EP3635413B1 - Kontaktelementsystem - Google Patents

Kontaktelementsystem Download PDF

Info

Publication number
EP3635413B1
EP3635413B1 EP18731375.4A EP18731375A EP3635413B1 EP 3635413 B1 EP3635413 B1 EP 3635413B1 EP 18731375 A EP18731375 A EP 18731375A EP 3635413 B1 EP3635413 B1 EP 3635413B1
Authority
EP
European Patent Office
Prior art keywords
contact
contact elements
strips
contact element
element system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18731375.4A
Other languages
English (en)
French (fr)
Other versions
EP3635413A1 (de
Inventor
Gunther Böhm
Matthias Schnaithmann
Achim Weiland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feinmetall GmbH
Original Assignee
Feinmetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feinmetall GmbH filed Critical Feinmetall GmbH
Publication of EP3635413A1 publication Critical patent/EP3635413A1/de
Application granted granted Critical
Publication of EP3635413B1 publication Critical patent/EP3635413B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/0675Needle-like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07357Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with flexible bodies, e.g. buckling beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/20Connectors or connections adapted for particular applications for testing or measuring purposes

Definitions

  • the invention relates to a contact element system with a large number of needle-shaped or pin-shaped, in particular strip-shaped, and electrically conductive contact elements of the same length, each of which has two end regions for electrical contacting of contact points and an intermediate region between the end regions, with the contact elements each being in the intermediate region can be deflected at least in an arc shape when subjected to a load in its longitudinal extension, overcoming its flexural rigidity, and are laminated in the intermediate region in such a way that they have at least two parallel and spaced-apart laminations.
  • Contact element systems of the type mentioned are known from the prior art.
  • it is known to make physical contact with the electrically conductive contact points of the device under test and to apply an electric current and/or an electrical voltage in order to determine the functionality of the device under test.
  • touch contacting it is known to use a contact head in which a large number of contact elements are held, which contact the contact points of the test specimen at one end.
  • the contact elements are designed in such a way that they can deflect in order to compensate for differences in height of the contact points and thus ensure that all contact points are touch-contacted.
  • contact elements in the form of so-called contact or buckling needles, which are characterized in that they can be deflected laterally - in relation to their longitudinal extent - if they are subjected to a force (contact force) in the direction of their longitudinal extent.
  • this type of contact element also has an arcuate or S-shaped section in the non-loaded state, so that deflection is always possible in the event of a load in the longitudinal extension. Because in testing a variety of Touch contacting takes place, the contact elements are thus frequently loaded and deflected, the durability and resilience of the contact elements is of great interest.
  • Contact elements are now known, for example from the published application, in order to ensure reliable physical contact and at the same time reliable deflection of the contact elements DE 10 2008 023 761 A1 , which have in an intermediate region lying between the end regions of the respective contact element, which is laminated.
  • this intermediate area has two or more lamellae, which extend in the longitudinal extent of the contact element and run at least essentially parallel to one another.
  • the slats are formed laterally spaced from each other. This type of contact element reduces the force required to deflect the respective contact element without impairing the function of the contact element.
  • the surface of the contact points is not damaged or only slightly damaged in order to avoid reliability problems after the device under test has been installed.
  • the aim is therefore to provide the lowest possible contact force, that is to say the force which acts perpendicularly to the contact point and which acts in the longitudinal direction of the contact element.
  • this is opposed by the fact that more reliable contacting can be achieved with a higher contact force.
  • a compromise or an optimal contact force is derived from this conflict of objectives, which on the one hand just causes acceptable damage and on the other hand enables reliable test execution.
  • This contact force should act in the same way on all contacts used in the contact arrangement or on all contact points of the test specimen in order to achieve an advantageous result.
  • the type of contact points differ from one another, for example a first group of contact points can be used to transmit analog or digital signals and other contact points are used to supply power to the test object.
  • a first group of contact points can be used to transmit analog or digital signals and other contact points are used to supply power to the test object.
  • the requirements for the contact elements, which themselves act or are used as electrical conductors differ. It is therefore advantageous if the contact elements can be optimized for their respective electrical function, for example for a power supply with a large cable cross-section or for a signal transmission with a small cable cross-section, also in order to be able to optionally use an existing installation space.
  • Contact elements with lamellae in an intermediate area are, for example, from the published application DE 10 2008 023 761 A1 as well as off U.S. 2011/062978 A1 already known.
  • the invention is therefore based on the object of creating a contact system which, on the one hand, allows advantageous mechanical contacting of the contact points of the test object and, on the other hand, is optimally adapted to the electrical requirements of the test object.
  • the object on which the invention is based is achieved by a contact element system having the features of claim 1 .
  • This has the advantage that the contact elements have the same mechanical properties with regard to the contact force or flexural rigidity, but offer different electrical resistances or different electrical properties.
  • the contact elements are expediently made of the same material, so that the differences do not result from the choice of material, which would also be possible in principle.
  • the invention provides that at least two of the contact elements in the intermediate region have different cross-sectional areas and differently shaped lamellae, the shapes of the lamellae being chosen such that the at least two contact elements have the same bending stiffness. Because the contact elements have the same flexural rigidity, the contact forces acting on the respective contact points of the test specimen are the same.
  • the lamellae of the at least two contact elements are of different lengths, the shapes of the lamellae of the at least two contact elements thus differ in the length of the lamellae.
  • the contact element with the longer lamellae preferably has a cross-sectional shape in the intermediate area, which increases the flexural rigidity and thereby compensates for the greater length of the lamellae.
  • a smaller one Selected total cross-sectional area which also reduces the flexural rigidity of the contact element, and to achieve the same flexural rigidity in another contact element, the lamellae are lengthened. As a result, the same flexural rigidity can be achieved overall for both contact elements with different electrical properties.
  • the lamellae of the at least two contact elements are formed with different depths.
  • the depth is understood to mean the extension of the lamellae or the contact elements perpendicularly to the longitudinal extension and perpendicularly to the direction of bending.
  • Different flexural rigidities result from the lamellae having different depths, with the flexural rigidity increasing with increasing depth due to the increase in material.
  • the lamellae of the at least two contact elements are of different widths.
  • the width of the lamellae is understood to mean the extent of the lamellae perpendicular to the longitudinal extent and perpendicular to the depth, that is to say the extent which lies in the plane in which the lamellae are deflected when contact is made by touch.
  • the flexural rigidity of the lamellae and thus of the respective contact element also increases.
  • the wide lamellae of one contact element can be compensated by shorter lamellae of the other contact element to achieve the same or almost the same flexural rigidity in order to obtain the same flexural rigidity in both contact elements.
  • the lamellae of the at least two contact elements have different cross-sectional shapes.
  • the cross-sectional shape of the respective lamella also influences the flexural rigidity.
  • the lamellae can have a triangular, rectangular, circular, oval or generally polygonal cross section.
  • the at least two contact elements preferably have a different number of lamellae.
  • the increased flexural rigidity of one contact element due to an increased depth is compensated for by an additional lamella of the further contact element in order to obtain the same flexural rigidity.
  • the depth of the lamellae of the first contact element is particularly preferably greater than that of the second, in order to keep the number of lamellae of the first contact element low while the flexural rigidity remains the same. Furthermore, it is preferably provided that the length of the lamellae in this embodiment is longer than the length of the lamellae of the second contact element in order to keep the flexural rigidity the same, with the result that, for example, the cross-sectional area of the first lamellae can be increased in return.
  • the contact element system has a multiplicity of the first and the second contact elements.
  • the contact element system has more than two different contact elements that meet the above requirements.
  • figure 1 shows a simplified plan view of the pattern of a contact arrangement 1 for an electrical device under test, which has a multiplicity of electrically conductive contact points which are to be touch-contacted by a test device and are shown here as small boxes.
  • a box 2 in the present case, contact points are provided that are supplied with a high current (larger boxes) to carry out the test or to supply power to the test object, while in the area outside box 2 there are contact points that are charged with a comparatively lower current, in particular for signal transmission be applied (smaller boxes).
  • the testing device 1 advantageously has a contact head 3 which carries different types of contact elements 4, 5, which are designed in an optimized manner for electrical physical contact with the different contact points.
  • figure 2 1 shows the contact head 3 in a simplified sectional view. It has two guide plates 6, 7 which are arranged parallel to one another and are spaced apart from one another and in which a large number of guide openings 8 and 9 are formed.
  • the guide openings 8, 9 are distributed in a matrix in the guide plates 6, 7, for example according to the contact arrangement 1 of the contact points, as shown in figure 1 is shown.
  • the guide openings 8, 9 of the two guide plates 6, 7 are either aligned or laterally offset from one another, with one contact element being guided in each case in one of the guide openings of the two plates 6, 7.
  • the contact elements 4, 5 are designed as pin or needle-shaped contact elements 4, 5, which have the same length l. Their end areas serve as contact points for physical contacting of the contact elements of the test object or the higher-level test device which carries out the test and applies a current or a voltage to the contact elements 4, 5 or, for example, receives current signals.
  • the contact elements 4 , 5 optionally each have a lateral projection 10 or 11 , which prevents the contact elements 4 , 5 from slipping through the respective guide opening 8 of the guide plate 6 .
  • the contact elements 4, 5 are laminated.
  • Left contact element 4 has two lamellae 14 which run parallel to one another and are spaced apart from one another by a slot 15 .
  • the lamellae 14 and the slot 15 run in the longitudinal extension of the contact element 4.
  • the contact element 5 has three lamellae 16 which are separated from one another by two slots 17 . These lamellae 16 also run parallel to one another in the longitudinal extension of the contact element 5.
  • FIG. 3A shows a cross section through the contact element 4 in the intermediate area along line AA.
  • the lamellae 14 have a depth t1 which is greater than their respective width b1.
  • figure 4 shows a cross section through the contact element 5 along the line BB figure 2 . It can be seen that the contact element 5 and thus its lamellae 16 have a greater depth t2 than the depth t1 of the contact element 4 . At the same time, the individual lamellae 16 have a smaller width b2. In addition, the lamellae 16 or the slots 17, as in figure 2 visible, longer and thus also have a greater length l 5 than the slats 14 or the slot 15, which have a correspondingly smaller length l 4 .
  • the advantageous design of the lamellae 14, 16 or the intermediate regions 12 and 13 means that both contact elements 4, 5 have the same flexural rigidity, but different total cross-sectional areas, which result from the cross-sectional areas of the individual lamellae 14, 16.
  • the contact elements 4, 5 are subjected to a contact force axially along their longitudinal extent.
  • the contact elements 5 can be deflected laterally in the intermediate area 12, 13, so that the contact ends 4" and 5" can deflect in the direction of the contact ends 4' and 5'.
  • the flexural rigidity defines the axial force to be applied, which is necessary to bring about the deflection. Due to the advantageous configuration and the same flexural rigidity, the same contact force is therefore necessary in order to achieve deflection/compression.
  • the force exerted by the contact elements 4, 5 on the contact points of the test specimen is also the same or almost the same and leads to no or negligible damage to the contact points, while at the same time there is sufficient contact reliability.
  • the cross-sectional areas of the lamellae 14, 16 are selected differently due to the different width, depth and number of the lamellae 14, 16, there are different electrical line cross-sections or resistances of the contact elements 4, 5, which lead to the fact that, for example, through the contact elements 4, 5 currents of different magnitudes can be carried, even if the same voltage is applied. This ensures an advantageous implementation of the touch contact and the testing of the test object.
  • one of the contact elements 4 is provided in each case and one contact element 5 for each of the inner contact points.
  • the contact element system can also have other contact elements that offer a different line cross section with the same flexural rigidity/contact force, so that the contact element system has, for example, three or more different contact elements that ensure the same or almost the same contact force/flexural rigidity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)

Description

  • Die Erfindung betrifft ein Kontaktelementsystem mit einer Vielzahl von gleich langen, nadelförmigen oder stiftförmigen, insbesondere streifenförmigen, und elektrisch leitfähigen Kontaktelementen, die jeweils zwei Endbereiche zum elektrischen Berührungskontaktieren von Kontaktstellen sowie jeweils einen zwischen den Endbereichen liegenden Zwischenbereich aufweisen, wobei die Kontaktelemente jeweils in dem Zwischenbereich bei einer Belastung in ihrer Längserstreckung elastisch unter Überwindung ihrer Biegesteifigkeit zumindest bogenförmig auslenkbar und dazu in dem Zwischenbereich derart lamelliert ausgebildet sind, dass sie zumindest zwei parallel zueinander und beabstandet voneinander verlaufende Lamellen aufweisen.
  • Kontaktelementsysteme der eingangs genannten Art sind aus dem Stand der Technik bekannt. Zur Durchführung einer elektrischen Prüfung eines elektrischen Prüflings ist es bekannt, die elektrisch leitfähigen Kontaktstellen des Prüflings berührungszukontaktieren und mit einem elektrischen Strom und/oder einer elektrischen Spannung zu beaufschlagen, um die Funktionsfähigkeit des Prüflings zu erfassen. Für die Berührungskontaktierung ist es bekannt, einen Kontaktkopf einzusetzen, in welchem eine Vielzahl von Kontaktelementen gehalten sind, die einendig die Kontaktstellen des Prüflings kontaktieren. Um zu gewährleisten, dass alle Kontaktstellen des Prüflings sicher berührungskontaktiert werden können, sind die Kontaktelemente derart ausgebildet, dass sie einfedern können, um Höhenunterschiede der Kontaktstellen ausgleichen und damit das Berührungskontaktieren aller Kontaktstellen gewährleisten können. Neben dem Vorsehen von Federkontaktstiften, die mehrteilig aufgebaut sind, ist es auch bekannt, einstückige Kontaktelemente in Form von sogenannten Kontakt- oder Knicknadeln zu verwenden, die sich dadurch auszeichnen, dass sie seitlich - in Bezug auf ihre Längserstreckung - ausgelenkt werden können, wenn sie in Richtung ihrer Längserstreckung mit einer Kraft (Kontaktkraft) beaufschlagt werden. Optional weisen diese Art von Kontaktelemente auch im nicht-belasteten Zustand einen bogenförmigen oder S-förmigen Abschnitt auf, sodass das Auslenken bei einer Belastung in Längserstreckung stets möglich ist. Weil im Prüfbetrieb eine Vielzahl von Berührungskontaktierungen erfolgt, die Kontaktelemente also häufig belastet und ausgelenkt werden, ist die Dauerhaltbarkeit und Belastbarkeit der Kontaktelemente von hohem Interesse. Um eine sichere Berührungskontaktierung und gleichzeitig ein sicheres Auslenken der Kontaktelemente zu gewährleisten, sind mittlerweile Kontaktelemente bekannt, wie beispielsweise aus der Offenlegungsschrift DE 10 2008 023 761 A1 , welche in einem zwischen den Endbereichen des jeweiligen Kontaktelements liegenden Zwischenbereich aufweisen, der lamelliert ausgebildet ist. Dazu weist dieser Zwischenbereich zwei oder mehr Lamellen auf, die sich in Längserstreckung des Kontaktelements erstrecken und zumindest im Wesentlichen parallel zueinander verlaufen. Dabei sind die Lamellen seitlich beabstandet zueinander ausgebildet. Durch diese Art der Kontaktelemente wird die Kraft, die zum Auslenken des jeweiligen Kontaktelements benötigt wird, reduziert, ohne dass die Funktion des Kontaktelements beeinträchtigt wird.
  • Dabei ist zu berücksichtigen, dass die Oberfläche der Kontaktstellen nicht oder nur geringfügig beschädigt wird, um nach dem Einbau des Prüflings in ein Gerät keine Zuverlässigkeitsprobleme zu erhalten. Daher ist man bestrebt, die geringstmögliche Kontaktkraft, also die senkrecht auf die Kontaktstelle wirkende Kraft, die in Längsrichtung des Kontaktelements wirkt, vorzusehen. Dem steht jedoch entgegen, dass mit höherer Kontaktkraft eine zuverlässigere Kontaktierung erreichbar ist. Bei der Konfiguration von Testanordnungen wird aus diesem Zielkonflikt ein Kompromiss beziehungsweise eine optimale Kontaktkraft abgeleitet, die einerseits gerade noch eine akzeptable Schädigung verursacht und andererseits eine verlässliche Testdurchführung ermöglicht. Diese Kontaktkraft soll bei allen verwendeten Kontakten der Kontaktanordnung beziehungsweise allen Kontaktstellen des Prüflings in gleicher Art wirken, um ein vorteilhaftes Ergebnis zu erreichen.
  • Die Art der Kontaktstellen unterscheiden sich jedoch voneinander, so kann beispielsweise eine erste Gruppe von Kontaktstellen dazu genutzt werden, analoge oder digitale Signale zu übertragen und andere Kontaktstellen werden zur Stromversorgung des Prüflings genutzt. Damit unterscheiden sich die Anforderungen an die Kontaktelemente, die selbst als elektrischer Leiter wirken beziehungsweise genutzt werden. Es ist daher von Vorteil, wenn die Kontaktelemente auf ihre jeweilige elektrische Funktion optimierbar sind, beispielsweise für eine Stromversorgung mit einem großen Leitungsquerschnitt oder für eine Signalübertragung mit einem kleinen Leitungsquerschnitt, auch um einen vorhandenen Bauraum optional ausnutzen zu können.
  • Kontaktelemente mit Lamellen in einem Zwischenbereich sind beispielsweise aus der Offenlegungsschrift DE 10 2008 023 761 A1 sowie aus US 2011/062978 A1 bereits bekannt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Kontaktsystem zu schaffen, das einerseits eine vorteilhafte mechanische Berührungskontaktierung der Kontaktstellen des Prüflings erlaubt, und andererseits an die elektrischen Anforderungen des Prüflings optimal angepasst ist.
  • Die der Erfindung zugrundeliegende Aufgabe wird durch ein Kontaktelementsystem mit den Merkmalen des Anspruchs 1 gelöst. Dieses hat den Vorteil, dass die Kontaktelemente die gleichen mechanischen Eigenschaften in Bezug auf die Kontaktkraft beziehungsweise Biegesteifigkeit aufweisen, jedoch unterschiedliche elektrische Widerstände beziehungsweise unterschiedliche elektrische Eigenschaften bieten. Dabei sind die Kontaktelemente zweckmäßigerweise aus dem gleichen Material gefertigt, sodass sich die Unterschiede nicht aus der Materialwahl ergeben, was grundsätzlich ebenfalls möglich wäre. Vielmehr ist erfindungsgemäß jedoch vorgesehen, dass zumindest zwei der Kontaktelemente in dem Zwischenbereich unterschiedliche Querschnittsflächen und unterschiedlich geformte Lamellen aufweisen, wobei die Formen der Lamellen derart gewählt sind, dass die zumindest zwei Kontaktelemente die gleiche Biegesteifigkeit aufweisen. Dadurch, dass die Kontaktelemente die gleiche Biegesteifigkeit aufweisen, sind die Kontaktkräfte, die auf die jeweiligen Kontaktstellen des Prüflings wirken, die gleichen. Aufgrund der unterschiedlich großen Querschnittsflächen der Kontaktelemente im Zwischenbereich, werden jedoch unterschiedliche elektrische Eigenschaften der Kontaktelemente aufgrund des sich jeweils durch die Querschnittsfläche ergebenden elektrischen Gesamtwiderstands geboten. Bei der Montage einer Testanordnung aus diesem Kontaktelementsystem ist eine Auswahl von Kontaktelementen wählbar, die elektrisch optimal für die jeweilige Testaufgabe ausgebildet sind und außerdem die gleiche Biegesteifigkeit und damit die gleiche Kontaktkraft bei Durchführung eines Berührungskontakts aufweisen.
  • Insbesondere ist vorgesehen, dass die Lamellen der zumindest zwei Kontaktelemente unterschiedlich lang ausgebildet sind, die Formen der Lamellen der zumindest zwei Kontaktelemente unterscheiden sich somit in der Länge der Lamellen. Mit zunehmender Länge der Lamellen nimmt die Biegesteifigkeit der Kontaktelemente ab. Daher weist das Kontaktelement mit den längeren Lamellen bevorzugt eine Querschnittsform im Zwischenbereich auf, welche die Biegesteifigkeit erhöht und dadurch die größere Lamellenlänge kompensiert. Andersherum wird beispielsweise bei dem einen Kontaktelement eine kleinere Gesamtquerschnittsfläche gewählt, die die Biegesteifigkeit des Kontaktelements ebenfalls reduziert, und zum Erreichen der gleichen Biegesteifigkeit bei einem anderen Kontaktelement werden die Lamellen verlängert. Dadurch kann insgesamt bei beiden Kontaktelementen die gleiche Biegesteifigkeit bei unterschiedlichen elektrischen Eigenschaften erreicht werden.
  • Weiterhin ist bevorzugt vorgesehen, dass die Lamellen der zumindest zwei Kontaktelemente unterschiedlich tief ausgebildet sind. Unter der Tiefe wird hierbei die Erstreckung der Lamellen beziehungsweise der Kontaktelemente senkrecht zur Längserstreckung und senkrecht zur Biegerichtung verstanden. Durch die unterschiedlich tief ausgebildeten Lamellen ergeben sich unterschiedliche Biegesteifigkeiten, wobei die Biegesteifigkeit mit zunehmender Tiefe aufgrund der Materialzunahme zunimmt.
  • Ferner ist bevorzugt vorgesehen, dass die Lamellen der zumindest zwei Kontaktelemente unterschiedlich breit ausgebildet sind. Unter der Breite der Lamellen wird dabei die Erstreckung der Lamellen senkrecht zur Längserstreckung und senkrecht zur Tiefe verstanden, also die Erstreckung, die in der Ebene liegt, in welcher die Lamellen bei einer Berührungskontaktierung ausgelenkt werden. Mit zunehmender Breite nimmt auch die Biegesteifigkeit der Lamellen und damit des jeweiligen Kontaktelements zu. In diesem Fall können beispielsweise die breiten Lamellen des einen Kontaktelements durch kürzere Lamellen des anderen Kontaktelements zum Erreichen der gleichen oder nahezu gleichen Biegesteifigkeit kompensiert werden, um bei beiden Kontaktelementen die gleiche Biegesteifigkeit zu erhalten.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, dass zumindest zwei der Lamellen der zumindest zwei Kontaktelemente unterschiedliche Querschnittsformen aufweisen. Auch die Querschnittsform der jeweiligen Lamelle beeinflusst die Biegesteifigkeit. So können die Lamellen beispielsweise einen dreieckförmigen, rechteckförmigen, kreisförmigen, ovalförmigen oder allgemein mehreckförmigen Querschnitt aufweisen.
  • Vorzugsweise weisen die zumindest zwei Kontaktelemente eine unterschiedliche Anzahl von Lamellen auf. So wird beispielsweise die durch eine erhöhte Tiefe erhöhte Biegesteifigkeit des einen Kontaktelements durch eine zusätzliche Lamelle des weiteren Kontaktelements kompensiert, um die gleiche Biegesteifigkeit zu erhalten.
  • Vorzugsweise weist ein erstes der Kontaktelemente eine erste Anzahl von Lamellen mit einer ersten Gesamtquerschnittsfläche (=Summe der Querschnittsflächen aller Lamellen des Kontaktelements) auf, und ein zweites der Kontaktelemente eine zweite Anzahl von Lamellen mit einer zweiten Gesamtquerschnittsfläche, wobei die erste Anzahl größer ist als die zweite Anzahl und die jeweils erste Gesamtquerschnittsfläche größer als die zweite. Hierdurch ergibt sich im Endeffekt, dass beide Kontaktelemente die gleiche Biegesteifigkeit aufweisen, obwohl sie aufgrund der reduzierten Gesamtquerschnittsfläche des zweiten Kontaktelements unterschiedliche elektrische Widerstände beziehungsweise Leitungsquerschnitte aufweisen.
  • Besonders bevorzugt ist die Tiefe der Lamellen des ersten Kontaktelements größer als die des zweiten, um die Anzahl der Lamellen des ersten Kontaktelements gering zu halten, bei gleichbleibender Biegesteifigkeit. Weiterhin ist bevorzugt vorgesehen, dass die Länge der Lamellen in dieser Ausführungsform länger ist als die Länge der Lamellen des zweiten Kontaktelements, um die Biegesteifigkeit gleich zu halten, mit der Folge, dass beispielsweise die Querschnittsfläche der ersten Lamellen im Gegenzug erhöht werden kann.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das Kontaktelementsystem eine Vielzahl der ersten und der zweiten Kontaktelemente aufweist. Optional weist das Kontaktelementsystem mehr als zwei unterschiedliche Kontaktelemente auf, die die oben genannten Anforderungen erfüllen.
  • Weitere Vorteile und bevorzugte Merkmale und Merkmalskombinationen ergeben sich aus dem zuvor Beschriebenen sowie aus den Ansprüchen.
  • Im Folgenden soll die Erfindung anhand der Zeichnung näher erläutert werden. Dazu zeigen
  • Figur 1
    eine vereinfachte Darstellung eines Kontaktmusters einer Kontaktanordnung,
    Figur 2
    einen Kontaktkopf einer Prüfeinrichtung in einer Schnittdarstellung,
    Figur 3
    eine Detailschnittdarstellung des Prüfkopfs und
    Figur 4
    eine weitere Detailschnittdarstellung des Prüfkopfs.
  • Figur 1 zeigt in einer vereinfachten Draufsicht das Muster einer Kontaktanordnung 1 für einen elektrischen Prüfling, der eine Vielzahl von elektrisch leitfähigen Kontaktstellen aufweist, die durch eine Prüfeinrichtung berührungskontaktiert werden sollen und vorliegend als Kästchen dargestellt sind. In einem mittleren Bereich, der vorliegend durch ein Kasten 2 gekennzeichnet ist, sind dabei Kontaktstellen vorgesehen, die zur Durchführung der Prüfung oder zur Stromversorgung des Prüflings mit einem hohen Strom beaufschlagt werden (größere Kästchen), während in dem außerhalb des Kastens 2 liegenden Bereich Kontaktstellen vorliegen, die mit einem vergleichsweise dazu niedrigeren Strom insbesondere zur Signalübertragung beaufschlagt werden (kleinere Kästchen). Dies ergibt sich beispielsweise dadurch, dass die innenliegenden Kontaktstellen stromführende Kontaktstellen sind, während die außenliegenden Kontaktstellen allein Signalkontaktstellen zur Übermittlung analoger oder digitaler Signale sind.
  • Zur Kontaktierung der unterschiedlichen Kontaktstellen weist die Prüfeinrichtung 1 vorteilhafterweise einen Kontaktkopf 3 auf, der unterschiedlich geartete Kontaktelemente 4, 5 trägt, die zur elektrischen Berührungskontaktierung der unterschiedlichen Kontaktstellen optimiert ausgebildet sind.
  • Figur 2 zeigt hierzu in einer vereinfachten Schnittdarstellung den Kontaktkopf 3. Dieser weist zwei parallel zueinander und beabstandet zueinander angeordnete Führungsplatten 6, 7 auf, in welchen eine Vielzahl von Führungsöffnungen 8 beziehungsweise 9 ausgebildet sind. Die Führungsöffnungen 8, 9 sind dabei jeweils matrixförmig in den Führungsplatten 6, 7 verteilt angeordnet, beispielsweise gemäß der Kontaktanordnung 1 der Kontaktstellen, wie sie in Figur 1 gezeigt ist.
  • Die Führungsöffnungen 8, 9 der beiden Führungsplatten 6, 7 sind entweder fluchtend oder lateral versetzt zueinander angeordnet, wobei jeweils ein Kontaktelement jeweils einer der Führungsöffnungen der beiden Platten 6, 7 geführt ist.
  • Die Kontaktelemente 4, 5 sind dabei als stift- beziehungsweise nadelförmige Kontaktelemente 4, 5 ausgebildet, die die gleiche Länge 1 aufweisen. Ihre Endbereiche dienen als Kontaktstellen zur Berührungskontaktierung der Kontaktelemente des Prüflings oder der übergeordneten Prüfeinrichtung, welche den Test durchführt und die Kontaktelemente 4, 5 mit einem Strom oder einer Spannung beaufschlagt oder beispielsweise Stromsignale empfängt. An ihrem oberen Endbereich 4' beziehungsweise 5' weisen die Kontaktelemente 4, 5 optional jeweils einen seitlichen Vorsprung 10 beziehungsweise 11 auf, der ein Durchrutschen der Kontaktelemente 4, 5 durch die jeweilige Führungsöffnung 8 der Führungsplatte 6 verhindert. In einem zwischen den Endbereichen 4', 5' und 4", 5" liegenden Zwischenbereich 12 beziehungsweise 13 sind die Kontaktelemente 4, 5 lamelliert ausgebildet.
  • In diesem Fall weist das in der Figur 2 linke Kontaktelement 4 zwei Lamellen 14 auf, die parallel zueinander verlaufen und durch einen Schlitz 15 beabstandet zueinander sind. Die Lamellen 14 und der Schlitz 15 verlaufen dabei in Längserstreckung des Kontaktelements 4.
  • Im Unterschied dazu weist das Kontaktelement 5 drei Lamellen 16 auf, die durch zwei Schlitze 17 voneinander getrennt sind. Auch diese Lamellen 16 verlaufen parallel zueinander in Längserstreckung des Kontaktelements 5.
  • Figur 3A zeigt ein Querschnitt durch das Kontaktelement 4 im Zwischenbereich gemäß der Linie A-A. Hierbei ist zu sehen, dass die Lamellen 14 eine Tiefe t1 aufweisen, die größer ist als ihre jeweilige Breite b1.
  • Figur 4 zeigt ein Querschnitt durch das Kontaktelement 5 entlang der Linie B-B aus Figur 2. Es ist ersichtlich, dass das Kontaktelement 5 und damit seine Lamellen 16 eine im Vergleich zur Tiefe t1 des Kontaktelements 4 größere Tiefe t2 aufweisen. Gleichzeitig weisen die einzelnen Lamellen 16 eine kleinere Breite b2 auf. Außerdem sind die Lamellen 16 beziehungsweise die Schlitze 17, wie in Figur 2 ersichtlich, länger ausgebildet und weisen also auch eine größere Länge l5 als die Lamellen 14 beziehungsweise der Schlitz 15, die eine entsprechend kleinere Länge l4 aufweisen.
  • Insgesamt ergibt sich jedoch durch die vorteilhafte Ausbildung der Lamellen 14, 16 beziehungsweise der Zwischenbereiche 12 und 13, dass beide Kontaktelemente 4, 5 die gleiche Biegesteifigkeit, jedoch unterschiedliche Gesamtquerschnittsflächen, die sich aus den Querschnittsflächen der einzelnen Lamellen 14, 16 ergeben, aufweisen.
  • Bei einem Berührungskontaktiervorgang werden die Kontaktelemente 4, 5 entlang ihrer Längserstreckung mit einer Kontaktkraft axial beaufschlagt. Dadurch können die Kontaktelemente 5 im Zwischenbereich 12, 13 seitlich ausgelenkt werden, sodass die Kontaktenden 4" und 5" in Richtung der Kontaktenden 4' und 5' einfedern können. Die Biegesteifigkeit definiert dabei die dafür aufzubringende Axialkraft, die notwendig ist, um das Auslenken zu bewirken. Durch die vorteilhafte Ausgestaltung und die gleiche Biegesteifigkeit ist somit die gleiche Kontaktkraft notwendig, um ein Auslenken/Einfedern zu erreichen. Dadurch ist die Kraft, die durch die Kontaktelemente 4, 5 auf die Kontaktstellen des Prüflings ausgeübt wird, ebenfalls gleich oder nahezu gleich und führt zu keinen oder vernachlässigbaren Beschädigungen der Kontaktstellen, bei gleichzeitig ausreichender Kontaktiersicherheit.
  • Weil außerdem die Querschnittsflächen der Lamellen 14, 16 aufgrund der unterschiedlichen Breite, Tiefe und Anzahl der Lamellen 14, 16 unterschiedlich gewählt ist, ergeben sich unterschiedliche elektrische Leitungsquerschnitte beziehungsweise Widerstände der Kontaktelemente 4, 5, die dazu führen, dass beispielsweise durch die Kontaktelemente 4, 5 unterschiedlich hohe Ströme geführt werden, auch wenn die gleiche Spannung anliegt. Dadurch ist eine vorteilhafte Durchführung der Berührungskontaktierung und des Testens des Prüflings gewährleistet.
  • Für jede der außenliegenden Kontaktstellen gemäß dem Kontaktmuster 1 aus Figur 1, ist dabei vorliegend jeweils eines der Kontaktelemente 4 vorgesehen und für die jeweils innenliegenden Kontaktstellen jeweils ein Kontaktelement 5. Dadurch ist ein Kontaktelementsystem aus unterschiedlichen Kontaktelementen 4, 5 geboten, die die gleiche oder nahezu Biegesteifigkeit und damit die gleiche Kontaktkraft aufweisen, jedoch unterschiedliche Leitungsquerschnitte beziehungsweise Gesamtquerschnittsflächen zur Verfügung stellen. Optional kann das Kontaktelementsystem auch noch weitere Kontaktelemente aufweisen, die einen anderen Leitungsquerschnitt bei gleicher Biegesteifigkeit/Kontaktkraft bieten, sodass das Kontaktelementsystem beispielsweise drei oder mehr unterschiedliche Kontaktelemente aufweist, die die gleiche oder nahezu gleiche Kontaktkraft/Biegesteifigkeit gewährleisten.

Claims (10)

  1. Kontaktelementsystem mit einer Vielzahl von gleich langen, stift- oder nadelförmigen und elektrisch leitfähigen Kontaktelementen (4,5), die jeweils zwei Endbereiche (4`,5 `,4",5 ") zum elektrischen Berührungskontaktieren von Kontaktstellen sowie jeweils einen zwischen den jeweiligen Endbereichen liegenden Zwischenbereich (12,13) aufweisen, wobei die Kontaktelemente (4,5) jeweils in dem Zwischenbereich (12,13) bei einer Belastung in ihrer Längserstreckung elastisch unter Überwindung ihrer Biegesteifigkeit bogenförmig auslenkbar und dazu in dem jeweiligen Zwischenbereich (12,13) derart lamelliert ausgebildet sind, dass sie jeweils zumindest zwei parallel zueinander und beabstandet voneinander verlaufende Lamellen (14,16) aufweisen, dadurch gekennzeichnet, dass zumindest zwei Kontaktelemente (4,5) aus der Vielzahl von Kontaktelementen (4,5) in ihren Zwischenbereichen (12,13) im Vergleich der Zwischenbereiche (12,13) miteinander unterschiedliche Querschnittsflächen und unterschiedlich geformte Lamellen aufweisen, wobei die Formen der Lamellen (14,16) derart gewählt sind, dass die zumindest zwei Kontaktelemente (4,5) die gleiche Biegesteifigkeit aufweisen.
  2. Kontaktelementsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Lamellen (14,16) der zumindest zwei Kontaktelemente (4,5) im Vergleich der Zwischenbereiche (12,13) der zumindest zwei Kontaktelemente (4,5) miteinander unterschiedlich lang ausgebildet sind.
  3. Kontaktelementsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lamellen (14,16) der zumindest zwei Kontaktelemente (4,5) im Vergleich der Zwischenbereiche (12,13) der zumindest zwei Kontaktelemente (4,5) miteinander unterschiedlich tief ausgebildet sind.
  4. Kontaktelementsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lamellen (14,16) der zumindest zwei Kontaktelemente (4,5) im Vergleich der Zwischenbereiche (12,13) der zumindest zwei Kontaktelemente (4,5) miteinander unterschiedlich breit ausgebildet sind.
  5. Kontaktelementsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest zwei der Lamellen (14,16) der zumindest zwei Kontaktelemente (4,5) im Vergleich der Zwischenbereiche (12,13) der zumindest zwei Kontaktelemente (4,5) miteinander unterschiedliche Querschnittsformen aufweisen.
  6. Kontaktelementsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest zwei Kontaktelemente (4,5) im Vergleich der Zwischenbereiche der zumindest zwei Kontaktelemente (4,5) miteinander eine unterschiedliche Anzahl von Lamellen (14,16) aufweisen.
  7. Kontaktelementsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein erstes der Kontaktelemente (5) eine erste Anzahl von Lamellen (16) mit einer ersten Gesamtquerschnittsfläche aufweist, und ein zweites der Kontaktelemente (4) eine zweite Anzahl von Lamellen (14) mit einer zweiten Gesamtquerschnittsfläche, wobei die erste Anzahl größer als die zweite Anzahl und die erste Gesamtquerschnittsfläche größer als die zweite ist.
  8. Kontaktelementsystem nach Anspruch 7, dadurch gekennzeichnet, dass die Tiefe (t2) der Lamellen (16) des ersten Kontaktelements (4) größer ist als die des zweiten.
  9. Kontaktelementsystem nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Länge (l5) der Lamellen (16) des ersten Kontaktelements (5) länger ist als die Länge (l4) der Lamellen (14) des zweiten Kontaktelements (4).
  10. Kontaktelementsystem nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass mehrere erste Kontaktelemente (5) und mehrere zweite Kontaktelemente (4) vorhanden sind.
EP18731375.4A 2017-06-06 2018-06-05 Kontaktelementsystem Active EP3635413B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017209510.5A DE102017209510A1 (de) 2017-06-06 2017-06-06 Kontaktelementsystem
PCT/EP2018/064683 WO2018224458A1 (de) 2017-06-06 2018-06-05 Kontaktelementsystem

Publications (2)

Publication Number Publication Date
EP3635413A1 EP3635413A1 (de) 2020-04-15
EP3635413B1 true EP3635413B1 (de) 2023-08-23

Family

ID=62620832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18731375.4A Active EP3635413B1 (de) 2017-06-06 2018-06-05 Kontaktelementsystem

Country Status (7)

Country Link
US (1) US11519937B2 (de)
EP (1) EP3635413B1 (de)
CN (1) CN110709710B (de)
DE (1) DE102017209510A1 (de)
SG (1) SG11201911734SA (de)
TW (1) TWI695549B (de)
WO (1) WO2018224458A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736361B (zh) * 2020-07-15 2021-08-11 中華精測科技股份有限公司 探針卡裝置及其柵欄狀探針
TWI745182B (zh) * 2020-11-30 2021-11-01 中華精測科技股份有限公司 探針卡裝置及雙臂式探針
TWI805298B (zh) * 2022-03-31 2023-06-11 中華精測科技股份有限公司 多針形垂直式探針卡
TWI817426B (zh) * 2022-03-31 2023-10-01 中華精測科技股份有限公司 模組化垂直式探針卡的探針頭
TWI802353B (zh) * 2022-03-31 2023-05-11 中華精測科技股份有限公司 探針頭及其柵欄狀探針
TWI831328B (zh) * 2022-08-15 2024-02-01 思達科技股份有限公司 探針陣列及探針結構

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963822A (en) * 1988-06-01 1990-10-16 Manfred Prokopp Method of testing circuit boards and the like
JPH07109780B2 (ja) * 1991-02-19 1995-11-22 山一電機株式会社 電気部品用ソケットにおけるコンタクト
US5385477A (en) * 1993-07-30 1995-01-31 Ck Technologies, Inc. Contactor with elastomer encapsulated probes
US6741085B1 (en) * 1993-11-16 2004-05-25 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US6246247B1 (en) * 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
GB2291544B (en) * 1994-07-12 1996-10-02 Everett Charles Tech Electrical connectors
ATE260470T1 (de) * 1997-11-05 2004-03-15 Feinmetall Gmbh Prüfkopf für mikrostrukturen mit schnittstelle
JP3323449B2 (ja) 1998-11-18 2002-09-09 日本碍子株式会社 半導体用ソケット
US20020048973A1 (en) * 1998-11-30 2002-04-25 Yu Zhou Contact structure and production method thereof and probe contact assembly using same
KR20080047629A (ko) * 1998-12-02 2008-05-29 폼팩터, 인크. 전기 접촉 구조체의 제조 방법
US6672875B1 (en) * 1998-12-02 2004-01-06 Formfactor, Inc. Spring interconnect structures
US6419500B1 (en) * 1999-03-08 2002-07-16 Kulicke & Soffa Investment, Inc. Probe assembly having floatable buckling beam probes and apparatus for abrading the same
US6196866B1 (en) * 1999-04-30 2001-03-06 International Business Machines Corporation Vertical probe housing
US6414504B2 (en) * 1999-05-20 2002-07-02 Delaware Capital Formation, Inc. Coaxial tilt pin fixture for testing high frequency circuit boards
US7435108B1 (en) * 1999-07-30 2008-10-14 Formfactor, Inc. Variable width resilient conductive contact structures
US6676438B2 (en) * 2000-02-14 2004-01-13 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6276973B1 (en) * 2000-03-01 2001-08-21 Hon Hai Precision Ind. Co., Ltd. Contact of electrical connector
IT1317517B1 (it) * 2000-05-11 2003-07-09 Technoprobe S R L Testa di misura per microstrutture
US7254889B1 (en) * 2000-09-08 2007-08-14 Gabe Cherian Interconnection devices
US7265565B2 (en) * 2003-02-04 2007-09-04 Microfabrica Inc. Cantilever microprobes for contacting electronic components and methods for making such probes
US6945827B2 (en) * 2002-12-23 2005-09-20 Formfactor, Inc. Microelectronic contact structure
EP1637019B1 (de) * 2003-06-11 2019-01-02 Neoconix, Inc. Lga steckverbinder
US8988091B2 (en) * 2004-05-21 2015-03-24 Microprobe, Inc. Multiple contact probes
TWI397696B (zh) * 2006-02-19 2013-06-01 Gunsei Kimoto Probe assembly
US7782072B2 (en) 2006-09-27 2010-08-24 Formfactor, Inc. Single support structure probe group with staggered mounting pattern
US8907689B2 (en) * 2006-10-11 2014-12-09 Microprobe, Inc. Probe retention arrangement
JP2008203036A (ja) * 2007-02-19 2008-09-04 Micronics Japan Co Ltd 電気的接続装置
JP5099487B2 (ja) * 2007-08-03 2012-12-19 軍生 木本 複数梁合成型接触子
KR100859120B1 (ko) * 2008-03-11 2008-09-18 주식회사 파이컴 전기부품의 검사를 위한 접속소자
JP2009270880A (ja) * 2008-05-02 2009-11-19 Micronics Japan Co Ltd 電子デバイスの電気的試験用接触子、その製造方法及びプローブ組立体
DE102008023761B9 (de) 2008-05-09 2012-11-08 Feinmetall Gmbh Elektrisches Kontaktelement zum Berührungskontaktieren von elektrischen Prüflingen sowie entsprechende Kontaktieranordnung
IT1395336B1 (it) * 2009-01-20 2012-09-14 Rise Technology S R L Dispositivo di contatto elastico per componenti elettronici a colonne collassanti
US7749032B1 (en) * 2009-06-25 2010-07-06 Cheng Uei Precision Industry Co., Ltd. Probe connector
JP5325085B2 (ja) * 2009-12-24 2013-10-23 日本碍子株式会社 接続装置
KR101141836B1 (ko) * 2010-05-28 2012-05-07 송원호 침압완화부가 형성된 미세 수직형 프로브
JP2012093127A (ja) * 2010-10-25 2012-05-17 Advanced Systems Japan Inc バーチカルプローブヘッド
JP5693266B2 (ja) * 2011-01-31 2015-04-01 富士通コンポーネント株式会社 コネクタ
US9702904B2 (en) * 2011-03-21 2017-07-11 Formfactor, Inc. Non-linear vertical leaf spring
US8884640B2 (en) * 2011-04-28 2014-11-11 Mpi Corporation Integrated high-speed probe system
JP2013007700A (ja) 2011-06-27 2013-01-10 Japan Electronic Materials Corp 電気的接触子
JP5847663B2 (ja) * 2012-08-01 2016-01-27 日本電子材料株式会社 プローブカード用ガイド板の製造方法
KR101363367B1 (ko) * 2012-09-04 2014-02-25 주식회사 에스피에스테크 인쇄회로기판 검사장치
US10359447B2 (en) * 2012-10-31 2019-07-23 Formfactor, Inc. Probes with spring mechanisms for impeding unwanted movement in guide holes
KR102092430B1 (ko) 2012-12-04 2020-03-23 일본전자재료(주) 전기적 접촉자
KR102081478B1 (ko) * 2013-07-09 2020-02-25 폼팩터, 인크. 전기적 도전성 가이드 플레이트들 사이의, 신호 통과 경로들 및 이차 경로들을 갖는 다경로 전기적 프로브 및 프로브 어셈블리들
US20150061719A1 (en) * 2013-09-05 2015-03-05 Soulbrain Eng Co., Ltd. Vertical probe card for micro-bump probing
TW201537181A (zh) * 2014-03-25 2015-10-01 Mpi Corp 垂直式探針裝置及使用於該垂直式探針裝置之支撐柱
US20160178663A1 (en) * 2014-12-23 2016-06-23 Intel Corporation Formed wire probe interconnect for test die contactor
DE102015001926B4 (de) * 2015-02-13 2023-03-09 Feinmetall Gmbh Elektrisches Kontaktelement
CN107430150B (zh) 2015-03-13 2020-08-21 泰克诺探头公司 特别用于高频应用的具有竖向探针的测试头
KR102165661B1 (ko) * 2015-03-31 2020-10-14 가부시키가이샤 엔프라스 전기 부품용 소켓 및 그 제조 방법
WO2016156003A1 (en) 2015-03-31 2016-10-06 Technoprobe S.P.A. Vertical contact probe and corresponding testing head with vertical contact probes, particularly for high frequency applications
EP3292415B1 (de) 2015-05-07 2020-04-01 Technoprobe S.p.A Prüfkopf mit vertikalen sonden, insbesondere für anwendungen mit verringertem abstand
JP6654061B2 (ja) * 2016-02-23 2020-02-26 日本電子材料株式会社 プローブガイド、プローブカード及びプローブガイドの製造方法
JP6832661B2 (ja) * 2016-09-28 2021-02-24 株式会社日本マイクロニクス プローブカード及び接触検査装置
CN108572265A (zh) * 2017-03-14 2018-09-25 旺矽科技股份有限公司 微机电探针及其制造方法以及具有该微机电探针的探针头
US10644458B2 (en) * 2017-03-31 2020-05-05 Intel Corporation Shielded interconnect array
DE102020102302A1 (de) * 2020-01-30 2021-08-05 Ingun Prüfmittelbau Gmbh Hochfrequenz-Prüfkontaktelement und Prüfstiftvorrichtung

Also Published As

Publication number Publication date
US11519937B2 (en) 2022-12-06
CN110709710B (zh) 2022-03-29
WO2018224458A1 (de) 2018-12-13
DE102017209510A1 (de) 2018-12-06
SG11201911734SA (en) 2020-01-30
CN110709710A (zh) 2020-01-17
EP3635413A1 (de) 2020-04-15
TWI695549B (zh) 2020-06-01
US20200166541A1 (en) 2020-05-28
TW201904136A (zh) 2019-01-16

Similar Documents

Publication Publication Date Title
EP3635413B1 (de) Kontaktelementsystem
EP2117081B2 (de) Elektrisches Kontaktelement
EP0202564A2 (de) Elektrische Kontaktvorrichtung
DE2744155B2 (de) Kontakteinsatz für einen elektrischen Steckverbinder
EP1236248B1 (de) Verbindungskabel mit elektrischer steckverbindung sowie kabelmanager
DE102015119407A1 (de) Anschlussklemme und Mehrfachklemme
DE2111777B2 (de) Kontaktglied fuer einen elektrischen steckverbinder
DE102016108825A1 (de) Klemmanordnung und Anschlussklemme
DE202009014251U1 (de) System zur Verbindung elektrischer Leiter mit voneinander verschiedenen Potentialen sowie Steckadapter für das System
EP1012914A1 (de) Steckkontakt
DE102013001836B3 (de) Überfeder und Steckverbinder mit einer Überfeder
EP3221928A1 (de) Reihenklemme
DE102017209441A1 (de) Elektrische Kontaktieranordnung zur Berührungskontaktierung
EP2695252B1 (de) Vibrationsfeste schleifringanordnung
DE3433822C2 (de)
DE10209708B4 (de) Elektrisches Kontaktelement
DE202013003507U1 (de) Kontaktfeder,Kontaktbuchsenanordnung und Kontaktsystem
DE2339800B1 (de) Huelsenfoermiges Klemmelement zum abisolierfreien Anschluss elektrischer Leiter
DE102018128431A1 (de) Anschlussklemmenanordnung zum Anschließen eines elektrischen Leiters
DE102009030917B4 (de) Elektrische Schaltanordnung
DE102020202230B4 (de) Prüfkarte
DE102012101071A1 (de) Schneidklemmkontakt
EP2586106B1 (de) Geschirmter steckverbinder
EP1202303B1 (de) Schaltkontaktanordnung für Niederspannungs-Leistungsschalter
DE60006838T2 (de) Elektrische anschlussvorrichtung für leistungsschalter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOEHM, GUNTHER

Inventor name: WEILAND, ACHIM

Inventor name: SCHNAITHMANN, MATTHIAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221027

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013058

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823