EP3580429B1 - Bewehrungssystem für den betonausbau der innenschale eines tunnelgebäudes - Google Patents

Bewehrungssystem für den betonausbau der innenschale eines tunnelgebäudes Download PDF

Info

Publication number
EP3580429B1
EP3580429B1 EP18773927.1A EP18773927A EP3580429B1 EP 3580429 B1 EP3580429 B1 EP 3580429B1 EP 18773927 A EP18773927 A EP 18773927A EP 3580429 B1 EP3580429 B1 EP 3580429B1
Authority
EP
European Patent Office
Prior art keywords
tensioning
arch
arches
reinforcement
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18773927.1A
Other languages
English (en)
French (fr)
Other versions
EP3580429A1 (de
Inventor
Martin Heymann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAG Bauartikel GmbH
Original Assignee
BAG Bauartikel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202017105802.6U external-priority patent/DE202017105802U1/de
Priority claimed from DE102017125624.5A external-priority patent/DE102017125624B3/de
Application filed by BAG Bauartikel GmbH filed Critical BAG Bauartikel GmbH
Priority to RS20210659A priority Critical patent/RS61909B1/sr
Priority to PL18773927T priority patent/PL3580429T3/pl
Priority to SI201830299T priority patent/SI3580429T1/sl
Publication of EP3580429A1 publication Critical patent/EP3580429A1/de
Application granted granted Critical
Publication of EP3580429B1 publication Critical patent/EP3580429B1/de
Priority to HRP20210911TT priority patent/HRP20210911T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • E21D11/186Pre-stressing or dismantling devices therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/107Reinforcing elements therefor; Holders for the reinforcing elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • E21D11/183Supporting means for arch members, not provided for in E21D11/22
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • E21D11/22Clamps or other yieldable means for interconnecting adjacent arch members either rigidly, or allowing arch member parts to slide when subjected to excessive pressure

Definitions

  • the invention relates to a reinforcement system for the concrete lining of the inner shell of a tunnel building according to the features of claim 1.
  • the shotcrete construction method (New Austrian Tunnel Construction Method, NED) usually leads to a two-shell construction method with an outer shell made of shotcrete and an inner shell made of in-situ concrete.
  • the shotcrete is usually applied immediately after the excavation to temporarily secure the rock.
  • securing with steel arches, anchors and reinforcement meshes may be necessary.
  • the subsequently installed inner shell made of in-situ concrete is then used for the permanent expansion of the tunnel and is usually concreted on tunnel formwork wagons.
  • This bowl has a thickness of 30 cm to 60 cm, but can also be made significantly thicker.
  • the section lengths in which the inner shell is concreted are in most cases around 8 m to 12.5 m.
  • the inner shell can be reinforced or unreinforced.
  • the present invention relates to the construction of tunnels in which the inner shell is reinforced.
  • a sealing film is often installed between the outer and inner shell of a tunnel building, which protects the inner shell from possible aggressive mountain water as well as the interior from the ingress of mountain water.
  • the vault reinforcement of the inner shell must usually not be fixed to the outer shell. This makes self-supporting vault reinforcement necessary, consisting of outer and inner welded wire mesh and steel bars with supporting arches in between.
  • a reinforcement trolley is used as a scaffolding trolley for the installation of the vault reinforcement of the inner shell.
  • the vault reinforcement stands on the pre-concreted base that was previously created.
  • a vault reinforcement currently in use consists of an outer layer of reinforcement meshes, the supporting arches, an inner layer of reinforcement meshes and spacers. This construction is usually tied up tightly, i.e. tied together with wire in such a way that a firmly connected structure of mats and rods is created.
  • reinforcement mats are first installed to create an outer, mountain-side reinforcement layer, with reinforcement mats first being installed in the direction of the ring with the support of struts arranged on the reinforcement wagon and in the second step reinforcement mats in the longitudinal direction.
  • the supporting arches are then also placed in front of this outer, mountain-side position of the reinforcement with the support of the reinforcement carriages, so that these elements are held on the mountain side by the supporting arches.
  • spacers are arranged to provide the necessary minimum concrete cover for the reinforced concrete components e.g. to ensure about 6 cm.
  • Inserted into these spacers are generally approximately U-shaped iron brackets which, for example, have a cross section of 10 mm. These iron stirrups are angled at their free ends in such a way that a desired distance between the outer layer of the reinforcement arranged on the mountain side and the outer shell itself can be set through an interaction of spacer and this U-shaped iron stirrup.
  • an inner layer of reinforcement mesh is now placed on the supporting arches.
  • the distance between the outer and inner layers of the reinforcement is thus determined by the supporting arches provided, which are arranged between these layers.
  • reinforcement meshes are usually first provided in the direction of the ring, in order to then arrange the reinforcement meshes in the longitudinal direction as a final step.
  • spacers then point on the outer inner layer towards the formwork of the inner shell, which is brought up to the self-supporting reinforcement with a formwork carriage before concreting.
  • the self-supporting structure stabilized by supporting arches, is built up in blocks, i.e. the reinforcement is self-supporting and is supported in the elms or the side walls of the tunnel against the rock face. Additional support in the ridge area is therefore not required.
  • the reinforcement work in the tunnel must run so quickly that there is always sufficient lead time before the concrete work.
  • the supporting arches to be built are prefabricated components that have a self-supporting stability must have.
  • a further disadvantage is that the assembly sequence described requires manual training and skill on the part of the workers working on site, which in turn is reflected in higher costs. Conversely, in the most negative case, workers with inadequate manual practice and skill can also lead to poorly executed reinforcement structures. In addition, the time factor for this assembly sequence is high, which has a negative effect on the progress of construction.
  • this basic construction can only be installed with dimensional accuracy to a limited extent.
  • the reinforcement structure After the supporting arches have been placed and the reinforcement mats have been attached on the inside, the reinforcement structure usually sags at least slightly as soon as it is released from the reinforcement carriage. A targeted, defined installation of the reinforcement for the inner shell is only possible to a limited extent.
  • the AT 362 739 B discloses an arch segment for an extension arch of underground tunnels or routes, which segment has a lattice girder section and a sliding profile section connected at the end to the lattice girder section. These arch segments are to be connected to form self-contained expansion frames.
  • the trusses are lattice girder sections and made from round iron. At the ends of the trusses are between the Upper chord and the lower chord profile sections fastened by welding and connected to one another by a pair of straps and screws and / or wedges in a tensile manner.
  • a flexible composite structure is possible through the DE 39 27 446 C1 known.
  • the composite construction includes a shotcrete layer on the wall of the mountains surrounding the tunnel or the route as well as a plurality of extension frames arranged in the longitudinal direction of the underground space made of extension segments connected in a flexible manner according to the convergence of the mountains and a concrete backfill between the shotcrete layer and the extension frame.
  • the extension segments are connected by clamps or similar connecting means.
  • the concrete backfill extends along the underground space, if necessary with warping mats.
  • Between adjacent expansion frames are bolting elements that are designed as squeezing elements that can be squeezed together at least in their transverse direction under the influence of the rock pressure.
  • a supporting arch for stabilizing the shotcrete lining of a tunnel which consists of several steel belts which are connected to one another by struts, the struts being formed from bent steel parts of one or more different shapes, which are connected to the belts by welded connections, the form is open, i.e. not a closed curve, and has at least three straight partial areas which merge into one another at their connection point in a bending radius with an angle between approximately 45 ° to 135 °.
  • the support arch should be cheaper to manufacture and at the same time can be better adapted to the tunnel wall.
  • the object of the present invention is to create a reinforcement system for the concrete lining of the inner shell of a tunnel building, which is a cheaper and structurally simplified alternative to known support arch systems.
  • the overall installation of the reinforcement system should be dimensionally accurate and documentable, while at the same time making work on site easier and reducing installation errors.
  • the subclaims 14 to 20 relate to a method for installing the reinforcement system of claims 1 to 13.
  • the inventive basic idea lies in the connection of a structurally simplified tensioning arch or tensioning ring with a tensioning support body and spacer elements which support and align this tensioning arch or tensioning ring through the tensioning support body with spacer on the outer shell of the tunnel wall.
  • the inventive reinforcement system differs fundamentally from the previous approach due to the construction-related changed assembly sequence, which has effects also brings on the work process and the cost of materials.
  • the inventive reinforcement system provides for the first assembly step to provide the clamping arch or ring, for which it is guided on the reinforcement carriage by placing the spacers with clamping support bodies on the self-supporting Outer shell is braced.
  • the tension arches or rings arranged parallel to one another thus form the substructure for the first outer layer of the reinforcement mats, which, for example, are first fastened in the ring direction then in the longitudinal direction on this sub-structure of the tension arches or rings.
  • Exemplary designs provide two or four arch segments that are welded to one another at one free end, connected in overlapping areas by cable clamps or inserted into a connecting sleeve and secured here, for example, by screws, and are thus connected to form a supporting arch, the length and shape of which corresponds to the to be reinforced cross-section of the tunnel building is designed accordingly.
  • a combination of various of the aforementioned connecting means can also be expedient, depending on the application.
  • a significant improvement compared to the known reinforcement systems is that the tension arches or rings are not only held and positioned by the tension support body but are also braced by a final expansion, whereby a high level of strength of the installation as well as dimensional accuracy can be achieved despite the advantageously simple Building this basic structure.
  • One possible design provides for an overlap section serving to introduce post-tensioning between at least two of the arch segments in the tensioning arch or ring, which allows for a possible loss of tension after the tensioning arch or ring has been installed and released by the support elements of the reinforcement carriage or to react to a slight lowering in the ridge area.
  • the clamping arch or ring is held together in the overlapping area of two arch segments, for example by angle hooks on the free ends of adjacent arch segments, on which a clamping device engages.
  • angle hooks can be formed by the free ends themselves and are by the The tensioning device is pulled towards one another, the tensioning arch or ring is thus widened and the tension in the tensioning arch or ring is increased again overall, whereby the desired arch course can be readjusted, for example in the sunken ridge area. Only then is there a final, fixed connection of the tensioning arch or ring in the overlapping area by the means already mentioned, for example rope clamps or welding.
  • the significantly improved dimensional accuracy of the reinforcement system according to the invention thus arises from the interaction of the preformed tensioning arch or ring with the tensioning support bodies individually adapted to their respective bracing position on the arch or ring by cutting to length or angling.
  • the arch or ring is braced in the defined position even if the distances to the outer shell, for example, which are often very unevenly deviate, because these deviations are compensated for by the length-adjusted tension support body.
  • the final bracing through the expansion of the arch or ring causes a secure fixation in this dimensionally accurate installation position.
  • this is installed in a known manner with the support of reinforcement cars as cantilever reinforcement.
  • the spacers with inserted tension supports are then, for example, only inserted slightly angled between the clamping arch or ring and the outer shell and then manually pulled into their installation position, whereby the clamping support bodies run approximately at right angles to the course of the clamping arch or ring in this connection area and are braced between the outer shell and the clamping arch or ring . Since the outer shell is generally unevenly designed, it is necessary for this to shorten the tension support body to a dimension required for bracing.
  • the insertion of the tension support bodies and spacers can also be supported by the tensioning arch or ring held on the reinforcement carriage being pulled mechanically to a suitable distance from the support surface of the outer shell against the internal tension of the tensioning arch or ring for the respective insertion of the tensioning support bodies.
  • this tension is relieved so that the tension arch or ring is pressed against the instep support body at this point by its own tension, whereby the tension on the outer shell is achieved.
  • the process of tensioning by means of tension support body and spacer takes place over the entire circumference of the supporting arch at defined intervals, which ensure a secure, self-supporting stand of the tensioning arch or ring.
  • the base is already pre-concreted as the contact surface of the tension arch, it serves as a support for the free ends of the tension arch, which ensures its position and tension in relation to the outer shell with defined dimensions.
  • the tension ring it is braced with tension support bodies over its entire circumference at defined intervals, i.e. also in the base, since here the tension ring is also part of the reinforcement of the base.
  • the round iron is pressed against the outer shell and the KDB track possibly arranged on it in an advantageous embodiment of the invention by a connection of a spacer that sits directly on the rock face, and an example.
  • M-shaped bracket supported as a tension support body. Between the laterally angled support arms of the M-shaped bracket engaging in the spacer, the clamping arch or ring is inserted into the trough-like recess formed here and clamped or clamped against the outer shell of the wall of the tunnel in the manner described above.
  • the tension support body in the form of an M-shaped bracket is just one possible design.
  • An alternative design provides a clamping support body which engages with a fastening means, for example a clamping ring, on the round bar, for example, and holds it.
  • the support arms of the clamping support body go from the fastening means to the spacers receiving them or to the spacers receiving them, provided that a separate spacer is assigned to each support arm.
  • depressions in the spacer can be designed in the manner of a borehole, so that the free ends of the clamping support body, for example the M-bracket, can be inserted directly into these holes.
  • slots or projections can also be arranged in the spacer so that the M-brackets have an angled portion at the lower end with which they engage in these slots or rest against the projections. This releasable connection between spacer and clamping support body can basically be designed variably.
  • An advantage of arranging the instep support body on the spacer with bends on its support arms is that the mentioned required length adjustment of the instep support body to the respective distance between the outer shell and the tension arch or ring cannot be achieved by cutting off the iron but solely by bending it.
  • the spacer can have connecting means which, for example, have been inserted into a concrete spacer during the manufacturing process, for example, recessed plastic or metal receptacles or plastic or metal receptacles protruding from the upper side of the spacer facing the reinforcement.
  • each support arm of the clamping support body can engage in its own spacer or be connected to such a spacer. Care must be taken that the support arms of the clamping support body do not expand unintentionally when it is braced with the clamping arch or ring, which could lead to a loss of tension in the arrangement of the clamping arch or ring.
  • One design of the spacers can have a protective overlay, for example a type of geotextile, on their underside pointing towards the outer shell and resting on a KDB membrane, so that the KDB membrane is not damaged by the upstand of the spacer.
  • a protective overlay for example a type of geotextile
  • Elongated rod-shaped spacers or individual round spacers can be attached to the M-brackets. In this case, flat contact areas are preferred so that the KDB track is not stressed at certain points.
  • the method for installing the reinforcement system provides that the tension arches or rings are mounted in the form of the tunnel cross-section to be reinforced so that they have a defined installation position in relation to the first outer outer layer of the reinforcement, these tension arches or rings on a reinforcement carriage guided and placed in the tunnel cross-section.
  • One procedural solution now provides that the tensioning arches or rings for inserting the tensioning support bodies between the supporting floors and the outer shell of the reinforcement carriage are pulled into a holding position and, after positioning the tensioning support bodies in their connecting areas, are inserted by returning them from the holding position, whereby the tensioning arcs or rings are inserted into the Engage connecting areas of the tension support body and are braced and supported against the outer shell of the tunnel building via the tension support body.
  • the clamping arches or rings are only held on the reinforcement carriage, with the clamping being carried out by manually inserting the combination of spacer and clamping support body.
  • the arches are mounted in a defined arch length and placed on the pre-concreted base of the tunnel building or in holes that are arranged in this base that has already been concreted.
  • the sole serves as a support for the erected tension arches, whereby the arrangement in prefabricated holes prevents the tension arches from deviating in the construction joint between sole and arch.
  • the tension arches or rings can be fastened after the tensioning by the tension support body by fastening means or a welded connection in the connection area of the tension support body.
  • An alternative arrangement also has a stabilizing effect, which provides that the clamping arches or rings installed in parallel in pairs and firmly connected by means of cross connectors.
  • the clamping arches or rings connected in pairs in this way form a very robust support for the further reinforcement means.
  • the tension support bodies are cut to length or adjusted on site to the required size.
  • the specific dimensions are taken on site and the length adjustment of the tension support body is used as a basis.
  • Figure 1 illustrates the structure of a reinforcement of the inner shell as already explained in the introduction to the description, comprising a spacer 16 with inserted position securing body 17, on which the outer layer 19 of the reinforcement mats rests, which is fixed in its position relative to the outer shell 15 by the supporting arch 18 provided.
  • the inner layer 20 of the reinforcement is attached to the supporting arch 18, which determines the spacing of the reinforcement layers, and finally carries spacers for the formwork, which are not shown in the drawing here.
  • Figure 2 makes the difference to the previous solution clear.
  • the most striking difference is the absence of the supporting arch 18 between the inner and outer reinforcement layers 19 and 20, since these are only separated from one another by spacers 21.
  • This construction is possible because the self-supporting component in the system is the combination of spacer 1 with clamping support body 2 and clamping arch 4 or ring, which is first arranged and clamped on the outer shell 15.
  • this arrangement already achieves a high degree of stability, so that it can support the further arrangement of the spacers 21 and the inner layer 20 of the reinforcement mats.
  • the spacers 22 facing the formwork on the inner layer 20 serve to ensure the minimum concrete cover of the reinforced concrete components used to form the formwork.
  • FIG 3 an exemplary arrangement of the reinforcement system according to the invention in a tunnel building is shown schematically. It is here on the right half of the picture the reinforcement with reinforcement meshes arranged on the arches 4 shown, which are attached to the reinforcement substructure according to the invention.
  • the reinforcement system according to the invention is shown in front of the cladding with reinforcement mats.
  • three basic components are crucial for this reinforcement substructure, as shown in Figure 5 are shown in more detail.
  • a spacer 1 which sits directly on the tunnel wall to be reinforced or the outer shell of the tunnel building and the KDB 15, which may be arranged here.
  • This is, for example, a cast concrete body which has special receptacles 8 as connection areas for the arrangement of the tension support body 2.
  • This clamping support body 2 is connected to the spacer 1, for example inserted or clamped into corresponding receptacles 8 of the spacer 1.
  • the instep support body 2 has at least two support arms 3 ( Figure 4 ), which engage in the spacer 1 and extend to the clamping arch 4 or ring to be supported.
  • the clamping arch 4 or ring thus engages in this exemplary design in a connection area 5 formed between the support arms 3 and thus fixes the connection of the clamping support body and spacer in its actual position. It is essential here that the tension arch or ring is braced in the tunnel cross-section via the tension support body 2 on the tunnel wall or the outer shell of the tunnel building and is thus designed to be self-supporting.
  • the clamping arch 4 or ring is formed from individual round bars, which is even clearer in FIGS. 5 and 6.
  • other cross-sections of the tensioning arch 4 or ring and, on the other hand, also for example two juxtaposed tensioning arches 4 or rings can be used, which are connected to one another via spacers as connecting bodies, e.g. inserted round iron sections.
  • the tension support body 2 then has a correspondingly shaped connection area 5 to the parallel tension arches or rings.
  • the reinforcement system according to the invention is connected to reinforcement mats 6.
  • These reinforcement mats 6 are attached to the previously provided tension arches 4 or rings with appropriate fastening means, for example wires.
  • the overall reinforcement structure is created consisting of the inventive reinforcement system, which on the one hand forms the basis for the reinforcement mats, but on the other hand also defines their distance to the outer shell or the KDB sheet 15 arranged on the outer shell.
  • Figure 4 now shows a possible instep support body 2 in a design as M-shaped instep support body 2.
  • M-shaped instep support body 2 has a centrally arranged connection area 5, which is designed as a recess between the two laterally branching support arms 3.
  • the support arms 3 extend in this case from the clamping arch 4 or ring obliquely outwards, whereby the supporting function is guaranteed.
  • This is essential because the central task of this tension support body 2 is not only the bracing but also the support on the outer shell.
  • the tensioning arch 4 or ring seeks a possible tension relief by evading in the longitudinal direction of the tunnel building to be reinforced.
  • this exemplary clamping support body 2 is angled in the present design, so that it can be inserted into corresponding, for example, slot-like receptacles 8 in the spacer 1, as shown in FIG Figure 5 shown. It is also provided that the intrinsic tension of the clamping support body 2 can be inserted into the slot-like receptacles 8 in the spacer 1, also under a certain intrinsic tension, whereby a secure arrangement of the clamping support body 2 in the receptacles 8 in the spacer 1 is ensured.
  • Figure 5 shows the arrangement according to the invention of these structural components of the reinforcement system in an exemplary detailed perspective view.
  • a spacer 1 is placed on a KDB 15, which in the illustration is designed as a rod-like spacer 1 with receptacles 8, 13 arranged in the manner of a slot on its upper side. In the middle area of its top side, the spacer also has a continuous depression 11.
  • receptacles 8 and the recess 11 are only to be understood as exemplary designs, which is also made clear by the other designs in the following figures.
  • a clamping support body 2 is connected to the spacer 1.
  • the clamping support body 2 has angled portions 14 at its free ends 9 of the support arms 3, which are inserted into the slot-like receptacles 8, 13 engage the spacer 1 and are connected to this and supported on it.
  • connection area 5 in which the clamping arch 4 or ring is inserted, is arranged as a recess.
  • connection area 5 In the design shown, there is no special connection between the clamping arch 4 or ring and the connection area 5.
  • the tensioning arch 4 or ring has an arched basic shape in order to simulate the arching of the tunnel cross-section accordingly.
  • Figure 6 shows a detail of two arch segments 23, 24 in a tension arch 4 composed of 4 segments, that is, half the tension arch 4.
  • Arch segment 24 has at its free end ending approximately below the ridge an angled hook 27 which meets with a second angled hook at the end of the arch segments 24 connected here in an overlap 25 and a further third arch segment indicated only in dashed lines.
  • the overlap 25 causes these angle hooks 27 to be spaced apart, as a result of which the bracing according to the invention is possible here, for example by means of a lashing strap engaging on both angle hooks 27.
  • cable clamps can connect the two arch segments in the overlap area 25 such that they can be moved relative to one another. If the internal tension of the tensioned tensioning bow 4 or ring should therefore give way when the holding devices of the reinforcement trolley move back, the tensioning bow 4 or ring can be brought back into the correct position by increasing the inherent tension by bringing the angle hooks 27 together. Then, for example, the cable clamps can be tightened or welding can be carried out.
  • Figure 7 shows an entire assembled tensioning arch 4 with outer and inner reinforcement layers 19 and 20, the tension support bodies 2 and spacers 1 and 22, which are not shown in detail in the dimension. It becomes clear with what minimal structural effort a self-supporting reinforcement of the inner shell has been built.
  • FIGS. 8 to 17 now show the most varied designs of the spacer bodies 1, essentially rod-shaped spacer bodies 1 being shown. As a rule, these have a continuous support surface 10 or two independent support surfaces 10, which are connected by an arcuate or recessed central region 11. In the latter design, the contact area 10 is reduced to the two permanent contact areas 10, which ensures a secure stand on the subsurface of the tunnel wall of the outer formwork and contributes to material savings in the spacers 1.
  • fastening means or receptacles 8 are now arranged, which are connected to the clamping support body 2.
  • These receptacles 8 are either in the form of bores 7 or, as already explained in connection with the clamping support bodies 2, as slot-like receptacles 13 or projections into which corresponding angled portions 14 of the clamping support body 2 can then be inserted and clamped.
  • Plastic or metal bodies can also be used as fastening means in the spacer.
  • the design of the spacers 1 can vary greatly, since they function in their functionality in different designs and must always be designed in their functional connection with the clamping support body 2.
  • the rod-shaped design has the advantage here of simultaneously supporting and defining the tension of the clamping support body 2 in that it defines the distance between the laterally exposed Define support arms 3 effectively.
  • the tension of the tensioning support body 2 in the gap between the tensioning arch 4 or ring and the outer shell 15 can also be set differently by several receptacles 8 at different distances from one another, depending on whether the support arms 3 engage closer to one another or further apart in the spacer 1. As a result, the tension support body 2 is shortened or lengthened.
  • an advantage of the reinforcement system according to the invention is that the tensioning arches or rings, which are used as supports for the reinforcement mats to be installed later, are kept clearly simple in construction than the supporting arches installed as standard in the prior art.
  • the tension arches or rings consist of reinforcing iron, which are installed as round bars, for example.
  • cross-sections other than the round bar are also possible, as it is primarily important that a structurally complex solution such as the supporting arch is not used here, but a simple reinforcing iron.
  • a basic design of the reinforcement according to the invention provides, for example, a clamping arch or ring in the form described above, which can engage in an approximately M-shaped clamping support body. It engages in the recess approximately in the middle of the M-shaped clamping support body. The result is that this tension support body provides the distance and the bracing as well as the support on the outer shell of the tunnel building via two extended lateral support arms.
  • the M-shaped arrangement ensures that the laterally branching support arms ensure that, due to their course, which is arranged obliquely to the outer shell, a lateral tilting of the tensioned clamping arch or ring is not possible.
  • tension support body engages in standing areas in the form of spacers, which can consist, for example, of poured or extruded concrete, but in principle can also be, for example, plastic bodies.
  • spacers can either be assigned individually to the ends of the support arms or in the form of an approximately rod-shaped spacer in which both free ends engage, with holes or slot-shaped receptacles in the spacers being possible here.
  • a structural solution in which an approximately trapezoidal spacer or standing area is provided for receiving the free end of the instep support body, the instep support body being inserted into a bore in this spacer.
  • a wide contact area on the outer shell of the tunnel building ensures that this tension support body cannot tip over.
  • clamping support body can basically be designed in different ways, provided that reliable protection against tilting of the clamping support body is achieved when the clamping arch or ring is braced.
  • the tension support body must ensure the task of both bracing and secure support of the supporting arch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

  • Die Erfindung betrifft ein Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes gemäß den Merkmalen des Anspruches 1.
  • Bei bergmännisch aufgefahrenen Tunneln führt die Spritzbetonbauweise (Neue Österreichische Tunnelbauweise NÖT) in der Regel zu einer zweischaligen Bauweise mit einer Außenschale aus Spritzbeton und einer Innenschale aus Ortbeton.
  • Hierbei wird der Spritzbeton zur vorläufigen Sicherung des Gebirges in der Regel unmittelbar nach dem Ausbruch aufgebracht. Zusätzlich kann die Sicherung mit Stahlbögen, Ankern und Bewehrungsmatten erforderlich sein.
  • Die anschließend eingebrachte Innenschale aus Ortbeton dient im Folgenden dem dauerhaften Ausbau des Tunnels und wird in der Regel auf Tunnelschalwagen betoniert. Diese Schale weist hierbei Dicken von 30 cm bis 60 cm auf, kann aber auch deutlich dicker ausgeführt werden. Die Abschnittslängen, in denen die Innenschale betoniert wird, betragen in den meisten Fällen etwa 8 m bis 12,5 m. Die Innenschale kann bewehrt oder unbewehrt ausgebildet sein.
  • Die vorliegende Erfindung betrifft den Ausbau von Tunnelbauten, bei denen die Innenschale bewehrt ausgebildet ist.
  • Zwischen Außen- und Innenschale eines Tunnelgebäudes wird häufig eine Dichtungsfolie (KDB) verbaut, die die Innenschale vor möglichen aggressiven Bergwässern wie auch den Innenraum vorm Eintritt von Bergwassern schützt. Um diese Dichtungsfolie zwischen Außen- und Innenschale nicht zu beschädigen, darf die Gewölbebewehrung der Innenschale in der Regel nicht an der Außenschale fixiert werden. Dies macht selbsttragende Gewölbebewehrungen erforderlich, bestehend aus äußeren und inneren Betonstahlmatten und Stabstahlzulagen mit dazwischen liegenden Tragbögen.
  • Für den Einbau der Gewölbe-Bewehrung der Innenschale wird ein Bewehrungswagen als Gerüstwagen eingesetzt. Die Gewölbebewehrung steht hierbei auf der vorbetonierten Sohle, die zuvor erstellt wurde. Eine aktuell eingesetzte Gewölbebewehrung besteht hierbei aus einer äußeren Lage Bewehrungsmatten, den Tragbögen, einer inneren Lage Bewehrungsmatten sowie Abstandhaltern. Diese Konstruktion wird in der Regel fest verrödelt, also mittels Draht so zusammengebunden, dass ein fest verbundenes Tragwerk aus Matten und Stäben entsteht.
  • Hierfür werden mit Unterstützung des Bewehrungswagens erst Bewehrungsmatten zur Erstellung einer äußeren, bergseitigen Bewehrungslage montiert, wobei erst in Ringrichtung Bewehrungsmatten unter Unterstützung von am Bewehrungswagen angeordneten Spriessen und im zweiten Schritt Bewehrungsmatten in Längsrichtung montiert werden. Es werden dann die Tragbögen ebenfalls mit Unterstützung der Bewehrungswagen vor diese äußere, bergseitige Lage der Bewehrung gestellt, sodass diese Elemente durch die Tragbögen bergseitig gehalten werden.
  • Zwischen dieser äußeren Lage der Bewehrung und der Außenschale beziehungsweise einer auf der Außenschale angeordneten Abdichtung sind Abstandhalter angeordnet, um die notwendige Mindestbetondeckung der verbauten Stahlbetonbauteile von bspw. etwa 6 cm zu gewährleisten. In diese Abstandhalter eingesetzt sind in der Regel etwa U-förmige Eisenbügel, die beispielsweise einen Querschnitt 10 mm aufweisen. Diese Eisenbügel werden an ihren freien Enden so abgewinkelt, dass ein angestrebter Abstand zwischen der Außenlage der bergseitig angeordneten Bewehrung und der Außenschale selbst durch ein Zusammenwirken aus Abstandhalter und diesem U-förmigen Eisenbügel eingestellt werden können.
  • Zur Innenseite der Innenschale hin wird nun eine innere Lage von Bewehrungsmatten an den gesetzten Tragbögen angeordnet. Der Abstand zwischen der Außen- und Innenlage der Bewehrung wird somit durch die gestellten Tragbögen bestimmt, die zwischen diesen Lagen angeordnet sind. Auch hier wird wie bereits bei der Außenlage in der Regel erst die Ringrichtung mit Bewehrungsmatten versehen, um dann als abschließenden Schritt die Bewehrungsmatten in Längsrichtung anzuordnen. Abschließend angebrachte Abstandhalter weisen dann an der außenliegenden Innenlage hin zur Schalung der Innenschale, die vor dem Betonieren mit einem Schalwagen an die selbsttragende Bewehrung herangefahren wird. Diese zur Schalung weisenden Abstandhalter stellen die notwendige Mindestbetondeckung der verbauten Stahlbetonbauteile wie bereits zuvor beschrieben sicher.
  • Blockweise wird so die durch Tragbögen stabilisierte selbsttragende Konstruktion aufgebaut, d.h. die Bewehrung trägt sich selbst und stützt sich in den Ulmen bzw. den Seitenwänden des Tunnels gegen die Gebirgswandung ab. Eine zusätzliche Unterstützung im Firstbereich ist daher nicht erforderlich.
  • Die Bewehrungsarbeiten müssen im Tunnel so zügig laufen, dass immer ein ausreichender Vorlauf vor den Betonarbeiten besteht.
  • Diese Montagefolge weist allerdings einige Nachteile auf. Zum einen handelt es sich bei den zu verbauenden Tragbögen um vorzufertigende Bauteile, die ein selbstragendes Standvermögen aufweisen müssen. Dies bedingt einen Querschnitt, der diese Standfähigkeit ermöglicht, in der beispielhaften Darstellung der Figur 1 bspw. einen etwa U-förmigen Querschnitt. Es handelt sich somit um das im aktuell verwendeten Bewehrungssystem aufwendigste Bauteil mit einem hohen Materialgewicht, was sich entsprechend in den Kosten für die zu erstellende Bewehrung negativ niederschlägt.
  • Des Weiteren ist nachteilig, dass die beschriebene Montagefolge eine handwerkliche Übung und Geschicklichkeit der vor Ort wirkenden Arbeitskräfte voraussetzt, die sich wiederum in höheren Kosten niederschlägt. Im Umkehrschluss kann es im negativsten Fall durch Arbeitskräfte mit mangelhafter handwerklicher Übung und Geschicklichkeit auch zu mangelhaft ausgeführten Bewehrungsaufbauten kommen. Zudem ist auch der Zeitfaktor dieser Montagefolge hoch, was sich negativ auf den Baufortschritt auswirkt.
  • Insbesondere ist nachteilig, daß diese Grundkonstruktion nur bedingt maßhaltig eingebaut werden kann. Nach dem Stellen der Tragbögen und dem Anbringen der Bewehrungsmatten innenseitig kommt es in der Regel zu einem zumindest geringfügigen Absacken der Bewehrungskonstruktion sobald diese vom Bewehrungswagen freigegeben wird. Ein angestrebter definierter Einbau der Bewehrung für die Innenschale ist so nur bedingt möglich.
  • Die AT 362 739 B offenbart ein Bogensegment für einen Ausbaubogen von untertägigen Tunneln oder Strecken, welches einen Gitterträgerabschnitt und einen endseitig mit dem Gitterträgerabschnitt verbundenen Gleitprofilabschnitt aufweist. Diese Bogensegmente sollen zu in sich geschlossenen Ausbaurahmen verbunden werden.
  • Durch die DE 1 237 160 A zählt eine Stoßverbindung zwischen Fachwerkträgern zum Stand der Technik, die als Bewehrung einer Tunnelauskleidung aus Beton dienen. Die Fachwerkträger sind Gitterträgerabschnitte und aus Rundeisen hergestellt. An den Enden der Fachwerkträger sind zwischen dem Obergurt und dem Untergurt Profilabschnitte durch Schweißen befestigt und miteinander durch ein Laschenpaar sowie Schrauben und/oder Keile zugfest verbunden.
  • Ein nachgiebiger Verbundausbau ist durch die DE 39 27 446 C1 bekannt. Zum Verbundausbau gehören eine Spritzbetonschicht auf der Wand des den Tunnel bzw. die Strecke umgebenden Gebirges sowie eine Mehrzahl von in Längsrichtung des Untertageraumes angeordneten Ausbaurahmen aus nach Maßgabe der Gebirgskonvergenz einschubnachgiebig verbundenen Ausbausegmenten und eine Betonhinterfüllung zwischen der Spritzbetonschicht und den Ausbaurahmen. Die Ausbausegmente sind durch Schellen oder ähnliche Verbindungsmittel verbunden. Die Betonhinterfüllung erstreckt sich gegebenenfalls mit Verzugsmatten längs des Untertagesraumes. Zwischen benachbarten Ausbaurahmen befinden sich Verbolzungselemente, die als Quetschelemente ausgeführt sind, die unter dem Einfluss des Gebirgsdrucks zumindest in ihrer Querrichtung zusammenquetschbar sind.
  • Aus der Veröffentlichung DE 20 2006 003 288 U1 ist ein Tragbogen zur Stabilisierung des Spritzbetonausbaus eines Tunnels bekannt, der aus mehreren Stahlgurten besteht, die durch Verstrebungen miteinander verbunden sind, wobei die Verstrebungen aus gebogenen Stahlteilen einer oder mehrerer unterschiedlicher Formen gebildet sind, die mit den Gurten durch Schweißverbindungen verbunden sind, wobei die Form offen ist, also kein geschlossener Kurvenzug, und mindestens drei gerade Teilbereiche aufweist, die an ihrer Verbindungsstelle in einem Biegeradius mit einem Winkel zwischen ungefähr 45° bis 135° ineinander übergehen. Hierdurch soll der Tragbogen günstiger herzustellen sein und gleichzeitig besser an die Tunnelwandung angepasst werden können.
  • Aus der Veröffentlichung AT 258 837 B ist Ausbausystem aus eisenbewehrtem Beton für Streckenausbau, Tunnel- und sonstige Untertagebauwerke bekannt, bei dem ebenfalls miteinander verschweißte Gurt- und Verbindungselementen als Bewehrung verwendet werden, wobei als Verbindungselemente einzelne, gleichartige, zu Vielecken gebogene, mit einer Trennfuge versehene Bügel verwendet werden.
  • Schließlich ist aus der Druckschrift US 3 858 400 A ein Verfahren zur Verstärkung von Tunneln bekannt, dass beim Vortrieb des Tunnels jeweils hinter dem Fräskopf der Tunnelfräsmaschine entsprechend dem Tunnelradius gebogene und in Umfangsrichtung verstärkte Felssicherungsmatten nebeneinander angeordnet und miteinander verbunden werden, die anschliessend die Armierung für die Spritzbetonierung der Tunnelwand übernehmen.
  • Vor diesem Hintergrund ist die Aufgabe der vorliegenden Erfindung die Schaffung eines Bewehrungssystems für den Betonausbau der Innenschale eines Tunnelgebäudes, welches eine preiswertere und konstruktiv vereinfachte Alternative zu bekannten Tragbogen-Systemen darstellt. Der Einbau des Bewehrungssystems insgesamt soll hierbei maßhaltig und dokumentierbar erfolgen, wobei gleichzeitig die Arbeiten vor Ort erleichtert und Einbaufehler reduziert werden.
  • Erreicht wird dies nach der Erfindung durch das Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes gemäß Anspruch 1.
  • Die weiteren Unteransprüche 2 bis 13 haben vorteilhafte Weiterbildungen und Bauformen der Erfindung zum Gegenstand.
  • Die Unteransprüche 14 bis 20 betreffen ein Verfahren zum Einbau des Bewehrungssystems der Ansprüche 1 bis 13.
  • Die erfinderische Grundidee liegt hierbei in der Verbindung eines baulich vereinfachten Spannbogens oder Spannrings mit einem Spannstützkörper und Abstandhalterelementen, die diesen Spannbogen oder -ring durch den Spannstützkörper mit Abstandhalter an der Außenschale der Tunnelwandung abstützen und ausrichten. Das erfinderische Bewehrungssystem unterscheidet sich hierbei grundlegend vom bisherigen Ansatz durch die konstruktiv bedingt veränderte Montagefolge, was Auswirkungen auch auf den Arbeitsprozeß und den Materialaufwand mit sich bringt.
  • Im Gegensatz zur Anordnung der selbsttragenden Tragbögen zwischen der äußeren und inneren Bewehrungslage im beschriebenen momentan vorherrschenden System sieht das erfinderische Bewehrungssystem vor, als ersten Montageschritt den Spannbogen oder -ring zu stellen, wofür dieser am Bewehrungswagen geführt durch die Platzierung der Abstandhalter mit Spannstützkörpern selbsttragend an der Außenschale verspannt wird. Die parallel so nebeneinander angeordneten Spannbögen oder -ringe bilden somit den Unterbau für die erste Aussenlage der Bewehrungsmatten, die bspw. erst in Ringrichtung dann in Längsrichtung auf dieser Unterkonstruktion der Spannbögen oder -ringe befestigt werden.
  • Im Unterschied zur bekannten Anordnung werden dann Abstandhalter an dieser Außenlage angeordnet, die wiederum den Abstand zur Innenlage der Bewehrungsmatten einstellen. Ein Tragbogen im Sinne des Standes der Technik zwischen der Außenund Innenlage entfällt somit vollständig, was zu einem erheblichen Maß an Einsparungspotentialen führt. Gleichzeitig ist aber auch das Montieren der äußeren und inneren Bewehrungslage nach dem Stellen der Spannbögen oder -ringe stark vereinfacht gegenüber der Montagefolge des bekannten Bewehrungssystems, was zu den angestrebten Vereinfachungen der Montage und so im Ergebnis zu einer Reduzierung des Risikos von Einbaufehlern insbesondere durch unerfahrene Arbeitskräfte führt.
  • Diese vereinfachten Spannbögen oder -ringe können hierbei in einer vorteilhaften Bauform als Rundeisen in Form von Bogensegmenten ausgebildet sein, die vor Ort zu einem Ausbaubogen der erforderlichen Größe abhängig vom Tunnelquerschnitt verbunden und mittels der erfindungsgemäßen Spannstützkörper und Abstandhalterelemente an der Außenschale der Tunnelwandung angeordnet werden.
  • Grundsätzlich ist aber der Querschnitt der vereinfachten Bogenelemente in verschiedenen Bauformen zweckmäßig, da es erfindungsgemäß in erster Linie darum geht, dass diese Bogenelemente konstruktiv einfach ausgebildet und somit als kostengünstiges Bauelement eingesetzt werden können im Gegensatz zu den kostenintensiven selbsttragenden Tragbögen. Daher liegt der Schwerpunkt in der Frage der stabilen Abstützung der vereinfachten Bogenelemente an der Außenschale der Tunnelwandung als Unterbau für die Bewehrung.
  • Beispielhafte Bauformen sehen zwei oder vier Bogensegmente vor, die an jeweils einem freien Ende miteinander verschweißt, in Überlappungsbereichen durch Seilklemmen verbunden oder in eine Verbindungshülse eingeschoben und hier beispielsweise durch Schrauben gesichert werden und so zu einem Tragbogen verbunden werden, der in seiner Länge und Form dem zu armierenden Querschnitt des Tunnelgebäudes entsprechend ausgebildet ist. Auch eine Kombination verschiedener der vorgenannten Verbindungsmittel können je nach Anwendung zweckdienlich sein.
  • Eine wesentliche Verbesserung gegenüber den bekannten Bewehrungssystemen ist hierbei, dass die Spannbögen oder Ringe nicht nur durch die Spannstützkörper gehalten und positioniert werden sondern zudem durch ein Abschließendes Aufweiten zusätzlich verspannt werden, wodurch eine hohe Festigkeit des Einbaus wie auch Maßhaltigkeit erreicht werden kann trotz des vorteilhaft einfachen Aufbaus dieser Grundstruktur.
  • Eine mögliche Bauform sieht vor, einen der Einbringung einer Nachspannung dienenden Überlappungsabschnitt zwischen zumindest zwei der Bogensegmente im Spannbogen oder - ring anzuordnen, der es nach dem Einbau des Spannbogens bzw. -rings und einer Freigabe durch die Stützelemente des Bewehrungswagens ermöglicht, auf einen möglichen Spannungsverlust bzw. eine geringfügige Absenkung im Firstbereich zu reagieren. Hierfür wird der Spannbogen oder -ring im Überlappungsbereich zweier Bogensegmente beispielsweise durch Winkelhaken an den freien Enden benachbarter Bogensegmente zusammengehalten, an denen eine Spannvorrichtung angreift. Diese Winkelhaken können von den freien Enden selbst gebildet sein und werden durch die Spannvorrichtung zueinander gezogen, der Spannbogen oder -ring somit aufgeweitet und so die Spannung im Spannbogen oder -ring insgesamt wieder angehoben, wodurch der angestrebte Bogenverlauf bspw. im abgesunkenen Firstbereich wieder nachjustiert werden kann. Erst dann kommt es zur abschließenden festen Verbindung des Spannbogens oder -rings im Überlappungsbereich durch die bereits genannten Mittel, bspw. Seilklemmen oder ein Verschweißen.
  • Die deutlich verbesserte Maßhaltigkeit des erfindungsgemäßen Bewehrungssystems entsteht somit aus dem Zusammenwirken des vorgeformten Spannbogens oder -rings mit den auf ihre jeweilige Verspannposition am Bogen oder Ring durch Ablängung oder Abwinkelung individuell angepasste Spannstützkörper. So wird der Bogen oder Ring auch bei sehr stark abweichenden Abständen zur bspw. Außenschale, die häufig sehr ungleichmäßig verläuft, in der definierten Position verspannt, da diese Abweichungen durch den längenangepassten Spannstützkörper ausgeglichen werden. Schließlich bewirkt die abschließende Verspannung durch die Aufweitung des Bogens oder Rings eine sichere Fixierung in dieser maßhaltigen Einbauposition.
  • Hierbei ist erfindungsgemäß vorgesehen, dass beim Einbringen dieser Spannbögen oder -ringe im Tunnelausbau deren Abstände zueinander gleich oder größer sein können, als dies bei den bisherigen Tragbogen-Systemen der Fall ist. Dies kann demnach zu einem weiteren Vorteil führen, da pro Abschnitt (Block) weniger Spannbögen oder -ringe benötigt würden. Durch die Verbindung der Spannstützkörper mit den an der Außenschale anliegenden Abstandhalterkörpern sind auch diese Spannbögen oder -ringe selbsttragend an der Außenschale abgestützt, wenngleich sie keinen räumlichen fachwerkartigen Querschnitt aufweisen. Die Stabilisierung erfolgt über die Verspannung mit den Spannstützkörpern.
  • Beim Verfahren des Einbaus dieses Bewehrungssystemes ist es vorgesehen, dies in bekannter Weise mit Unterstützung durch Bewehrungswagen als freitragende Bewehrung einzubauen. Die Abstandhalter mit eingesetzten Spannstützkörpern werden dann beispielsweise erst leicht abgewinkelt zwischen Spannbogen oder -ring und Außenschale eingesetzt und dann manuell in ihre Einbauposition gezogen, wodurch die Spannstützkörper in etwa rechtwinklig zum Verlauf des Spannbogens oder -rings in diesem Verbindungsbereich verlaufen und zwischen der Außenschale und dem Spannbogen oder -ring verspannt werden. Da die Außenschale in der Regel ungleichmäßig ausgebildet ist es hierfür erforderlich, die Spannstützkörper auf ein für das Verspannen erforderliches Maß zu kürzen.
  • Alternativ kann das Einsetzen der Spannstützkörper und Abstandhalter auch dadurch unterstützt werden, dass der am Bewehrungswagen gehaltene Spannbogen oder -ring für das jeweilige Einsetzen der Spannstützkörper maschinell in einen geeigneten Abstand zur Auflagefläche der Außenschale gezogen wird entgegen der Eigenspannung des Spannbogens oder -rings. Nach der Platzierung von Spannstützkörper und Abstandhalter wird dieser Zug entlastet, so dass der Spannbogen oder -ring an dieser Stelle durch dessen Eigenspannung an den Spannstützkörper angedrückt wird, wodurch die Verspannung zur Außenschale erreicht wird.
  • Der Vorgang des Verspannens mittels Spannstützkörper und Abstandhalter erfolgt über den gesamten Umfang des Tragbogens in definierten Abständen, die einen sicheren selbsttragenden Stand des Spannbogens oder -rings gewährleisten. Da im Falle des Spannbogens die Sohle als Aufstandsfläche des Spannbogens bereits vorbetoniert vorliegt, dient diese als Auflage für die freien Enden des Spannbogens, wodurch dessen Position und Spannung im Bezug zur Außenschale bei definierter Bemaßung sichergestellt wird. Im Falle des Spannrings wird dieser über seinen gesamten Umfang in definierten Abständen mit Spannstützkörpern verspannt, also auch in der Sohle, da hier der Spannring auch Teil der Bewehrung der Sohle ist.
  • Es ist vor diesem Hintergrund wie gesagt erforderlich, die Spannstützkörper vor Ort abzulängen auf das erforderliche Maß, welches für die Verspannung und Abstützung erforderlich ist. Vor Ort wird in der Regel der vorliegende Querschnitt des Tunnelgebäudes ausgemessen und die Ablängung der Spannstützkörper erfolgt dann entsprechend der abgenommenen Abmaße. Es ist hierbei dennoch erfindungsgemäß vorgesehen, Spannstützkörper bereits in unterschiedlichen Maßen vorzuhalten, um den abzulängenden Abschnitt stets gering halten zu können.
  • Um die Spannbögen oder -ringe an der Außenschale der Tunnelwandung anzuordnen wird bspw. das Rundeisen gegen die Außenschale und die evtl. darauf angeordnete KDB-Bahn in einer vorteilhaften Ausführung der Erfindung durch eine Verbindung aus einem Abstandhalter, der direkt an der Gebirgswand ansitzt, und einem bspw. M-förmigen Bügel als Spannstützkörper abgestützt. Zwischen den in den Abstandhalter eingreifenden seitlich abgewinkelten Stützarmen des M-förmigen Bügels wird der Spannbogen oder -ring in die hier ausgebildete muldenartige Vertiefung eingelegt und gegen die Außenschale der Wandung des Tunnels in der zuvor beschriebenen Weise verspannt bzw. verklemmt.
  • Es handelt sich beim Spannstützkörper in Form eines M-förmigen Bügels lediglich um eine mögliche Bauform. Eine alternative Bauform sieht einen Spannstützkörper vor, der mit einem Befestigungsmittel, bspw. einem Klemmring, am bspw. Rundeisen angreift und dieses hält. Vom Befestigungsmittel gehen die Stützarme des Spannstützkörpers hin zum diese aufnehmenden Abstandhalter bzw. zu den diese aufnehmenden Abstandhaltern, sofern jedem Stützarm ein separater Abstandhalter zugeordnet ist.
  • Hierfür ist es erforderlich, einen Abstandhalter zu konstruieren, an dem der Spannstützkörper, bspw. der M-Bügel angreifen kann bzw. in den der M-Bügel mit dessen freien zur Außenschale weisenden Enden eingreifen kann. Hierfür sind verschiedene bauliche Lösungen möglich.
  • Es sind zweckmäßigerweise Vertiefungen im Abstandhalter angeordnet. Diese können bohrlochartig ausgebildet sein, sodass die freien Enden des Spannstützkörpers, bspw. des M-Bügels, direkt in diese Löcher eingesteckt werden können. Es können aber auch Schlitze oder Vorsprünge im Abstandhalter angeordnet sein, sodass die M-Bügel eine Abwinkelung am unteren Ende aufweisen, mit der sie in diese Schlitze eingreifen bzw. an den Vorsprüngen anliegen. Diese lösbare Verbindung zwischen Abstandhalter und Spannstützkörper ist grundsätzlich variabel ausbildbar.
  • Ein Vorteil der Anordnung des Spannstützkörper am Abstandhalter mit Abwinkelungen an dessen Stützarmen ist, dass so die angesprochene erforderliche Längenanpassung der Spannstützkörper an den jeweilig vorliegenden Abstand zwischen Außenschale und Spannbogen oder -ring nicht durch ein Abschneiden des Eisens sondern allein durch dessen Abwinkelung erreichbar ist.
  • Alternativ kann der Abstandhalter Verbindungsmittel aufweisen, die bspw. in einen Betonabstandhalter beim Herstellungsprozeß eingesetzt worden sind, bspw. versenkte oder aus der zur Bewehrung weisenden Oberseite des Abstandhalters ragende Kunststoff- oder Metallaufnahmen.
  • Zudem kann jeder Stützarm des Spannstützkörpers in einen eigenen Abstandhalter eingreifen bzw. mit einem solchen verbunden sein. Hierbei ist darauf zu achten, dass ein unbeabsichtigtes Aufweiten der Stützarme des Spannstützkörpers bei dessen Verspannung mit dem Spannbogen oder -ring ausbleibt, welches zu einem Spannungsverlust bei der Anordnung des Spannbogens oder -rings führen könnte.
  • Eine Bauform der Abstandhalter kann an ihrer zur Außenschale hin weisenden und auf einer KDB-Bahn aufsitzenden Unterseite eine Schutzauflage, bspw. eine Art Geotextil aufweisen, damit die KDB-Bahn nicht durch eine Aufkantung des Abstandhalters beschädigt wird. Es können hierbei längliche stabförmige Abstandhalter oder auch einzelne runde Abstandhalter an den M-Bügeln befestigt werden. Hierbei sind flache Aufstandsflächen zu bevorzugen, um die KDB-Bahn nicht punktuell zu belasten.
  • Das Verfahren zum Einbau des erfindungsgemäßen Bewehrungssystems sieht vor, dass die Spannbögen oder -ringe in Form des zu bewehrenden Tunnelquerschnitts so montiert werden, dass sie eine definierten Einbauposition in Bezug auf die erste äußere Außenlage der Bewehrung aufweisen, diese Spannbögen oder -ringe an einem Bewehrungswagen geführt und im Tunnelquerschnitt gestellt werden. Eine Verfahrenslösung sieht nun vor, dass die Spannbögen oder -ringe zum Einsetzen der Spannstützkörper zwischen Tragböden und Außenschale zum Bewehrungswagen in eine Halteposition gezogen und nach Positionierung der Spannstützkörper in deren Verbindungsbereiche durch Rückführen aus der Halteposition eingesetzt werden, wodurch die Spannbögen oder -ringe in die Verbindungsbereiche der Spannstützkörper eingreifen und über die Spannstützkörper gegen die Außenschale des Tunnelgebäudes verspannt und abgestützt sind. Alternativ ist auch ein ledigliches Halten der Spannbögen oder -ringe am Bewehrungswagen vorgesehen, wobei die Verklemmung durch manuelles Einsetzen der Kombination aus Abstandhalter und Spannstützkörper erfolgt.
  • Um die angestrebte Einbauposition der Spannbögen festzulegen und gegen eine Verschiebung beim Einsetzen der Spannstützkörper zu sichern, werden die Spannbögen in definiert bemessener Bogenlänge montiert und auf der vorbetonierten Sohle des Tunnelgebäudes oder in Löchern, die in dieser bereits betonierten Sohle angeordnet sind, aufgestellt. Die Sohle dient hierbei als Auflager für die aufgestellten Spannbögen, wobei die Anordnung in vorgefertigten Löchern das Ausweichen der Spannbögen in der Arbeitsfuge Sohle-Gewölbe verhindert.
  • Zur weiteren Stabilisierung des eingebauten Bewehrungssystems können die Spannbögen oder -ringe nach dem Verspannen durch die Spannstützkörper durch Befestigungsmittel oder eine Schweißverbindung im Verbindungsbereich der Spannstützkörper befestigt werden.
  • Ebenfalls stabilisierend wirkt sich eine alternative Anordnung aus, die vorsieht, dass die Spannbögen oder -ringe paarweise parallel eingebaut und mittels Querverbindern fest verbunden werden. Die derart paarweise verbundenen Spannbögen oder -ringe bilden eine sehr robuste Auflage für die weiteren Bewehrungsmittel.
  • Um die Spannstützkörper den Verhältnissen vor Ort genau anzupassen wird es in der Regel zweckmäßig sein, dass die Spannstützkörper vor Ort auf das erforderliche Maß abgelängt oder eingestellt werden. Es werden hierfür die konkreten Maße vor Ort abgenommen und der Längenanpassung der Spannstützkörper zugrunde gelegt. Es kann Sonderfälle geben, in denen derartige Anpassungsmaßnahmen aufgrund einer bereits gleichmäßig ausgebildeten Außenschale nicht erforderlich sind, bspw. bei einer Anordnung einer Innenschale an einem Tübbing-Ausbau.
  • Im Folgenden soll die Erfindung anhand von Zeichnungen näher erläutert werden. Es zeigen
  • Figur 1
    einen Schnitt durch ein Bewehrungssystem nach dem Stand der Technik,
    Figur 2
    einen Schnitt durch das erfindungsgemäße Bewehrungssystem,
    Figur 3
    den beispielhaften Aufbau des Bewehrungs-systems umfassend den Abstandhalter 1 mit M-Bügel 2 und Spannbogen 4,
    Figur 4
    einen erfindungsgemäßen Spannstützkörper 2 in Form eines M-Förmigen Bügels sowie
    Figur 5
    eine Detailansicht die Kombination aus Abstandhalter 1, Spannstützkörper 2 und Spannbogen 4 in perspektivischer Ansicht,
    Figur 6
    einen Teilbereich des Spannbogens 4 bestehend aus 2 Teilbereichen,
    Figur 7
    eine Seitenansicht eines vollständig eingebauten Spannbogens 4 mit Detailansicht sowie
    Figuren 8 bis 17
    verschiedene gestalterische Bauformen der erfindungsgemäßen Abstandhalter 1.
  • Figur 1 verdeutlicht den Aufbau einer Bewehrung der Innenschale wie dieser bereits in der Beschreibungseinleitung erläutert wurde umfassend einen Abstandhalter 16 mit eingesetztem Lagesicherungskörper 17, an dem die Außenlage 19 der Bewehrungsmatten anliegt, die durch den gestellten Tragbogen 18 in ihrer Position zur Außenschale 15 fixiert wird. Auf dem den Abstand der Bewehrungslagen bestimmenden Tragbogen 18 ist die Innenlage 20 der Bewehrung befestigt, die abschließend Abstandhalter zur Schalung trägt, die hier zeichnerisch nicht dargestellt sind.
  • Figur 2 macht den Unterschied zur bisherigen Lösung deutlich. Der markanteste Unterschied ist das Fehlen des Tragbogens 18 zwischen der inneren und äußeren Bewehrungslage 19 und 20, da diese lediglich durch Abstandhalter 21 zueinander beabstandet sind. Diese Konstruktion ist möglich, da die selbsttragende Komponente im System die Kombination aus Abstandhalter 1 mit Spannstützkörper 2 und Spannbogen 4 oder -ring ist, die als erstes an der Außenschale 15 angeordnet und verspannt wird.
  • Durch die Anordnung der Außenlage 19 der Bewehrungsmatten erreicht diese Anordnung bereits ein hohes Maß an Stabilität, so dass sie die weitere Anordnung der Abstandhalter 21 sowie der Innenlage 20 der Bewehrungsmatten tragen kann. Die an der Innenlage 20 zur Schalung weisenden Abstandhalter 22 dienen der Sicherstellung der Mindestbetondeckung der verbauten Stahlbetonbauteile zu Schalung.
  • In Figur 3 ist eine beispielhafte Anordnung des erfindungsgemäßen Bewehrungssystems in einem Tunnelgebäude schematisch dargestellt. Es ist hier auf der rechten Bildhälfte die Bewehrung mit an den Spannbögen 4 angeordneten Bewehrungsmatten dargestellt, die auf dem erfindungsgemäßen Bewehrungsunterbau befestigt sind.
  • Auf der linken Bildhälfte ist das erfindungsgemäße Bewehrungssystem vor der Verkleidung mit Bewehrungsmatten dargestellt. Auf dieser Seite ist erkennbar, dass drei Grundkomponenten für diesen Bewehrungsunterbau entscheidend sind, wie diese in Figur 5 näher dargestellt sind. Das ist zum einen ein Abstandhalter 1, der direkt auf der zu bewehrenden Tunnelwandung beziehungsweise der Außenschale des Tunnelgebäudes und der hier ggf. angeordneten KDB 15 aufsitzt. Es handelt sich hierbei bspw. um einen Betongusskörper, der spezielle Aufnahmen 8 als Verbindungsbereiche für die Anordnung des Spannstützkörpers 2 aufweist. Dieser Spannstützkörper 2 ist mit dem Abstandhalter 1 verbunden, beispielsweise in entsprechende Aufnahmen 8 des Abstandhalters 1 eingesteckt oder eingeklemmt.
  • Der Spannstützkörper 2 weist hierbei zumindest zwei Stützarme 3 auf (Figur 4), die in den Abstandhalter 1 eingreifen und sich zum abzustützenden Spannbogen 4 oder -ring erstrecken. Der Spannbogen 4 oder -ring greift somit in dieser beispielhaften Bauform in einen zwischen den Stützarmen 3 ausgebildeten Verbindungsbereich 5 ein und legt somit die Verbindung aus Spannstützkörper und Abstandhalter in ihre eigentliche Position fest. Hierbei ist wesentlich, dass der Spannbogen oder -ring im Tunnelquerschnitt über die Spannstützkörper 2 an der Tunnelwandung beziehungsweise der Außenschale des Tunnelgebäudes verspannt abgestützt wird und somit selbsttragend ausgebildet ist.
  • In der dargestellten Bauform ist der Spannbogen 4 oder -ring aus einzelnen Rundeisen ausgebildet, was in den Figuren 5 und 6 noch deutlicher wird. Alternativ hierzu können zum Einen andere Querschnitte des Spannbogens 4 oder -rings und zum Anderen auch beispielsweise zwei nebeneinander angeordnete Spannbögen 4 oder -ringe Verwendung finden, die über Distanzhalter als Verbindungskörper, bspw. eingesetzte Rundeisenabschnitte, miteinander verbunden sind. Auf diese Art und Weise ist auch erreichbar, dass dieser aus zwei parallelen Rundeisen gebildete Spannbogen 4 oder -ring bereits einen Eigenstand aufweist, der dann durch das Einsetzen der Spannstützkörper 2 und Abstandhalter 1 gegen die Tunnelwandung verspannt werden kann. Der Spannstützkörper 2 weist dann einen entsprechend ausgeformten Verbindungsbereich 5 zu den parallelen Spannbögen oder -ringen auf.
  • Auf der rechten Bildseite ist dann wie bereits ausgeführt dargestellt, dass das erfindungsgemäße Bewehrungssystem mit Bewehrungsmatten 6 verbunden wird. Diese Bewehrungsmatten 6 werden auf die zuvor gestellten Spannbögen 4 oder - ringe mit entsprechenden Befestigungsmitteln, beispielsweise Drähten befestigt. Auf diese Art und Weise entsteht dann das Gesamtbewehrungsgebilde bestehend aus dem erfinderischen Bewehrungssystem, welches zum einen die Grundlage für die Bewehrungsmatten bildet, zum anderen aber auch deren Distanz zur Außenschale beziehungsweise der an der Außenschale angeordneten KDB-Bahn 15 festlegt.
  • Figur 4 zeigt nun einen möglichen Spannstützkörper 2 in einer Bauform als M-förmigen Spannstützkörper 2. Dies hat den Vorteil, dass der M-förmige Spannstützkörper 2 einen mittig angeordneten Verbindungsbereich 5 aufweist, der als Vertiefung zwischen den zwei seitlich abzweigenden Stützarmen 3 ausgebildet ist. Die Stützarme 3 verlaufen hierbei vom Spannbogen 4 oder -ring aus schräg nach außen, wodurch die abstützende Funktion gewährleistet ist. Dies ist wesentlich, da die zentrale Aufgabe dieses Spannstützkörpers 2 neben der Verspannung auch die Abstützung an der Außenschale ist. Beim Verspannen Sucht der Spannbogen 4 oder -ring eine mögliche Spannungsentlastung durch ein Ausweichen in Längsrichtung des zu bewehrenden Tunnelgebäudes. Dieses Wegkippen ist daher zwingend zu vermeiden, um die angestrebte Verspannung und die daraus resultierende selbsttragende Konstruktion zu erreichen. Das seitliche Ausstellen der Stützarme 3 am Spannstützkörper 2 bewirkt genau dieses seitliche Abstützen gegen das seitliche Ausbrechen des Spannbogens 4 oder -rings auf erfinderische Weise.
  • An seinen zum Abstandhalter 1 weisenden freien unteren Enden 9 ist dieser beispielhafte Spannstützkörper 2 in der vorliegenden Bauform angewinkelt ausgebildet, wodurch er in entsprechende bspw. schlitzartige Aufnahmen 8 im Abstandhalter 1 eingesetzt werden kann, wie in Figur 5 dargestellt. Hierbei ist zu dem vorgesehen, dass durch die Eigenspannung des Spannstützkörpers 2 ein Einsetzen in die schlitzartigen Aufnahmen 8 im Abstandhalter 1 ebenfalls unter einer gewissen Eigenspannung erfolgen kann, wodurch eine sichere Anordnung des Spannstützkörpers 2 in den Aufnahmen 8 im Abstandhalter 1 sicher gestellt wird.
  • Zudem wird durch ein Erzeugen dieser Abwinkelungen 14 erst vor Ort die Möglichkeit geschaffen, die in der Regel erforderliche Längenanpassung der Stützarme 3 an die gegebene Einbauposition zur Erreichung der erforderlichen Spannung zum Spannbogen 4 oder -ring passgenau zu erzeugen. Dies stellt eine Alternative zum Anpassen der Stützarme 3 durch ein Kürzen dieser Stützarme 3 dar.
  • Figur 5 zeigt die erfindungsgemäße Anordnung dieser baulichen Komponenten des Bewehrungssystems in einer beispielhaften detaillierten perspektivischen Ansicht.
  • Auf einer KDB 15 ist hierbei ein Abstandhalter 1 aufgesetzt, der in der Darstellung als stangenartiger Abstandhalter 1 mit schlitzartig auf dessen Oberseite angeordneten Aufnahmen 8,13 ausgebildet ist. Im Mittelbereich seiner Oberseite weist der Abstandhalter hierbei noch eine durchgängige Vertiefung 11 auf. Sowohl diese Bauform der Aufnahmen 8 wie auch der Vertiefung 11 sind lediglich als beispielhafte Bauformen zu verstehen, was auch durch die weiteren Bauformen der folgenden Figuren deutlich wird.
  • In die Aufnahmen 8 eingreifend ist ein Spannstützkörper 2 mit dem Abstandhalter 1 verbunden. Der Spannstützkörper 2 weist hierfür an dessen freien Enden 9 der Stützarme 3 Abwinklungen 14 auf, die in die schlitzartigen Aufnahmen 8,13 des Abstandhalters 1 eingreifen und so mit diesem verbunden und an diesem abgestützt sind.
  • Zwischen den Stützarmen 3 des Spannstützkörpers 2 ist als Vertiefung der Verbindungsbereich 5 angeordnet, in den der Spannbogen 4 oder -ring eingelegt ist. In der dargestellten Bauform findet hierbei keine spezielle Verbindung zwischen dem Spannbogen 4 oder -ring und dem Verbindungsbereich 5 statt. Es ist kein Verbindungsmittel in diesem Verbindungsbereich 5 angeordnet, was aber bei anderen Bauformen dieser Spannstützkörper 2 durchaus sinnvoll sein kann. Der Spannbogen 4 oder -ring weißt hierbei eine bogenförmige Grundform auf, um den Bogenverlauf des Tunnelquerschnitts entsprechend nachzubilden.
  • Figur 6 zeigt ausschnitthaft zwei Bogensegmente 23, 24 bei einem aus 4 Segmenten zusammengesetzten Spannbogen 4, also den halben Spannbogen 4. Schematisch angedeutet ist der Verbindungsbereich 26, der bspw. durch eine Verschweißung herstellbar ist. Bogensegment 24 weist an seinem in etwa unter dem First endenden freien Ende einen Winkelhaken 27 auf, der mit einem zweiten Winkelhaken am Ende der hier in einer Überlappung 25 verbundenen Bogensegmente 24 und einem weiteren nur in Strichlinien angedeuteten dritten Bogensegment zusammentrifft. Die Überlappung 25 bewirkt eine Beabstandung dieser Winkelhaken 27, wodurch hier die erfindungsgemäße Verspannung möglich ist, beispielsweise durch einen an beiden Winkelhaken 27 angreifenden Zurrgurt.
  • Weiter können beispielsweise Seilklemmen die beiden Bogensegmente im Überlappungsbereich 25 gegeneinander verschiebbar verbinden. Sollte demnach die Eigenspannung des verspannten Spannbogens 4 oder -rings beim Rückfahren der Haltevorrichtungen des Bewehrungswagens etwas nachgeben, kann hier durch ein Erhöhen der Eigenspannung durch ein Zusammenführen der Winkelhaken 27 der Spannbogen 4 oder -ring wieder in die korrekte Position gebracht werden. Dann können beispielsweise die Seilklemmen angezogen oder eine Verschweißung vorgenommen werden.
  • Figur 7 zeigt einen gesamten montierten Spannbogen 4 mit äußerer und innerer Bewehrungslage 19 und 20, den Spannstützkörpern 2 und in der Dimension nicht genauer dargestellten Abstandhaltern 1 und 22. Es wird deutlich, mit welch minimalem konstruktivem Aufwand hier eine selbsttragende Bewehrung der Innenschale aufgebaut worden ist.
  • Die Figuren 8 bis 17 zeigen nun verschiedenste Bauformen der Abstandhalterkörper 1, wobei im Wesentlichen stabförmige Abstandhalterkörper 1 dargestellt sind. Diese haben in der Regel eine durchgängige Auflagefläche 10 oder zwei inständige Auflageflächen 10, die durch einen bogenförmigen oder zurückgesetzten Mittelbereich 11 verbunden sind. Bei letzterer Bauform reduziert sich die Aufstandsfläche 10 auf die zwei inständigen Aufstandsflächen 10, was einen sicheren Stand auf dem Untergrund der Tunnelwandung der Außenschalung gewährleistet sowie zu Materialeinsparungen bei den Abstandhaltern 1 beiträgt.
  • In der zum Spannbogen 4 oder -ring weisenden Oberfläche 12 des Abstandhalters 1 sind nun Befestigungsmittel oder Aufnahmen 8 angeordnet, die mit dem Spannstützkörper 2 verbunden werden. Diese Aufnahmen 8 sind entweder in Form von Bohrungen 7 ausgebildet, oder wie bereits in der Verbindung mit den Spannstützkörpern 2 zuvor erläutert, als schlitzartige Aufnahmen 13 oder Vorsprünge, in die dann entsprechende Abwinklungen 14 des Spannstützkörpers 2 eingesetzt und eingespannt werden können. Als Befestigungsmittel können auch Kunststoff- oder Metallkörper in den Abstandhalter eingesetzt sein.
  • Es ist hierbei grundsätzlich festzuhalten, dass die Ausbildung der Abstandhalter 1 stark variieren kann, da diese in ihrer Funktionalität in unterschiedlichen Gestaltungen funktionieren und immer in ihrer funktionalen Verbindung mit dem Spannstützkörper 2 zu gestalten sind. Die stangenförmige Bauform hat hier den Vorteil, gleichzeitig die Spannung des Spannstützkörpers 2 dadurch zu unterstützen und zu definieren, dass sie den Abstand zwischen den seitlich ausgestellten Stützarmen 3 wirksam festlegen. Durch mehrere in unterschiedlichem Abstand zueinander liegende Aufnahmen 8 kann auch die Spannung des Spannstützkörpers 2 in der Lücke zwischen Spannbogen 4 oder -ring und Außenschale 15 unterschiedlich eingestellt werden, je nachdem, ob die Stützarme 3 enger zueinander oder weiter auseinander im Abstandhalter 1 eingreifen. Hierdurch verkürzt oder verlängert sich der Spannstützkörper 2.
  • Neben der stab- oder stangenförmigen Ausbildung ist auch eine einteilige Ausbildung im Sinne der Figur 16 möglich, die dann lediglich in Verbindung mit einem freien Ende 9 des Spannstützkörpers 2 steht. Das heißt, hier wird der Abstandhalterkörper 1 direkt auf das freie Ende 9 des Spannstützkörpers 2 aufgesteckt, wodurch hier in der Regel zwei dieser Abstandhalter mit den Stützarmen 3 eines Spannstützkörper 2 zu verbinden sind.
  • Im Folgenden sollen Bauformen des erfindungsgemäßen Bewehrungssystems näher beschrieben werden. Grundsätzlich ist ein Vorteil des erfindungsgemäßen Bewehrungssystems, dass die den später einzubauenden Bewehrungsmatten als Auflager dienenden Spannbögen oder -ringe konstruktiv deutlich einfach gehalten sind, als dies die im Stand der Technik standardmäßig verbauten Tragbögen sind. Die Spannbögen oder -ringe bestehen hierbei aus Bewehrungseisen, die beispielsweise als Rundstäbe verbaut werden. Alternativ sind auch andere Querschnitte als der Rundstab möglich, da es primär darauf ankommt, dass hier nicht eine konstruktiv aufwendige Lösung wie der Tragbogen verwendet wird, sondern ein einfaches Bewehrungseisen.
  • Die Frage der Konstruktion des Spannstützkörpers erlaubt hier verschiedene bauliche Lösungen, auf die nun näher eingegangen werden soll. Es soll hierbei jeweils die im Folgenden beschriebene bauliche Lösung in Kombination mit den zu vor beschriebenen Bauformen der Spannbögen oder -ringe als Kombination offenbart werden, was beispielsweise die verschiedenen alternativen Querschnitte der Spannbögen oder -ringe oder deren Verbindung aus Segmenten anbetrifft.
  • Eine Basisbauform der erfindungsgemäßen Bewehrung sieht beispielsweise einen Spannbogen oder -ring in der zuvor beschriebenen Form vor, der in einen etwa M-förmigen Spannstützkörper eingreifen kann. Er greift hierbei in die Vertiefung etwa in die Mitte des M-förmigen Spannstützkörpers ein. Somit ergibt sich, dass dieser Spannstützkörper über zwei verlängerte seitliche Stützarme die Distanz und die Verspannung wie auch die Abstützung an der Außenschale des Tunnelgebäudes bewirkt.
  • Durch die M-förmige Anordnung wird erreicht, dass die seitlich abzweigenden Stützarme gewährleisten, dass auf Grund ihres schräg zur Außenschale angeordneten Verlaufs ein seitliches Kippen des verspannten Spannbogens oder -rings nicht möglich ist. Für die Bauform des etwa M-förmigen Spannstützkörpers bestehen nun verschiedene Optionen, wie die Verbindung zur Außenschale des Tunnelgebäudes erfolgen kann.
  • Eine vorteilhafte Bauform sieht vor, dass der Spannstützkörper in Standbereiche in Form von Abstandhaltern eingreift, die beispielsweise aus gegossenem oder extrudiertem Beton bestehen können, grundsätzlich aber auch beispielsweise Kunststoffkörper sein können. Diese Abstandhalter können entweder einzeln den Stützarmenden zugeordnet sein oder aber in Form eines etwa stabförmigen Abstandhalters bestehen, in den beide freien Enden eingreifen, wobei hier Bohrungen oder schlitzförmige Aufnahmen in den Abstandhaltern möglich sind.
  • Alternativ ist es auch möglich, vereinfachte Standbereiche an den freien Enden des Spannstützkörpers anzuordnen, beispielsweise Standfüße, die zum Beispiel aus Kunststoff gefertigt sein können. Zudem besteht die Option, den Standbereich an den Spannstützkörpern bereits integral anzuordnen, sodass dieser nicht als separater Körper anzusetzen ist sondern bereits beim Verspannen der Spannstützkörper an diesen angeordnet ist.
  • Neben der zuvor beschriebenen Bauform des in etwa M-förmigen Spannstützkörpers ist es auch alternativ in einer Bauform vorgesehen, einen Spannstützkörper aus nur einem Stützarm zu gestalten, der über ein entsprechendes endständiges Aufnahmeelement am Spannbogen oder -ring angreift. Es ist hierbei erfinderisch zu lösen, diesen Spannstützkörper gegen ein Kippen des Tragbogens bei dessen Verspannung zu sichern, weshalb hier der Standbereich an der Außenschale des Tunnelgebäudes entsprechend kippsicher auszubilden ist.
  • Es ist hierbei beispielsweise eine bauliche Lösung vorgesehen, bei der ein in etwa trapezförmiger Abstandhalter beziehungsweise Standbereich zur Aufnahme des freien Endes des Spannstützkörpers vorgesehen ist, wobei der Spannstützkörper in eine Bohrung dieses Abstandhalters eingeführt wird. Durch eine breite Aufstandsfläche an der Außenschale des Tunnelgebäudes wird gewehrleistet, dass ein kippen dieses Spannstützkörpers nicht erfolgen kann.
  • Grundsätzlich sind in diesem Zusammenhang weitere bauliche Konstruktionen zur Absicherung des aus einem Stützarm bestehenden Spannstützkörpers angedacht, die beispielsweise aus einem sich verzweigenden aus mehreren Auslegerarmen bestehenden Standbereich bestehen, der sich an der Außenschale des Tunnels abstützen kann oder auch einer Art flächiger Platte, an der der Stützarm des Spannstützkörpers angreift.
  • Es wird somit deutlich, dass die Gestaltung des Spannstützkörpers grundsätzlich auf verschiedene Weisen erfolgen kann, sofern ein sicherer Schutz gegen ein Abkippen des Spannstützkörpers bei der Verspannung des Spannbogens oder - rings erreicht wird. Der Spannstützkörper muss die Aufgabe sowohl des Verspannens als auch des sicheren Abstützens des Tragbogens sicher gewährleisten.

Claims (20)

  1. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes zumindest aufweisend eine Außenlage (19) und eine Innenlage (20) einer Bewehrung und Abstandhalter (1, 21)
    gekennzeichnet durch
    - Spannbögen (4) oder Spannringe mit anpassbarer Bogenlänge oder anpassbarem Ringumfang gebildet aus zumindest zwei Bogensegmenten (23, 24) zur Bildung eines Tunnelbewehrungsbogens oder -rings für die Bewehrung der Innenschale des Tunnelgebäudes zur Auflage für zumindest eine Außenlage (19) zumindest aus Bewehrungsmatten,
    - wobei die Bogensegmente (23, 24) jeweils aus einem einzelnen Bewehrungsstahlstab gebildet sind,
    - Spannstützkörper (2) mit einem Verbindungsbereich (5) zu den Spannbögen (4) sowie zumindest einem Stützarm (3) zur abstützenden und den Abstand zu einer Außenschale (15) oder der Gebirgswand herstellenden Verspannung der Spannbögen (4) oder Spannringe an der Außenschale oder Gebirgswand des Tunnelgebäudes,
    - erste Abstandhalter (1) an den Spannstützkörpern (2) zur Abstützung an der Außenschale oder Gebirgswand des Tunnelgebäudes und Erzeugung der Mindestbetondeckung der verbauten Stahlbetonbauteile sowie
    - zweite Abstandhalter (21) zwischen einer Außenlage (19) und einer Innenlage (20) der Bewehrung.
  2. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zumindest zwei Bogensegmenten (23, 24) der Spannbögen (4) oder Spannringe zur Anpassung der Bogenlänge oder des Ringumfangs mittels eines lösbaren Verbindungselementes miteinander verbunden sind.
  3. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach Anspruch 2,
    dadurch gekennzeichnet, dass
    zumindest zwei Bogensegmenten (23, 24) der Spannbögen (4) oder Spannringe zur Anpassung der Bogenlänge oder des Ringumfangs Überlappungsbereiche aufweisen, die mittels einer Seilklemme lösbar miteinander verbunden sind.
  4. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche 2 oder 3,
    dadurch gekennzeichnet, dass
    zumindest zwei Bogensegmenten (23, 24) der Spannbögen (4) oder Spannringe zur Anpassung der Bogenlänge oder des Ringumfangs abgewinkelte freie Enden als Winkelhaken oder Angriffspunkte aufweisen, an denen eine Spannvorrichtung angesetzt werden kann.
  5. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zumindest zwei Bogensegmenten (23, 24) der Spannbögen (4) oder -ringe zur Anpassung der Bogenlänge oder des Ringumfangs mittels eines längenverstellbaren Zwischenstücks oder Verbindungselementes miteinander verbunden sind.
  6. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    die Bogensegmente (23, 24) der Spannbögen (4) oder -ringe als Bewehrungsstahlstäbe mit einem runden, ovalen oder rechteckigen Querschnitt ausgebildet sind, die einen Durchmesser oder eine Diagonale von etwa 15 mm bis 50 mm aufweisen.
  7. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    die Spannstützkörper (2) in etwa gleichmäßig über die aus den Bogensegmenten (23, 24) zusammengesetzten Spannbögen (4) oder -ringe verteilt an diesen angeordnet sind.
  8. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    die Spannstützkörper (2) in etwa M-förmig ausgebildet sind, wobei der Verbindungsbereich (5) zur Aufnahme des Spannbogens (4) oder -rings in der mittig angeordneten, in etwa V-förmigen Mulde zwischen den Stützarmen (3) des Spannstützkörpers (2) angeordnet ist.
  9. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass
    die Spannstützkörper (2) einen Verbindungsbereich (5) zur Aufnahme des Spannbogens (4) oder -rings in Form eines Befestigungsmittels zum Spannbogen (4) aufweisen, von dem der zumindest eine Stützarm (3) des Spannstützkörpers (2) abzweigt.
  10. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    ein einzelner länglicher Abstandhalter (1) zur Aufnahme von freien Enden (9) der Stützarme (3) des Spannstützkörpers (2) und zur Abstützung an der Außenschale des Tunnelgebäudes oder der Gebirgswand vorgesehen ist, der auf seiner dem Spannbogen (4) und dem Spannstützkörper (2) zugewandten Oberseite Aufnahmen (8) für die freien Enden (9) der Stützarme (3) aufweist, die als schlitzartige Vertiefungen (13), Bohrungen (7), Vorsprünge oder eingesetzte Verbindungsmittel ausgebildet sind.
  11. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach Anspruch 10,
    dadurch gekennzeichnet, dass
    der längliche stangenartige Abstandhalter (1) an seiner unterseitigen Aufstandsfläche einen Mittelbereich (11) aufweist, der gegenüber den randständig angeordneten Aufstandsbereichen vertieft ausgebildet ist.
  12. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass
    an den freien Enden (9) der Stützarme (3) des Spannstützkörpers (2) jeweils ein einzelner Abstandhalter (1) oder Standfuß angeordnet ist.
  13. Selbsttragendes Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    die Abstandhalter (1) auf Ihrer rückwärtigen Aufstandsfläche mit einer Beschädigungen entgegenwirkenden Schutzauflage beschichtet sind.
  14. Verfahren zum Einbau eines Bewehrungssystems nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    - Spannbögen (4) oder Spannringe aus den Bogensegmenten (23, 24) so vorgeformt und montiert werden, dass sie in ihrer Position und Grundform im Tunnelquerschnitt ein Auflager für die definierte Einbauposition der Außenlage (19) der Bewehrung bilden,
    - diese Spannbögen (4) oder -ringe an einem Bewehrungswagen geführt im Tunnelquerschnitt gestellt oder gehalten und ausgerichtet werden,
    - punktuell an den umlaufend definierten Angriffspunkten der Spannstützkörper die Distanz vom Spannbogen (4) oder -ring zur Außenschale oder Gebirgswand gemessen wird und jeder einzusetzende Spannstützkörper vor Ort durch Abschneiden oder Abwinkeln auf das derart bestimmte erforderliche Maß gekürzt wird,
    - Abstandhalter (1) und in der Länge angepasste Spannstützkörper (2) zwischen der Außenschale des Tunnelgebäudes oder der Gebirgswandung und den Spannbögen (4) über deren Gesamtumfang verteilt verklemmt angeordnet werden,
    - wodurch die Spannbögen (4) oder -ringe über die Spannstützkörper (2) und Abstandhalter (1) gegen die Außenschale des Tunnelgebäudes oder die Gebirgswandung verspannt und abgestützt sind und
    - eine abschließende definierte Verspannung der Spannbögen (4) oder -ringe durch eine Aufweitung und anschließende Fixierung der Spannbögen (4) oder -ringe selbst erfolgt.
  15. Verfahren zum Einbau eines Bewehrungssystems nach Anspruch 14,
    dadurch gekennzeichnet, dass
    die Bogensegmente (23, 24) zumindest teilweise mittels lösbarer Verbindungsmittel zu Spannbögen (4) oder Spannringen montiert werden, wobei diese Verbindung zumindest zwischen zwei der Bogensegmente (23, 24) vor der abschließenden Aufweitung der Spannbögen (4) oder -ringe gelöst und nach der Aufweitung wieder fixiert wird.
  16. Verfahren zum Einbau eines Bewehrungssystems nach Anspruch 14,
    dadurch gekennzeichnet, dass
    zwischen zumindest zwei der Bogensegmente (23, 24) längenverstellbare Zwischenstücke eingesetzt sind, wobei diese Zwischenstücke für die abschließenden Aufweitung der Spannbögen (4) oder -ringe verlängert und nach der Aufweitung wieder fixiert werden.
  17. Verfahren zum Einbau eines Bewehrungssystems nach Anspruch 14, 15 oder 16,
    dadurch gekennzeichnet, dass
    die Spannbögen (4) auf der vorbetonierten Sohle des Tunnelgebäudes oder in Löchern, die in dieser bereits betonierten Sohle angeordnet sind, als Auflager aufgestellt werden.
  18. Verfahren zum Einbau eines Bewehrungssystems nach einem der vorangegangenen Ansprüche 14 bis 17,
    dadurch gekennzeichnet, dass
    die Spannbögen (4) oder -ringe nach dem Verspannen durch die Spannstützkörper (2) durch Befestigungsmittel oder eine Schweißverbindung im Verbindungsbereich (5) der Spannstützkörper (2) befestigt werden.
  19. Verfahren zum Einbau eines Bewehrungssystems nach einem der vorangegangenen Ansprüche 14 bis 18,
    dadurch gekennzeichnet, dass
    die Spannbögen (4) oder -ringe paarweise parallel eingebaut und mittels Querverbindern fest verbunden werden.
  20. Verfahren zum Einbau eines Bewehrungssystems nach Anspruch 14 oder 15,
    dadurch gekennzeichnet, dass
    eine Spannvorrichtung an zwei benachbarte Bogensegmente (23, 24) zur abschließenden Aufweitung der Spannbögen (4) oder -ringe angesetzt wird, dann die Verbindung zwischen diesen Bogensegmenten (23, 24) gelöst und nach der Aufweitung durch die Spannvorrichtung wieder fixiert wird.
EP18773927.1A 2017-09-07 2018-08-24 Bewehrungssystem für den betonausbau der innenschale eines tunnelgebäudes Active EP3580429B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RS20210659A RS61909B1 (sr) 2017-09-07 2018-08-24 Sistem armature za betonsku oblogu unutrašnje školjke tunelskog objekta
PL18773927T PL3580429T3 (pl) 2017-09-07 2018-08-24 System zbrojenia dla betonowej okładziny powłoki wewnętrznej budowli tunelu
SI201830299T SI3580429T1 (sl) 2017-09-07 2018-08-24 Ojačevalni sistem za betonsko oblogo notranje lupine konstrukcije tunela
HRP20210911TT HRP20210911T1 (hr) 2017-09-07 2021-06-09 Sustav ojačanja za betonsku oblogu unutarnje ljuske konstrukcije tunela

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102017120635 2017-09-07
DE202017105802.6U DE202017105802U1 (de) 2017-09-25 2017-09-25 Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes
DE102017125624.5A DE102017125624B3 (de) 2017-11-02 2017-11-02 Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes
DE202018102249.0U DE202018102249U1 (de) 2017-09-07 2018-04-23 Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes
PCT/DE2018/100734 WO2019047997A1 (de) 2017-09-07 2018-08-24 Bewehrungssystem für den betonausbau der innenschale eines tunnelgebäudes

Publications (2)

Publication Number Publication Date
EP3580429A1 EP3580429A1 (de) 2019-12-18
EP3580429B1 true EP3580429B1 (de) 2021-03-24

Family

ID=62163930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18773927.1A Active EP3580429B1 (de) 2017-09-07 2018-08-24 Bewehrungssystem für den betonausbau der innenschale eines tunnelgebäudes

Country Status (17)

Country Link
US (1) US11180994B2 (de)
EP (1) EP3580429B1 (de)
AU (1) AU2018328611B2 (de)
CA (1) CA3072965C (de)
DE (1) DE202018102249U1 (de)
DK (1) DK3580429T3 (de)
ES (1) ES2870616T3 (de)
HR (1) HRP20210911T1 (de)
HU (1) HUE054715T2 (de)
IL (1) IL272862B2 (de)
LT (1) LT3580429T (de)
NZ (1) NZ761330A (de)
PL (1) PL3580429T3 (de)
PT (1) PT3580429T (de)
RS (1) RS61909B1 (de)
SI (1) SI3580429T1 (de)
WO (1) WO2019047997A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112900272A (zh) * 2021-01-19 2021-06-04 高文贤 桥梁高效施工方法
CN113153375B (zh) * 2021-04-08 2022-12-02 济南城建集团有限公司 软弱地基超小净距隧道初支防掉撑减沉支撑体系施工方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237160B (de) 1964-06-18 1967-03-23 Rheinstahl Gmbh Wanheim Stossverbindung zwischen Fachwerktraegern, die als Bewehrung einer Tunnelauskleidungaus Beton dienen
DE1608527B1 (de) * 1964-10-13 1970-05-21 Aug Kloenne Fa Untertageausbau
DE1533746B1 (de) * 1967-01-25 1969-09-18 Thyssen Huette Ag Verfahren zur Verwandlung eines selbsttragenden,gitterartigen Ausbauelementes fuer unterirdische Hohlraeume in eine nichttragende Bewehrung fuer einen Stahlbetonausbau und zur Durchfuehrung des Verfahrens geeignetes Ausbauelement
CH541677A (de) * 1971-09-29 1973-09-15 Bernold Jean Verfahren zur Sicherung der Wand beim Tunnelfräsen
AT345331B (de) * 1976-05-07 1978-09-11 Gd Anker Gmbh & Co Kg Tunnelverzugselement
IT1114157B (it) * 1977-09-19 1986-01-27 Pirelli Furlanis Mezzi per sostenere lo strato impermeabile flessibile di rivestimento d'una cavita' in un'opera civile e procedimento relativo all'applicazione di tali mezzi
AT362739B (de) 1978-12-27 1981-06-10 Evg Entwicklung Verwert Ges Ausbaurahmen fuer stollen, tunnel od.dgl.
CH674546A5 (en) 1987-12-08 1990-06-15 Jean Bernold Construction of reinforced concrete wall in tunnel - whereby concrete is sprayed over mesh direct on to rock face
DE3927446C1 (en) 1989-08-19 1991-03-14 Bochumer Eisenhuette Heintzmann Gmbh & Co Kg, 4630 Bochum, De Yieldable tunnel wall support - has segmental frames with sprayed concrete and infill
EP0473539B1 (de) * 1990-08-24 1994-10-26 VSL International AG Anordnung von Spannkabeln in einem Druckstollen
JPH04323500A (ja) * 1991-01-17 1992-11-12 Ishikawajima Constr Materials Co Ltd トンネルの覆工方法および覆工用フレーム
US5470178A (en) * 1994-02-17 1995-11-28 Weholt; Raymond L. Insulating tunnel liner system
JP4323500B2 (ja) * 1997-10-31 2009-09-02 アルゼ株式会社 弾球遊技機
DE202006003288U1 (de) 2006-03-02 2006-05-11 Ed. Züblin Ag Tragbogen für Tunnel
JP4928429B2 (ja) * 2007-12-12 2012-05-09 前田建設工業株式会社 トンネルアーチコンクリート鉄筋自立工法
DE202009009718U1 (de) * 2009-07-16 2010-12-02 Mösl & Brandner GmbH Abstandshalter
JP5767558B2 (ja) * 2011-10-19 2015-08-19 鹿島建設株式会社 移動式型枠装置、及び、覆工コンクリートの構築方法
CN102733827B (zh) * 2012-06-29 2014-09-10 湖南省交通规划勘察设计院 隧道换拱施工方法及用于隧道换拱施工中的施工结构
US10774519B2 (en) * 2018-10-08 2020-09-15 Ram Structures Llc Fortified radial arch structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK3580429T3 (da) 2021-06-14
IL272862A (en) 2020-04-30
HUE054715T2 (hu) 2021-09-28
IL272862B2 (en) 2024-05-01
NZ761330A (en) 2022-02-25
DE202018102249U1 (de) 2018-04-27
RS61909B1 (sr) 2021-06-30
CA3072965A1 (en) 2019-03-14
LT3580429T (lt) 2021-07-26
SI3580429T1 (sl) 2021-11-30
AU2018328611A1 (en) 2020-02-20
ES2870616T3 (es) 2021-10-27
US20200284147A1 (en) 2020-09-10
US11180994B2 (en) 2021-11-23
PT3580429T (pt) 2021-06-01
AU2018328611B2 (en) 2021-01-28
CA3072965C (en) 2022-07-19
EP3580429A1 (de) 2019-12-18
WO2019047997A1 (de) 2019-03-14
HRP20210911T1 (hr) 2021-09-03
PL3580429T3 (pl) 2021-11-08
WO2019047997A4 (de) 2019-05-09
IL272862B1 (en) 2024-01-01

Similar Documents

Publication Publication Date Title
EP3521557B1 (de) Multifunktionsrahmen für röhrenartige bauwerke
AT519067B1 (de) Dehnfugenschalung
EP3029220B1 (de) Transportanker für vorgefertigte stahlbeton doppelwände
DE1608527B1 (de) Untertageausbau
EP3580429B1 (de) Bewehrungssystem für den betonausbau der innenschale eines tunnelgebäudes
DE202017105802U1 (de) Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes
EP1669505A1 (de) Stahlverbundträger mit brandgeschütztem Auflager für Deckenelemente
EP2320001B1 (de) Vorrichtung zum Erstellen einer Teilabschalung und/oder einer Dehnungsfugen-Abschalung an einem Betonbauwerk
DE102017125624B3 (de) Bewehrungssystem für den Betonausbau der Innenschale eines Tunnelgebäudes
DE2058714A1 (de) Betonrippenplatte
EP0410335B1 (de) Bewehrungselement zur Bildung von Ausbaurahmen im Tunnelbau
DE2606241A1 (de) Verfahren zum aufbau einer bewehrenden randversteifung fuer die bordkante von strassen o.dgl., zementbloecke und aufhaengevorrichtungen hierfuer
DE1634302C3 (de) Vorgefertigtes Bauelement aus Stahlbeton zur Herstellung einer Stützmauer oder dergleichen
DE3601587C2 (de)
DE814603C (de) Stuetzbogen fuer die Auskleidung von Stollen, Tunnels, Strecken usw. als vorlaeufiger Stuetzrahmen
AT503358B1 (de) Anschlusskorb für vorfabrizierte doppelwandelemente
DE3040638C2 (de) Gitterträger für aus Stahlbeton bestehende, ringförmige, bogenförmige oder türsteckförmige Ausbauten von Untertage- und Tunnelbauwerken sowie mit derartigen Gitterträgern erstellter Ausbau
DE69910846T2 (de) Flexible ziegelbahn und verfahren zur errichtung von gewölben mittels dieser bahn
DE2949963C2 (de) Verfahren zum Ausbessern und Verstärken von Streckenausbau und dafür geeignete Verzugmatte
AT412359B (de) Schalung
DE2528114C3 (de) Vorschubrüstung zum Herstellen des Überbaus von Spannbetonbrücken oder dergleichen Tragwerken aus Fertigteilen
DE2915588A1 (de) Ausbau fuer strecken des untertagebergbaus und des tunnelbaus
DE4019280A1 (de) Verfahren und gittermatte zur herstellung von strecken des untertagebetriebes mit hilfe von spritzbeton
DE3309381C1 (de) Verfahren und Vorrichtung zur Sicherung des Saumes von Abbaustrecken des Berghaus mit Hilfe eines Begleitdammes aus hydraulisch abbindendem Dammbaustoff
AT137462B (de) Deckenkonstruktion.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200901

DAV Request for validation of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1374686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004483

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3580429

Country of ref document: PT

Date of ref document: 20210601

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210526

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20210911T

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210610

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E020897

Country of ref document: EE

Effective date: 20210525

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210401617

Country of ref document: GR

Effective date: 20210709

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37372

Country of ref document: SK

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20210911

Country of ref document: HR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210324

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210911

Country of ref document: HR

Payment date: 20210813

Year of fee payment: 4

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054715

Country of ref document: HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2870616

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004483

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018004483

Country of ref document: DE

Owner name: GSR SPANNRING GMBH, DE

Free format text: FORMER OWNER: BAG BAUARTIKEL GMBH, 55576 SPRENDLINGEN, DE

26N No opposition filed

Effective date: 20220104

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: GSR SPANNRING GMBH

REG Reference to a national code

Ref country code: EE

Ref legal event code: GB1A

Ref document number: E020897

Country of ref document: EE

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: GSR SPANNRING GMBH, DE

Free format text: FORMER OWNER(S): BAG BAUARTIKEL GMBH, DE

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Representative=s name: SBGK SZABADALMI UEGYVIVOEI IRODA, HU

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 37372

Country of ref document: SK

Owner name: GSR SPANNRING GMBH, SPRENDLINGEN, DE

Free format text: FORMER OWNER: BAG BAUARTIKEL GMBH, SPRENDLINGEN, DE

Effective date: 20220524

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210911

Country of ref document: HR

Payment date: 20220816

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20221103 AND 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230630

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210911

Country of ref document: HR

Payment date: 20230816

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230816

Year of fee payment: 6

Ref country code: SM

Payment date: 20230823

Year of fee payment: 6

Ref country code: RO

Payment date: 20230821

Year of fee payment: 6

Ref country code: NO

Payment date: 20230822

Year of fee payment: 6

Ref country code: MC

Payment date: 20230821

Year of fee payment: 6

Ref country code: IT

Payment date: 20230831

Year of fee payment: 6

Ref country code: IE

Payment date: 20230821

Year of fee payment: 6

Ref country code: GB

Payment date: 20230824

Year of fee payment: 6

Ref country code: FI

Payment date: 20230823

Year of fee payment: 6

Ref country code: ES

Payment date: 20230918

Year of fee payment: 6

Ref country code: EE

Payment date: 20230818

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230814

Year of fee payment: 6

Ref country code: CY

Payment date: 20230817

Year of fee payment: 6

Ref country code: CH

Payment date: 20230902

Year of fee payment: 6

Ref country code: BG

Payment date: 20230818

Year of fee payment: 6

Ref country code: AT

Payment date: 20230818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230818

Year of fee payment: 6

Ref country code: SI

Payment date: 20230816

Year of fee payment: 6

Ref country code: SE

Payment date: 20230823

Year of fee payment: 6

Ref country code: RS

Payment date: 20230821

Year of fee payment: 6

Ref country code: PL

Payment date: 20230814

Year of fee payment: 6

Ref country code: IS

Payment date: 20230828

Year of fee payment: 6

Ref country code: HU

Payment date: 20230817

Year of fee payment: 6

Ref country code: HR

Payment date: 20230816

Year of fee payment: 6

Ref country code: GR

Payment date: 20230818

Year of fee payment: 6

Ref country code: FR

Payment date: 20230821

Year of fee payment: 6

Ref country code: DK

Payment date: 20230823

Year of fee payment: 6

Ref country code: DE

Payment date: 20230609

Year of fee payment: 6

Ref country code: BE

Payment date: 20230822

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230823

Year of fee payment: 6

Ref country code: LV

Payment date: 20230818

Year of fee payment: 6

Ref country code: LT

Payment date: 20230810

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20230818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230811

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240820

Year of fee payment: 7