WX8. Se prepararon m27,2'-OGMP y m27,2'-OGDP en la forma especificada anteriormente por J. Jemielity et al. (2003).
Ejemplo 2
Procedimiento general para la síntesis de derivados de nucleótido imidazolida.
GMP-Im, m27,2'-OGMP-Im, GDP-Im y m27,2'-OGDP-Im se prepararon en la forma descrita por T. Mukaiyama et al., "Phosphorylation by oxidation-reduction condensation. Preparation of active phosphorylating reagents", M. Bull. Chem. Soc. Jpn., vol. 44, pág. 2.284 (1971). El nucleótido (1 equiv., sal TEA), imidazol (8 equiv.) y 2,2'-ditiodipiridina (3 equiv.) se mezclaron en DMF (~2,5 ml/100 mg de nucleótido). Se añadieron trietilamina (2 equiv.) y trifenilfosfina (3 equiv.), y la mezcla se agitó durante 6-8 h. Se precipitó el producto de la mezcla de reacción con una solución de NaClO4 anhidro (1 equiv. por carga negativa) en acetona anhidra (~8 ml por ml de DMF). Después de enfriar a 4ºC, se filtró el precipitado, se lavó repetidamente con acetona anhidra fría, y se secó al vacío bajo P4O10. Los rendimientos fueron de 80%-100%.
Ejemplo 3
Guanosina 5'-(H-fosfonato).
Esta preparación fue la descrita por M. Yoshikawa et al., "Studies of phosphorylation. IV. The phosphorylation of nucleosides with phosphorus trihalide". Bull. Chem. Soc. Jpn., vol. 43, págs. 456-461 (1970). 2',3'-O,O-isopropilideno guanosina (1,3 g, 4,0 mmol) se suspendió en 19,5 ml de trimetilfosfato y se enfrió a 0ºC sobre hielo. Se añadió PCI3 (1,06 ml, 12,1 mmol), y la mezcla se agitó a 0ºC durante 1 h. La mezcla de reacción se diluyó con agua (80 ml), se ajustó el pH ~1,5 con NaHCO3 sólido y se calentó a 7D'C durante 1 h. Se dejó que la temperatura de la solución llegase a temperatura ambiente, se ajustó a pH ~6 con NaHCO3, se diluyó con 80 ml de agua, y se hizo la cromatografía usando un equipo DEAE Sephadex con un gradiente de 0-0,9M de TEAB. Se recolectaron las fracciones que eluyen a 0,6-0,65M de TEAB, y que contenían ~3,0 mmol de producto, se evaporaron y secaron en un desecador al vacío sobre P2O5. Esto produjo 1,34 g de la sal guanosina 5'-(H-fosfonato)trietilamonio (rendimiento del 75%). ESI MS (-) m/z: 346,08 (calc. para C10H13N5O7P: 346,06). 1H RMN 5 (ppm): 8,08 (1H, s, H8); 6,73 (1H, d, J=640 Hz, H-P); 5,93 (1H, d, J=5,4 Hz, H1'); 4,77 (1H, t, J=~5,4 Hz); 4,48 (1H, t, J=3,2 Hz); 4,32 (1H, m, H4'); 4,11 (2H, m, H5' y H5"). 31P RMN 5 (ppm): 7,07 (1P, dt, J=640 Hz, J=6,0 Hz).
Ejemplo 4
Guanosina 5'-O-boranofosfato, sal de trietilamonio.
Guanosina 5'-(H-fosfonato) (1,03 g, 2,3 mmol) se puso en un matraz de fondo redondo y se suspendió en 30 ml de acetonitrilo anhidro. Se selló el matraz con un septo de goma y se purgó con argón durante 30 min. Se inyectó N,Obistrimetilsililacetamida (11,3 ml, 46 mmol) con una jeringa, y la mezcla se agitó vigorosamente hasta obtenerse una solución transparente, y entonces se agitó durante 30 min más. La solución se enfrió en un baño de hielo, y se añadió una solución de complejo BH3·SMe2 2 M en THF (5, 7 ml, 11,5 mmol). Después de 5 min, se sacó el matraz del baño de hielo, y se continúo la agitación durante 30 min más. Se evaporó la solución a presión reducida hasta obtener un residuo oleaginoso, que se puso nuevamente en un baño de hielo, se trató con 60 ml de metanol y 3 ml de amoniaco 2M en etanol, y se agitó durante 2 h a temperatura ambiente. La solución se evaporó a sequedad bajo presión reducida, se disolvió en 100 ml de agua y se extrajo una vez con 20 ml de éter dietílico. Se eliminó el éter de la capa acuosa bajo presión reducida. Se separaron los productos usando un equipo DEAE Sephadex con un gradiente 0-0,9 M de TEAB. Las fracciones que contenían 13,200 unidades de densidad óptica de producto se evaporaron a sequedad, se disolvieron en agua, y se liofilizaron para obtener 410 mg de la sal guanosina 5'O-boranofosfato trietilamonio (32%): ESI MS (-) m/z: 360,13 (calc. para C10H16N5O7P11B: 360,09). 1H RMN 5 (ppm): 8,17 (1H, s, H8); 5,82 (1H, d, J=6,0 Hz, H1); 4,74 (1H, t, H2'); 4,47 (1H, t, H3'); 4,32 (1H, m, H4'); 4,03 (2H, m, H5' y H5"). 31P RMN 5 (ppm): 79,05 (1P, ~qq, J=158 Hz, 1=22,5 Hz).
Ejemplo 5
Síntesis de m7GpppBH3G.
A una mezcla de GMPBH3 (50 mg, 0,089 mmol, sal TEA) y m7GDP-Im (100 mg, 0,18 mmol, sal de sodio) en 2,5 ml de DMF/H2O (9:1) se añadió MgCI3 anhidro (110 mg, 1,16 mmol) poco a poco, y la mezcla se agitó vigorosamente hasta la disolución de todos los reactivos. La solución se agitó a temperatura ambiente durante 3 días, y transcurrido ese tiempo, se detuvo la reacción añadiendo EDTA (430 mg, 1,16 mmol) en 25 ml de agua con el pH ajustado a ~6 mediante la adición de NaHCO3 sólido. Los productos se separaron en un equipo DEAE Sephadex con un gradiente 0-1,2M de TEAB. Se obtuvo una mezcla diaestereoisómera de m7GpppBH3G (685 unidades de densidad óptica). Los diaestereoisómeros se resolvieron mediante HPLC semi-preparativo y se liofilizaron tres veces. El rendimiento después de la separación por HPLC fue 13,4 mg de m7GpppBH3G (D1) y 7,3 mg de m7GpppBH3G (D2) (18% y 9,8%, respectivamente). ESI MS (-) m/z: 799,22 (calc. para C21H31N10O17P3B: 799,12). D1: 1H RMN 5 (ppm): 8,93 (1H, s, H8, m7G); 7,99 (1H, s, H8 G); 5,79 (1H, d, J=3,2 Hz, H1', m7G); 5,73 (1H, d, J=6,0 Hz, H1' G); 4,59 (1H, ~t, H2' G); 4,48 (1H, dd, J=4,4 Hz, J=3,2 Hz, H2' m7G); 4,40 (1H, m, H3, G); 4,37 (1H, m, H3' m7G); 4,27 (3H, m superpuesto, H4', H5', H5"); 4,13 (3H, m superpuesto, H4', H5', H5"); 3,95 (3H, s, CH3); 0,34 (3H, m ancho, BH3). 31P RMN 5 (ppm): 84,07 (1P, m, Pa (PBH3)); -11,29 (1P, d, J=19,4 Hz, Py); -22,95 (1P, dd, J=19,4 Hz, J=30,0 Hz, P ). D2: 1H RMN 5 (ppm): 8,87 (1H, s, H8, m7G); 7,95 (1H, s, H8 G); 5,79 (1H, d, J=2 Hz, H1', m7G); 5,68 (1H, d, J=5,4 Hz, H1' G); 4,62 (1H, ~t, H2' G); 4,50 (1H, ~t, H2' m7G); 4,41 (1H, m, H3', G); 4,37 (1H, m, H3' m 7G); 4,25 (3H, m superpuesto, H4', H5', H5"); 4,15 (3H, m superpuesto, H4', H5', H5"); 3,93 (3H, s, CH,); 0,34 (3H, m ancho, BH3). 31P RMN 5 (ppm): 84,0 (1P, m, Pa (PBH3)); -11,38 (1P, s, Py); -22,88 (1P, s, P ).
Ejemplo 6
7,2'-OGpppBH3G.
m2
A una mezcla de GMPBH3 (30 mg, 0,053 mmol, sal TEA) y m27,2'-OGDP-Im {60 mg, 0,11 mmol, sal de sodio) en 1,5 ml de DMF/H2O (9:1) se añadió MgCI2 anhidro (80 mg, 0,85 mmol) poco a poco, y la mezcla se agitó vigorosamente hasta la disolución de todos los reactivos. La solución se agitó a temperatura ambiente durante 4 días, y transcurrido ese tiempo, se detuvo la reacción añadiendo EDTA (320 mg, 0,85 mmol) en 25 ml de agua con el pH ajustado a ~6 mediante la adición de NaHCO3 sólido. Los productos se separaron en un equipo DEAE Sephadex con un gradiente 0-1,2M de TEAB. Se obtuvo una mezcla diaestereoisómera de m27,2'-OGpppBH3G (520 unidades de densidad óptica). Los diaestereoisómeros se resolvieron mediante H PLC semi-preparativo y se liofilizaron tres veces. El rendimiento después de la separación por HPLC fue 6,1 mg de m27,2'-OGpppBH3G (D1) y 3,7 mg de m27,2'-OGpppBH3G (D2) (13,4% y 8,0%, respectivamente). ESI MS (-) m/z: 813,1S (calc. para C22H33N10O17P311B: 813,13). D1: 1H RMN 5 (ppm): 9,03 (1H, s, H8, m7G); 8,09 (1H, s, H8G); 5,95 (1H, d, J=2,7 Hz, H1', m7G); 5,84 (1H, d, J=6,0 Hz, H1'G); 4,70 (1H, dd, J=6,0 Hz, J=5,1 Hz, H2' G); 4,56 (1H, ~t, H3' m7G); 4,50 (1H, dd, J=3,5 Hz, 5,1 Hz, H3', G); 4,41 (1H, m, H5' G); 4,34 (2H, m superpuesto, H4', m7G, H4' G); 4,27 (2H, m superpuesto, H2', m7G, H5" G); 4,24 (2H, m, H5', H5", m7G); 4,08 (3H, s, N-CH3), 3,60 (3H, s, O-CH3); 0.40 (3H, m, BH3). 31P RMN 5 (ppm): 83,7 (1P, m, Pa (PBH3)), -11,30 (1P, d, J=19,5 Hz, Py); · 22,91 (1P, dd, J=19,5 Hz, J=30,0 Hz, P ). D2: 1H RMN 5 (ppm): 8,98 (1H, s, H8, m 7G); 8,06 (1H, s, H8G); 5,96 (1H, d, J=2,7 Hz, H1', m7G); 5,79 (1H, d, J=5,9 Hz, H1' G); 4,61 (1H, ~t, H2' G); 4,50 (1H, ~t, H3' m7G); 4,45 (1H, dd, J=3,5 Hz, 5,1 Hz, H3' G); 4,34 (2H, m (superpuesto), H4' m7G, H'5 G); 4,26 (3H, m (superpuesto), H2', m7G, H4', H5" G); 4,20 (2H, m, H5', H5", m7G); 4,06 (3H, s, N-CH3); 3,61 (3H, s, O-CH3); 0,40 (3H, m, BH3). 31P RMN 5 (ppm): 83,7 (1P, m, Pa (PBH3)); ·11,41 (1P, d, J=19,0 Hz, Py); -22,87 (1P, dd, J=19,0 Hz, J=32,0 Hz, P ).
Ejemplo 7
Sal Boranofosfato trietilamonio.
Esta sal se preparó usando una modificación del procedimiento de V. Nahum et al., "Boranophosphate salts asan Excellent Mimic of Phosphate Salts: Preparation, Characterization, and Properties", J. Inorg. Chem., vol. 20, págs. 4.124-4.131 (2004). Se puso tris(trimetilsilil)fosfito (600 111, 1,8 mmol) en un matraz de fondo redondo que contenía 5 ml de acetonitrilo anhidro. Se selló el matraz con un septo de goma y se purgó con argón durante 30 min. Se inyectó N,O-bistrimetilsililacetamida (1,5 ml, 5,4 mmol) con una jeringa. Después de 30min, la solución se enfrió en un baño de hielo, y se añadió una solución de complejo BH3·SMe2 2 M en THF (1,35 ml). Después de 5 min, se sacó el matraz del baño de hielo, y se continúo la agitación durante 30 min. Se evaporó la solución a presión reducida hasta obtener un residuo oleaginoso, que se puso nuevamente en un baño de hielo, se trató con 20 ml de metanol y 0,5 ml de trietilamina, y se agitó durante 2 h a temperatura ambiente. la solución se evaporó a sequedad y el residuo se secó sobre P2O5. El rendimiento de [HN(CH2CH3)3]2HPO3BH3 fue 530 mg (17,8 mmol) (97%, contaminado con acetamida). Esta sal de boronofosfato trietilamonio se almacenó a 4ºC, y se usó en esta forma en reacciones hechas posteriormente. 1H RMN 5 (ppm): 0,33 (~dq, JB-H=87,8 Hz, JP-H=22,3 Hz). 31P RMN 5 (ppm): 84,3 (~qq, JP-B=147 Hz, JP-H=22,3 Hz).
Ejemplo 8
GppBH3pG.
El derivado imidazolida de GMP (GMP-Im) (200 mg, 0,46 mmol, sal de sodio) y la sal de boranofosfato trietilamonio obtenida previamente (70 mg, 0,23 mmol) se suspendieron en 4 ml de DMF, y se añadió poco a poco MgCI2 anhidro. Después de 1 h se detuvo la reacción añadiendo EDTA (1,48 mg, 4 mmol) en 40 ml de agua, y se ajustó el pH a ~6 añadiendo NaHCO3 sólido. Se separó el producto con un equipo DEAE Sephadex con un gradiente 0-1,2M de TEAB. Después de la evaporación, se obtuvieron 165 mg (4.000 unidades de densidad óptica a 260 nm) de la sal GppBH3pG trietilamonio (rendimiento del 65%). ESI MS (-) m/z: 785,12 (calc. para C20H29N10O17P3B: 785,10). 1H RMN 5 (ppm): 8,11 (1H, s, H8 GA'); 8,09 (1H, s, H8 GB); 5,84 (2H, d, J=S,2 Hz, H1' GAB), 4,69 (2H, ~t, J=5,1 Hz, H2' GAB); 4,50 (1H, ~t, H3' GAóB); 4,49 (1H, ~t, H3' GAóB ); 4,31 (2H, m, H4' GGAB); 4,24 (4H, m, H5' GAB, H5" GAB). 31P RMN 5 (ppm): 75,10 (1P, m, P (PBH3)), -11,20 (1PA', ~dt, J=30,2 Hz, J=5 Hz), -11,28 (1PB', ~dt, J=30,2 Hz, J=5 Hz). *A y B denotan señales de los núcleos diaestereoisómeros.
Ejemplo 9
m7GppBH3pG.
Se disolvió GppBH3pG (35 mg, sal TEA) en 1,5 ml de DMSO, y se añadieron 20 μl de yoduro de metilo. Después de 4 h, se detuvo la reacción añadiendo 15 ml de agua y se ajustó el PH a ~7 con NaHCO3 sólido. Se separaron los productos con un equipo DEAE Sephadex con un gradiente 0-1,2M de TEAB. Se recogió una mezcla diaesteroisomérica de m7GppBH3pG (550 unidades de densidad óptica) y se evaporó el disolvente. A continuación, el producto se disolvió en una pequeña cantidad de agua y se convirtió a la sal de sodio en una resina Dowex. los diaestereoisómeros se resolvieron posteriormente usando HPLC semi-preparativa, y se liofilizaron tres veces. los rendimientos después de la separación por HPLC fueron 10,2 mg de m7GppBH3pG (D1) y 9,8 mg de m7GppBH3pG (D2) como las sales de NH; (37,2% y 35,6%, respectivamente). ESI MS (-) m/z: 799,13 (calc. para C21H31N10O17P3B: 799,12). D1: 1H RMN 5 (ppm): 8,02 (1H, s, H8G); 5,89 (1H, d, J=3,0 Hz, H8 m7G); 5,80 (1H, d, l=6,2 Hz, H8G), 4,68 (1H, ~t, H2'G); 4,51 (1H, ~t, H2' m7G); 4,50 (1H, ~t, H3'G); 4,42 (1H, ~t, H3' G); 4,35 (3H, m (superpuesto), H4' H5', H5" G); 4,22 (3H, m (superpuesto), H4', H5', H5", m7G); 4,06 (3H, s, CH3); 0,53 (3H, m, BH3). 31P RMN 5 (ppm): 75,1 (1P, m, P (PBH3)), -11,3 (2P, ~d, JPa-P )=30,7 Hz, Pa y Py). D2: 1H RMN 5 (ppm): 8,04 (1H, s, H8G); 5,92 (1H, d, J=3,0 Hz, H8 m7G); 582 (1H, d, J=6,2 Hz, H8G), 4,68 (1H, ~t, H2'G); 4,51 (1H, ~t, H2' m7G); 4,50 (1H, ~t, H3'G); 4,42 (1H, ~t, H3' G); 4,35 (3H, m (superpuesto), H4' H5', H5" G); 4,22 (3H, m (superpuesto), H4', H5', H5", m 7G); 4,06 (3H, s, CH3); 0,53 (3H, m, BH3). 31P RMN 5 (ppm): 75,13 (1P, m, P (PBH3)), -11,31 (2P, ~d, JPa-P )=30,7 Hz, Py y Pa).
Ejemplo 10
m7GppBH3pm7G (Método I).
GppBH3pG (50 mg, 800 unidades de densidad óptica, sal TEA) se disolvieron en 1,0 ml de DMSO, y se añadieron 30 μl de yoduro de metilo. Después de 2 h, se añadieron 30 μl más de yoduro de metilo. Después de 2 h, se detuvo la reacción añadiendo 15 ml de agua y se ajustó el pH a ~7 con NaHCO3 sólido. Se separaron los productos usando un equipo DEAE Sephadex con un gradiente de 0-1,2M de TEAB. Se recolectó m7GppBH3pm7G (200 unidades de densidad óptica), se evaporó y se convirtió en la sal de sodio sobre una resina Dowex. Finalmente, el producto se precipitó con etanol y se secó sobre P2O5. El rendimiento fue 22 mg de m7GppBH3pm7G (sal de sodio) (54%). ESI MS (-) m/z: 813,10 (calc. para C22H33N10O17P311B: 813,13). 1H RMN 5 (ppm): 9,02 (2H, s, H8 m7G); 6,04 (2H, d, J=3,7 Hz, H2'G); 4,67 (2H, ~t, H2' m7G), 4,53 (2H, ~t, H3' m7G); 4,40 (2H, m, H4' m7G); 4,36 (2H, m, H5' m7G); 4,23 (2H, m, H5" m7G); 4,13 (6H, s, CH3); 0,44 (3H, m, BH3). 31P RMN 5 (ppm): 74,90 (1P, m, P (PBH3)), -11,33 (1PA', ~d, JPa-P =31,0 Hz); -11,36 (1PB , ~d, JPa-P =31,0 Hz). *A y B denotan señales de los núcleos diaestereoisómeros.
Ejemplo 11
m7GppBH3pm7G (Método II).
El derivado imidazolida de m7GMP (m7GMP-Im) (225 mg, 0,5 mmol, sal de sodio) y la sal boranofosfato trietilamonio (75 mg, 0,25 mmol, sal de sodio) se suspendieron en 4 ml de DMF, y se añadió poco a poco MgCI2 anhidro (380 mg, 4 mmol). Después de 1 h se detuvo la reacción añadiendo EDTA (1,48 mg, 4 mmol) en 40 ml de agua, y se ajustó el pH a ~6 añadiendo NaHCO3 sólido. Se separó el producto usando un equipo DEAE Sephadex con un gradiente 0-1,1 M de TEAB. Después de evaporar el disolvente, se disolvió el producto en una pequeña cantidad de agua y se convirtió a la sal de sodio en una resina Dowex. Después de precipitarse con etanol y secarse sobre P2O5, se obtuvieron 150 mg de la sal de sodio de m7GppBH3pm7G (rendimiento del 34%). (La información sobre el espectro se da bajo la descripción del Método I dado anteriormente).
Ejemplo 12
7,2'-OGppBH3pG.
m2
A una suspens1on de m27,2'-OGMP-Im (15 mg, 0,03 mmol, sal de sodio) y la sal boranofosfato trietilamonio (30 mg, 0,1 mmol) en 0,5 ml de DMF, se añadió poco a poco MgCI2 (40 mg, 0,4 mmol) y se agitó la mezcla hasta la disolución de los reactivos (1-2 min). Se añadieron GMP-Im (40 mg, 0,09 mmol) y MgCI2 (40 mg) a la mezcla de reacción. La reacción se detuvo después de 5 h añadiendo EDTA (0,8 mmol) en 10 ml de agua, y se ajustó el pH a ~6 con NaHCO3 sólido. Se separaron los productos usando H PLC semi-preparativo y se liofilizaron tres veces. Los rendimientos fueron 5,1 mg de m27,2'-OGppBH3pG (D1) y 4,8 mg de m27,2'-OGppBH3pG (D2) como las sales de NH4+ (18% y 17%, respectivamente). ESI MS (-) m/z: 813,14 (calc. para C22H33N10O17P311B: 813,13). D1: 1H RMN 5 (ppm): 9,04 (1H, s, H8 m7G); 8,10 (1H, s, H8 G); 5,97 (1H, d, J=2,9 Hz, H1', m7G), 5,80 (1H, d, J=5,9 Hz, H1' G); 4,70 (1H, ~t, H2' G); 4,56 (1H, ~t, H3' m7G); 4,50 (1H, ~t Hz, H3' G); 4,41 (1H, m, H5' G); 4,34 (2H, m, superpuesto, H4', m7G, H4' G); 4,27 (2H', m (superpuesto, H2', m7G, H5" G); 4,24 (2H, m, H5', H5", m7G); 4,08 (3H, s, N-CH3); 3,59 (3H, s, OCH3); 0,45 (3H, m, BH3). 31P RMN 5 (ppm): 75,12 (1P m, P (PBH3)), -11,09 (2P, ~d, JPa-P ) =30,7 Hz, Pa y Py). D2: 1H RMN 5 (ppm): 9,00 (1H, s, H8 m7G); 8,08 (1H, s, H8G); 5,96 (1H, d, J=2,9 Hz, H1' m7G), 5,81 (1H, d, J=5,9 Hz, H1' G); 4,70 (1H, ~t, H2' G); 4,55 (1H, ~t, H3' m 7G); 4,48 (1H, ~t, H3' G); 4,40 (2H, m superpuesto, H4' m7G H5' G); 4,30 (3H, m (superpuesto), H2', m7G H4' G, H5" G); 4,25 (2H, m, H5', H5" m7G); 4,07 (3H, s, N-CH3); 3,62 (3H, s, O-CH3); 0,45 (3H, m, BH3). 31P RMN 5 (ppm): 75,12 (1P, m, P (PBH3)), -11,11 (2P, ~d, JPa-P =30,7 Hz, Pa y Py).
Ejemplo 13
Sal selenofosfato trietilamonio.
Usando una jeringa se añadió gota a gota una suspensión de selenio (160 mg, 2 mmol) en piridina (1 ml) a una solución sellada con un septo y en la que se estaba burbujeando argón de tris(trimetilsililfosfito) (600 μl, 1,8 mmol) en CH3CN anhidro (20 ml). La solución resultante se mantuvo a temperatura ambiente durante 30 min, y después se evaporó a sequedad. Se añadió entonces una solución de trietilamina (500 μl, 3,6 mmol) en MeOH (20 ml), y la mezcla se agitó a temperatura ambiente durante 2 h. Se eliminó el disolvente bajo presión reducida y el residuo se re-evaporó dos veces con metanol. El producto, obtenido como un residuo oleaginoso, amarillento, se usó sin tratamiento adicional alguno en la siguiente reacción.
Ejemplo 14
7,2'-O-dimetilguanosina 5'-O-(2-selenodifosfato) (m27,2'-OGDP�Se).
A una suspensión de 7,2'-O-dimetilguanosina 5'-O-fosfato imidazolida (250 mg, 0,43 mmol) y sal selenofosfato trietilamonio (preparada a partir de 600 μl de (Me3SiO)3P) en 5 ml de DMF, se añadió ZnCI2 (590 mg, 4,30 mmol) y la mezcla se agitó vigorosamente hasta la disolución de todos los reactivos (3 min). Se agitó la solución obtenida durante 20 min a temperatura ambiente y la reacción se detuvo entonces añadiendo una solución de EDTA disódico (1,6 g, 4,30 mmol) y 800 mg de NaHCO3 en 300 ml de agua. Se ajustó el pH a ~7 con la cantidad necesaria de NaHCO3. Se aisló el producto con un equipo DEAE Sephadex con un gradiente 0-1,0M de TEAB. El rendimiento fue 254 mg (0,35 mmol) de m27,2'-OGDP�Se como la sal de TEA (81%). ESI MS (-) m/z: 553,85 (calc. para C12H18N5O10P280Se: 533,97).
Ejemplo 15
7,2'-OGppSepG.
m2
m27,2'-OGDP�Se (250 mg, 0,35 mmol) y GMP-Im (250 mg, 0,50 mmol) se suspendieron en 5 ml de DMF, y se añadió ZnCI2 anhidro (480 mg, 3,5 mmol). La solución obtenida se mantuvo a temperatura ambiente durante 2 días. La reacción se detuvo añadiendo EDTA disódico (1,3 g, 3,5 mmol) en 100 ml de agua, y se neutralizó con NaHCO3 sólido. Los productos se aislaron con un equipo DEAE Sephadex con un gradiente 0-1,2M de TEAB. Finalmente, los diaestereoisómeros se separaron por HPLC semi-preparativo y se liofilizaron tres veces. Los rendimientos fueron 40 mg (0,045 mmol) de m27,2'-OGppSepG (D1) y 35 mg (0,040 mmol) de m27,2'-OGppSepG (D2) como las sales de NH4+ (13% y 11%, respectivamente). ESI MS (-) m/z: 878,99 (calc. para C22H30N10O17P380Se: 879,02). D1: 1H RMN 5 (ppm): 9,0Z (1H, s, H8 m 7G); 8,04 (1H, s, H8G); 5,97 (1H, d, J=2,4 Hz, H1' m7G); 5,81 (1H, d, J=6,3 Hz, H1' G); 4,69 (1H, ~t, H2' G), 4,55 (1H, ~t, H3' m7G); 4,54 (1H, ~t, H3' G), 4,43 (1H, m, H5' G), 4,32 (2H, m superpuesto, H4' G, H5" G); 4,26 (4H, m superpuesto, H2' m7G, H4' m7G, H5' m7G, H5" m7G); 4,06 (3H, s, N-CH3); 3,59 {3H, s, O-CH3).31P RMN 5 (ppm): 17,4 (1P, ~t, J=29,6 Hz, P (PBH3)); -12,4 (2P, ~d, J=29,6 Hz, Pa y Py). D2: 1H RMN 5 (ppm): 9,01 (1H, s, H8 m7G); 8,03 (1H, s, H8G); 5,94 (1H, d, J=2,7 Hz, H1' m7G); 5,79 (1H, d, J=6,1 Hz' H1' G); 4,68 (1H, ~t, H2' G), 4,56 (1H, ~t, H3' m7G); 4,50 (1H, ~t, H3' G), 4,41 (1H, m, H5' G), 4,32 (3H, m superpuesto, H4' G, H5" G); 4,26 (3H, m superpuesto, H4' m7G, H5' m 7G, H5" m7G); 4,07 (3H, s, N-CH3); 3,58 (3H, s, O-CH3); 0,45 (3H, m, BH,). 31P RMN 5 (ppm): 17,4 (1P, ~t, J=29,6 Hz, P (PBH3)); -12,4 (ZP, ~d, J=29,6 Hz, Pa y Py).
Ejemplo 16
7-metilguanosina 5'-O-(H-fosfonato).
A guanosina 5'-O-(H-fosfonato) (260 mg, 0,65 mmol) disuelta en DMSO (10 ml) se añadió yoduro de metilo (322 μg, 5,2 mmol), y la solución se agitó durante 3 h en un matraz tapado. La reacción se detuvo diluyendo con 200 ml de agua y la mezcla de reacción se extrajo tres veces con éter. El éster restante se eliminó de la capa acuosa bajo presión reducida, y se aisló el producto con un equipo DEAE Sephadex con un gradiente 0-0,7M de TEAB. Después de la evaporación y secado sobre P2O5, se obtuvieron 200 mg (0,43 mmol) de producto como una sal de trietilamonio (66%). ESI MS (-) m/z: 360,06 (calc. para C11H15N5O7P1: 360,07).
Ejemplo 17
7-metilguanosina 5'-O-fosforoselenoato (m7GMPSe, sal de trietilamonio).
En un matraz de fondo redondo se puso 7-metilguanosina 5'-(H-fosfonato) (200 mg, 0,43 mmol) y se suspendió en 20 ml de acetonitrilo anhidro. Se selló el matraz con un septo de goma y se purgó con argón durante 30 min. Se inyectó N,O-bistrimetilsililacetamida (11,3 ml, 46 mmol) con una jeringa. La mezcla se agitó vigorosamente hasta obtenerse una solución transparente, y entonces se agitó durante 30 min más. Se añadió entonces selenio (40 mg, 0,5 mmol) en piridina (0,5 ml) y se continuó agitando durante 30 min más. Se evaporó la solución a presión reducida hasta obtener un residuo oleaginoso, se añadió una solución de trietilamina (60 μl, 0,43 mmol) en metanol (40 ml), y la mezcla obtenida se agitó durante 2 h. Se evaporó la solución y el producto se disolvió en 100 ml de agua, y se filtró usando papel filtro. El producto se aisló usando un equipo DEAE Sephadex con un gradiente 0-0,9 M de TEAB. Después de la evaporación y liofilización, las fracciones produjeron 93 mg de la sal 7-metilguanosina 5'O-fosforoselenoato trietilamonio (45%). ESI MS (-) m/z: 439,97 (calc. para C11H15N5O7P80Se: 439,98).
Ejemplo 18
m7GpSeppG.
A una suspensión de m7GMPSe (10 mg, 0,021 mmol) y GDP-Im (15 mg, 0,027 mmol) en DMF (0,8 ml) se añadió ZnCI2 anhidro (30 mg, 0,22 mmol). Se mantuvo la reacción a temperatura ambiente durante 2 días, y se detuvo entonces añadiendo 90 mg de EDTA disódico en 10 ml de agua y se neutralizó con NaHCO3. Se separaron los diaestereoisómeros por HPLC Fl. Los rendimientos fueron 2 mg de m7GpSeppG (D1) y 2,5 mg de m7GpSeppG (D2) como las sales de NH4+ (10% y 13%, respectivamente). ESI MS (-) m/z: 865,02 (calc. para C21H28N10O17P380 Se: 865,00).
Ejemplo 19
Medición de las afinidades de enlace de elF4E.
Se llevaron a cabo las mediciones de titulación por fluorescencia usando un espectrofluorómetro LS-50B ó LS-55 (Perkin Elmer Co.) a 20,0 ± 0,2ºC en 50 mM HEPES/KOH (pH 7,2) 0,5 mM EDTA, y 1 mM DTT, con la fuerza iónica ajustada a 150 mM mediante la adición de KCI. Se añadieron diversas soluciones de análogos de caperuza, de concentración cada vez mayor, como alícuotas de 11 μl a 1,4 ml de soluciones de proteína de 0,1 ó 0,2 μM. Se midieron las intensidades de la fluorescencia con excitación a 280 nm ó 295 nm con un ancho de banda de 2,2 nm, y detección a 337 nm con un ancho de banda de 4 nm y un filtro de corte a 290 nm. Se corrigieron los datos en cuanto a la dilución de la muestra y efectos del filtro interno. Se determinaron las constantes de asociación en el equilibrio (Kas) ajustando la dependencia teórica de la intensidad de la fluorescencia sobre la concentración de análogo de caperuza con los datos experimentales, como se describe en A. Niedžwiecka et al., "Biophysycal studies of elF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of elF4G and 4E-BP1 proteins", J. Mol. Biol., vol. 312, págs. 615-635 (2002). Se permitió que la concentración de proteína fuese un parámetro libre en la ecuación de equilibrio, para determinar la cantidad de proteína "activa". La Kas final se calculó como el promedio ponderado de tres a diez titulaciones independientes, con los factores de ponderación tomados como los valores recíprocos de los cuadrados de las desviaciones estándar numéricas. Se realizó el análisis de regresión por mínimos cuadrados no lineal usando ORGIN 6,0 (Microcal Software lnc., EE.UU.).
Ejemplo 20
Ensayo de la susceptibilidad a DcpS.
Se expresó DcpS humano en Escherichia coli, como se describe en L. Cohen et al., "Nematode m7GpppG y m32,2,7GpppG decapping: activities in Ascaris embryos and characterization of C. elegans scavenger DcpS", RNA, vol. 10, págs. 1.609-1.624 (2004). Se almacenó a -80ºC una solución de 15 μm de la proteína en tampón Tris 20 mM, pH 7,5, que contenía KCI 50 nM, EDTA 0,2 mM, DTI 1 mM, PMSF 0,5 mM y glicerol 20% hasta su uso. Se hicieron reacciones enzimáticas a 30°C en 500 μl de Tris-HCI 50 mM, pH 7,9, que contenía MgCI2 20 mM y (NH4)2SO4 60 mM. Se trató una solución de 40 μM del análogo de caperuza seleccionado con 5,0 μl de DcpS durante 120 min. A los 10, 30, 60, y 120 min, se obtuvo una muestra de 100 μl de la mezcla de reacción y se desactivó por incubación a 90ºC durante 2 min. Se analizaron las muestras sin tratamiento adicional alguno usando HPLC Fl analítico con un gradiente lineal de metanol en KH2PO4 0,1 M, pH 6,0. de 0-50% durante 15 min.
Ejemplo 21
Síntesis de ARNm con caperuza de análogos de BH3 y Se. Método I (para análogos de m7GppBH3G (mezcla D1/D2) y m7GppBH3pm7G).
Se sintetizó una plantilla de ADN para la transcripción in vitro usando PCR del plásmido 5P6p-5'UTR �-globin-LUCiferasa. La plantilla contenía el promotor SP6 seguido por la secuencia 5'-UTR de ARNm de �-globina de conejo y la región de codificación completa de la luciferasa de luciérnaga. Una mezcla de reacción de transcripción típica in vitro (50 μl) contenía tampón de transcripción SP6 (Fermentas, no. cat. EP0131), 2 μg de plantilla de ADN, 2 U/μl inhibidor de la ribonucleasa RiboLock (Fermentas), 2 mM de cada uno de los siguientes: ATP, CTP, y UTP, GTP 0,1 mM, y análogo de caperuza del dinucleótido 1 mM. Se incubó la mezcla de reacción a 37ºC durante 5 min antes de añadir la polimerasa SP6 ARN (Fermentas) hasta una concentración final de 2 U/μl. Después de 30 min de incubación a 37ºC, se añadió GTP hasta una concentración final de 1 mM, y se continuó la reacción durante 90 min más. Las mezclas de reacción se trataron con 1U de DNasa RQ1 (RNAse-free, Promega) por μg de plantilla de ADN en tampón de transcripción a 37ºC durante 20 min. Se purificaron los transcriptos de ARN sobre columnas Sephadex G-S0 tratadas con DEPC (Pharmacia). La integridad de los transcriptos se confirmó por electroforesis sobre un gel de agarosa 1%, no desnaturalizante. Se determinaron las concentraciones espectrofotométricamente. Los transcriptos se almacenaron a 80ºC hasta su uso.
Ejemplo 21
Síntesis de ARNm con caperuza de análogos BH3 y Se. Método II (para análogos de m27,2'-OGppBH3pG (D1) y
7,2'-OGppBH3p7,2'-OGppSepG
m27G) (D2), m27,2'-OGpppBH3G (D1), m27,2'-OGpppBH3pG (D2), m27,2'-OGppSepG (D1) y m2(D2), m27GPPBH3pG (D1), m27GPPBH3pm7G, m27,2'-OGppSpG (D1) y m27,2'-OGppSpG (D2)).
Se sintetizaron in vitro ARNm de luciferasa poliadenilada, en caperuza mediante PCR a partir de una plantilla de ADNds que contenía el promotor SP6, la secuencia 5'-UTR de ARNm de �-globina de conejo y la región de codificación completa de la luciferasa de luciérnaga y 31 residuos de adenosina. Una mezcla de reacción de transcripción típica (40 μl) contenía tampón de transcripción SP6 (Fermentas), 0,7 μg de plantilla de ADN, 1 U/μl inhibidor de la ribonucleasa RiboLock (Fermentas), 0,5 mM de cada uno de los siguientes: ATP, CTP, y UTP, GTP 0,1 mM, y análogo de caperuza del dinucleótido 0,5 mM. Se incubó la mezcla de reacción a 3TC durante 5 min antes de añadir la polimerasa SP6 ARN (Fermentas) hasta una concentración final de 1 U/μl, y se continuó la incubación durante 45 mina 37ºC. La mezcla de reacción se trató con DNasa como en el Método l. Se purificaron los transcriptos de ARN sobre columnas NucAway (Ambion). La integridad de los transcriptos y la cuantificación se realizaron como en el Método l.
Ejemplo 22
Eficiencia de la traducción de ARNm con caperuza en un sistema in vitro.
Se empleó un sistema de lisado de reticulocito de conejo tratado con una nucleasa de micrococo (Flexi Rabbit Reticulocyte Lysate System, Promega) para la traducción in vitro. Las reacciones de traducción se hicieron con 10 μl durante 60 min a 30ºC. Una mezcla típica de reacción contuvo 40% de lisado de reticulocito, los 20 aminoácidos "estándar" (0,01 mM de cada uno), MgCI2 (1,2 mM), acetato de potasio (170 mM) y ARNm (cinco concentraciones diferentes de cada concentración del transcripto, entre 0,25 y 4 μg/ml). Se midió la actividad de la luciferasa con un luminómetro (Glomax, Promega). Se usó regresión lineal para el ajuste de los datos (actividad de luciferasa vs. transcripto de ARNm) y la eficiencia traduccional se definió como la pendiente de esta línea. Las eficiencias traduccionales relativas de los ARNm de ensayo se compararon con la del ARNm de luciferasa con caperuza de m7GpppG, habiéndose definido este último como 1,0.
Ejemplo 23
Inhibición de la traducción dependiente de la caperuza in vitro mediante análogos de BH3.
Se hicieron las reacciones de traducción in vitro con 12,5 μl durante 60 min a 30ºC bajo condiciones favorables para la traducción dependiente de la caperuza. En algunos casos, la mezcla de reacción se incubó durante 60 min a 30ºC antes de añadir el análogo de caperuza de dinucleótido (inhibidor) y ARNm de luciferasa con caperuza de m27,3'-OGpppG para iniciar la traducción. En otros casos, para analizar la estabilidad biológica, se incubó el análogo de caperuza en la mezcla de traducción durante 60 min a 30ºC antes de añadir el ARNm de luciferasa para iniciar la traducción. Una mezcla de reacción típica contuvo 56% de lisado de reticulocito, los 20 aminoácidos "estándar" (0,01 mM de cada uno). MgCI2 (1,2 mM), acetato de potasio (170 mM). inhibidor de ribonucleasa RiboLock (0,32 U/μl), solución de análogo de caperuza (1/10 del volumen total de reacción) y ARNm de luciferasa con caperuza de m27,3'-OGpppG. El transcripto no fue poliadenilado, sino que contenía un 3'-UTR de 59 bases. Se hicieron reacciones con concentraciones del análogo de caperuza entre 0,12 y 100 μM. Se midió la actividad de la luciferasa usando un luminómetro. A partir de las mediciones calculamos los valores Cl50, definidos como la concentración del análogo de caperuza que produjo una inhibición del 50%. Se usó el programa OriginPro8 para el ajuste de la curva con la ecuación qLUC = Z/(1+1/CI50) + N, donde qLUC es la actividad de la luciferasa sintetizada en presencia del análogo de
5 caperuza, Z es la actividad de la luciferasa sintetizada en ausencia del análogo de caperuza, N es la actividad de la luciferasa sintetizada de manera independiente de la caperuza, e I es la concentración del análogo de caperuza. En la Tabla 2 se muestran los datos.
Tabla 2
Caracterización biofísica y bioquímica de los análogos de BH3
Ejemplo 24
- -
5 Resultados de la caracterización biofísica y bioquímica de los análogos de BH3 y Se-.
Se determinaron las afinidades de enlace de elF4E eucariótico por los diversos análogos de caperuza usando
extinción por fluorescencia. Esta prueba biofísica permite predecir la eficacia potencial de los análogos de caperuza
en la traducción. Se espera que los que poseen afinidades más altas hacia elF4E que el análogo de caperuza sin 10 modificar (m7GpppG) serán reconocidos mejor por la maquinaria traduccional, produciendo eficiencias
traduccionales más altas. También se espera que compitan más efectivamente con el ARNm sin modificar cuando
se usan dinucleótidos sin caperuza para inhibir la traducción. Véase en general E. Grudzien-Nogalska et al.,
"Synthesis of anti-reverse cap analogs (ARCAs) and their applications in mRNA translation and stability", Methods
Enzymol., vol. 431, págs. 203-227 (2007). Los resultados demostraron que las constantes de asociación para todos 15 los análogos de BH3 y Se estudiados fueron similares o superiores a los de sus homólogos sin modificar. Véanse las
Tablas 2 y 3.
20 Tabla 3
Caracterización biofísica y bioquímica de los análogos de Se
Ejemplo 25
5 Eficiencias traduccionales de los ARNm con caperuza de análogos de BH3 y Se.
Se determinaron las eficiencias traduccionales mediante traducción in vitro. Generalmente, se encontró que los ARNm con caperuza de los nuevos análogos poseen eficiencias traduccionales más altas que los ARNm con caperuza de los compuestos madre sin modificar (Tablas 4 y 5). Especialmente, se observaron eficiencias
10 traduccionales altas con los análogos que fueron incorporados al ARNm exclusivamente en la orientación correcta (BH3-ARCAs, Se-ARCAs y m7GppBH3pm7G).
Tabla 4
15 Eficiencia traduccional in vitro de ARNm de luciferasa con caperuza de análogos de caperuza de boranofosfato de dinucleótido
Tabla 5
Eficiencia traduccional in vitro de ARNm de luciferasa que contiene una cola poli-A de 31 bases y con caperuza de análogos de caperuza de boranofosfato o fosforoselenoato
Ejemplo 26
10 Susceptibilidad de los nuevos análogos a la degradación con DcpS.
También se determinó esta susceptibilidad. Inesperadamente, se descubrió que todos los análogos �-BH3 son resistentes a la hidrólisis con DcpS (Tabla 2). Ya que J. Kowalska et al. (2008) habían demostrado que los análogos de caperuza �-fosforotioato correspondientes son todos susceptibles al DcpS, este resultado indica que las
15 diferentes modificaciones de fosfato en la misma posición del puente de trifosfato pueden tener diferentes consecuencias químicas. En comparación, con los análogos de Se, sólo los modificados en la posición y fueron resistentes a DcpS (Tabla 3).
Ejemplo 27
Los análogos de BH3 como inhibidores de la traducción in vitro dependiente de la caperuza.
Se hicieron dos tipos de experimentos. En uno de ellos (condición A) se añadió un análogo de caperuza al sistema de traducción conjuntamente con ARNm de luciferasa. En el otro (condición B), se incubó el análogo de caperuza en el sistema de traducción durante 60 min antes de añadir ARNm. En los dos tipos de experimentos, se encontró que los análogos de BH3 y Se son inhibidores fuertes de la traducción (Tablas 2 y 3). Asimismo, en comparación con m7GpppG, la incubación de algunos de estos análogos no empeoran sus propiedades inhibidoras, lo que se supone es un reflejo de su resistencia al ataque con pirofosfatasa. Existe una correlación entre la resistencia a la hidrólisis con DcpS y la estabilidad de los análogos en el sistema de traducción.
Ejemplo 28
Medición de la eficiencia traduccional y la degradación de ARNm en células Hela cultivadas.
Se empleó nucleoporación para transportar el ARN a las células Hela con un Nucleofector II (Amaxa Biosystems), siguiendo los protocolos recomendados por el fabricante. Se introdujo un microgramo de ARN en 106 células en la Solución V del Nucleofector, usando el programa T-024.
Para la medición de la síntesis de luciferasa, las células se dividieron en varios tubos Eppendorf, se pusieron a baño María a 37ºC, y se agitaron. Para la extracción de proteína, 2 x 105 células fueron lisadas en 200 μl de Reactivo de Lisado de Cultivo Celular de Luciferasa (Promega). Se determinó la actividad de la luciferasa de los extractos celulares siguiendo el protocolo recomendado por el fabricante.
Para determinar la estabilidad del ARNm, se distribuyeron las células en platos de cultivo celular de 35 mm y se pusieron a 37ºC en una atmósfera humidificada que contenía 5% CO2. Se cosecharon las células en diversos puntos de tiempo y se lavaron dos veces con PBS. Para la extracción de ARN citoplásmico, 2 x 105 células fueron lisadas en 175 μl de Tris-HCI 50 mM, pH 8,0, NaCI 140 mM, MgCI2 1,5 mM , lgepal (Sigma) 0,5% (v/v) y ditiotreitol 1 mM. Los ARN se purificaron adicionalmente usando el mini equipo RNeasy® y se analizaron usando PCR en tiempo real. Se hizo la transcripción inversa usando 400 ng de ARN en mezclas de reacción de 20 μl que contenían MgCI2 5,5 mM, 500 μM de cada dNTP, 2,5 μM de hexámeros aleatorios, 0,2 unidades de inhibidor ARNasa, y 0,8 unidades de transcriptasa inversa MultiScribe (Applied Biosystems). Las mezclas de reacción se incubaron a 25ºC durante 10 min, 48ºC durante 30 min y 95ºC durante 5 min. Se hizo el PCR cuantitativo en tiempo real con cebadores específicos diseñados para cada ARNm con la herramienta Beacon Designer (Bio-Rad). Los niveles de ARNm de luciferasa se determinaron usando PCR empleando cebadores diseñados para amplificar las bases 226-398 del extremo 5'. Los niveles de GAPDH ARNm de ratón se determinaron (como control) siguiendo el mismo método, y en las mismas muestras de ARN usando cebadores específicos para el GAPDH de ratón. La amplificación y detección se hicieron con el sistema de detección PCR en tiempo real iCycler IQ con mezclas de reacción de 25 μl que contenían 5 μl de la mezcla de reacción de transcripción (50 ng) de ADNc), 12,5 μl de IQ SYBRgreen Supermix, y 0,3 mM de cebadores (Bio-Rad). Las condiciones de incubación fueron 3 min a 95ºC para la activación de la polimerasa, seguida de 40 ciclos, cada uno de 15 s a 95ºC y 1 min a 60ºC. Se calcularon los niveles de ARNm de luciferasa usando el método de curva estándar absoluta como se describe en el Boletín del Usuario No. 2 del Sistema de Detección de Secuencias ABI Prism 7700. Después, se normalizó el ARNm de luciferasa comparándose con el nivel determinado de GAPDH ARNm de ratón en cada muestra, lo que es un indicador del total de ARN celular purificado en un extracto celular. El ARNm de luciferasa restante en cada punto de tiempo se convirtió a un porcentaje del ARN presente en el tiempo cero, y se graficaron los resultados como Log10([ARN]) vs. tiempo para determinar t1/2. Los resultados se muestran en la Figura 14.
Se determinaron las eficiencias traduccionales de diversos ARNm de luciferasa normalizando la velocidad de síntesis de la luciferasa a la concentración de ARNm de luciferasa presente en las células en el tiempo cero. Los resultados se muestran en la Figura 15.
Claims (13)
- REIVINDICACIONES1. Uno o más de los siguientes compuestos, o un estereoisómero de uno o más de los siguientes compuestos, o mezclas de estereoisómeros de uno o más de los siguientes compuestos, o una sal o sales de cualquiera de ellos:10 donde Y1, Y2, Y3 y Y4 se seleccionan del grupo que consiste en O, BH3 y Se; los diversos grupos Yi pueden ser iguales o diferentes, donde i es 1, 2, 3 ó 4; y al menos un Yi es BH3 o Se; n es 0 ó 1; 15 R se selecciona del grupo que consiste en:R3 y R4 se seleccionan del grupo que consiste en H, OH, OCH3 y OCH2CH3; y R3 y R4 pueden ser iguales o diferentes.25 W se selecciona del grupo que consiste en:30 R1 y R2 se seleccionan del grupo que consiste en H, OH, OCH3 u OCH2CH3; y R1 y R2 pueden ser iguales o diferentes; yX se selecciona del grupo que consiste en metilo, etilo, propilo, butilo, bencilo, bencilo sustituido, metilennaftilo y metilennaftilo sustituido.
- 2. Un compuesto como el indicado en la reivindicación 1; donde Y1, Y2, Y3 y Y4 se seleccionan del grupo que consiste en O, Se y BH3; los diversos grupos Y, pueden ser iguales o diferentes, donde i es 1,2,3, ó 4; y al menos un Yi es BH3 o Se;
- 3. Un compuesto como el indicado en la reivindicación 2, donde R se selecciona del grupo que consiste en:
- 4. Un compuesto como el indicado en la reivindicación 2, donde W es:R2 es OH; R1 es H u OCH3; X es metilo, yn = 0; y sólo uno entre Y1, Y2 y Y3 es BH3 o Se.
-
- 5.
- Un compuesto como el indicado en la reivindicación 2, donde, si n = 0, entonces Y2 o Y3 es BH, o Se, y donde, si n = 1, entonces Y2, Y3 o Y4 es BH 3 o Se.
-
- 6.
- Una molécula de ARN cuyo extremo 5' incorpora un compuesto como el indicado en la reivindicación 2.
-
- 7.
- Una molécula de ARN cuyo extremo 5' incorpora un compuesto como el indicado en la reivindicación 5.
-
- 8.
- Una molécula de ARN como la indicada en la reivindicación 7, donde R se selecciona del grupo que consiste en:
-
- 9.
- Un método de síntesis, in vitro o in vivo, de una molécula de ARN como la indicada en la reivindicación 6, donde
30 dicho método comprende la reacción de ATP, CTP, UTP y GTP, una composición como la indicada, y una plantilla de polinucleótido en presencia de ARN polimerasa, bajo condiciones que conduzcan a la transcripción por el ARN polimerasa de la plantilla de polinucleótido en una copia del ARN; por lo cual algunas de las copias de ARN incorporarán el compuesto para formar una molécula de ARN como la indicada en la reivindicación 6.35 10. Un método de síntesis de una proteína o péptido in vitro, donde dicho método comprende la traducción de una molécula de ARN como la indicada en la reivindicación 6 en un sistema acelular de síntesis de proteína, donde la molécula de ARN comprende un marco de lectura abierto, bajo condiciones adecuadas para la traducción del marco de lectura abierto de la molécula de ARN en la proteína o péptido codificado por el marco de lectura abierto. -
- 11.
- Un método de síntesis de una proteína o péptido in vivo o en células cultivadas, donde dicho método comprende la traducción de una molécula de ARN como la indicada en la reivindicación 6 in vivo o en células cultivadas, donde la molécula de ARN comprende un marco de lectura abierto, bajo condiciones adecuadas para la traducción del marco de lectura abierto de la molécula de ARN en la proteína o péptido codificado por el marco de lectura abierto.
-
- 12.
- Un compuesto como el indicado en la reivindicación 2 para el uso en un método de inhibición total o parcial de la traducción del ARN en una proteína o péptido en un sistema que traduce el ARN en una proteína o péptido.
- 13. Un compuesto como el indicado en la reivindicación 2 para el uso en un método como el indicado en la 10 reivindicación 12, donde el sistema es un sistema nativo de traducción del ARN de un organismo vivo.
- 14. Una composición como la indicada en la reivindicación 2; donde R1 es OCH3; R2 es OH; R3 es OH; R4 es OH; n es O; Y1 es O; Y2 es Se; Y3 es O; W esy R es
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL385388A PL215513B1 (pl) | 2008-06-06 | 2008-06-06 | Nowe boranofosforanowe analogi dinukleotydów, ich zastosowanie, czasteczka RNA, sposób otrzymywania RNA oraz sposób otrzymywania peptydów lub bialka |
| PL38538808 | 2008-06-06 | ||
| PCT/US2009/046249 WO2009149253A2 (en) | 2008-06-06 | 2009-06-04 | Mrna cap analogs |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ES2425781T3 true ES2425781T3 (es) | 2013-10-17 |
Family
ID=41398862
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES09759412T Active ES2425781T3 (es) | 2008-06-06 | 2009-06-04 | Análogos de CAP de ARNm |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US8519110B2 (es) |
| EP (1) | EP2297175B1 (es) |
| JP (1) | JP5715560B2 (es) |
| AU (1) | AU2009256131B2 (es) |
| CA (1) | CA2727091C (es) |
| ES (1) | ES2425781T3 (es) |
| PL (2) | PL215513B1 (es) |
| WO (1) | WO2009149253A2 (es) |
Families Citing this family (273)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| RS63430B1 (sr) | 2010-10-01 | 2022-08-31 | Modernatx Inc | Ribonukleinske kiseline koje sadrže n1-metil-pseudouracile i njihove primene |
| EP2691101A2 (en) | 2011-03-31 | 2014-02-05 | Moderna Therapeutics, Inc. | Delivery and formulation of engineered nucleic acids |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| DK3682905T3 (da) | 2011-10-03 | 2022-02-28 | Modernatx Inc | Modificerede nukleosider, nukleotider og nukleinsyrer og anvendelser deraf |
| DE12858350T1 (de) | 2011-12-16 | 2021-10-07 | Modernatx, Inc. | Modifizierte mrna zusammensetzungen |
| WO2013143555A1 (en) * | 2012-03-26 | 2013-10-03 | Biontech Ag | Rna formulation for immunotherapy |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| HK1206601A1 (en) | 2012-04-02 | 2016-01-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| HRP20220607T1 (hr) | 2012-11-26 | 2022-06-24 | Modernatx, Inc. | Terminalno modificirana rna |
| EP2931319B1 (en) | 2012-12-13 | 2019-08-21 | ModernaTX, Inc. | Modified nucleic acid molecules and uses thereof |
| CN103254260B (zh) * | 2013-02-07 | 2015-11-11 | 江西科技师范大学 | 由核苷氢亚磷酸单酯合成对称双核苷二磷酸二钠盐的方法 |
| WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| EP2971033B8 (en) * | 2013-03-15 | 2019-07-10 | ModernaTX, Inc. | Manufacturing methods for production of rna transcripts |
| US11377470B2 (en) | 2013-03-15 | 2022-07-05 | Modernatx, Inc. | Ribonucleic acid purification |
| EP2983804A4 (en) | 2013-03-15 | 2017-03-01 | Moderna Therapeutics, Inc. | Ion exchange purification of mrna |
| RS62529B1 (sr) | 2013-07-11 | 2021-11-30 | Modernatx Inc | Kompozicije koje sadrže sintetičke polinukleotide koji kodiraju proteine povezane sa crispr i sintetičke sgrnk i postupci upotrebe |
| WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| US20160194625A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2015048744A2 (en) | 2013-09-30 | 2015-04-02 | Moderna Therapeutics, Inc. | Polynucleotides encoding immune modulating polypeptides |
| WO2015051169A2 (en) | 2013-10-02 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotide molecules and uses thereof |
| WO2015051214A1 (en) | 2013-10-03 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| WO2015101416A1 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Methods for rna analysis |
| EP3090060B2 (en) | 2013-12-30 | 2025-05-21 | CureVac Manufacturing GmbH | Methods for rna analysis |
| KR102459599B1 (ko) | 2014-06-10 | 2022-10-26 | 큐어백 리얼 이스테이트 게엠베하 | Rna생산을 증진하는 방법 및 수단 |
| US10286086B2 (en) | 2014-06-19 | 2019-05-14 | Modernatx, Inc. | Alternative nucleic acid molecules and uses thereof |
| AU2015289583A1 (en) | 2014-07-16 | 2017-02-02 | Modernatx, Inc. | Chimeric polynucleotides |
| EP3169335B8 (en) | 2014-07-16 | 2019-10-09 | ModernaTX, Inc. | Circular polynucleotides |
| EP3171895A1 (en) | 2014-07-23 | 2017-05-31 | Modernatx, Inc. | Modified polynucleotides for the production of intrabodies |
| EP3461904A1 (en) | 2014-11-10 | 2019-04-03 | ModernaTX, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| EP3904366A1 (en) | 2014-12-16 | 2021-11-03 | Novartis AG | End capped nucleic acid molecules |
| WO2016154596A1 (en) | 2015-03-25 | 2016-09-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
| CN108064176A (zh) | 2015-04-22 | 2018-05-22 | 库瑞瓦格股份公司 | 用于治疗肿瘤疾病的含有rna的组合物 |
| EP3294896A1 (en) | 2015-05-11 | 2018-03-21 | Editas Medicine, Inc. | Optimized crispr/cas9 systems and methods for gene editing in stem cells |
| EP3294888A1 (en) | 2015-05-11 | 2018-03-21 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hiv infection and aids |
| DK4108769T3 (da) | 2015-05-29 | 2023-10-09 | Curevac Mfg Gmbh | Fremgangsmåde til fremstilling og oprensning af rna, omfattende mindst et trin til tangential-flow-filtrering |
| JP7396783B2 (ja) | 2015-06-09 | 2023-12-12 | エディタス・メディシン、インコーポレイテッド | 移植を改善するためのcrispr/cas関連方法および組成物 |
| WO2017001058A1 (en) | 2015-07-01 | 2017-01-05 | Curevac Ag | Method for analysis of an rna molecule |
| WO2017049245A2 (en) | 2015-09-17 | 2017-03-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US11434486B2 (en) | 2015-09-17 | 2022-09-06 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| CA2998370A1 (en) | 2015-09-17 | 2017-03-23 | Moderna Therapeutics, Inc. | Polynucleotides containing a stabilizing tail region |
| CA3001003A1 (en) | 2015-10-05 | 2017-04-13 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| DK3362461T3 (da) | 2015-10-16 | 2022-05-09 | Modernatx Inc | Mrna-cap-analoger med modificeret phosphatbinding |
| WO2017066789A1 (en) * | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs with modified sugar |
| WO2017066797A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Trinucleotide mrna cap analogs |
| EP3365447A1 (en) | 2015-10-21 | 2018-08-29 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hepatitis b virus |
| JP7408284B2 (ja) | 2015-10-30 | 2024-01-05 | エディタス・メディシン、インコーポレイテッド | 単純ヘルペスウイルスを治療するためのcrispr/cas関連方法及び組成物 |
| ES2913626T5 (en) | 2015-12-22 | 2025-05-12 | Modernatx Inc | Compounds and compositions for intracellular delivery of agents |
| EP3394280A1 (en) | 2015-12-23 | 2018-10-31 | CureVac AG | Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
| SI3394093T1 (sl) | 2015-12-23 | 2022-05-31 | Modernatx, Inc. | Metode uporabe liganda OX40, ki kodira polinukleotid |
| WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
| PL415967A1 (pl) * | 2016-01-29 | 2017-07-31 | Univ Warszawski | 5'-tiofosforanowe analogi końca 5' mRNA (kapu), sposób ich otrzymywania i zastosowanie |
| WO2017140345A1 (en) | 2016-02-15 | 2017-08-24 | Curevac Ag | Method for analyzing by-products of rna in vitro transcription |
| WO2017149139A1 (en) | 2016-03-03 | 2017-09-08 | Curevac Ag | Rna analysis by total hydrolysis |
| WO2017162266A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Rna replicon for versatile and efficient gene expression |
| WO2017162265A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
| EP3442590A2 (en) | 2016-04-13 | 2019-02-20 | Modernatx, Inc. | Lipid compositions and their uses for intratumoral polynucleotide delivery |
| EP4477662A3 (en) | 2016-05-04 | 2025-03-19 | CureVac SE | Nucleic acid molecules and uses thereof |
| US20210162037A1 (en) | 2016-05-04 | 2021-06-03 | Curevac Ag | Influenza mrna vaccines |
| MX2018013445A (es) | 2016-05-06 | 2019-09-09 | Juno Therapeutics Inc | Celulas diseñadas geneticamente y metodos para obtener las mismas. |
| CA3024507A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding .alpha.-galactosidase a for the treatment of fabry disease |
| EP3458105B1 (en) | 2016-05-18 | 2024-01-17 | Modernatx, Inc. | Polynucleotides encoding galactose-1-phosphate uridylyltransferase for the treatment of galactosemia type 1 |
| AU2017266948B2 (en) | 2016-05-18 | 2024-07-04 | Fundacion Para La Investigacion Medica Aplicada | Polynucleotides encoding porphobilinogen deaminase for the treatment of acute intermittent porphyria |
| US12128113B2 (en) | 2016-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
| JP7194594B2 (ja) | 2016-05-18 | 2022-12-22 | モデルナティエックス インコーポレイテッド | 免疫調節ポリペプチドをコードするmRNAの組み合わせ及びその使用 |
| WO2017201349A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding citrin for the treatment of citrullinemia type 2 |
| JP7246930B2 (ja) | 2016-05-18 | 2023-03-28 | モデルナティエックス インコーポレイテッド | インターロイキン-12(il12)をコードするポリヌクレオチドおよびその使用 |
| US20190298657A1 (en) | 2016-05-18 | 2019-10-03 | Modernatx, Inc. | Polynucleotides Encoding Acyl-CoA Dehydrogenase, Very Long-Chain for the Treatment of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency |
| AU2017286606A1 (en) | 2016-06-14 | 2018-12-13 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US12385034B2 (en) | 2016-06-24 | 2025-08-12 | Modernatx, Inc. | Methods and apparatus for filtration |
| SG11201811432WA (en) | 2016-08-19 | 2019-03-28 | Curevac Ag | Rna for cancer therapy |
| US20200163878A1 (en) | 2016-10-26 | 2020-05-28 | Curevac Ag | Lipid nanoparticle mrna vaccines |
| EP3538067A1 (en) | 2016-11-08 | 2019-09-18 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US11524066B2 (en) | 2016-12-23 | 2022-12-13 | CureVac SE | Henipavirus vaccine |
| EP3558356A2 (en) | 2016-12-23 | 2019-10-30 | CureVac AG | Mers coronavirus vaccine |
| CN119351474A (zh) | 2017-02-22 | 2025-01-24 | 克里斯珀医疗股份公司 | 用于基因编辑的组合物和方法 |
| WO2018170336A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
| EP3596041B1 (en) | 2017-03-15 | 2022-11-02 | ModernaTX, Inc. | Compound and compositions for intracellular delivery of therapeutic agents |
| EP3622062A4 (en) | 2017-05-10 | 2020-10-14 | The Regents of the University of California | DIRECTED EDITING OF CELLULAR RNA BY NUCLEAR ADMINISTRATION OF CRISPR / CAS9 |
| WO2018213789A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Modified messenger rna comprising functional rna elements |
| AU2018270111B2 (en) | 2017-05-18 | 2022-07-14 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (IL12) polypeptides and uses thereof |
| WO2018232006A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding coagulation factor viii |
| US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| WO2018231990A2 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase |
| US10034951B1 (en) | 2017-06-21 | 2018-07-31 | New England Biolabs, Inc. | Use of thermostable RNA polymerases to produce RNAs having reduced immunogenicity |
| AU2018298422B2 (en) | 2017-07-04 | 2023-04-06 | CureVac SE | Novel nucleic acid molecules |
| US20200362382A1 (en) | 2017-08-18 | 2020-11-19 | Modernatx, Inc. | Methods of preparing modified rna |
| US11602557B2 (en) | 2017-08-22 | 2023-03-14 | Cure Vac SE | Bunyavirales vaccine |
| JP7275111B2 (ja) | 2017-08-31 | 2023-05-17 | モデルナティエックス インコーポレイテッド | 脂質ナノ粒子の生成方法 |
| US20200283497A1 (en) | 2017-09-13 | 2020-09-10 | Biontech Cell & Gene Therapies Gmbh | Rna replicon for expressing at cell receptor or an artificial t cell receptor |
| US20200362313A1 (en) | 2017-09-13 | 2020-11-19 | Biontech Rna Pharmaceuticals Gmbh | Method of enhancing rna expression in a cell |
| WO2019053012A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | RNA REPLICON FOR THE REPROGRAMMING OF SOMATIC CELLS |
| RU2020117848A (ru) | 2017-11-08 | 2021-12-08 | Куревак Аг | Адаптиция последовательности phk |
| WO2019104195A1 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia |
| MA50803A (fr) | 2017-11-22 | 2020-09-30 | Modernatx Inc | Polynucléotides codant pour l'ornithine transcarbamylase pour le traitement de troubles du cycle de l'urée |
| MA50801A (fr) | 2017-11-22 | 2020-09-30 | Modernatx Inc | Polynucléotides codant pour la phénylalanine hydroxylase pour le traitement de la phénylcétonurie |
| WO2019115635A1 (en) | 2017-12-13 | 2019-06-20 | Curevac Ag | Flavivirus vaccine |
| SG11202005760PA (en) | 2017-12-21 | 2020-07-29 | Curevac Ag | Linear double stranded dna coupled to a single support or a tag and methods for producing said linear double stranded dna |
| EP3735270A1 (en) | 2018-01-05 | 2020-11-11 | Modernatx, Inc. | Polynucleotides encoding anti-chikungunya virus antibodies |
| WO2019193183A2 (en) | 2018-04-05 | 2019-10-10 | Curevac Ag | Novel yellow fever nucleic acid molecules for vaccination |
| US20210163928A1 (en) | 2018-04-11 | 2021-06-03 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
| EP4227319B1 (en) | 2018-04-17 | 2025-11-26 | CureVac SE | Novel rsv rna molecules and compositions for vaccination |
| FR3081169B1 (fr) * | 2018-05-15 | 2020-06-19 | Messenger Biopharma | Substitution de la coiffe des arn messagers par deux sequences d'arn introduites a leur extremite 5' |
| US20210260178A1 (en) | 2018-06-27 | 2021-08-26 | Curevac Ag | Novel lassa virus rna molecules and compositions for vaccination |
| WO2020023390A1 (en) | 2018-07-25 | 2020-01-30 | Modernatx, Inc. | Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders |
| EP3846776A1 (en) | 2018-09-02 | 2021-07-14 | ModernaTX, Inc. | Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency |
| WO2020056155A2 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease |
| WO2020056147A2 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease |
| MA53615A (fr) | 2018-09-14 | 2021-07-21 | Modernatx Inc | Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar |
| EP3853202A1 (en) | 2018-09-19 | 2021-07-28 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| EP3856233A1 (en) | 2018-09-27 | 2021-08-04 | Modernatx, Inc. | Polynucleotides encoding arginase 1 for the treatment of arginase deficiency |
| US11072808B2 (en) * | 2018-10-04 | 2021-07-27 | New England Biolabs, Inc. | Methods and compositions for increasing capping efficiency of transcribed RNA |
| AU2019355177A1 (en) | 2018-10-04 | 2021-05-06 | New England Biolabs, Inc. | Methods and compositions for increasing capping efficiency of transcribed RNA |
| EP3897702A2 (en) | 2018-12-21 | 2021-10-27 | CureVac AG | Rna for malaria vaccines |
| SG11202106666UA (en) | 2018-12-21 | 2021-07-29 | Curevac Ag | Methods for rna analysis |
| KR20210133218A (ko) | 2019-01-31 | 2021-11-05 | 모더나티엑스, 인크. | 볼텍스 믹서 및 연계된 방법, 시스템 및 이의 장치 |
| CA3128215A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| US20220133908A1 (en) | 2019-02-08 | 2022-05-05 | Curevac Ag | Coding rna administered into the suprachoroidal space in the treatment of ophthalmic diseases |
| US20220370354A1 (en) | 2019-05-08 | 2022-11-24 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia |
| WO2020227642A1 (en) | 2019-05-08 | 2020-11-12 | Modernatx, Inc. | Compositions for skin and wounds and methods of use thereof |
| US20220313813A1 (en) | 2019-06-18 | 2022-10-06 | Curevac Ag | Rotavirus mrna vaccine |
| EP3987027A1 (en) | 2019-06-24 | 2022-04-27 | ModernaTX, Inc. | Endonuclease-resistant messenger rna and uses thereof |
| US20220387628A1 (en) | 2019-06-24 | 2022-12-08 | Modernatx, Inc. | Messenger rna comprising functional rna elements and uses thereof |
| WO2021026358A1 (en) | 2019-08-07 | 2021-02-11 | Moderna TX, Inc. | Compositions and methods for enhanced delivery of agents |
| JP2022544412A (ja) | 2019-08-14 | 2022-10-18 | キュアバック アーゲー | 免疫賦活特性が減少したrna組み合わせおよび組成物 |
| WO2021076811A1 (en) | 2019-10-15 | 2021-04-22 | Moderna TX, Inc. | Mrnas encoding granulocyte-macrophage colony stimulating factor for treating parkinson's disease |
| BR112022011803A2 (pt) | 2019-12-20 | 2022-08-30 | Curevac Ag | Nanopartículas de lipídio para entrega de ácidos nucleicos |
| US12194089B2 (en) | 2020-02-04 | 2025-01-14 | CureVac SE | Coronavirus vaccine |
| IL293571B2 (en) | 2020-02-04 | 2025-01-01 | Curevac Ag | Coronavirus vaccine |
| PL432884A1 (pl) * | 2020-02-12 | 2021-08-16 | Uniwersytet Warszawski | Nowe analogi kapu końca 5' mRNA, cząsteczka RNA je zawierająca, ich zastosowania i sposób syntezy cząsteczki RNA i peptydu |
| WO2021204179A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
| EP4077272B1 (en) | 2020-04-09 | 2024-09-18 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
| CN118490818A (zh) | 2020-04-22 | 2024-08-16 | 生物技术欧洲股份公司 | 冠状病毒疫苗 |
| CA3182920A1 (en) | 2020-05-14 | 2021-11-18 | Modernatx, Inc. | Lnp compositions comprising an mrna therapeutic and an effector molecule |
| CA3170740A1 (en) | 2020-05-29 | 2021-12-02 | Curevac Ag | Nucleic acid based combination vaccines |
| CA3184474A1 (en) | 2020-06-01 | 2021-12-09 | Modernatx, Inc. | Phenylalanine hydroxylase variants and uses thereof |
| WO2021247535A1 (en) | 2020-06-01 | 2021-12-09 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof |
| JP7769644B2 (ja) | 2020-06-04 | 2025-11-13 | バイオエヌテック エスエー | 多用途かつ効率的な遺伝子発現のためのrnaレプリコン |
| KR20230042005A (ko) | 2020-06-23 | 2023-03-27 | 모더나티엑스, 인크. | 반감기가 연장된 mrna 치료제를 포함하는 lnp 조성물 |
| CN114206463B (zh) | 2020-06-30 | 2024-06-11 | 苏州艾博生物科技有限公司 | 脂质化合物和脂质纳米颗粒组合物 |
| JP2023535225A (ja) | 2020-07-24 | 2023-08-16 | ストランド セラピューティクス インコーポレイテッド | 改変ヌクレオチドを含む脂質ナノ粒子 |
| CA3170741A1 (en) | 2020-07-31 | 2022-02-03 | Curevac Ag | Nucleic acid encoded antibody mixtures |
| WO2022037652A1 (en) | 2020-08-20 | 2022-02-24 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
| EP4157344A2 (en) | 2020-08-31 | 2023-04-05 | CureVac SE | Multivalent nucleic acid based coronavirus vaccines |
| CN116368226A (zh) | 2020-09-04 | 2023-06-30 | 维乎医疗有限公司 | 用于加帽rna的组合物和方法 |
| BR112023006710A2 (pt) | 2020-10-14 | 2023-10-03 | George Mason Res Foundation Inc | Métodos de fabricação de nanopartícula lipídica e composições derivadas da mesma |
| WO2022104131A1 (en) | 2020-11-13 | 2022-05-19 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
| AU2021376893A1 (en) | 2020-11-16 | 2023-06-15 | BioNTech SE | Enhanced formulation stabilization and improved lyophilization processes |
| KR20230129432A (ko) | 2020-12-09 | 2023-09-08 | 비온테크 에스이 | Rna 제조 |
| KR20230164648A (ko) | 2020-12-22 | 2023-12-04 | 큐어백 에스이 | SARS-CoV-2 변이체에 대한 RNA 백신 |
| WO2022137133A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Rna vaccine against sars-cov-2 variants |
| CA3171051A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration |
| MX2023008002A (es) | 2021-01-08 | 2023-08-25 | Constructos de expresion y usos de estos. | |
| WO2022152141A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Polymer conjugated lipid compounds and lipid nanoparticle compositions |
| WO2022152109A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
| EP4087938A2 (en) | 2021-01-27 | 2022-11-16 | CureVac AG | Method of reducing the immunostimulatory properties of in vitro transcribed rna |
| EP4291165A1 (en) | 2021-02-12 | 2023-12-20 | ModernaTX, Inc. | Lnp compositions comprising payloads for in vivo therapy |
| US20240189449A1 (en) | 2021-03-24 | 2024-06-13 | Modernatx, Inc. | Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency |
| US20240216288A1 (en) | 2021-03-24 | 2024-07-04 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof |
| WO2022204369A1 (en) | 2021-03-24 | 2022-09-29 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia |
| WO2022204371A1 (en) | 2021-03-24 | 2022-09-29 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof |
| US20240207444A1 (en) | 2021-03-24 | 2024-06-27 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof |
| JP2024511206A (ja) | 2021-03-26 | 2024-03-12 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | 免疫原性組成物 |
| US20250345524A1 (en) | 2021-03-31 | 2025-11-13 | CureVac SE | Syringes containing pharmaceutical compositions comprising rna |
| US20240175005A1 (en) | 2021-03-31 | 2024-05-30 | Modernatx, Inc. | PURIFICATION AND RECYCLING OF mRNA NUCLEOTIDE CAPS |
| JP2024512780A (ja) | 2021-04-01 | 2024-03-19 | モデルナティエックス インコーポレイテッド | 多価rna組成物中のrna種の識別及び比率決定のための方法 |
| EP4334446A1 (en) | 2021-05-03 | 2024-03-13 | CureVac SE | Improved nucleic acid sequence for cell type specific expression |
| WO2022234416A1 (en) | 2021-05-03 | 2022-11-10 | Pfizer Inc. | Vaccination against pneumoccocal and covid-19 infections |
| WO2022234405A1 (en) | 2021-05-03 | 2022-11-10 | Pfizer Inc. | Vaccination against bacterial and betacoronavirus infections |
| BR112023022928A2 (pt) | 2021-05-03 | 2024-01-23 | Pfizer | Composição imunogênica contra gripe |
| US20240269248A1 (en) | 2021-05-19 | 2024-08-15 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia |
| WO2022247755A1 (en) | 2021-05-24 | 2022-12-01 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
| US20240384277A1 (en) | 2021-06-15 | 2024-11-21 | Modernatx, Inc. | Engineered polynucleotides for cell-type or microenvironment-specific expression |
| WO2022271776A1 (en) | 2021-06-22 | 2022-12-29 | Modernatx, Inc. | Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome |
| WO2023287751A1 (en) | 2021-07-12 | 2023-01-19 | Modernatx, Inc. | Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia |
| WO2023009499A1 (en) | 2021-07-27 | 2023-02-02 | Modernatx, Inc. | Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease type 1a (gsd1a) |
| WO2023006999A2 (en) | 2021-07-30 | 2023-02-02 | CureVac SE | Mrnas for treatment or prophylaxis of liver diseases |
| WO2023007019A1 (en) | 2021-07-30 | 2023-02-02 | CureVac SE | Cap analogs having an acyclic linker to the guanine derivative nucleobase |
| WO2023025404A1 (en) | 2021-08-24 | 2023-03-02 | BioNTech SE | In vitro transcription technologies |
| MX2024002725A (es) | 2021-09-03 | 2024-03-15 | CureVac SE | Nuevas nanoparticulas lipidicas para la administracion de acidos nucleicos que comprenden fosfatidilserina. |
| WO2023031394A1 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
| EP4408871A1 (en) | 2021-10-01 | 2024-08-07 | ModernaTX, Inc. | Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease |
| AR127312A1 (es) | 2021-10-08 | 2024-01-10 | Suzhou Abogen Biosciences Co Ltd | Compuestos lipídicos ycomposiciones de nanopartículas lipídicas |
| JP2024536406A (ja) | 2021-10-08 | 2024-10-04 | スージョウ・アボジェン・バイオサイエンシズ・カンパニー・リミテッド | 脂質化合物及び脂質ナノ粒子組成物 |
| CN116064598B (zh) | 2021-10-08 | 2024-03-12 | 苏州艾博生物科技有限公司 | 冠状病毒的核酸疫苗 |
| CA3237658A1 (en) | 2021-10-08 | 2023-04-13 | Pfizer Inc. | Immunogenic lnp compositions and methods thereof |
| JP2024539089A (ja) | 2021-10-18 | 2024-10-28 | バイオエヌテック エスエー | 修飾複製可能rnaの機能および関連する組成物を増加させるための変異を決定する方法ならびにそれらの使用 |
| CA3234396A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Modified replicable rna and related compositions and their use |
| US20250041393A1 (en) | 2021-11-01 | 2025-02-06 | Modernatx, Inc. | Polynucleotides encoding integrin beta-6 and methods of use thereof |
| WO2023092060A1 (en) | 2021-11-18 | 2023-05-25 | Cornell University | Microrna-dependent mrna switches for tissue-specific mrna-based therapies |
| US12186387B2 (en) | 2021-11-29 | 2025-01-07 | BioNTech SE | Coronavirus vaccine |
| JP2025503423A (ja) | 2021-12-17 | 2025-02-04 | ファイザー・インク | ポリヌクレオチド組成物およびその使用 |
| US20250108007A1 (en) | 2021-12-23 | 2025-04-03 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compound and lipid nanoparticle composition |
| WO2023138786A1 (en) | 2022-01-21 | 2023-07-27 | BioNTech SE | Analysis of rna molecules using catalytic nucleic acids |
| WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
| TW202345864A (zh) | 2022-02-18 | 2023-12-01 | 美商現代公司 | 編碼檢查點癌症疫苗之mRNA及其用途 |
| US12037616B2 (en) | 2022-03-01 | 2024-07-16 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (ANGPTL3) related conditions |
| WO2023180904A1 (en) | 2022-03-21 | 2023-09-28 | Crispr Therapeutics Ag | Methods and compositions for treating lipoprotein-related diseases |
| EP4499153A2 (en) | 2022-03-25 | 2025-02-05 | ModernaTX, Inc. | Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia |
| WO2023196399A1 (en) | 2022-04-06 | 2023-10-12 | Modernatx, Inc. | Lipid nanoparticles and polynucleotides encoding argininosuccinate lyase for the treatment of argininosuccinic aciduria |
| EP4508201A1 (en) | 2022-04-14 | 2025-02-19 | ModernaTX, Inc. | Rna polymerase variants |
| IL316186A (en) | 2022-04-26 | 2024-12-01 | Strand Therapeutics Inc | Lipid nanoparticles containing Venezuelan equine encephalitis (VEE) replicon and uses thereof |
| WO2023213378A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
| WO2023215498A2 (en) | 2022-05-05 | 2023-11-09 | Modernatx, Inc. | Compositions and methods for cd28 antagonism |
| CN119212720A (zh) | 2022-05-25 | 2024-12-27 | 库瑞瓦格欧洲股份公司 | 编码大肠杆菌FimH抗原性多肽的基于核酸的疫苗 |
| WO2024002985A1 (en) | 2022-06-26 | 2024-01-04 | BioNTech SE | Coronavirus vaccine |
| WO2024017479A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
| EP4562163A1 (en) | 2022-07-26 | 2025-06-04 | ModernaTX, Inc. | Engineered polynucleotides for temporal control of expression |
| JP2025528742A (ja) | 2022-07-28 | 2025-09-02 | ステムセル テクノロジーズ カナダ インコーポレイテッド | 連結された抗原をコードするポリヌクレオチド及びその使用 |
| JP2025527583A (ja) | 2022-08-18 | 2025-08-22 | スージョウ・アボジェン・バイオサイエンシズ・カンパニー・リミテッド | 脂質ナノ粒子の組成物 |
| WO2024057209A1 (en) | 2022-09-15 | 2024-03-21 | Pfizer Inc. | Coaxial flow device for nanoparticle preparation and manufacturing equipment including such device |
| EP4587579A1 (en) | 2022-09-15 | 2025-07-23 | BioNTech SE | Systems and compositions comprising trans-amplifying rna vectors with mirna |
| KR20250075664A (ko) | 2022-09-26 | 2025-05-28 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | 인플루엔자 바이러스 백신 |
| WO2024084397A1 (en) | 2022-10-19 | 2024-04-25 | Pfizer Inc. | Vaccination against pneumoccocal and covid-19 infections |
| DE202023106198U1 (de) | 2022-10-28 | 2024-03-21 | CureVac SE | Impfstoff auf Nukleinsäurebasis |
| WO2024097639A1 (en) | 2022-10-31 | 2024-05-10 | Modernatx, Inc. | Hsa-binding antibodies and binding proteins and uses thereof |
| WO2024118866A1 (en) | 2022-12-01 | 2024-06-06 | Modernatx, Inc. | Gpc3-specific antibodies, binding domains, and related proteins and uses thereof |
| WO2024119117A1 (en) * | 2022-12-02 | 2024-06-06 | Prime Medicine, Inc. | Modified 5' cap for mrna and methods of use thereof |
| WO2024130158A1 (en) | 2022-12-16 | 2024-06-20 | Modernatx, Inc. | Lipid nanoparticles and polynucleotides encoding extended serum half-life interleukin-22 for the treatment of metabolic disease |
| EP4637717A1 (en) | 2022-12-23 | 2025-10-29 | Pfizer Inc. | Lipid particle compositions and methods of use thereof |
| WO2024151811A1 (en) | 2023-01-11 | 2024-07-18 | Modernatx, Inc. | Personalized cancer vaccines |
| WO2024154061A1 (en) | 2023-01-18 | 2024-07-25 | Pfizer Inc. | Compositions and methods for stabilizing rna |
| EP4658664A1 (en) | 2023-01-31 | 2025-12-10 | CureVac SE | Cap analogs with 5'-terminal acyclic guanosine derivative |
| EP4658239A1 (en) | 2023-02-03 | 2025-12-10 | GlaxoSmithKline Biologicals S.A. | Rna formulation |
| WO2024165146A1 (en) | 2023-02-07 | 2024-08-15 | Biontech Cell & Gene Therapies Gmbh | Immune effector cells stably and transiently expressing nucleic acids |
| WO2024171017A1 (en) | 2023-02-13 | 2024-08-22 | Pfizer Inc. | Immunogenic composition against influenza |
| GB202302092D0 (en) | 2023-02-14 | 2023-03-29 | Glaxosmithkline Biologicals Sa | Analytical method |
| WO2024178305A1 (en) | 2023-02-24 | 2024-08-29 | Modernatx, Inc. | Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer |
| WO2024182301A2 (en) | 2023-02-27 | 2024-09-06 | Modernatx, Inc. | Lipid nanoparticles and polynucleotides encoding galactose-1-phosphate uridylyltransferase (galt) for the treatment of galactosemia |
| AU2024233180A1 (en) | 2023-03-08 | 2025-09-25 | CureVac SE | Novel lipid nanoparticle formulations for delivery of nucleic acids |
| WO2024197033A1 (en) | 2023-03-21 | 2024-09-26 | Modernatx, Inc. | Polynucleotides encoding relaxin for the treatment of heart failure |
| WO2024206126A1 (en) | 2023-03-27 | 2024-10-03 | Modernatx, Inc. | Cd16-binding antibodies and uses thereof |
| WO2024206329A1 (en) | 2023-03-27 | 2024-10-03 | Modernatx, Inc. | Nucleic acid molecules encoding bi-specific secreted engagers and uses thereof |
| WO2024200823A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof |
| WO2024200820A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Method of synthesis of targeted lipid nanoparticle and uses thereof |
| WO2024216162A1 (en) | 2023-04-12 | 2024-10-17 | Strand Therapeutics Inc. | Synthetic circuits and uses thereof |
| AU2024255899A1 (en) | 2023-04-14 | 2025-09-18 | BioNTech SE | Hiv vaccine |
| WO2024223724A1 (en) | 2023-04-27 | 2024-10-31 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
| CN121001738A (zh) | 2023-04-27 | 2025-11-21 | 葛兰素史克生物有限公司 | 流感病毒疫苗 |
| AU2024265267A1 (en) | 2023-05-03 | 2025-11-20 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
| WO2024230934A1 (en) | 2023-05-11 | 2024-11-14 | CureVac SE | Therapeutic nucleic acid for the treatment of ophthalmic diseases |
| EP4464713A1 (en) | 2023-05-18 | 2024-11-20 | Siec Badawcza Lukasiewicz - PORT Polski Osrodek Rozwoju Technologii | Circular rna analogs, preparation and application thereof |
| US20250000960A1 (en) | 2023-06-14 | 2025-01-02 | Pfizer Inc. | Polynucleotide compositions and uses thereof |
| WO2025022290A1 (en) | 2023-07-21 | 2025-01-30 | Crispr Therapeutics Ag | Modulating expression of alas1 (5'-aminolevulinate synthase 1) gene |
| WO2025024559A1 (en) | 2023-07-24 | 2025-01-30 | Strand Therapeutics Inc. | Rna-based synthetic circuit for producing engineered immune cells for an extracorporeal cell therapy |
| WO2025024704A1 (en) | 2023-07-25 | 2025-01-30 | Strand Therapeutics Inc. | Polynucleotides comprising a micro rna detargeting sensor and uses thereof |
| WO2025030050A2 (en) | 2023-08-03 | 2025-02-06 | Trilink Biotechnologies, Llc | Cap analogs and methods of use thereof |
| WO2025042806A2 (en) | 2023-08-21 | 2025-02-27 | Modernatx, Inc. | C-met binding antibodies, nucleic acids encoding same, and methods of use |
| WO2025051381A1 (en) | 2023-09-08 | 2025-03-13 | BioNTech SE | Methods and compositions for localized expression of administered rna |
| WO2025057060A1 (en) | 2023-09-13 | 2025-03-20 | Pfizer Inc. | Immunogenic compositions against influenza |
| WO2025059290A1 (en) | 2023-09-14 | 2025-03-20 | Modernatx, Inc. | Polynucleotides encoding phenylalanine hydroxylase for the treatment of phenylketonuria |
| WO2025072482A1 (en) | 2023-09-27 | 2025-04-03 | Modernatx, Inc. | Immunoglobulin a protease polypeptides, polynucleotides, and uses thereof |
| WO2025074292A2 (en) | 2023-10-06 | 2025-04-10 | Pfizer Inc. | Immunogenic compositions |
| US20250332245A1 (en) | 2023-11-15 | 2025-10-30 | Pfizer Inc. | Immunogenic compositions against influenza |
| WO2025111297A1 (en) | 2023-11-21 | 2025-05-30 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
| WO2025132839A1 (en) | 2023-12-21 | 2025-06-26 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
| WO2025171182A1 (en) | 2024-02-08 | 2025-08-14 | Iovance Biotherapeutics, Inc. | Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with cancer vaccine |
| US20250269059A1 (en) | 2024-02-27 | 2025-08-28 | Crispr Therapeutics Ag | Rt editing compositions and methods |
| WO2025184429A1 (en) | 2024-02-28 | 2025-09-04 | Modernatx, Inc. | Bromodomain and extra-terminal domain (bet) epigenetic reader decoy |
| WO2025186726A1 (en) | 2024-03-05 | 2025-09-12 | Crispr Therapeutics Ag | Modulating expression of agt (angiotensinogen) gene |
| WO2025186725A2 (en) | 2024-03-06 | 2025-09-12 | Pfizer Inc. | Improved lnp formulations and uses thereof |
| WO2025191415A1 (en) | 2024-03-11 | 2025-09-18 | Pfizer Inc. | Immunogenic compositions comprising conjugated escherichia coli saccharides and uses thereof |
| WO2025202834A1 (en) | 2024-03-26 | 2025-10-02 | Pfizer Inc. | Polynucleotide compositions and uses thereof |
| GB202404607D0 (en) | 2024-03-29 | 2024-05-15 | Glaxosmithkline Biologicals Sa | RNA formulation |
| WO2025212851A2 (en) | 2024-04-03 | 2025-10-09 | Orbital Therapeutics, Inc. | mRNA COMPOSITIONS AND USES THEREOF IN VARICELLA ZOSTER VIRUS VACCINES |
| WO2025217591A1 (en) | 2024-04-12 | 2025-10-16 | Strand Therapeutics Inc. | Human-derived synthetic regulators and uses thereof |
| WO2025238563A1 (en) | 2024-05-17 | 2025-11-20 | Pfizer Inc. | Coaxial mixing device for nanoparticle preparation and manufacturing equipment including such mixing device |
| WO2025255199A1 (en) | 2024-06-05 | 2025-12-11 | Modernatx, Inc. | Argininosuccinate synthase 1 and argininosuccinate lyase polypeptides and polynucleotides and uses thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6060456A (en) | 1993-11-16 | 2000-05-09 | Genta Incorporated | Chimeric oligonucleoside compounds |
| JPH09505306A (ja) * | 1993-11-16 | 1997-05-27 | ジンタ・インコーポレイテッド | 非ホスホネートヌクレオシド間結合と混合している不確定キラリティーのホスホネートヌクレオシド間結合を有する合成オリゴマー |
| US7074596B2 (en) * | 2002-03-25 | 2006-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Synthesis and use of anti-reverse mRNA cap analogues |
| US7368439B2 (en) | 2005-06-15 | 2008-05-06 | Bar - Ilan University | Dinucleoside poly(borano)phosphate derivatives and uses thereof |
-
2008
- 2008-06-06 PL PL385388A patent/PL215513B1/pl unknown
-
2009
- 2009-06-04 JP JP2011512643A patent/JP5715560B2/ja active Active
- 2009-06-04 AU AU2009256131A patent/AU2009256131B2/en active Active
- 2009-06-04 PL PL09759412T patent/PL2297175T3/pl unknown
- 2009-06-04 EP EP09759412.1A patent/EP2297175B1/en active Active
- 2009-06-04 WO PCT/US2009/046249 patent/WO2009149253A2/en not_active Ceased
- 2009-06-04 CA CA2727091A patent/CA2727091C/en active Active
- 2009-06-04 ES ES09759412T patent/ES2425781T3/es active Active
- 2009-06-04 US US12/996,243 patent/US8519110B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| AU2009256131A1 (en) | 2009-12-10 |
| WO2009149253A2 (en) | 2009-12-10 |
| EP2297175A4 (en) | 2011-06-15 |
| PL2297175T3 (pl) | 2014-01-31 |
| WO2009149253A3 (en) | 2010-03-25 |
| CA2727091C (en) | 2017-05-09 |
| US20110092574A1 (en) | 2011-04-21 |
| CA2727091A1 (en) | 2009-12-10 |
| JP5715560B2 (ja) | 2015-05-07 |
| JP2011522542A (ja) | 2011-08-04 |
| PL385388A1 (pl) | 2009-12-07 |
| EP2297175B1 (en) | 2013-08-07 |
| PL215513B1 (pl) | 2013-12-31 |
| EP2297175A2 (en) | 2011-03-23 |
| AU2009256131B2 (en) | 2013-05-30 |
| US8519110B2 (en) | 2013-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| ES2425781T3 (es) | Análogos de CAP de ARNm | |
| CN101855231B (zh) | 信使rna帽的抗-反向硫代磷酸类似物的合成和用途 | |
| ES2879802T3 (es) | Análogos de extremo 5' (caperuza) de ARNm 5'-fosforotiolato, ARNm que comprende los mismos, método de obtención y usos de los mismos | |
| US20090286247A1 (en) | Novel nucleic acid base pair | |
| EP2346883A2 (en) | Self delivering bio-labile phosphate protected pro-oligos for oligonucleotide based therapeutics and mediating rna interference | |
| ES2820242T3 (es) | Análogos de caperuza en el extremo 5' de ARNm de fosfotriazol novedosos, composición que comprende los mismos, molécula de ARN que incorpora los mismos, utilizaciones de los mismos y procedimiento de síntesis de molécula de ARN, proteína o péptido | |
| Rydzik et al. | Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5′, 5′ bridge containing methylenebis (phosphonate) modification | |
| Strenkowska et al. | Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications | |
| Zytek et al. | Towards novel efficient and stable nuclear import signals: synthesis and properties of trimethylguanosine cap analogs modified within the 5′, 5′-triphosphate bridge | |
| WO2016199801A1 (ja) | アミノ酸修飾核酸とその利用 | |
| Kowalska et al. | Synthesis and properties of mRNA cap analogs containing phosphorothioate moiety in 5′, 5′-triphosphate chain | |
| KR102097053B1 (ko) | 동위체를 갖는 인산 화합물의 제조 방법 | |
| WO2003059926A2 (en) | METHODS AND COMPOSITIONS FOR AMINOACYL-tRNA SYNTHESIS | |
| HK1260250A1 (en) | 5′-phosphorothiolate mrna 5′-end (cap) analogs, mrna comprising the same, method of obtaining and uses thereof | |
| HK1242326A1 (en) | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap | |
| HK1242326A (en) | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap | |
| HK1242326B (zh) | 信使rna帽的抗-反向硫代磷酸类似物的合成和用途 | |
| PL214850B1 (pl) | Cząsteczka RNA, sposób otrzymywania RNA oraz sposób otrzymywania peptydów lub białka |