EP3402599B1 - Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles - Google Patents

Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles Download PDF

Info

Publication number
EP3402599B1
EP3402599B1 EP17700769.7A EP17700769A EP3402599B1 EP 3402599 B1 EP3402599 B1 EP 3402599B1 EP 17700769 A EP17700769 A EP 17700769A EP 3402599 B1 EP3402599 B1 EP 3402599B1
Authority
EP
European Patent Office
Prior art keywords
hole
perforated plate
nozzle row
fluid
application device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17700769.7A
Other languages
German (de)
French (fr)
Other versions
EP3402599A1 (en
Inventor
Hans-Georg Fritz
Benjamin WÖHR
Marcus Kleiner
Moritz BUBEK
Timo Beyl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP3402599A1 publication Critical patent/EP3402599A1/en
Application granted granted Critical
Publication of EP3402599B1 publication Critical patent/EP3402599B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/20Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/027Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0291Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work the material being discharged on the work through discrete orifices as discrete droplets, beads or strips that coalesce on the work or are spread on the work so as to form a continuous coating

Definitions

  • the invention relates to a perforated plate (for example a panel) for an application device (for example an application device) for applying a fluid serving as a coating agent to a motor vehicle body and / or an attachment therefor.
  • the invention also relates to an application device and an application method in which such a perforated plate is used.
  • a perforated plate for an application device for in particular overspray-free application of a coating agent is already known.
  • the perforated plate comprises several through holes for applying the coating agent, the through holes being arranged in several rows of nozzles in the form of a matrix and thus in a 2-dimensional configuration.
  • sharp-edged coating agent webs can be produced.
  • a disadvantage of this, however, is that the sharp-edged coating agent webs are unsuitable for overlapping, since they have an at least almost rectangular cross-sectional profile.
  • Figure 13 shows e.g. B. an almost perfect joint of two coating agent webs B1 * and B2 * with a rectangular cross-sectional profile.
  • FIG. 14 shows two coating agent webs B1 * and B2 * with a rectangular cross-sectional profile that do not touch or overlap in the joint / overlap area, resulting in an in Figure 14 disadvantageous dent shown on the right in the resulting coating.
  • Figure 15 shows two coating material webs B1 * and B2 * with a rectangular cross-sectional profile, which overlap in the joint / overlap area in such a way that an overcoating occurs, which leads to an in Figure 15 disadvantageous mountain or elevation shown on the right in the resulting coating.
  • an application device which discloses a cross-sectional profile in the form of a trapezoid that is more suitable for the overlapping of coating material webs.
  • the trapezoidal profile is generated by several through holes for applying the coating agent, the through holes being arranged in several rows of nozzles in the form of a matrix and thus in a 2-dimensional configuration.
  • the 2-dimensional configuration, with nozzle diameters of the same or different sizes, and the trapezoidal profile created by it, are initially very complex due to the large number of through holes.
  • the 2-dimensional configuration results in an undesirably high flow of coating agent, in particular when the coating agent is applied continuously, as is customary when coating motor vehicle bodies.
  • the 2-dimensional configuration also means that when a coating agent web is applied, coating agent is applied from a row of nozzles downstream relative to the direction of movement onto coating agent from a row of nozzles upstream relative to the direction of movement, which can disadvantageously lead to coating agent splashes because Coating agent strikes not yet sufficiently dried or solidified coating agent.
  • DE 10 2011 056 823 A1 discloses a nozzle device for a furnace for the heat treatment of steel sheets or the like.
  • This nozzle device consists essentially of a supply pipe of circular cross-section with a gas supply connection and a number of nozzle openings for outflowing gas.
  • the nozzle openings in two edge regions of the supply pipe can have a greater mutual spacing than the nozzle openings in the central region of the nozzle pipe.
  • One object of the invention is to create an improved and / or alternative perforated plate, in particular a perforated plate, which enables an improved abutment or overlap area of two fluid paths and / or an at least substantially fluid splash-free application of fluid.
  • the invention creates a perforated plate (e.g. cover, strip, plate, etc.) for an application device (e.g. an application device) for applying a fluid used as a coating agent to a motor vehicle body and / or an attachment for this.
  • an application device e.g. an application device
  • the perforated plate and / or the application device is used in particular for the application of the fluid without atomization and / or masking.
  • the fluid used as a coating agent can in particular be a lacquer, a sealant, a release agent, a functional layer or an adhesive.
  • the fluid preferably has a viscosity of greater than 50 mPas, greater than 80 mPas or even greater than 100 mPas, in particular measured at a shear rate of 1000 s -1 . It can Fluid have a Newtonian or a non-Newtonian flow behavior.
  • the perforated plate has at least four or at least five through holes for the passage of the fluid.
  • the through holes are expediently arranged in a preferably essentially linearly aligned row of nozzles, the row of nozzles having two edge regions and a central region expediently extending between the two edge regions.
  • the through holes are spaced apart from one another by hole spacings.
  • the perforated plate is characterized in that the at least one outer hole spacing of the row of nozzles in at least one edge area is greater than at least one hole spacing in the central area, so that a fluid application (e.g. fluid path) with a substantially trapezoidal cross-sectional profile is possible, e.g. B. substantially right-angled, isosceles or unequal-sided trapezoidal cross-sectional profile and / or substantially Gaussian-shaped cross-sectional profile.
  • a fluid application e.g. fluid path
  • substantially trapezoidal cross-sectional profile e.g. B. substantially right-angled, isosceles or unequal-sided trapezoidal cross-sectional profile and / or substantially Gaussian-shaped cross-sectional profile.
  • the at least one outer hole spacing corresponds in particular to the first hole spacing from the outside of the row of nozzles in the at least one edge region.
  • the at least two, at least three and / or at least four outer hole spacings correspond in particular to the two, three and / or four first hole spacings of the nozzle row in the at least one edge region.
  • the gradation and thus appropriate enlargement of the hole spacing can only be done for the outermost and thus the one from the outside first hole spacing in only one edge area or both edge areas.
  • the gradation and thus appropriate hole spacing enlargement can, however, also take place via the at least two, at least three and / or at least four outermost and thus at least two, at least three and / or at least four from the outside first hole spacings in only one edge area or both edge areas.
  • a fluid application e.g. fluid path
  • an essentially right-angled trapezoidal cross-sectional profile can preferably be generated.
  • a fluid application e.g. fluid path
  • a substantially equal-sided or unequal-sided trapezoidal cross-sectional profile can preferably be produced.
  • the invention enables in particular an improved layer thickness distribution in the joint or overlap area of two fluid applications (e.g. fluid paths), which leads to optically uniform fluid surfaces (e.g. coating surfaces), expediently without layer thickness fluctuations that would be disadvantageous to the human eye.
  • the invention enables in particular that application splashes are reduced or completely avoided by applying the fluid from preferably only a single row of nozzles and thus a 1-dimensional nozzle configuration, because the row of nozzles applies the fluid directly to the component, possibly with the exception of a possible impact - or overlap area of two fluid applications, the above in the butt or overlap area Applied fluid is usually already sufficiently dried or solidified and therefore no longer tends, or at least only to a greatly reduced extent, to fluid splashes.
  • a distance tolerance between two appropriately sharp-edged fluid applications e.g. fluid paths
  • two appropriately sharp-edged fluid applications e.g. fluid paths
  • a distance tolerance between two appropriately sharp-edged fluid applications of up to +/- 150 ⁇ m, +/- 200 ⁇ m, +/- 500 ⁇ m, +/- 1 mm or even +/- 2 mm can be reached.
  • the perforated plate prefferably has only a single row of nozzles for applying the fluid, so that a 1-dimensional nozzle configuration can preferably be made possible.
  • the row of nozzles prefferably be centered linearly and / or center axes preferably of all through holes of the row of nozzles to be linearly aligned, e.g. B. along one and the same alignment line (useful straight alignment).
  • the outermost hole spacing of the row of nozzles in at least one edge area can expediently have the largest hole spacing of the row of nozzles.
  • the at least two outer hole spacings of the nozzle row in at least one edge area can be greater than at least one hole spacing in the central area.
  • the at least two outermost hole spacings in at least one edge area can, for. B. uniform (expediently essentially the same size) or inconsistent (expediently different sizes).
  • the central area has at least three or at least four hole spacings and thus expediently at least four or at least five through holes.
  • the at least one edge area can, for. B. have at least two or at least three hole spacings.
  • the hole spacings in the central area can be uniform (expediently essentially the same size), so that the through holes in the central area are evenly spaced from one another.
  • the through holes in the central area can expediently be designed uniformly.
  • outermost hole spacing in one edge area of the row of nozzles prefferably uniform (e.g. essentially the same) or non-uniform (e.g. different) relative to the outermost hole spacing in the other edge area.
  • the at least two outermost hole spacings in one edge area of the row of nozzles are uniform (e.g. essentially the same) or non-uniform (e.g. different) relative to the at least two outermost hole distances in the other edge area.
  • the at least one outermost hole spacing in one edge area is greater than at least one hole spacing in the central area and the at least one outermost hole spacing in the other edge area can be uniform (e.g. essentially large) relative to the at least one hole spacing in the central area.
  • All through holes of the row of nozzles each have a hole opening on the upstream side of the perforated plate and a hole opening on the downstream side of the perforated plate and a pipe stub as a three-dimensional structure on the downstream side of the perforated plate.
  • the hole openings can, for. B. have a larger passage cross-section than the hole openings and / or the pipe stubs can expediently have an outer jacket surface which tapers towards the free end of the respective pipe stub, in particular conically.
  • the two edge areas can e.g. B. be symmetrical or asymmetrical.
  • the row of nozzles is preferably designed symmetrically overall, in particular axially symmetrical and / or mirror-symmetrically relative to an axis of symmetry running transversely to the row of nozzles.
  • the outer hole spacing in at least one edge area is at most a factor of 2 or 3 greater than a hole spacing in the central area.
  • the at least two outer hole spacings of the row of nozzles in at least one edge area are in each case a maximum of a factor of 2 or 3 greater than one hole spacing in the central area.
  • At least one through hole in the middle area of the row of nozzles and / or at least one through hole in at least one edge area of the row of nozzles has a funnel-shaped hole opening and preferably a cylindrical hole opening.
  • the funnel-shaped opening of the hole preferably tapers in the direction of flow of the fluid.
  • the funnel-shaped opening of the hole of the at least one through hole in the central area can, for. B. lead deeper into the perforated plate than the funnel-shaped opening of the hole of the at least one through hole in the at least one edge region.
  • an inlet cross-section e.g.
  • the inlet-side passage cross-section) of a hole opening of at least one through-hole in the middle area of the nozzle row can be larger than an inlet cross-section (e.g. the inlet-side passage cross-section) of a hole opening of at least one through-hole in at least one edge area of the nozzle row.
  • the row of nozzles is designed to form a fluid application (z. B. fluid path) with a substantially trapezoidal cross-sectional profile, z. B. substantially right-angled, isosceles or unequal-sided trapezoidal cross-sectional profile and / or substantially Gaussian-shaped cross-sectional profile, so that the row of nozzles is particularly suitable for generating overlap-optimized fluid paths.
  • the hole openings of the through holes of the row of nozzles have a larger flow cross section than the hole opening.
  • the invention is not limited to a perforated plate, but also includes an application device, e.g. B. an application device for applying a fluid, the application device having at least one perforated plate as disclosed herein.
  • an application device e.g. B. an application device for applying a fluid, the application device having at least one perforated plate as disclosed herein.
  • the application device prefferably be designed to ensure a pressure-equal flow of fluid over the entire row of nozzles and thus expediently over all through holes.
  • the application device prefferably be designed to ensure a fluid flow to the at least one edge area that can be controlled (for example, regulated) independently of the central area.
  • the two edge areas can e.g. B. be supplied with fluid by the same fluid delivery unit or by a separate fluid delivery unit each, so that in particular each edge area can be supplied with fluid by a separately controllable (z. B. regulatable) fluid delivery unit.
  • the application device is preferably used to apply a fluid with a viscosity of over 50 mPas, over 80 mPas or over 100 mPas, in particular at a shear rate of 1000s -1 .
  • the fluid can have a Newtonian or a non-Newtonian flow behavior.
  • the application device prefferably has at least two perforated plates arranged next to one another, whose Rows of nozzles are preferably arranged offset to one another in the longitudinal direction of the rows of nozzles.
  • the at least one perforated plate can in particular be arranged on (for example on or in) an outer end face of the application device and thus preferably represent an outer plate.
  • the at least four through holes consequently preferably form exit holes from the application device.
  • the invention also comprises an application method for applying a fluid by means of at least one application device and / or at least one perforated plate as disclosed herein.
  • the fluid is particularly possible here for the fluid to be applied from a single row of nozzles on the perforated plate.
  • the fluid is a coating agent, e.g. B. a paint, a sealant, a release agent, an adhesive, etc., and / or can be used to form a functional layer.
  • a coating agent e.g. B. a paint, a sealant, a release agent, an adhesive, etc.
  • the functional layer category includes, in particular, layers that result in surface functionalization, such as B. adhesion promoters, primers or layers to reduce transmission.
  • the perforated plate according to the invention has hole openings on the upstream side of the perforated plate and hole openings on the downstream side of the perforated plate and z.
  • hole openings are fluidically optimized, in particular nozzle-shaped, and / or that the hole openings have a larger (passage) cross section than the hole openings.
  • Tube stubs which protrude from the downstream side of the perforated plate and into which the through holes merge, in particular to reduce the wetting area at the hole openings, are used as structuring.
  • the pipe stubs can, for. B. have an outer circumferential surface which tapers towards the free end of the respective pipe stub, in particular conically.
  • the perforated plate can, for. B. have a greater thickness at the edge than in a central area with the through holes. It is possible that preferably all through holes in the perforated plate are at least partially produced by an etching production method, in particular dry etching or wet etching.
  • the perforated plate can in particular at least partially consist of a semiconductor material, for. B. made of one of the following materials: silicon, silicon dioxide, silicon carbide, gallium, gallium arsenide and / or indium phosphide.
  • a substantially trapezoidal cross-sectional profile preferably also z. B. may comprise a substantially Gaussian-shaped cross-sectional profile.
  • Figure 1 shows a perforated plate 1 for an application device for the preferably atomization-free and mask-free application of a fluid to a component, e.g. B. a motor vehicle body and / or an attachment therefor.
  • a component e.g. B. a motor vehicle body and / or an attachment therefor.
  • the perforated plate 1 comprises seven through holes 2.1, 3.1, 3.2 and 3.3 for the passage of the fluid, the through holes 2.1, 3.1, 3.2 and 3.3 being assigned to a row of nozzles with a central area 2 and two edge areas 3a and 3b and by hole spacings a1, a2 and a3 are spaced from each other.
  • the row of nozzles comprises in particular a central area 2 with four through holes 2.1, a first in Figure 1 left edge area 3a with two through holes 3.1 and 3.2 and a second in Figure 1 right edge area 3b with a through hole 3.3.
  • the first edge area 3a comprises two most outer hole spacings a1 and a2.
  • the second edge region 3b comprises an outermost hole spacing a3.
  • the two most outer hole spacings a1 and a2 in the edge area 3a are greater than the hole spacings a3 in the central area.
  • the through holes 2.1 in the central area 2 are evenly spaced from one another by means of equally large hole spacings a3.
  • the outermost hole spacing a3 in the edge area 3b is designed to be uniform to the hole spacing a3 in the central area 2.
  • the perforated plate 1 comprises only a single row of nozzles, the row of nozzles being centered and linearly aligned along a straight alignment line (alignment line) 4, so that the central axes preferably of all through holes 2.1, 3.1, 3.2 and 3.3 of the row of nozzles are linearly aligned along one and the same Alignment line 4.
  • the through holes 2.1, 3.1, 3.2 and 3.3 of the row of nozzles are preferably designed to be uniform and thus essentially identical.
  • the double arrow 5 indicates the two possible directions of movement of the perforated plate 1 relative to the component.
  • Figure 2 shows a perforated plate 1 according to another embodiment of the invention.
  • the through holes 3.1 and 3.2 of the first edge region 3a can be spaced apart from one another by means of the hole spacings a1 and a2 and the through holes 3.1 and 3.2 of the second edge region 3b by means of the hole spacings a4 and a5.
  • the hole spacings a1, a2, a4 and a5 are all greater than the uniform hole spacings a3 in the center area 2.
  • the row of nozzles can be designed to be overall symmetrical, in particular axially symmetrical and / or mirror-symmetrical relative to an axis of symmetry S running transversely to the row of nozzles.
  • Figure 3 shows a perforated plate 1 according to yet another embodiment of the invention.
  • the hole spacing is increased in both edge regions 3a and 3b.
  • the two edge regions 3a and 3b do not include as in FIG Figure 2 two hole spacings each, but only one hole spacing a1 and a4.
  • Figure 4 shows a perforated plate 1 according to yet another embodiment of the invention.
  • the outermost hole spacing a3 in the edge area 3b is designed to be uniform to the hole spacing a3 in the central area 2.
  • Figure 5A shows a schematic representation of the cross section through two fluid paths B1 and B2, which can be generated by means of a perforated plate 1 according to an embodiment of the invention.
  • the cross-sections of the coating agent webs B1 and B2 have an essentially isosceles trapezoidal shape 6 and overlap in a joint or overlap area.
  • the distance tolerance between the two fluid paths B1 and B2 can take place in the range of +/- 150 pm, +/- 200 pm, +/- 500 pm, +/- 1 mm or even +/- 2 mm.
  • the trapezoidal shape 6 leads to an in Figure 5A Optimal coating shown on the right, especially in the overlap area.
  • Figure 5B shows a schematic representation of the cross section of a fluid path B1, which can be generated by means of a perforated plate 1 according to an embodiment of the invention.
  • the cross section has an essentially rectangular trapezoidal shape 6.
  • the perforated plate 1 according to the Figures 1 to 4 is expediently used with an application device for applying a fluid.
  • the application device can be designed to ensure an essentially pressure-equal flow of the fluid over the entire row of nozzles.
  • the application device can also be designed to enable a fluid flow to the at least one edge area 3a or 3b that can be controlled (for example, regulated) independently of the central area 2.
  • the two edge regions 3a and 3b can, for. B. be supplied with fluid via the same fluid delivery unit or by a separate fluid delivery unit.
  • FIGs 6 to 11 illustrate through-hole designs according to which the respective through-holes 2.1, 3.1, 3.2 and 3.3 of the row of nozzles can be designed.
  • the perforated plate 1 and in particular the through holes can be designed as shown in FIG WO 2014/121926 A1 disclosed.
  • Figure 6 shows a cross-sectional view through a perforated plate 1 in the region of one of the through-holes, the arrow in the cross-sectional view indicating the direction of flow of the coating agent through the through-hole. It can be seen from the cross-sectional view that the through hole has a flow-optimized hole opening 30, as a result of which the flow resistance of the through hole is reduced.
  • the perforated plate 1 has a structuring on the downstream side at the peripheral edge of the through holes, which reduces the tendency to wetting.
  • Figures 7A and 7B show an alternative cross-sectional view through the perforated plate 1 in the area of a through hole, wherein Figure 7A shows the through hole without a coating agent, whereas in Figure 7B a coating agent (e.g. fluid) 50 is shown.
  • a coating agent e.g. fluid
  • the coating agent 50 wets a wetting surface 60 on the downstream surface of the perforated plate 1, which makes a jet-shaped detachment of the coating agent 50 from the perforated plate 1 more difficult.
  • the Figures 8A and 8B show a preferred embodiment of the invention with a reduced tendency to wetting.
  • the perforated plate 1 has a tubular stub 70 on the circumferential edge of the individual through holes, the through hole merging into the tubular stub 70 so that the end face of the tubular stub 70 forms a wetting surface 80 at the free end of the tubular stub 70.
  • the wetting area 80 is therefore limited to the free end face of the pipe stub 70 and is therefore significantly smaller than the wetting area 60 according to FIG Figure 7A . This facilitates the detachment of the coating agent 50 from the perforated plate 1.
  • the stub tube 70 has between the downstream side of the perforated plate 1 and the free end of the stub tube 70 z.
  • B. a length L which is preferably greater than 50 pm, 70 pm, or 100 microns and / or smaller than 200 microns, 170 microns or 150 microns, so that the pipe stub 70 z.
  • B. a length L. may be between 50 to 200 ⁇ m, 70 to 170 ⁇ m or 100 to 150 ⁇ m.
  • Figure 9 shows a modification of Figure 8A , wherein the outer jacket surface of the pipe stub 70 tapers conically to the free end of the pipe stub 70, so that the wetting surface at the free end of the pipe stub 70 is minimal.
  • Figure 10A shows a schematic cross-sectional view through a perforated plate 1, which partially corresponds to the perforated plates described above, so that to avoid repetition, reference is made to the above description, the same reference numerals being used for corresponding details.
  • a special feature of this exemplary embodiment is that the perforated plate 1 has a relatively thick edge 90 on the outside and a thinner area 100 with the through holes in the middle.
  • the thick edge 90 of the perforated plate 1 ensures sufficient mechanical stability, while the reduction in thickness in the area 100 with the through holes ensures that the through holes offer only a relatively low flow resistance.
  • Figure 10B shows a modification of Figure 10A so as to avoid repetition on the description too Figure 10A is referred to, the same reference numerals being used for corresponding details.
  • a special feature of this exemplary embodiment is that the area 100 is only reduced in thickness on one side.
  • a special feature of the in Figure 11 The embodiment shown of the through hole is that the through hole at the upstream hole confluence initially has a cylindrical region 200 with a first inner diameter.
  • the cylindrical region 200 is then adjoined in the flow direction by a conical region 210 which tapers in the flow direction.
  • the inner diameter d of the opening of the hole is preferably significantly smaller than the inner diameter of the cylindrical region 200.
  • Figure 12A shows in a greatly simplified schematic representation an application device, in particular an application device, with a perforated plate 1 according to the invention for coating a component 160 (for example a motor vehicle body component).
  • a component 160 for example a motor vehicle body component
  • Coating agent jets 170 emerge from the individual through holes of perforated plate 1 and form a coherent coating agent film on the surface of component 160.
  • the individual jets of coating agent 170 can be jets of drops, as in FIG Figure 12A shown, or as continuous coating agent jets, in particular without drop formation, as in Figure 12B shown, trained.
  • Figures 12A and 12B also show that the perforated plate 1 is arranged on an outer end face of the application device, so that the through holes of the perforated plate 1 form exit holes from the application device.
  • Figure 16 shows a cross-sectional view through a through hole of a perforated plate 1.
  • the through hole comprises a funnel-shaped hole opening 30 with an inlet cross-section E and a cylindrical hole opening 40.
  • Figure 17 shows a cross-sectional view through a through hole of a perforated plate 1.
  • the through hole comprises a funnel-shaped hole opening 30 with an inlet cross section E and a cylindrical hole opening 40, the funnel-shaped hole opening 30 from FIG Figure 17 leads deeper into the perforated plate 1 than the funnel-shaped hole opening 30 of the Figure 16 .
  • Figure 18 shows a cross-sectional view through a through hole of a perforated plate 1.
  • the through hole comprises a funnel-shaped hole opening 30 with an inlet cross section E and a cylindrical hole opening 40, the funnel-shaped hole opening 30 from FIG Figure 18 leads deeper into the perforated plate 1 than the funnel-shaped hole opening 30 of the Figure 17 .
  • Figure 19 shows a cross-sectional view through a through hole of a perforated plate 1.
  • the through hole comprises a funnel-shaped hole opening 30 with an inlet cross section E and a cylindrical hole opening 40, the funnel-shaped hole opening 30 from FIG Figure 19 leads deeper into the perforated plate 1 than the funnel-shaped hole opening 30 of the Figure 18 .
  • FIG. 16 to 19 an additional possibility of influencing the fluid flow by changing the cylindrical portion of a through hole can be obtained by designing its opening 30 in the shape of a funnel.
  • a funnel-shaped hole opening 30 By providing a funnel-shaped hole opening 30, so that the cylindrical portion of the through hole is reduced or enlarged, the fluid volume flow through the through hole can also be increased or decreased and that although, for.
  • Tie Figures 16 to 19 the (reference) passage diameter d and the inlet cross-sections E are the same.
  • Figure 16 enables the smallest, Figure 17 the second smallest, Figure 18 the third smallest and Figure 19 the largest fluid volume flow.
  • the ones in the Figures 16 to 19 can expediently be used in the central region 2 of the row of nozzles and / or in at least one edge region 3a, 3b of the row of nozzles.
  • an application device can have at least two perforated plates 1 arranged next to one another, the nozzle rows of which are arranged offset from one another in the longitudinal direction of the nozzle rows.
  • the perforated plates 1 are here on an outer one Arranged face of the application device so that they represent outer panels.

Description

Die Erfindung betrifft eine Lochplatte (z. B. Blende) für eine Applikationsvorrichtung (z. B. ein Applikationsgerät) zur Applikation eines als Beschichtungsmittel dienenden Fluides auf eine Kraftfahrzeugkarosserie und/oder ein Anbauteil hierfür. Die Erfindung betrifft ferner eine Applikationsvorrichtung und ein Applikationsverfahren, bei denen eine solche Lochplatte Verwendung findet.The invention relates to a perforated plate (for example a panel) for an application device (for example an application device) for applying a fluid serving as a coating agent to a motor vehicle body and / or an attachment therefor. The invention also relates to an application device and an application method in which such a perforated plate is used.

Aus der DE 10 2013 002 413 A1 ist bereits eine Lochplatte für ein Applikationsgerät zur insbesondere oversprayfreien Applikation eines Beschichtungsmittels bekannt. Die Lochplatte umfasst dabei mehrere Durchgangslöcher zur Applikation des Beschichtungsmittels, wobei die Durchgangslöcher in mehreren Düsenreihen matrixförmig und somit in einer 2-dimensionalen Konfiguration angeordnet sind. Dadurch können randscharfe Beschichtungsmittelbahnen erzeugt werden. Nachteilhaft daran ist allerdings, dass die randscharfen Beschichtungsmittelbahnen zur Überlappung ungeeignet sind, da sie ein zumindest nahezu rechteckiges Querschnittsprofil aufweisen. Figur 13 zeigt z. B. einen nahezu perfekten Stoß zweier Beschichtungsmittelbahnen B1* und B2* mit einem rechteckigen Querschnittsprofil. Ein solcher perfekter Stoß sollte eine Varianz von +/- 50 µm aufweisen, was zu einer in Figur 13 rechts gezeigten resultierenden Optimalbeschichtung führen würde. Ein derart perfekter Stoß ist in der Praxis z. B. aufgrund Toleranzen nicht oder nur mit erheblichem Aufwand möglich ist. Figur 14 zeigt zwei Beschichtungsmittelbahnen B1* und B2* mit rechteckigem Querschnittsprofil, die sich im Stoß-/Überlappungsbereich nicht berühren oder überlappen, was zu einer in Figur 14 rechts gezeigten nachteiligen Delle in der resultierenden Beschichtung führt. Figur 15 zeigt zwei Beschichtungsmittelbahnen B1* und B2* mit rechteckigem Querschnittsprofil, die sich im Stoß-/Überlappungsbereich so überlappen, dass es zu einer Überbeschichtung kommt, was zu einem in Figur 15 rechts gezeigten nachteilhaftem Berg oder Überhöhung in der resultierenden Beschichtung führt.From the DE 10 2013 002 413 A1 a perforated plate for an application device for in particular overspray-free application of a coating agent is already known. The perforated plate comprises several through holes for applying the coating agent, the through holes being arranged in several rows of nozzles in the form of a matrix and thus in a 2-dimensional configuration. As a result, sharp-edged coating agent webs can be produced. A disadvantage of this, however, is that the sharp-edged coating agent webs are unsuitable for overlapping, since they have an at least almost rectangular cross-sectional profile. Figure 13 shows e.g. B. an almost perfect joint of two coating agent webs B1 * and B2 * with a rectangular cross-sectional profile. Such a perfect joint should have a variance of +/- 50 µm, resulting in an in Figure 13 resulting optimal coating shown on the right. Such a perfect shock is in practice such. B. is not possible or only possible with considerable effort due to tolerances. Figure 14 shows two coating agent webs B1 * and B2 * with a rectangular cross-sectional profile that do not touch or overlap in the joint / overlap area, resulting in an in Figure 14 disadvantageous dent shown on the right in the resulting coating. Figure 15 shows two coating material webs B1 * and B2 * with a rectangular cross-sectional profile, which overlap in the joint / overlap area in such a way that an overcoating occurs, which leads to an in Figure 15 disadvantageous mountain or elevation shown on the right in the resulting coating.

Aus der DE 10 2010 019 612 A1 ist ein Applikationsgerät bekannt, das ein für die Überlappung von Beschichtungsmittelbahnen geeigneteres Querschnittsprofil in Form eines Trapezes offenbart. Das Trapezprofil wird dabei durch mehrere Durchgangslöcher zur Applikation des Beschichtungsmittels erzeugt, wobei die Durchgangslöcher in mehreren Düsenreihen matrixförmig und somit in einer 2-dimensionalen Konfiguration angeordnet sind. Verschieden große Düsendurchmesser, regelmäßig oder flächig verteilt, verfolgen insbesondere das Ziel einer verbesserten Auflösung bei flächiger Beschichtung. Die 2-dimensionale Konfiguration, mit Düsendurchmessern gleicher oder unterschiedlicher Größe, und das dadurch erzeugte Trapezprofil weisen zunächst aufgrund der Vielzahl der Durchgangslöcher eine hohe Komplexität auf. Darüber hinaus ergibt sich durch die 2-dimensionale Konfiguration ein ungewünscht hoher Beschichtungsmittelstrom, insbesondere dann, wenn das Beschichtungsmittel, wie üblich bei der Beschichtung von Kraftfahrzeugkarosserien, kontinuierlich appliziert wird. Die 2-dimensionale Konfiguration führt außerdem dazu, dass beim Applizieren einer Beschichtungsmittelbahn Beschichtungsmittel aus einer relativ zur Bewegungsrichtung nachgelagerten Düsenreihe auf Beschichtungsmittel aus einer relativ zur Bewegungsrichtung vorgelagerten Düsenreihe appliziert wird, was nachteilig zu Beschichtungsmittelspritzern führen kann, weil Beschichtungsmittel auf noch nicht ausreichend getrocknetes oder erstarrtes Beschichtungsmittel auftrifft.From the DE 10 2010 019 612 A1 an application device is known which discloses a cross-sectional profile in the form of a trapezoid that is more suitable for the overlapping of coating material webs. The trapezoidal profile is generated by several through holes for applying the coating agent, the through holes being arranged in several rows of nozzles in the form of a matrix and thus in a 2-dimensional configuration. Nozzle diameters of different sizes, distributed regularly or over a large area, pursue the goal in particular of improved resolution in the case of flat coating. The 2-dimensional configuration, with nozzle diameters of the same or different sizes, and the trapezoidal profile created by it, are initially very complex due to the large number of through holes. In addition, the 2-dimensional configuration results in an undesirably high flow of coating agent, in particular when the coating agent is applied continuously, as is customary when coating motor vehicle bodies. The 2-dimensional configuration also means that when a coating agent web is applied, coating agent is applied from a row of nozzles downstream relative to the direction of movement onto coating agent from a row of nozzles upstream relative to the direction of movement, which can disadvantageously lead to coating agent splashes because Coating agent strikes not yet sufficiently dried or solidified coating agent.

DE 10 2011 056 823 A1 offenbart eine Düseneinrichtung für einen Ofen zum Wärmebehandeln von Stahlblechen od. dgl. Diese Düseneinrichtung besteht im Wesentlichen aus einem im Querschnitt kreisrunden Versorgungsrohr mit einem Gaszufuhranschluss und einer Reihe von Düsenöffnungen für ausströmendes Gas. Bei einer Ausführungsform können die Düsenöffnungen in zwei Randbereichen des Versorgungsrohrs einen größeren gegenseitigen Abstand haben als die Düsenöffnungen im Mittelbereich des Düsenrohrs. DE 10 2011 056 823 A1 discloses a nozzle device for a furnace for the heat treatment of steel sheets or the like. This nozzle device consists essentially of a supply pipe of circular cross-section with a gas supply connection and a number of nozzle openings for outflowing gas. In one embodiment, the nozzle openings in two edge regions of the supply pipe can have a greater mutual spacing than the nozzle openings in the central region of the nozzle pipe.

DE 20 2011 001 109 US befasst sich mit der Herstellung von Verbundelementen aus Deckschichten und einem Kern aus PU-Schaumstoffen unter Verwendung eines über der Deckschicht angeordneten Rohrs mit einer Reihe von Öffnungen oder Bohrungen zum Auftragen von flüssigen Reaktionsgemischen auf die Deckschicht. Der Durchmesser oder gegenseitige Abstand der Öffnungen kann von der Zuführung des flüssigen Reaktionsgemischs zu den Rändern des Rohrs abnehmen. DE 20 2011 001 109 US deals with the production of composite elements from cover layers and a core made of PU foams using a tube arranged above the cover layer with a series of openings or bores for applying liquid reaction mixtures to the cover layer. The diameter or mutual spacing of the openings can decrease from the supply of the liquid reaction mixture to the edges of the tube.

Zum allgemeinen Stand der Technik kann noch die US 5 769 946 A und die US 2003/155451 A1 genannt werden.To the general state of the art, the U.S. 5,769,946 A and the US 2003/155451 A1 to be named.

Eine Aufgabe der Erfindung ist es, eine verbesserte und/oder alternative Lochplatte zu schaffen, insbesondere eine Lochplatte, die einen verbesserten Stoß- oder Überlappungsbereich zweier Fluidbahnen und/oder einen zumindest im Wesentlichen fluidspritzerfreien Fluidauftrag ermöglicht.One object of the invention is to create an improved and / or alternative perforated plate, in particular a perforated plate, which enables an improved abutment or overlap area of two fluid paths and / or an at least substantially fluid splash-free application of fluid.

Diese Aufgabe kann durch die Merkmale der Haupt- und Nebenansprüche gelöst werden. Vorteilhafte Weiterbildungen der Erfindung können den Unteransprüchen und der folgenden Beschreibung bevorzugter Ausführungsformen der Erfindung entnommen werden.This object can be achieved by the features of the main and secondary claims. Advantageous further developments of the invention can be found in the subclaims and the following description preferred embodiments of the invention are taken.

Die Erfindung schafft eine Lochplatte (z. B. Blende, Streifen, Plättchen etc.) für eine Applikationsvorrichtung (z. B. ein Applikationsgerät) zur Applikation eines als Beschichtungsmittel dienenden Fluides auf eine Kraftfahrzeugkarosserie und/oder ein Anbauteil hierfür.The invention creates a perforated plate (e.g. cover, strip, plate, etc.) for an application device (e.g. an application device) for applying a fluid used as a coating agent to a motor vehicle body and / or an attachment for this.

Die Lochplatte und/oder die Applikationsvorrichtung dient insbesondere zur zerstäubungs- und/oder maskierungsfreien Applikation des Fluides.The perforated plate and / or the application device is used in particular for the application of the fluid without atomization and / or masking.

Das als Beschichtungsmittel dienende Fluid kann insbesondere ein Lack, ein Dichtstoff, ein Trennmittel, eine Funktionsschicht oder ein Klebstoff sein.The fluid used as a coating agent can in particular be a lacquer, a sealant, a release agent, a functional layer or an adhesive.

Das Fluid weist vorzugsweise eine Viskosität von größer 50mPas, größer 80mPas oder sogar größer 100mPas, insbesondere gemessen bei einer Scherrate von 1000s-1, auf. Dabei kann das Fluid ein newtonsches oder ein nicht-newtonsches Fließverhalten aufweisen.The fluid preferably has a viscosity of greater than 50 mPas, greater than 80 mPas or even greater than 100 mPas, in particular measured at a shear rate of 1000 s -1 . It can Fluid have a Newtonian or a non-Newtonian flow behavior.

Die Lochplatte weist zumindest vier oder zumindest fünf Durchgangslöcher zum Durchleiten des Fluides auf. Die Durchgangslöcher sind zweckmäßig in einer vorzugsweise im Wesentlichen linear ausgerichteten Düsenreihe angeordnet, wobei die Düsenreihe zwei Randbereiche und einen sich zweckmäßig zwischen den zwei Randbereichen erstreckenden Mittenbereich aufweist. Die Durchgangslöcher sind durch Lochabstände voneinander beabstandet.The perforated plate has at least four or at least five through holes for the passage of the fluid. The through holes are expediently arranged in a preferably essentially linearly aligned row of nozzles, the row of nozzles having two edge regions and a central region expediently extending between the two edge regions. The through holes are spaced apart from one another by hole spacings.

Die Lochplatte zeichnet sich dadurch aus, dass der zumindest eine außenliegendste Lochabstand der Düsenreihe in zumindest einem Randbereich größer ist als zumindest ein Lochabstand im Mittenbereich, so dass eine Fluidapplikation (z. B. Fluidbahn) mit im Wesentlichen trapezprofilförmigem Querschnittsprofil ermöglichbar ist, z. B. im Wesentlichen rechtwinkliges, gleichschenkliges oder ungleichschenkliges Trapez-Querschnittsprofil und/oder im Wesentlichen gaußkurvenförmiges Querschnittsprofil.The perforated plate is characterized in that the at least one outer hole spacing of the row of nozzles in at least one edge area is greater than at least one hole spacing in the central area, so that a fluid application (e.g. fluid path) with a substantially trapezoidal cross-sectional profile is possible, e.g. B. substantially right-angled, isosceles or unequal-sided trapezoidal cross-sectional profile and / or substantially Gaussian-shaped cross-sectional profile.

Der zumindest eine außenliegendste Lochabstand entspricht insbesondere dem von außen ersten Lochabstand der Düsenreihe in dem zumindest einen Randbereich.The at least one outer hole spacing corresponds in particular to the first hole spacing from the outside of the row of nozzles in the at least one edge region.

Die zumindest zwei, zumindest drei und/oder zumindest vier außenliegendsten Lochabstände entsprechen insbesondere den zwei, drei und/oder vier von außen ersten Lochabständen der Düsenreihe in dem zumindest einen Randbereich.The at least two, at least three and / or at least four outer hole spacings correspond in particular to the two, three and / or four first hole spacings of the nozzle row in the at least one edge region.

Die Abstufung und somit zweckgemäße Lochabstandsvergrößerung kann nur für den außenliegendsten und somit den von außen ersten Lochabstand in nur einem Randbereich oder beiden Randbereichen erfolgen.The gradation and thus appropriate enlargement of the hole spacing can only be done for the outermost and thus the one from the outside first hole spacing in only one edge area or both edge areas.

Die Abstufung und somit zweckgemäße Lochabstandsvergrößerung kann aber auch über die zumindest zwei, zumindest drei und/oder zumindest vier außenliegendsten und somit mindestens zwei, mindestens drei und/oder mindestens vier von außen ersten Lochabständen in nur einem Randbereich oder beiden Randbereichen erfolgen.The gradation and thus appropriate hole spacing enlargement can, however, also take place via the at least two, at least three and / or at least four outermost and thus at least two, at least three and / or at least four from the outside first hole spacings in only one edge area or both edge areas.

Bei einer Lochabstandvergrößerung in nur einem Randbereich kann vorzugsweise eine Fluidapplikation (z. B. Fluidbahn) mit im Wesentlichen rechtwinkligem Trapez-Querschnittsprofil erzeugt werden.In the case of an enlargement of the hole spacing in only one edge area, a fluid application (e.g. fluid path) with an essentially right-angled trapezoidal cross-sectional profile can preferably be generated.

Bei einer Lochabstandvergrößerung in beiden Randbereichen kann vorzugswese eine Fluidapplikation (z. B. Fluidbahn) mit im Wesentlichen gleich- oder ungleichschenkligem Trapez-Querschnittsprofil erzeugt werden.In the case of an enlargement of the hole spacing in both edge regions, a fluid application (e.g. fluid path) with a substantially equal-sided or unequal-sided trapezoidal cross-sectional profile can preferably be produced.

Die Erfindung ermöglicht insbesondere eine verbesserte Schichtdickenverteilung im Stoß- oder Überlappungsbereich zweier Fluidapplikationen (z. B. Fluidbahnen), was zu optisch einheitlichen Fluidflächen (z. B. Beschichtungsflächen) führt, zweckmäßig ohne Schichtdickenschwankungen, die mit dem menschlichen Auge nachteilhaft erkennbar wären. Alternativ oder ergänzend ermöglicht die Erfindung insbesondere, dass durch Applikation des Fluids aus vorzugsweise nur einer einzigen Düsenreihe und somit einer 1-dimensionalen Düsenkonfiguration Applikationsspritzer reduziert oder gänzlich vermieden werden, weil die Düsenreihe das Fluid direkt auf das Bauteil appliziert, gegebenenfalls mit Ausnahme eines eventuellen Stoß- oder Überlappungsbereichs zweier Fluidapplikationen, wobei in dem Stoß- oder Überlappungsbereich das zuvor applizierte Fluid aber üblicherweise bereits ausreichend getrocknet oder erstarrt ist und somit nicht mehr oder zumindest nur stark reduziert zu Fluidspritzern neigt.The invention enables in particular an improved layer thickness distribution in the joint or overlap area of two fluid applications (e.g. fluid paths), which leads to optically uniform fluid surfaces (e.g. coating surfaces), expediently without layer thickness fluctuations that would be disadvantageous to the human eye. Alternatively or in addition, the invention enables in particular that application splashes are reduced or completely avoided by applying the fluid from preferably only a single row of nozzles and thus a 1-dimensional nozzle configuration, because the row of nozzles applies the fluid directly to the component, possibly with the exception of a possible impact - or overlap area of two fluid applications, the above in the butt or overlap area Applied fluid is usually already sufficiently dried or solidified and therefore no longer tends, or at least only to a greatly reduced extent, to fluid splashes.

Mittels der erfindungsgemäßen Lochplatte kann eine Abstandstoleranz zwischen zwei zweckmäßig randscharfen Fluidapplikationen (z. B. Fluidbahnen) auf bis zu +/- 150 µm, +/-200 µm, +/-500 µm, +/- 1mm oder sogar +/-2 mm erreicht werden.By means of the perforated plate according to the invention, a distance tolerance between two appropriately sharp-edged fluid applications (e.g. fluid paths) of up to +/- 150 μm, +/- 200 μm, +/- 500 μm, +/- 1 mm or even +/- 2 mm can be reached.

Es ist möglich, dass die Lochplatte nur eine einzige Düsenreihe zur Applikation des Fluides aufweist, so dass vorzugsweise eine 1-dimensionale Düsenkonfiguration ermöglicht werden kann.It is possible for the perforated plate to have only a single row of nozzles for applying the fluid, so that a 1-dimensional nozzle configuration can preferably be made possible.

Es ist möglich, dass die Düsenreihe zentriert linear ausgerichtet ist und/oder Mittelachsen vorzugsweise aller Durchgangslöcher der Düsenreihe linear ausgerichtet sind, z. B. entlang ein und derselben Ausrichtgeraden (zweckmäßig gerade Ausrichtlinie).It is possible for the row of nozzles to be centered linearly and / or center axes preferably of all through holes of the row of nozzles to be linearly aligned, e.g. B. along one and the same alignment line (useful straight alignment).

Es ist möglich, dass vorzugsweise alle Durchgangslöcher der Düsenreihe einheitlich (z. B. im Wesentlichen gleich) ausgeführt sind.It is possible that preferably all through holes of the row of nozzles are designed to be uniform (for example essentially the same).

Der außenliegendste Lochabstand der Düsenreihe in zumindest einem Randbereich kann zweckmäßig den größten Lochabstand der Düsenreihe aufweisen.The outermost hole spacing of the row of nozzles in at least one edge area can expediently have the largest hole spacing of the row of nozzles.

Die zumindest zwei außenliegendsten Lochabstände der Düsenreihe in zumindest einem Randbereich können größer sein als zumindest ein Lochabstand im Mittenbereich.The at least two outer hole spacings of the nozzle row in at least one edge area can be greater than at least one hole spacing in the central area.

Die zumindest zwei außenliegendsten Lochabstände in zumindest einem Randbereich können z. B. einheitlich (zweckmäßig im Wesentlich gleich groß) oder uneinheitlich (zweckmäßig unterschiedlich groß) ausgebildet sein.The at least two outermost hole spacings in at least one edge area can, for. B. uniform (expediently essentially the same size) or inconsistent (expediently different sizes).

Der Mittenbereich weist zumindest drei oder zumindest vier Lochabstände auf und somit zweckmäßig zumindest vier oder zumindest fünf Durchgangslöcher.The central area has at least three or at least four hole spacings and thus expediently at least four or at least five through holes.

Der zumindest eine Randbereich kann z. B. zumindest zwei oder zumindest drei Lochabstände aufweisen.The at least one edge area can, for. B. have at least two or at least three hole spacings.

Es ist möglich, dass die Lochabstände im Mittenbereich einheitlich (zweckmäßig im Wesentlichen gleich groß) ausgebildet sind, so dass die Durchgangslöcher im Mittenbereich gleichmäßig voneinander beabstandet sind. Alternativ oder ergänzend können die Durchgangslöcher im Mittenbereich zweckmäßig einheitlich ausgebildet sein.It is possible for the hole spacings in the central area to be uniform (expediently essentially the same size), so that the through holes in the central area are evenly spaced from one another. As an alternative or in addition, the through holes in the central area can expediently be designed uniformly.

Es ist möglich, dass der außenliegendste Lochabstand in dem einen Randbereich der Düsenreihe einheitlich (z. B. im Wesentlichen gleich) oder uneinheitlich (z. B. unterschiedlich) ausgebildet ist relativ zu dem außenliegendsten Lochabstand in dem anderen Randbereich.It is possible for the outermost hole spacing in one edge area of the row of nozzles to be uniform (e.g. essentially the same) or non-uniform (e.g. different) relative to the outermost hole spacing in the other edge area.

Es ist ebenfalls möglich, dass die zumindest zwei außenliegendsten Lochabstände in dem einen Randbereich der Düsenreihe einheitlich (z. B. im Wesentlichen gleich) oder uneinheitlich (z. B. unterschiedlich) ausgebildet sind relativ zu den zumindest zwei außenliegendsten Lochabständen in dem anderen Randbereich.It is also possible that the at least two outermost hole spacings in one edge area of the row of nozzles are uniform (e.g. essentially the same) or non-uniform (e.g. different) relative to the at least two outermost hole distances in the other edge area.

Der zumindest eine außenliegendste Lochabstand in dem einen Randbereich ist größer als zumindest ein Lochabstand im Mittenbereich und der zumindest eine außenliegendste Lochabstand in dem anderen Randbereich kann einheitlich (z. B. im Wesentlichen groß) ausgebildet sein relativ zu dem zumindest ein Lochabstand im Mittenbereich.The at least one outermost hole spacing in one edge area is greater than at least one hole spacing in the central area and the at least one outermost hole spacing in the other edge area can be uniform (e.g. essentially large) relative to the at least one hole spacing in the central area.

Es weisen alle Durchgangslöcher der Düsenreihe jeweils eine Locheinmündung an der stromaufwärts gelegenen Seite der Lochplatte und eine Lochausmündung an der stromabwärts gelegenen Seite der Lochplatte auf und einen Rohrstummel als dreidimensionale Strukturierung an der stromabwärts gelegenen Seite der Lochplatte.All through holes of the row of nozzles each have a hole opening on the upstream side of the perforated plate and a hole opening on the downstream side of the perforated plate and a pipe stub as a three-dimensional structure on the downstream side of the perforated plate.

Die Locheinmündungen können z. B. einen größeren Durchlassquerschnitt aufweisen als die Lochausmündungen und/oder die Rohrstummel können zweckmäßig eine äußere Mantelfläche aufweisen, die sich zum freien Ende des jeweiligen Rohrstummels hin verjüngt, insbesondere konisch.The hole openings can, for. B. have a larger passage cross-section than the hole openings and / or the pipe stubs can expediently have an outer jacket surface which tapers towards the free end of the respective pipe stub, in particular conically.

Die zwei Randbereiche können z. B. symmetrisch oder unsymmetrisch ausgebildet sein. Vorzugsweise ist die Düsenreihe insgesamt symmetrisch ausgebildet, insbesondere achssymmetrisch und/oder spiegelsymmetrisch relativ zu einer quer zur Düsenreihe verlaufenden Symmetrieachse.The two edge areas can e.g. B. be symmetrical or asymmetrical. The row of nozzles is preferably designed symmetrically overall, in particular axially symmetrical and / or mirror-symmetrically relative to an axis of symmetry running transversely to the row of nozzles.

Es ist möglich, dass der außenliegendste Lochabstand in zumindest einem Randbereich um maximal den Faktor 2 oder 3 größer ist als jeweils ein Lochabstand im Mittenbereich.It is possible that the outer hole spacing in at least one edge area is at most a factor of 2 or 3 greater than a hole spacing in the central area.

Es ist möglich, dass die zumindest zwei außenliegendsten Lochabstände der Düsenreihe in zumindest einem Randbereich um jeweils maximal den Faktor 2 oder 3 größer sind als jeweils ein Lochabstand im Mittenbereich.It is possible that the at least two outer hole spacings of the row of nozzles in at least one edge area are in each case a maximum of a factor of 2 or 3 greater than one hole spacing in the central area.

Es ist möglich, dass vorzugsweise alle Durchgangslöcher der Düsenreihe einheitlich (zweckmäßig im Wesentlichen identisch) ausgebildet sind, insbesondere den gleichen Durchlassquerschnitt aufweisen.It is possible that preferably all through holes of the row of nozzles are designed uniformly (expediently essentially identical), in particular have the same passage cross section.

Es ist möglich, dass zumindest ein Durchgangsloch im Mittenbereich der Düsenreihe und/oder zumindest ein Durchgangsloch in zumindest einem Randbereich der Düsenreihe eine trichterförmige Locheinmündung und vorzugsweise eine zylinderförmige Lochausmündung aufweist. Die trichterförmige Locheinmündung verjüngt sich vorzugsweise in Strömungsrichtung des Fluids. Die trichterförmige Locheinmündung des zumindest einen Durchgangslochs im Mittenbereich kann z. B. tiefer in die Lochplatte führen als die trichterförmige Locheinmündung des zumindest einen Durchgangslochs in dem zumindest einen Randbereich. Alternativ oder ergänzend kann ein Einlassquerschnitt (z. B. der eingangsseitige Durchlassquerschnitt) einer Locheinmündung zumindest eines Durchgangslochs im Mittenbereich der Düsenreihe größer sein als ein Einlassquerschnitt (z. B. der eingangsseitige Durchlassquerschnitt) einer Locheinmündung zumindest eines Durchgangslochs in zumindest einem Randbereich der Düsenreihe.It is possible that at least one through hole in the middle area of the row of nozzles and / or at least one through hole in at least one edge area of the row of nozzles has a funnel-shaped hole opening and preferably a cylindrical hole opening. The funnel-shaped opening of the hole preferably tapers in the direction of flow of the fluid. The funnel-shaped opening of the hole of the at least one through hole in the central area can, for. B. lead deeper into the perforated plate than the funnel-shaped opening of the hole of the at least one through hole in the at least one edge region. Alternatively or additionally, an inlet cross-section (e.g. the inlet-side passage cross-section) of a hole opening of at least one through-hole in the middle area of the nozzle row can be larger than an inlet cross-section (e.g. the inlet-side passage cross-section) of a hole opening of at least one through-hole in at least one edge area of the nozzle row.

Die Düsenreihe ist zur Ausbildung einer Fluidapplikation (z. B. Fluidbahn) mit im Wesentlichen trapezförmigen Querschnitts-Profil ausgeführt, z. B. im Wesentlichen rechtwinkliges, gleichschenkliges oder ungleichschenkliges Trapez-Querschnitts-Profil und/oder im Wesentlichen gaußkurvenförmiges Querschnitts-Profil, so dass sich die Düsenreihe insbesondere zur Erzeugung überlappungsoptimierter Fluidbahnen eignet.The row of nozzles is designed to form a fluid application (z. B. fluid path) with a substantially trapezoidal cross-sectional profile, z. B. substantially right-angled, isosceles or unequal-sided trapezoidal cross-sectional profile and / or substantially Gaussian-shaped cross-sectional profile, so that the row of nozzles is particularly suitable for generating overlap-optimized fluid paths.

Bei einer besonders bevorzugten Ausführungsform weisen die Locheinmündungen der Durchgangslöcher der Düsenreihe einen größeren Durchlassquerschnitt auf als die Lochausmündung.In a particularly preferred embodiment, the hole openings of the through holes of the row of nozzles have a larger flow cross section than the hole opening.

Die Erfindung ist nicht auf eine Lochplatte beschränkt, sondern umfasst auch eine Applikationsvorrichtung, z. B. ein Applikationsgerät, zur Applikation eines Fluides, wobei die Applikationsvorrichtung mindestens eine Lochplatte wie hierin offenbart aufweist.The invention is not limited to a perforated plate, but also includes an application device, e.g. B. an application device for applying a fluid, the application device having at least one perforated plate as disclosed herein.

Es ist möglich, dass die Applikationsvorrichtung ausgeführt ist, um eine druckgleiche Fluid-Anströmung über die gesamte Düsenreihe und somit über zweckmäßig alle Durchgangslöcher zu gewährleisten.It is possible for the application device to be designed to ensure a pressure-equal flow of fluid over the entire row of nozzles and thus expediently over all through holes.

Es ist ebenfalls möglich, dass die Applikationsvorrichtung ausgeführt ist, um eine vom Mittenbereich unabhängig steuerbare (z. B. regelbare) Fluid-Anströmung des zumindest einen Randbereichs zu gewährleisten.It is also possible for the application device to be designed to ensure a fluid flow to the at least one edge area that can be controlled (for example, regulated) independently of the central area.

Die zwei Randbereiche können z. B. durch dieselbe Fluid-Fördereinheit mit Fluid versorgt werden oder durch jeweils eine eigene Fluid-Fördereinheit, so dass insbesondere jeder Randbereich durch eine getrennt steuerbare (z. B. regelbare) Fluid-Fördereinheit mit Fluid versorgbar ist.The two edge areas can e.g. B. be supplied with fluid by the same fluid delivery unit or by a separate fluid delivery unit each, so that in particular each edge area can be supplied with fluid by a separately controllable (z. B. regulatable) fluid delivery unit.

Die Applikationsvorrichtung dient vorzugsweise zur Applikation eines Fluides mit einer Viskosität von über 50 mPas, über 80 mPas oder über 100 mPas, insbesondere bei einer Scherrate von 1000s-1. Dabei kann das Fluid ein newtonsches oder ein nicht-newtonsches Fließverhalten aufweisen.The application device is preferably used to apply a fluid with a viscosity of over 50 mPas, over 80 mPas or over 100 mPas, in particular at a shear rate of 1000s -1 . The fluid can have a Newtonian or a non-Newtonian flow behavior.

Es ist möglich, dass die Applikationsvorrichtung zumindest zwei nebeneinander angeordnete Lochplatten aufweist, deren Düsenreihen vorzugsweise in Längsrichtung der Düsenreihen versetzt zueinander angeordnet sind.It is possible for the application device to have at least two perforated plates arranged next to one another, whose Rows of nozzles are preferably arranged offset to one another in the longitudinal direction of the rows of nozzles.

Die zumindest eine Lochplatte kann insbesondere an (z. B. auf oder in) einer äußeren Stirnseite der Applikationsvorrichtung angeordnet sein und somit vorzugsweise eine Außenplatte darstellen. Die zumindest vier Durchgangslöcher bilden folglich vorzugsweise Austrittslöcher aus der Applikationsvorrichtung. Die Erfindung umfasst darüber hinaus ein Applikationsverfahren zur Applikation eines Fluides mittels zumindest einer Applikationsvorrichtung und/oder zumindest einer Lochplatte wie hierin offenbart.The at least one perforated plate can in particular be arranged on (for example on or in) an outer end face of the application device and thus preferably represent an outer plate. The at least four through holes consequently preferably form exit holes from the application device. The invention also comprises an application method for applying a fluid by means of at least one application device and / or at least one perforated plate as disclosed herein.

Dabei ist es insbesondere möglich, dass das Fluid aus einer einzigen Düsenreihe der Lochplatte appliziert wird.It is particularly possible here for the fluid to be applied from a single row of nozzles on the perforated plate.

Zu erwähnen ist, dass das Fluid ein Beschichtungsmittel ist, z. B. ein Lack, ein Dichtstoff, ein Trennmittel, ein Klebstoff etc., und/oder zur Ausbildung einer Funktionsschicht dienen kann.It should be mentioned that the fluid is a coating agent, e.g. B. a paint, a sealant, a release agent, an adhesive, etc., and / or can be used to form a functional layer.

Unter die Kategorie Funktionsschicht fallen insbesondere Schichten, die eine Oberflächenfunktionalisierung zur Folge haben, wie z. B. Haftvermittler, Primer oder auch Schichten zur Verringerung der Transmission.The functional layer category includes, in particular, layers that result in surface functionalization, such as B. adhesion promoters, primers or layers to reduce transmission.

Es ist möglich, die Lochplatte wie hierin beschrieben durch Merkmale der WO 2014/121926 A1 , insbesondere deren Ansprüche, zu ergänzen.It is possible to use the perforated plate as described herein by features of WO 2014/121926 A1 , in particular their claims.

Die erfindungsgemäße Lochplatte weist Locheinmündungen an der stromaufwärts gelegenen Seite der Lochplatte und Lochausmündungen an der stromabwärts gelegenen Seite der Lochplatte auf und z. B. dreidimensionale Strukturierungen an der stromaufwärts gelegenen Seite der Lochplatte und umfasst dreidimensionale Strukturierungen an der stromabwärts gelegenen Seite der Lochplatte.The perforated plate according to the invention has hole openings on the upstream side of the perforated plate and hole openings on the downstream side of the perforated plate and z. B. three-dimensional structuring on the upstream side of the perforated plate and includes three-dimensional structuring on the downstream side of the perforated plate.

Es ist möglich, dass die Locheinmündungen strömungstechnisch optimiert sind, insbesondere düsenförmig, und/oder dass die Locheinmündungen einen größeren (Durchlass-)Querschnitt aufweisen als die Lochausmündungen.It is possible that the hole openings are fluidically optimized, in particular nozzle-shaped, and / or that the hole openings have a larger (passage) cross section than the hole openings.

Als Strukturierungen dienen Rohrstummel, die von der stromabwärts gelegenen Seite der Lochplatte hervorstehen und in die die Durchgangslöcher übergehen, um insbesondere die Benetzungsfläche an den Lochausmündungen zu verringern.Tube stubs which protrude from the downstream side of the perforated plate and into which the through holes merge, in particular to reduce the wetting area at the hole openings, are used as structuring.

Die Rohrstummel können z. B. eine äußere Mantelfläche aufweisen, die sich zum freien Ende des jeweiligen Rohrstummels hin verjüngt, insbesondere konisch.The pipe stubs can, for. B. have an outer circumferential surface which tapers towards the free end of the respective pipe stub, in particular conically.

Die Lochplatte kann z. B. am Rand eine größere Dicke aufweisen als in einem mittigen Bereich mit den Durchgangslöchern. Es ist möglich, dass vorzugsweise alle Durchgangslöcher in der Lochplatte mindestens teilweise durch ein ätztechnisches Herstellungsverfahren hergestellt sind, insbesondere Trockenätzen oder Nassätzen.The perforated plate can, for. B. have a greater thickness at the edge than in a central area with the through holes. It is possible that preferably all through holes in the perforated plate are at least partially produced by an etching production method, in particular dry etching or wet etching.

Die Lochplatte kann insbesondere mindestens teilweise aus einem Halbleitermaterial bestehen, z. B. aus einem der folgenden Materialien: Silizium, Siliziumdioxid, Siliziumcarbid, Gallium, Galliumarsenid und/oder Indiumphosphid.The perforated plate can in particular at least partially consist of a semiconductor material, for. B. made of one of the following materials: silicon, silicon dioxide, silicon carbide, gallium, gallium arsenide and / or indium phosphide.

Zu erwähnen ist, dass im Rahmen der Erfindung das Merkmal eines im Wesentlichen trapezförmigen Querschnitts-Profils vorzugsweise auch z. B. ein im Wesentlichen gaußkurvenförmiges Querschnitts-Profil umfassen kann.It should be mentioned that within the scope of the invention the feature of a substantially trapezoidal cross-sectional profile preferably also z. B. may comprise a substantially Gaussian-shaped cross-sectional profile.

Die oben beschriebenen bevorzugten Ausführungsformen der Erfindung sind miteinander kombinierbar. Andere vorteilhafte Weiterbildungen der Erfindung sind in den Ansprüchen offenbart oder ergeben sich aus der folgenden Beschreibung bevorzugter Ausführungsformen der Erfindung in Verbindung mit den beigefügten Figuren.

Figur 1
zeigt eine Lochplatte mit einer Düsenreihe gemäß einer Ausführungsform der Erfindung,
Figur 2
zeigt eine Lochplatte mit einer Düsenreihe gemäß einer anderen Ausführungsform der Erfindung,
Figur 3
zeigt eine Lochplatte mit einer Düsenreihe gemäß einer noch anderen Ausführungsform der Erfindung,
Figur 4
zeigt eine Lochplatte mit einer Düsenreihe gemäß einer wiederum anderen Ausführungsform der Erfindung,
Figur 5A
zeigt eine schematische Querschnittsdarstellung zweier durch eine erfindungsgemäße Lochplatte erzeugter Fluidapplikationen gemäß einer Ausführungsform der Erfindung,
Figur 5B
zeigt eine schematische Querschnittsdarstellung einer durch eine erfindungsgemäße Lochplatte erzeugte Fluidapplikation gemäß einer Ausführungsform der Erfindung,
Figur 6
zeigt eine Querschnittsansicht durch ein Durchgangsloch einer nicht erfindungsgemäßen Lochplatte,
Figur 7A
zeigt eine Querschnittsansicht durch ein Durchgangsloch einer anderen nicht erfindungsgemäßen Lochplatte,
Figur 7B
zeigt die Querschnittsansicht aus Figur 7A mit Beschichtungsmittel in dem Durchgangsloch,
Figur 8A
zeigt eine Abwandlung von Figur 7A mit einem zusätzlichen Rohrstummel zur Verringerung der Benetzungsfläche gemäß einer anderen Ausführungsform der Erfindung,
Figur 8B
zeigt die Querschnittsansicht aus Figur 8A mit Beschichtungsmittel in dem Durchgangsloch,
Figur 9
zeigt eine Abwandlung von Figur 8A mit einem konisch zulaufenden Rohrstummel gemäß einer anderen Ausführungsform der Erfindung,
Figur 10A
zeigt eine schematische Querschnittsansicht durch eine nicht erfindungsgemäße Lochplatte mit einem verstärkten Rand und einem dünneren mittigen Bereich mit den Durchgangslöchern,
Figur 10B
zeigt eine nicht erfindungsgemäße Abwandlung von Figur 10A,
Figur 11
zeigt eine nicht erfindungsgemäße Abwandlung von Figur 6,
Figur 12A
zeigt eine Applikationsvorrichtung (Applikationsgerät) mit einer Lochplatte gemäß einer Ausführungsform der Erfindung,
Figur 12B
zeigt eine Applikationsvorrichtung (Applikationsgerät) gemäß einer anderen Ausführungsform der Erfindung,
Figur 13
zeigt zwei Beschichtungsmittelbahnen gemäß Stand der Technik,
Figur 14
zeigt zwei Beschichtungsmittelbahnen gemäß Stand der Technik,
Figur 15
zeigt zwei Beschichtungsmittelbahnen gemäß Stand der Technik,
Figur 16
zeigt eine Querschnittsansicht durch ein Durchgangsloch einer nicht erfindungsgemäßen Lochplatte,
Figur 17
zeigt eine Querschnittsansicht durch ein Durchgangsloch einer nicht erfindungsgemäßen Lochplatte,
Figur 18
zeigt eine Querschnittsansicht durch ein Durchgangsloch einer nicht erfindungsgemäßen Lochplatte,
Figur 19
zeigt eine Querschnittsansicht durch ein Durchgangsloch einer nicht erfindungsgemäßen Lochplatte.
The preferred embodiments of the invention described above can be combined with one another. Other advantageous developments of the invention are disclosed in the claims or result from the following description of preferred embodiments of the invention in conjunction with the accompanying figures.
Figure 1
shows a perforated plate with a row of nozzles according to an embodiment of the invention,
Figure 2
shows a perforated plate with a row of nozzles according to another embodiment of the invention,
Figure 3
shows a perforated plate with a row of nozzles according to yet another embodiment of the invention,
Figure 4
shows a perforated plate with a row of nozzles according to yet another embodiment of the invention,
Figure 5A
shows a schematic cross-sectional representation of two fluid applications generated by a perforated plate according to the invention according to an embodiment of the invention,
Figure 5B
shows a schematic cross-sectional representation of a fluid application generated by a perforated plate according to the invention according to an embodiment of the invention,
Figure 6
shows a cross-sectional view through a through hole of a perforated plate not according to the invention,
Figure 7A
shows a cross-sectional view through a through hole of another perforated plate not according to the invention,
Figure 7B
shows the cross-sectional view from Figure 7A with coating agent in the through hole,
Figure 8A
shows a modification of Figure 7A with an additional pipe stub to reduce the wetting area according to another embodiment of the invention,
Figure 8B
shows the cross-sectional view from Figure 8A with coating agent in the through hole,
Figure 9
shows a modification of Figure 8A with a conically tapered pipe stub according to another embodiment of the invention,
Figure 10A
shows a schematic cross-sectional view through a perforated plate not according to the invention with a reinforced edge and a thinner central area with the through holes,
Figure 10B
shows a modification of FIG Figure 10A ,
Figure 11
shows a modification of FIG Figure 6 ,
Figure 12A
shows an application device (application device) with a perforated plate according to an embodiment of the invention,
Figure 12B
shows an application device (application device) according to another embodiment of the invention,
Figure 13
shows two coating agent webs according to the prior art,
Figure 14
shows two coating agent webs according to the prior art,
Figure 15
shows two coating agent webs according to the prior art,
Figure 16
shows a cross-sectional view through a through hole of a perforated plate not according to the invention,
Figure 17
shows a cross-sectional view through a through hole of a perforated plate not according to the invention,
Figure 18
shows a cross-sectional view through a through hole of a perforated plate not according to the invention,
Figure 19
shows a cross-sectional view through a through hole of a perforated plate not according to the invention.

Die unter Bezugnahme auf die Figuren beschriebenen Ausführungsformen stimmen teilweise überein, so dass für ähnliche oder identische Teile die gleichen Bezugszeichen verwendet werden, und zu deren Erläuterung auch auf die Beschreibung einer oder mehrerer anderer Ausführungsformen verwiesen wird, um Wiederholungen zu vermeiden.The embodiments described with reference to the figures partially match, so that the same reference symbols are used for similar or identical parts, and reference is also made to the description of one or more other embodiments for their explanation, in order to avoid repetition.

Figur 1 zeigt eine Lochplatte 1 für eine Applikationsvorrichtung zur vorzugsweise zerstäubungsfreien und maskierungsfreien Applikation eines Fluides auf ein Bauteil, z. B. eine Kraftfahrzeugkarosserie und/oder ein Anbauteil hierfür. Figure 1 shows a perforated plate 1 for an application device for the preferably atomization-free and mask-free application of a fluid to a component, e.g. B. a motor vehicle body and / or an attachment therefor.

Die Lochplatte 1 umfasst sieben Durchgangslöcher 2.1, 3.1, 3.2 und 3.3 zum Durchleiten des Fluids, wobei die Durchgangslöcher 2.1, 3.1, 3.2 und 3.3 einer Düsenreihe mit einem Mittenbereich 2 und zwei Randbereichen 3a und 3b zugeordnet sind und durch Lochabstände a1, a2 und a3 voneinander beabstandet sind.The perforated plate 1 comprises seven through holes 2.1, 3.1, 3.2 and 3.3 for the passage of the fluid, the through holes 2.1, 3.1, 3.2 and 3.3 being assigned to a row of nozzles with a central area 2 and two edge areas 3a and 3b and by hole spacings a1, a2 and a3 are spaced from each other.

Die Düsenreihe umfasst insbesondere einen Mittenbereich 2 mit vier Durchgangslöchern 2.1, einen ersten in Figur 1 linken Randbereich 3a mit zwei Durchgangslöchern 3.1 und 3.2 und einen zweiten in Figur 1 rechten Randbereich 3b mit einem Durchgangsloch 3.3.The row of nozzles comprises in particular a central area 2 with four through holes 2.1, a first in Figure 1 left edge area 3a with two through holes 3.1 and 3.2 and a second in Figure 1 right edge area 3b with a through hole 3.3.

Der erste Randbereich 3a umfasst zwei außenliegendste Lochabstände a1 und a2. Der zweite Randbereich 3b umfasst einen au-ßenliegendsten Lochabstand a3.The first edge area 3a comprises two most outer hole spacings a1 and a2. The second edge region 3b comprises an outermost hole spacing a3.

Die zwei außenliegendsten Lochabstände a1 und a2 im Randbereich 3a sind größer als die Lochabstände a3 im Mittenbereich.The two most outer hole spacings a1 and a2 in the edge area 3a are greater than the hole spacings a3 in the central area.

Die Durchgangslöcher 2.1 im Mittenbereich 2 sind mittels gleich großer Lochabstände a3 gleichmäßig voneinander beabstandet.The through holes 2.1 in the central area 2 are evenly spaced from one another by means of equally large hole spacings a3.

Der außenliegendste Lochabstand a3 im Randbereich 3b ist einheitlich zu den Lochabständen a3 im Mittenbereich 2 ausgebildet.The outermost hole spacing a3 in the edge area 3b is designed to be uniform to the hole spacing a3 in the central area 2.

Die zwei außenliegendsten Lochabstände a1 und a2 im Randbereich 3a können zweckmäßig einheitlich (a1=a2) oder uneinheitlich (a1≠a2) ausgebildet sein.The two most outer hole spacings a1 and a2 in the edge region 3a can expediently be designed uniformly (a1 = a2) or non-uniformly (a1 ≠ a2).

Die Lochplatte 1 umfasst nur eine einzige Düsenreihe, wobei die Düsenreihe entlang einer geraden Ausrichtlinie (Ausrichtgeraden) 4 zentriert linear ausgerichtet ist, so dass die Mittelachsen vorzugsweise aller Durchgangslöcher 2.1, 3.1, 3.2 und 3.3 der Düsenreihe linear ausgerichtet sind und zwar entlang ein und derselben Ausrichtgeraden 4.The perforated plate 1 comprises only a single row of nozzles, the row of nozzles being centered and linearly aligned along a straight alignment line (alignment line) 4, so that the central axes preferably of all through holes 2.1, 3.1, 3.2 and 3.3 of the row of nozzles are linearly aligned along one and the same Alignment line 4.

Die Durchgangslöcher 2.1, 3.1, 3.2 und 3.3 der Düsenreihe sind vorzugsweise einheitlich und somit im Wesentlichen identisch ausgeführt.The through holes 2.1, 3.1, 3.2 and 3.3 of the row of nozzles are preferably designed to be uniform and thus essentially identical.

Der Doppelpfeil 5 kennzeichnet die zwei möglichen Bewegungsrichtungen der Lochplatte 1 relativ zu dem Bauteil.The double arrow 5 indicates the two possible directions of movement of the perforated plate 1 relative to the component.

Figur 2 zeigt eine Lochplatte 1 gemäß einer anderen Ausführungsform der Erfindung. Figure 2 shows a perforated plate 1 according to another embodiment of the invention.

Bei der in Figur 2 gezeigten Lochplatte 1 findet die Abstufung und somit Lochabstandsvergrößerung in beiden Randbereichen 3a und 3b statt.At the in Figure 2 The perforated plate 1 shown, the gradation and thus the increase in the hole spacing takes place in both edge regions 3a and 3b.

So können die Durchgangslöcher 3.1 und 3.2 des ersten Randbereichs 3a mittels der Lochabstände a1 und a2 voneinander beabstandet sein und die Durchgangslöcher 3.1 und 3.2 des zweiten Randbereichs 3b mittels der Lochabstände a4 und a5.The through holes 3.1 and 3.2 of the first edge region 3a can be spaced apart from one another by means of the hole spacings a1 and a2 and the through holes 3.1 and 3.2 of the second edge region 3b by means of the hole spacings a4 and a5.

Die Lochabstände a1, a2, a4 und a5 sind allesamt größer als die einheitlichen Lochabstände a3 im Mittenbereich 2.The hole spacings a1, a2, a4 and a5 are all greater than the uniform hole spacings a3 in the center area 2.

Die zwei außenliegendsten Lochabstände a1 und a2 im Randbereich 3a können dabei einheitlich oder uneinheitlich ausgebildet sein relativ zu den zwei außenliegendsten Lochabständen a4 und a5 im Randbereich 3b (a1=a5; a1≠a5; a2=a4; a2≠a4).The two most outer hole spacings a1 and a2 in the edge area 3a can be designed to be uniform or non-uniform relative to the two most outer hole distances a4 and a5 in the edge area 3b (a1 = a5; a1 ≠ a5; a2 = a4; a2 ≠ a4).

Bei der in Figur 2 gezeigten Ausführungsform kann, im Gegensatz zu Figur 1, die Düsenreihe insgesamt symmetrisch ausgebildet sein, insbesondere achssymmetrisch und/oder spiegelsymmetrisch relativ zu einer quer zur Düsenreihe verlaufenden Symmetrieachse S.At the in Figure 2 embodiment shown can, in contrast to Figure 1 , the row of nozzles can be designed to be overall symmetrical, in particular axially symmetrical and / or mirror-symmetrical relative to an axis of symmetry S running transversely to the row of nozzles.

Figur 3 zeigt eine Lochplatte 1 gemäß einer wiederum anderen Ausführungsform der Erfindung. Figure 3 shows a perforated plate 1 according to yet another embodiment of the invention.

Bei der in Figur 3 gezeigten Lochplatte 1 erfolgt die Lochabstandsvergrößerung in beiden Randbereichen 3a und 3b. Die zwei Randbereiche 3a und 3b umfassen dabei aber nicht wie in Figur 2 jeweils zwei Lochabstände, sondern jeweils nur einen Lochabstand a1 und a4.At the in Figure 3 perforated plate 1 shown, the hole spacing is increased in both edge regions 3a and 3b. However, the two edge regions 3a and 3b do not include as in FIG Figure 2 two hole spacings each, but only one hole spacing a1 and a4.

Die außenliegendste Lochabstand a1 im Randbereich 3a kann dabei einheitlich oder uneinheitlich ausgebildet sein relativ zu dem außenliegendsten Lochabstand a4 im Randbereich 3b (a1=a4; a1≠a4).The outermost hole spacing a1 in the edge region 3a can be designed to be uniform or non-uniform relative to the outermost hole spacing a4 in the edge area 3b (a1 = a4; a1 ≠ a4).

Figur 4 zeigt eine Lochplatte 1 gemäß einer wiederum anderen Ausführungsform der Erfindung. Figure 4 shows a perforated plate 1 according to yet another embodiment of the invention.

Bei der in Figur 4 gezeigten Lochplatte 1 ist nur der außenliegendste Lochabstand a1 der Düsenreihe im Randbereich 3a größer als die einheitlichen Lochabstände a3 im Mittenbereich 2.At the in Figure 4 Perforated plate 1 shown, only the outer hole spacing a1 of the row of nozzles in the edge area 3a is greater than the uniform hole spacing a3 in the central area 2.

Der außenliegendste Lochabstand a3 im Randbereich 3b ist einheitlich zu den Lochabständen a3 im Mittenbereich 2 ausgebildet.The outermost hole spacing a3 in the edge area 3b is designed to be uniform to the hole spacing a3 in the central area 2.

Figur 5A zeigt eine schematische Darstellung des Querschnitts durch zwei Fluidbahnen B1 und B2, die mittels einer Lochplatte 1 gemäß einer Ausführungsform der Erfindung erzeugt werden können. Figure 5A shows a schematic representation of the cross section through two fluid paths B1 and B2, which can be generated by means of a perforated plate 1 according to an embodiment of the invention.

Die Querschnitte der Beschichtungsmittelbahnen B1 und B2 weisen eine im Wesentlichen gleichschenklige Trapezform 6 auf und überlappen sich in einem Stoß- oder Überlappungsbereich. Die Abstandstoleranz zwischen den zwei Fluidbahnen B1 und B2 kann sich im Bereich von +/- 150 pm, +/- 200 pm, +/- 500 pm, +/- 1 mm oder sogar +/- 2mm abspielen. Die Trapezform 6 führt zu einer in Figur 5A rechts gezeigten Optimalbeschichtung insbesondere im Überlappungsbereich.The cross-sections of the coating agent webs B1 and B2 have an essentially isosceles trapezoidal shape 6 and overlap in a joint or overlap area. The distance tolerance between the two fluid paths B1 and B2 can take place in the range of +/- 150 pm, +/- 200 pm, +/- 500 pm, +/- 1 mm or even +/- 2 mm. The trapezoidal shape 6 leads to an in Figure 5A Optimal coating shown on the right, especially in the overlap area.

Figur 5B zeigt eine schematische Darstellung des Querschnitts einer Fluidbahn B1, die mittels einer Lochplatte 1 gemäß einer Ausführungsform der Erfindung erzeugt werden kann. Der Querschnitt weist eine im Wesentlichen rechtwinklige Trapezform 6 auf. Figure 5B shows a schematic representation of the cross section of a fluid path B1, which can be generated by means of a perforated plate 1 according to an embodiment of the invention. The cross section has an essentially rectangular trapezoidal shape 6.

Die Lochplatte 1 gemäß den Figuren 1 bis 4 dient zweckmäßig zur Verwendung mit einer Applikationsvorrichtung zum Applizieren eines Fluides. Die Applikationsvorrichtung kann ausgeführt sein, um eine im Wesentlichen druckgleiche Anströmung des Fluides über die gesamte Düsenreihe zu gewährleisten. Allerdings kann die Applikationsvorrichtung auch ausgeführt sein, um eine vom Mittenbereich 2 unabhängig steuerbare (z.B. regelbare) Fluid-Anströmung des zumindest einen Randbereichs 3a oder 3b zu ermöglichen.The perforated plate 1 according to the Figures 1 to 4 is expediently used with an application device for applying a fluid. The application device can be designed to ensure an essentially pressure-equal flow of the fluid over the entire row of nozzles. However, the application device can also be designed to enable a fluid flow to the at least one edge area 3a or 3b that can be controlled (for example, regulated) independently of the central area 2.

Die beiden Randbereiche 3a und 3b können z. B. über dieselbe Fluid-Fördereinheit oder durch jeweils eine eigene Fluid-Fördereinheit mit Fluid versorgt werden.The two edge regions 3a and 3b can, for. B. be supplied with fluid via the same fluid delivery unit or by a separate fluid delivery unit.

Die Figuren 6 bis 11 illustrieren Durchgangslochausbildungen, gemäß denen die jeweiligen Durchgangslöcher 2.1, 3.1, 3.2 und 3.3 der Düsenreihe ausgeführt sein können. Die Lochplatte 1 und insbesondere die Durchgangslöcher können dabei ausgeführt sein, wie in WO 2014/121926 A1 offenbart.the Figures 6 to 11 illustrate through-hole designs according to which the respective through-holes 2.1, 3.1, 3.2 and 3.3 of the row of nozzles can be designed. The perforated plate 1 and in particular the through holes can be designed as shown in FIG WO 2014/121926 A1 disclosed.

Figur 6 zeigt eine Querschnittsansicht durch eine Lochplatte 1 im Bereich eines der Durchgangslöcher, wobei der Pfeil in der Querschnittsansicht die Strömungsrichtung des Beschichtungsmittels durch das Durchgangsloch angibt. Aus der Querschnittsansicht ist ersichtlich, dass das Durchgangsloch eine strömungstechnisch optimierte Locheinmündung 30 aufweist, wodurch der Strömungswiderstand des Durchgangslochs verringert wird. Figure 6 shows a cross-sectional view through a perforated plate 1 in the region of one of the through-holes, the arrow in the cross-sectional view indicating the direction of flow of the coating agent through the through-hole. It can be seen from the cross-sectional view that the through hole has a flow-optimized hole opening 30, as a result of which the flow resistance of the through hole is reduced.

Darüber hinaus weist die Lochplatte 1 auf der stromabwärts gelegenen Seite am Umfangsrand der Durchgangslöcher jeweils eine Strukturierung auf, welche die Benetzungsneigung verringert.In addition, the perforated plate 1 has a structuring on the downstream side at the peripheral edge of the through holes, which reduces the tendency to wetting.

Die Figuren 7A und 7B zeigen eine alternative Querschnittsansicht durch die Lochplatte 1 im Bereich eines Durchgangslochs, wobei Figur 7A das Durchgangsloch ohne ein Beschichtungsmittel zeigt, wohingegen in Figur 7B ein Beschichtungsmittel (z. B. Fluid) 50 dargestellt ist.the Figures 7A and 7B show an alternative cross-sectional view through the perforated plate 1 in the area of a through hole, wherein Figure 7A shows the through hole without a coating agent, whereas in Figure 7B a coating agent (e.g. fluid) 50 is shown.

Daraus ist ersichtlich, dass das Beschichtungsmittel 50 eine Benetzungsfläche 60 an der stromabwärts gelegenen Oberfläche der Lochplatte 1 benetzt, was eine strahlförmige Ablösung des Beschichtungsmittels 50 von der Lochplatte 1 erschwert.It can be seen from this that the coating agent 50 wets a wetting surface 60 on the downstream surface of the perforated plate 1, which makes a jet-shaped detachment of the coating agent 50 from the perforated plate 1 more difficult.

Die Figuren 8A und 8B zeigen eine bevorzugte Ausführungsform der Erfindung mit einer verringerten Benetzungsneigung. Hierzu weist die Lochplatte 1 jeweils am Umfangsrand der einzelnen Durchgangslöcher einen Rohrstummel 70 auf, wobei das Durchgangsloch in den Rohrstummel 70 übergeht, so dass die Stirnfläche des Rohrstummels 70 am freien Ende des Rohrstummels 70 eine Benetzungsfläche 80 bildet. Die Benetzungsfläche 80 ist also auf die freie Stirnfläche des Rohrstummels 70 beschränkt und damit wesentlich kleiner als die Benetzungsfläche 60 gemäß Figur 7A. Dadurch wird die Ablösung des Beschichtungsmittels 50 von der Lochplatte 1 erleichtert.the Figures 8A and 8B show a preferred embodiment of the invention with a reduced tendency to wetting. For this purpose, the perforated plate 1 has a tubular stub 70 on the circumferential edge of the individual through holes, the through hole merging into the tubular stub 70 so that the end face of the tubular stub 70 forms a wetting surface 80 at the free end of the tubular stub 70. The wetting area 80 is therefore limited to the free end face of the pipe stub 70 and is therefore significantly smaller than the wetting area 60 according to FIG Figure 7A . This facilitates the detachment of the coating agent 50 from the perforated plate 1.

Der Rohrstummel 70 weist zwischen der stromabwärts gelegenen Seite der Lochplatte 1 und dem freien Ende des Rohrstummels 70 z. B. eine Länge L auf, die vorzugsweise größer als 50 pm, 70 pm, oder 100 µm und/oder kleiner als 200 µm, 170 µm oder 150 µm ist, so dass der Rohrstummel 70 z. B. eine Länge L zwischen 50 bis 200 µm, 70 bis 170 µm oder 100 bis 150 µm aufweisen kann.The stub tube 70 has between the downstream side of the perforated plate 1 and the free end of the stub tube 70 z. B. a length L, which is preferably greater than 50 pm, 70 pm, or 100 microns and / or smaller than 200 microns, 170 microns or 150 microns, so that the pipe stub 70 z. B. a length L. may be between 50 to 200 µm, 70 to 170 µm or 100 to 150 µm.

Figur 9 zeigt eine Abwandlung von Figur 8A, wobei die äußere Mantelfläche des Rohrstummels 70 zum freien Ende des Rohrstummels 70 konisch zuläuft, so dass die Benetzungsfläche am freien Ende des Rohrstummels 70 minimal ist. Figure 9 shows a modification of Figure 8A , wherein the outer jacket surface of the pipe stub 70 tapers conically to the free end of the pipe stub 70, so that the wetting surface at the free end of the pipe stub 70 is minimal.

Figur 10A zeigt eine schematische Querschnittsansicht durch eine Lochplatte 1, die teilweise mit den vorstehend beschriebenen Lochplatten übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden. Figure 10A shows a schematic cross-sectional view through a perforated plate 1, which partially corresponds to the perforated plates described above, so that to avoid repetition, reference is made to the above description, the same reference numerals being used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass die Lochplatte 1 außen einen relativ dicken Rand 90 und in der Mitte einen dünneren Bereich 100 mit den Durchgangslöchern aufweist. Der dicke Rand 90 der Lochplatte 1 sorgt hierbei für eine ausreichende mechanische Stabilität, während die Herabsetzung der Dicke in dem Bereich 100 mit den Durchgangslöchern dafür sorgt, dass die Durchgangslöcher nur einen relativ geringen Strömungswiderstand bieten.A special feature of this exemplary embodiment is that the perforated plate 1 has a relatively thick edge 90 on the outside and a thinner area 100 with the through holes in the middle. The thick edge 90 of the perforated plate 1 ensures sufficient mechanical stability, while the reduction in thickness in the area 100 with the through holes ensures that the through holes offer only a relatively low flow resistance.

Figur 10B zeigt eine Abwandlung von Figur 10A, so dass zur Vermeidung von Wiederholungen auf die Beschreibung zu Figur 10A verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden. Figure 10B shows a modification of Figure 10A so as to avoid repetition on the description too Figure 10A is referred to, the same reference numerals being used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der Bereich 100 hierbei nur einseitig in seiner Dicke verringert ist.A special feature of this exemplary embodiment is that the area 100 is only reduced in thickness on one side.

Die in den Figuren gezeigten scharfen Kanten und Ecken sind nur beispielhaft dargestellt und können vorteilhafterweise auch abgerundet ausgeführt werden, um sie strömungstechnisch optimaler zu gestalten oder um einen bessere Spülbarkeit zu erzielen.The sharp edges and corners shown in the figures are only shown by way of example and can advantageously also be rounded off in order to make them more fluid in terms of flow or to achieve better flushability.

Eine Besonderheit des in Figur 11 gezeigten Ausführungsbeispiels des Durchgangslochs besteht darin, dass das Durchgangsloch an der stromaufwärts gelegenen Locheinmündung zunächst einen zylindrischen Bereich 200 mit einem ersten Innendurchmesser aufweist.A special feature of the in Figure 11 The embodiment shown of the through hole is that the through hole at the upstream hole confluence initially has a cylindrical region 200 with a first inner diameter.

An den zylindrischen Bereich 200 schließt sich dann in Strömungsrichtung ein konischer Bereich 210 an, der sich in Strömungsrichtung verjüngt.The cylindrical region 200 is then adjoined in the flow direction by a conical region 210 which tapers in the flow direction.

Wichtig ist hierbei, dass der Innendurchmesser d der Lochausmündung vorzugsweise wesentlich kleiner ist als der Innendurchmesser des zylindrischen Bereichs 200.It is important here that the inner diameter d of the opening of the hole is preferably significantly smaller than the inner diameter of the cylindrical region 200.

Figur 12A zeigt in stark vereinfachter schematischer Darstellung eine Applikationsvorrichtung, insbesondere ein Applikationsgerät, mit einer erfindungsgemäßen Lochplatte 1 zur Beschichtung eines Bauteils 160 (z.B. eines Kraftfahrzeugkarosseriebauteils). Figure 12A shows in a greatly simplified schematic representation an application device, in particular an application device, with a perforated plate 1 according to the invention for coating a component 160 (for example a motor vehicle body component).

Aus den einzelnen Durchgangslöchern der Lochplatte 1 treten hierbei Beschichtungsmittelstrahlen 170 aus, die auf der Oberfläche des Bauteils 160 einen zusammenhängenden Beschichtungsmittelfilm bilden. Die einzelnen Beschichtungsmittelstrahlen 170 können als Tropfenstrahlen, wie in Figur 12A gezeigt, oder als zusammenhängende Beschichtungsmittelstrahlen, insbesondere ohne Tropfenbildung, wie in Figur 12B gezeigt, ausgebildet werden.Coating agent jets 170 emerge from the individual through holes of perforated plate 1 and form a coherent coating agent film on the surface of component 160. The individual jets of coating agent 170 can be jets of drops, as in FIG Figure 12A shown, or as continuous coating agent jets, in particular without drop formation, as in Figure 12B shown, trained.

Weiterhin zeigen die Figuren 12A und 12B noch einen mit der Lochplatte 1 verbundenen Applikator 180 sowie Applikationstechnik 190, die mit dem Applikator 180 durch schematisch dargestellte Leitungen verbunden ist.Furthermore show the Figures 12A and 12B another applicator 180 connected to the perforated plate 1 and application technology 190 which is connected to the applicator 180 by lines shown schematically.

Figuren 12A und 12B zeigen außerdem, dass die Lochplatte 1 an einer äußeren Stirnseite der Applikationsvorrichtung angeordnet ist, so dass die Durchgangslöcher der Lochplatte 1 Austrittslöcher aus der Applikationsvorrichtung bilden. Figures 12A and 12B also show that the perforated plate 1 is arranged on an outer end face of the application device, so that the through holes of the perforated plate 1 form exit holes from the application device.

Figur 16 zeigt eine Querschnittsansicht durch ein Durchgangsloch einer Lochplatte 1. Das Durchgangsloch umfasst eine trichterförmige Locheinmündung 30 mit einem Einlassquerschnitt E und eine zylinderförmige Lochausmündung 40. Figure 16 shows a cross-sectional view through a through hole of a perforated plate 1. The through hole comprises a funnel-shaped hole opening 30 with an inlet cross-section E and a cylindrical hole opening 40.

Figur 17 zeigt eine Querschnittsansicht durch ein Durchgangsloch einer Lochplatte 1. Das Durchgangsloch umfasst eine trichterförmige Locheinmündung 30 mit einem Einlassquerschnitt E und eine zylinderförmige Lochausmündung 40, wobei die trichterförmige Locheinmündung 30 der Figur 17 tiefer in die Lochplatte 1 führt als die trichterförmige Locheinmündung 30 der Figur 16. Figure 17 shows a cross-sectional view through a through hole of a perforated plate 1. The through hole comprises a funnel-shaped hole opening 30 with an inlet cross section E and a cylindrical hole opening 40, the funnel-shaped hole opening 30 from FIG Figure 17 leads deeper into the perforated plate 1 than the funnel-shaped hole opening 30 of the Figure 16 .

Figur 18 zeigt eine Querschnittsansicht durch ein Durchgangsloch einer Lochplatte 1. Das Durchgangsloch umfasst eine trichterförmige Locheinmündung 30 mit einem Einlassquerschnitt E und eine zylinderförmige Lochausmündung 40, wobei die trichterförmige Locheinmündung 30 der Figur 18 tiefer in die Lochplatte 1 führt als die trichterförmige Locheinmündung 30 der Figur 17. Figure 18 shows a cross-sectional view through a through hole of a perforated plate 1. The through hole comprises a funnel-shaped hole opening 30 with an inlet cross section E and a cylindrical hole opening 40, the funnel-shaped hole opening 30 from FIG Figure 18 leads deeper into the perforated plate 1 than the funnel-shaped hole opening 30 of the Figure 17 .

Figur 19 zeigt eine Querschnittsansicht durch ein Durchgangsloch einer Lochplatte 1. Das Durchgangsloch umfasst eine trichterförmige Locheinmündung 30 mit einem Einlassquerschnitt E und eine zylinderförmige Lochausmündung 40, wobei die trichterförmige Locheinmündung 30 der Figur 19 tiefer in die Lochplatte 1 führt als die trichterförmige Locheinmündung 30 der Figur 18. Figure 19 shows a cross-sectional view through a through hole of a perforated plate 1. The through hole comprises a funnel-shaped hole opening 30 with an inlet cross section E and a cylindrical hole opening 40, the funnel-shaped hole opening 30 from FIG Figure 19 leads deeper into the perforated plate 1 than the funnel-shaped hole opening 30 of the Figure 18 .

Den Figuren 16 bis 19 kann insbesondere eine zusätzliche Beeinflussungsmöglichkeit des Fluidstroms durch Änderung des zylindrischen Anteils eines Durchgangslochs entnommen werden, indem dessen Locheinmündung 30 trichterförmig ausgebildet wird. Durch das Vorsehen einer trichterförmigen Locheinmündung 30, so dass der zylindrische Anteil des Durchgangslochs verkleinert oder vergrößert wird, kann der Fluidvolumenstrom durch das Durchgangsloch zusätzlich erhöht oder verringert werden und das obwohl z. B. in den Figuren 16 bis 19 die (Referenz-) Durchgangsdurchmesser d und die Einlassquerschnitte E gleich groß sind. Figur 16 ermöglicht hierbei den kleinsten, Figur 17 den zweitkleinsten, Figur 18 den drittkleinsten und Figur 19 den größten Fluidvolumenstrom.The Figures 16 to 19 In particular, an additional possibility of influencing the fluid flow by changing the cylindrical portion of a through hole can be obtained by designing its opening 30 in the shape of a funnel. By providing a funnel-shaped hole opening 30, so that the cylindrical portion of the through hole is reduced or enlarged, the fluid volume flow through the through hole can also be increased or decreased and that although, for. Tie Figures 16 to 19 the (reference) passage diameter d and the inlet cross-sections E are the same. Figure 16 enables the smallest, Figure 17 the second smallest, Figure 18 the third smallest and Figure 19 the largest fluid volume flow.

Die in den Figuren 16 bis 19 gezeigten Durchgangslöcher können zweckmäßig im Mittenbereich 2 der Düsenreihe und/oder in zumindest einem Randbereich 3a, 3b der Düsenreihe verwendet werden.The ones in the Figures 16 to 19 The through-holes shown can expediently be used in the central region 2 of the row of nozzles and / or in at least one edge region 3a, 3b of the row of nozzles.

Zu erwähnen ist noch, dass eine Applikationsvorrichtung gemäß einer Ausführungsform der Erfindung zumindest zwei nebeneinander angeordnete Lochplatten 1 aufweisen kann, deren Düsenreihen in Längsrichtung der Düsenreihen versetzt zueinander angeordnet sind. Die Lochplatten 1 sind hierbei an einer äußeren Stirnseite der Applikationsvorrichtung angeordnet, so dass sie Außenplatten darstellen.It should also be mentioned that an application device according to one embodiment of the invention can have at least two perforated plates 1 arranged next to one another, the nozzle rows of which are arranged offset from one another in the longitudinal direction of the nozzle rows. The perforated plates 1 are here on an outer one Arranged face of the application device so that they represent outer panels.

Die Erfindung ist nicht auf die oben beschriebenen bevorzugten Ausführungsformen beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls in den Schutzbereich fallen. Darüber hinaus beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche.The invention is not restricted to the preferred embodiments described above. Rather, a large number of variants and modifications are possible, which also fall within the scope of protection. In addition, the invention also claims protection for the subject matter and the features of the subclaims.

BezugszeichenlisteList of reference symbols

11
Lochplatte, z. B. BlendePerforated plate, e.g. B. Aperture
22
MittenbereichMiddle area
2.12.1
Durchgangsloch im MittenbereichThrough hole in the middle area
3a3a
Randbereich, zweckmäßig ersterEdge area, useful first
3b3b
Randbereich, zweckmäßig zweiterEdge area, useful second
3.13.1
Außenliegendstes DurchgangslochOutermost through hole
3.23.2
Zweit außenliegendstes DurchgangslochSecond outermost through hole
44th
Ausrichtlinie, zweckmäßig AusrichtgeradeAlignment guideline, useful alignment straight line
55
Bewegungsrichtung der LochplatteDirection of movement of the perforated plate
66th
Im Wesentlichen trapezförmiges Fluid-Querschnitts-ProfilEssentially trapezoidal fluid cross-sectional profile
3030th
LocheinmündungOpening of the hole
4040
LochausmündungHole outlet
5050
Fluid (Beschichtungsmittel)Fluid (coating agent)
6060
BenetzungsflächeWetting surface
7070
RohrstummelPipe stub
8080
BenetzungsflächeWetting surface
9090
Randedge
100100
Bereich mit DurchgangslöchernArea with through holes
110110
VerstärkungsstreifenReinforcement strips
160160
BauteilComponent
170170
Fluid-/BeschichtungsmittelstrahlenFluid / coating agent jets
180180
ApplikatorApplicator
190190
ApplikationstechnikApplication technology
200200
Zylindrischer Bereich des DurchgangslochsCylindrical area of the through hole
210210
Konischer Bereich des DurchgangslochsConical area of the through hole
dd
DurchgangsdurchmesserPassage diameter
a1a1
außenliegendster Lochabstand des einen Randbereichsouter hole spacing of one edge area
a2a2
zweit außenliegendster Lochabstand des einen Randbereichssecond outer hole spacing of one edge area
a3a3
Lochabstand, insbesondere einheitliche Lochabstände im MittenbereichHole spacing, especially uniform hole spacing in the middle area
a4a4
zweit außenliegendster Lochabstand des anderen Randbereichssecond outer hole spacing of the other edge area
a5a5
außenliegendster Lochabstand des anderen Randbereichsoutermost hole spacing of the other edge area
B1B1
Fluidapplikation, insbesondere FluidbahnFluid application, in particular fluid path
B2B2
Fluidapplikation, insbesondere FluidbahnFluid application, in particular fluid path
SS.
SymmetrieachseAxis of symmetry
LL.
Länge RohrstummelLength of tube stub
EE.
EinlassquerschnittInlet cross-section

Claims (23)

  1. Perforated plate (1) for an application device for application of a fluid serving as a coating medium onto a motor vehicle body and/or an attachment for this, with at least four through-holes (2.1, 3.1, 3.2, 3.3) for passage of the fluid, wherein the through-holes (2.1, 3.1, 3.2, 3.3) are assigned to a nozzle row with a central region (2) and two edge regions (3a, 3b) and spaced apart from each other by hole spacings (a1, a2, a3, a4, a5),
    wherein the at least one outermost hole spacing (a1, a2) of the nozzle row in at least one edge region (3a) is larger by at most the factor of 3 than at least one hole spacing (a3) in the central region (2), characterised in that all through-holes (2.1, 3.1, 3.2, 3.3) of the nozzle row each have a hole inlet opening (30) on the upstream side of the perforated plate (1) and a hole outlet opening (40) with a pipe stub (70) as a three-dimensional structuring on the downstream side of the perforated plate (1).
  2. Perforated plate (1) according to claim 1, characterised in that the perforated plate (1) has only one single nozzle row for application of the fluid,
    and/or that the nozzle row is aligned centred linearly and/or the centre axes of all through-holes (2.1, 3.1, 3.2, 3.3) of the nozzle row are aligned linearly, preferably along one and the same straight alignment line (4).
  3. Perforated plate (1) according to any of the preceding claims, characterised in that all through-holes (2.1, 3.1, 3.2, 3.3) of the nozzle row are formed uniformly.
  4. Perforated plate (1) according to any of the preceding claims, characterised in that the outermost hole spacing (a1) of the nozzle row in at least one edge region (3a) has the largest hole spacing of the nozzle row,
    and/or that the at least two outermost hole spacings (a1, a2) of the nozzle row in at least one edge region (3a) are larger than at least one hole spacing (a3) in the central region (2) .
  5. Perforated plate (1) according to any of the preceding claims, characterised in that the at least two outermost hole spacings (a1, a2) of the nozzle row in at least one edge region (3a) are formed uniformly (a1=a2) or non-uniformly (a1≠a2).
  6. Perforated plate (1) according to any of the preceding claims, characterised in that
    - the central region (2) has at least two, at least three or at least four hole spacings (a3), and/or
    - the at least one edge region (3a) has at least two or at least three hole spacings (a1, a2).
  7. Perforated plate (1) according to any of the preceding claims, characterised in that the hole spacings (a3) in the central region (2) are formed uniformly so that the through-holes (2.1) in the central region (2) are spaced evenly apart, and/or all through-holes (2.1) in the central region (2) are formed uniformly.
  8. Perforated plate (1) according to any of the preceding claims, characterised in that
    - the outermost hole spacing (a1) in the one edge region (3a) of the nozzle row is formed uniformly or non-uniformly relative to the outermost hole spacing (a5) in the other edge region (3b), or
    - that the at least two outermost hole spacings (a1, a2) in the one edge region (3a) of the nozzle row are formed uniformly or non-uniformly relative to the at least two outermost hole spacings (a4, a5) in the other edge region (3b) .
  9. Perforated plate (1) according to any of the preceding claims, characterised in that the at least one outermost hole spacing (a1, a2) in the one edge region (3a), which hole spacing is larger than at least one hole spacing (a3) in the central region (2), and the at least one outermost hole spacing (a1, a2) in the other edge region (3b) is formed uniformly relative to the at least one hole spacing (a3) in the central region (2).
  10. Perforated plate (1) according to any of the preceding claims, characterised in that the hole inlet openings (30) have a larger passage cross-section than the hole outlet openings (40), and/or the pipe stubs (70) have an outer casing surface which tapers, in particular conically, towards the free end of the respective pipe stub (70).
  11. Perforated plate (1) according to any of the preceding claims, characterised in that the two edge regions (3a, 3b) are formed symmetrically or asymmetrically, or the nozzle row is formed symmetrically overall, in particular axially symmetrically and/or mirror symmetrically, relative to an axis of symmetry (S) running transversely to the nozzle row.
  12. Perforated plate (1) according to any of the preceding claims, characterised in that
    - the outermost hole spacing (a1) in at least one edge region (3a) is larger by at most a factor of 2 or 3 than a respective hole spacing (a3) in the central region (2), or
    - the at least two outermost hole spacings (a1, a2) of the nozzle row in at least one edge region (3a) are each larger by at most a factor of 2 or 3 than a respective hole spacing (a3) in the central region (2).
  13. Perforated plate (1) according to any of the preceding claims, characterised in that at least one through-hole (2.1) in the central region (2) of the nozzle row and/or at least one through-hole (3.1) in at least one edge region (3a) of the nozzle row has a hopper-shaped hole inlet opening (30) and preferably a cylindrical hole outlet opening (40).
  14. Perforated plate (1) according to claim 13, characterised in that the hopper-shaped hole inlet opening (30) of the at least one through-hole (2.1) in the central region (2) extends more deeply into the perforated plate (1) than the hopper-shaped hole opening (30) of the at least one through-hole (3.1) in the at least one edge region (3a).
  15. Perforated plate (1) according to any of the preceding claims, characterised in that an inlet cross-section (E) of a hole inlet opening (30) of at least one through-hole (2.1) in the central region (2) of the nozzle row is larger than an inlet cross-section (E) of a hole inlet opening (30) of at least one through-hole (3.1) in at least one edge region (3a) of the nozzle row.
  16. Application device for application of a fluid serving as a coating medium, with at least one perforated plate (1) according to any of the preceding claims.
  17. Application device according to claim 16, characterised in that the application device is configured for a fluid inflow in at least one edge region (3a) which can be controlled independently of the central region (2).
  18. Application device according to claims 16 or 17, characterised in that the two edge regions (3a, 3b) are connected to the same fluid delivery unit or each connected to its own fluid delivery unit.
  19. Application device according to any of claims 16 to 18, characterised in that the application device comprises at least two perforated plates (1) arranged next to each other, the nozzle rows of which are arranged offset to each other in the longitudinal direction of the nozzle rows.
  20. Application device according to any of claims 16 to 19, characterised in that the at least one perforated plate (1) is arranged on an outer end face of the application device, preferably such that the at least four through-holes (2.1, 3.1, 3.2, 3.3) form outlet holes from the application device.
  21. Application method for application of a fluid serving as a coating medium, which fluid is applied to a component by means of at least one perforated plate (1) according to any of claims 1 to 15 or an application device according to any of claims 16 to 20, wherein an application of the coating medium with a substantially trapezoid cross-section is formed.
  22. Application method according to claim 21, characterised in that the application device is configured for a fluid inflow with equal pressure over the entire nozzle row.
  23. Application method according to claim 21 or 22, characterised in that the application device applies a fluid with a viscosity of over 50 mPas, ober 80 mPas or over 100 mPas.
EP17700769.7A 2016-01-14 2017-01-13 Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles Active EP3402599B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016000390.1A DE102016000390A1 (en) 2016-01-14 2016-01-14 Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles
PCT/EP2017/000038 WO2017121644A1 (en) 2016-01-14 2017-01-13 Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles

Publications (2)

Publication Number Publication Date
EP3402599A1 EP3402599A1 (en) 2018-11-21
EP3402599B1 true EP3402599B1 (en) 2021-10-20

Family

ID=57851039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17700769.7A Active EP3402599B1 (en) 2016-01-14 2017-01-13 Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles

Country Status (9)

Country Link
US (1) US11097291B2 (en)
EP (1) EP3402599B1 (en)
JP (1) JP6927984B2 (en)
KR (1) KR102637863B1 (en)
CN (1) CN108698054A (en)
DE (1) DE102016000390A1 (en)
ES (1) ES2902471T3 (en)
MX (1) MX2018008622A (en)
WO (1) WO2017121644A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230159113A1 (en) * 2021-11-22 2023-05-25 Transtex Inc. Aerodynamic apparatuses for trailer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165226A (en) * 2001-11-30 2003-06-10 Hitachi Printing Solutions Ltd Method for manufacturing orifice plate of ink jet head
US20030155451A1 (en) * 2002-02-21 2003-08-21 Kazuhiko Nakamura Wide slit nozzle and coating method by wide slit nozzle
US20090002441A1 (en) * 2006-12-28 2009-01-01 Toshiba Tec Kabushiki Kaisha Ink-jet head and head unit

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1887910U (en) 1964-02-20 Bersch a Fratscher GmbH Seligenstadt (Hess) I uf t channel
US3708798A (en) 1971-12-23 1973-01-02 Ibm Ink distribution for non-impact printing recorder
JPS53126930A (en) 1977-04-13 1978-11-06 Hitachi Ltd Ink jet recorder
JPS5625465A (en) 1979-08-09 1981-03-11 Ricoh Co Ltd Air stream paralleling device structured unitedly with charging electrode
FR2465961A2 (en) 1979-09-26 1981-03-27 Omia AIR FLOW ADJUSTMENT DEVICE, PARTICULARLY FOR PAINTING CABINS
JPS6051867B2 (en) 1980-08-04 1985-11-15 日本ランズバ−グ株式会社 How to change paint color
DE3140486C2 (en) 1981-10-12 1986-03-06 Jagenberg AG, 4000 Düsseldorf Device for coating objects such as bottles with plastic
US4792817A (en) 1983-08-29 1988-12-20 Diagraph Corporation Ink jet printing systems
US4613875A (en) 1985-04-08 1986-09-23 Tektronix, Inc. Air assisted ink jet head with projecting internal ink drop-forming orifice outlet
JPS624464A (en) 1985-07-02 1987-01-10 Honda Motor Co Ltd Device for painting automobile body
US4622239A (en) 1986-02-18 1986-11-11 At&T Technologies, Inc. Method and apparatus for dispensing viscous materials
DK156939C (en) 1987-05-04 1990-03-19 Ideal Line As FILTER FOR A POWDER SPRAY PAINTING SYSTEM
DE3927880C2 (en) 1989-08-23 1998-07-30 Behr Industrieanlagen Process and plant for coating objects with frequently changing color material
JP2713479B2 (en) 1989-11-06 1998-02-16 西川化成株式会社 Painting equipment
JP2506223B2 (en) 1990-06-28 1996-06-12 トリニティ工業株式会社 Automatic painting equipment
JP3161635B2 (en) 1991-10-17 2001-04-25 ソニー株式会社 Ink jet print head and ink jet printer
DE4204704A1 (en) 1992-02-17 1993-08-19 Jan Slomianny Applying rust protection coating to tear line area of a steel pull-ring top - using a matrix printer with at least one applicator head and means of moving the can top relative to the head
JP3225631B2 (en) 1992-10-09 2001-11-05 日産自動車株式会社 Painting equipment
DE4238378A1 (en) 1992-11-13 1994-05-19 Merck Patent Gmbh Coating substrate with system giving good opacity and high lustre - by applying two coats of pigmented lacquer contg metal oxide-coated mica flakes, using finer flakes in first than second, and opt clear cost
JPH0679506U (en) 1993-04-20 1994-11-08 株式会社日本製鋼所 Paint film peeling device
JP2976085B2 (en) * 1993-07-16 1999-11-10 東京エレクトロン株式会社 Processing equipment
US5571560A (en) 1994-01-12 1996-11-05 Lin; Burn J. Proximity-dispensing high-throughput low-consumption resist coating device
US5818477A (en) 1994-04-29 1998-10-06 Fullmer; Timothy S. Image forming system and process using more than four color processing
US5602572A (en) 1994-08-25 1997-02-11 Minnesota Mining And Manufacturing Company Thinned halftone dot patterns for inkjet printing
JPH08274014A (en) * 1995-03-29 1996-10-18 Tokyo Ohka Kogyo Co Ltd Coating nozzle, coating method using the same and applying device with the coating nozzle assembled thereinto
AUPN233395A0 (en) 1995-04-12 1995-05-04 Eastman Kodak Company A high speed digital fabric printer
US5699491A (en) 1995-06-15 1997-12-16 Canon Information Systems, Inc. Printer driver having gamut-mapped colors
JP3259073B2 (en) 1995-07-26 2002-02-18 関西ペイント株式会社 Method of manufacturing automobile body having patterned coating film
JPH0975825A (en) * 1995-09-20 1997-03-25 Matsushita Electric Ind Co Ltd Apparatus and method for forming coating film
JPH09164706A (en) 1995-12-15 1997-06-24 Ricoh Co Ltd Ink jet head
JPH09168764A (en) 1995-12-19 1997-06-30 Nof Corp Method for forming paint film and coated article
US5769949A (en) 1996-05-02 1998-06-23 Chs Acquisition Corp. Automated coating process
KR100195334B1 (en) 1996-08-16 1999-06-15 구본준 A cleaning apparatus
DE29614871U1 (en) 1996-08-27 1996-12-05 Polytronic Grosbildkommunikati Computer-controlled, mobile, large color system
US5969733A (en) 1996-10-21 1999-10-19 Jemtex Ink Jet Printing Ltd. Apparatus and method for multi-jet generation of high viscosity fluid and channel construction particularly useful therein
US5820456A (en) 1996-10-24 1998-10-13 Sandy J. Pangle Paint spray booth
EP0894638B1 (en) 1996-12-19 2003-03-05 Toshiba Tec Kabushiki Kaisha Ink jet printer
EP0849001A1 (en) 1996-12-20 1998-06-24 Robert sen. Wälti Spray booth and air circulation system for a workspace
JPH10197967A (en) 1997-01-09 1998-07-31 Fuji Photo Film Co Ltd Image forming device
DE19731829A1 (en) 1997-07-24 1999-01-28 Tietz Patrick Colour mixing and dosing unit for enamels, paints etc.using paint delivery unit atomising paint
DE29724351U1 (en) 1997-07-24 2000-12-07 Tietz Patrick Device for controlled color mixing and dosing of paints and colors
JPH1176889A (en) 1997-09-02 1999-03-23 Nikon Corp Coating equipment
US6062056A (en) * 1998-02-18 2000-05-16 Tippins Incorporated Method and apparatus for cooling a steel strip
EP0990682B1 (en) 1998-04-15 2005-11-09 BASF Coatings Japan Ltd. Method for formation of coating film and coating composition
EP0970811B1 (en) 1998-07-06 2005-09-21 L.A.C. Corporation Automatic painting device
JP3669551B2 (en) 1998-07-17 2005-07-06 東レ株式会社 APPARATUS AND METHOD FOR APPLYING COATING LIQUID ON CONCRETE SUBSTRATE AND APPARATUS AND METHOD FOR PRODUCING PLASMA DISPLAY
JP2000135459A (en) 1998-08-27 2000-05-16 Tomen System Kk Color change coating of automobile body by multicolor coating material and coating device therefor
US7108894B2 (en) 1998-09-30 2006-09-19 Optomec Design Company Direct Write™ System
DE19852079A1 (en) 1998-11-11 2000-05-18 Thomas Kovarovsky Image generating painting arrangement has controller with device that reacts to image information by actuating robot arm, dosing device to reproduce image on painted surface
US6325490B1 (en) * 1998-12-31 2001-12-04 Eastman Kodak Company Nozzle plate with mixed self-assembled monolayer
JP2000238254A (en) 1999-02-25 2000-09-05 Tenryu Ind Co Ltd Method and machine for forming pattern on surface of article
US6247657B1 (en) * 1999-05-28 2001-06-19 Delphi Technologies, Inc. Power gun spray nozzle and method
FR2795662B1 (en) 1999-07-01 2002-03-08 Sarl A I M DEVICE PROVIDED WITH A PRINTING HEAD FOR PERFORMING DECORATIONS ON LARGE OBJECTS
US6302523B1 (en) 1999-07-19 2001-10-16 Xerox Corporation Ink jet printheads
DE19941729A1 (en) 1999-09-01 2001-03-08 Fleissner Maschf Gmbh Co Nozzle body for generating the finest liquid jets z. B. on water needling devices
DE19951956A1 (en) 1999-10-29 2001-06-13 Duerr Systems Gmbh Valve assembly and method for flushing a color changer
DE19958948B4 (en) 1999-11-26 2005-06-02 Francotyp-Postalia Ag & Co. Kg A method of determining the number of prints to be run with an ink residue and apparatus for performing the method
FR2810539B1 (en) 2000-06-26 2004-05-07 Oreal PROCESS AND DEVICE FOR TREATING, PARTICULARLY MAKEUP, COLORING OR COSMETIC CARE, OF PARTS OR THE WHOLE OF THE HUMAN OR ANIMAL BODY
JP4690556B2 (en) 2000-07-21 2011-06-01 大日本印刷株式会社 Fine pattern forming apparatus and fine nozzle manufacturing method
JP3953776B2 (en) 2001-01-15 2007-08-08 セイコーエプソン株式会社 Material discharging apparatus and method, color filter manufacturing apparatus and manufacturing method, liquid crystal device manufacturing apparatus and manufacturing method, EL apparatus manufacturing apparatus and manufacturing method
JP2002347230A (en) 2001-05-23 2002-12-04 Seiko Epson Corp Printing by switching vertical scanning between monochromic region and color region
US6450628B1 (en) 2001-06-27 2002-09-17 Eastman Kodak Company Continuous ink jet printing apparatus with nozzles having different diameters
US20030029379A1 (en) 2001-07-11 2003-02-13 Fuji Photo Film Co., Ltd. Electrostatic coating device and electrostatic coating method
US6517187B1 (en) 2001-09-14 2003-02-11 Xerox Corporation Method and apparatus for cleaning residual ink from printhead nozzle faces
JP3958014B2 (en) 2001-10-12 2007-08-15 富士フイルム株式会社 Pattern sheet manufacturing method and manufacturing apparatus
JP2003144991A (en) 2001-11-14 2003-05-20 Kanto Auto Works Ltd Apparatus for supplying small amount of coating color
WO2003061975A1 (en) 2002-01-16 2003-07-31 Xaar Technology Limited Droplet deposition apparatus
US6592203B1 (en) 2002-02-11 2003-07-15 Lexmark International, Inc. Subcovered printing mode for a printhead with multiple sized ejectors
JP3985545B2 (en) 2002-02-22 2007-10-03 セイコーエプソン株式会社 Thin film forming apparatus, thin film forming method, liquid crystal device manufacturing apparatus, liquid crystal device manufacturing method, liquid crystal device, thin film structure manufacturing apparatus, thin film structure manufacturing method, thin film structure, and electronic device
JP2003329828A (en) 2002-03-06 2003-11-19 Seiko Epson Corp Liquid material ejecting method, liquid material ejecting apparatus, color filter manufacturing method, color filter, liquid crystal display, electroluminescence device, plasma display panel manufacturing method, and plasma display
JP3988645B2 (en) 2002-03-06 2007-10-10 セイコーエプソン株式会社 Discharge method, discharge device, color filter manufacturing method, electroluminescence device manufacturing method, and plasma display panel manufacturing method
US6764162B2 (en) 2002-04-30 2004-07-20 Lexmark International, Inc. Shingle masks that reduce banding effect on ink jet printers
DE10224128A1 (en) 2002-05-29 2003-12-18 Schmid Rhyner Ag Adliswil Method of applying coatings to surfaces
JP4139161B2 (en) 2002-08-05 2008-08-27 株式会社エルエーシー Oil applicator
EP1449667A1 (en) 2003-02-21 2004-08-25 Agfa-Gevaert Method and device for printing grey scale images
US8123350B2 (en) 2003-06-03 2012-02-28 Hexagon Metrology Ab Computerized apparatus and method for applying graphics to surfaces
JP4767482B2 (en) * 2003-07-08 2011-09-07 ノードソン コーポレーション Liquid or melt application method and nozzle
US7001262B2 (en) 2003-08-01 2006-02-21 Ford Motor Company System for dynamic airflow control in a paint booth using multiple air supply plenums
JP4108026B2 (en) 2003-09-19 2008-06-25 ニチハ株式会社 Building board printer
FR2862563B1 (en) 2003-11-24 2007-01-19 Centre Nat Rech Scient A LARGE-SIZE DIGITAL DIGITAL PRINTING ROBOT ON A FIXED SURFACE AND A PRINTING METHOD USING AT LEAST ONE SUCH ROBOT
EP1698465B1 (en) * 2003-12-25 2016-01-20 National Institute of Advanced Industrial Science and Technology Liquid emission device
US20050156960A1 (en) 2004-01-16 2005-07-21 Courian Kenneth J. Printmode selection systems and methods
US7253218B2 (en) * 2004-03-01 2007-08-07 H.B. Fuller Company Sound damping compositions and methods for applying and baking same onto substrates
JP4480134B2 (en) * 2004-03-15 2010-06-16 東京エレクトロン株式会社 Coating film forming method and apparatus
US7350890B2 (en) 2004-08-26 2008-04-01 The Boeing Company Apparatus and methods for applying images to a surface
DE102004044655B4 (en) 2004-09-15 2009-06-10 Airbus Deutschland Gmbh Painting device, painting arrangement, method for painting a curved surface of an aircraft and use of an inkjet device for painting an aircraft
US20060068109A1 (en) 2004-09-15 2006-03-30 Airbus Deutschland Gmbh Painting device, painting arrangement, method for painting a curved surface of an object, and use of an inkjet device for painting an aircraft
US7350902B2 (en) 2004-11-18 2008-04-01 Eastman Kodak Company Fluid ejection device nozzle array configuration
CA2492961C (en) 2004-12-23 2010-03-23 Chris Frosztega Colour coatings blender apparatus, production of colour coatings gradients and application methods and uses therefor
CN1327209C (en) 2005-02-25 2007-07-18 天津大学 Flow-type imaging particle measurer and its measuring method
US20060197723A1 (en) 2005-03-01 2006-09-07 Sikora Robert M Reflective fluidics matrix display particularly suited for large format applications
JP4852257B2 (en) 2005-04-08 2012-01-11 芝浦メカトロニクス株式会社 Solution coating apparatus and coating method
US7611069B2 (en) 2005-08-09 2009-11-03 Fanuc Robotics America, Inc. Apparatus and method for a rotary atomizer with improved pattern control
US7891799B2 (en) 2005-09-12 2011-02-22 Electronics For Imaging, Inc. Metallic ink jet printing system for graphics applications
US7908994B2 (en) 2005-10-21 2011-03-22 Duerr Systems, Inc. Automatically steered coating machine also a container for the coating material
US8015938B2 (en) 2005-10-21 2011-09-13 Duerr Systems Inc. Coating zone and coating plant
US20070097176A1 (en) 2005-10-31 2007-05-03 Kenneth Hickey Orifice plate coated with palladium nickel alloy
JP2007154431A (en) 2005-11-30 2007-06-21 Kubota Matsushitadenko Exterior Works Ltd Decorative building board
DE102006005341A1 (en) 2006-02-07 2007-08-09 Volkswagen Ag Painting device e.g. for painting device, has robot and moveable arm and a at movable arm application part is provided for color which can be applied
DE102006022570A1 (en) 2006-05-15 2007-11-29 Dürr Systems GmbH Coating device and associated operating method
JP4182123B2 (en) 2006-06-12 2008-11-19 キヤノン株式会社 Inkjet recording head and inkjet recording apparatus
DE102006060398A1 (en) 2006-12-20 2008-06-26 Mankiewicz Gebr. & Co (Gmbh & Co Kg) Fluid coating e.g. finish paint, applying device for surface of body of e.g. passenger car, has nozzle applying fluid on surface by air flow, and unit producing air flow, which deflects fluid between nozzle and surface
DE102006032804A1 (en) 2006-07-14 2008-01-17 Dürr Systems GmbH Painting plant and associated operating method
EP1884365A1 (en) 2006-07-28 2008-02-06 Abb Research Ltd. Paint applicator and coating method
DE102006047382B4 (en) 2006-10-06 2011-03-17 Venjakob Maschinenbau Gmbh & Co. Kg Apparatus for painting workpieces
JP2008246713A (en) 2007-03-29 2008-10-16 Konica Minolta Medical & Graphic Inc Recording head, head unit and ink jet recorder
ITMO20070134A1 (en) 2007-04-17 2008-10-18 Gruppo Barbieri & Tarozzi S P A "METHOD AND DECORATION SYSTEM FOR DECORATING CERAMIC MANUFACTURES"
US20080311836A1 (en) 2007-06-13 2008-12-18 Honda Motor Co., Ltd. Intelligent air conditioning system for a paint booth
EP2002898A1 (en) * 2007-06-14 2008-12-17 J. Zimmer Maschinenbau Gesellschaft m.b.H. Application device for applying a fluid onto a substrate with valve devices, method for cleaning the application device and valve device for application device
US7669789B2 (en) 2007-08-29 2010-03-02 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
KR20090118628A (en) * 2008-05-14 2009-11-18 삼성전자주식회사 Printer head, printer head assembly and printing method having the same
EP2296898B1 (en) 2008-06-30 2016-03-23 Fujifilm Dimatix, Inc. Ink jetting
JP2010040323A (en) 2008-08-05 2010-02-18 Panasonic Corp Liquid drop discharge device, liquid drop discharge method, and manufacturing method of organic el element
US8333207B2 (en) 2008-09-04 2012-12-18 Jackson Msc Llc Spray arm for directing spray in a warewashing machine
JP2010076362A (en) 2008-09-29 2010-04-08 Seiko Epson Corp Liquid discharge apparatus
DE102008053178A1 (en) 2008-10-24 2010-05-12 Dürr Systems GmbH Coating device and associated coating method
DE102009004878A1 (en) 2009-01-16 2010-07-29 Bauer, Jörg R. Process for coating, in particular painting, a surface and digital coating system
JP2010208120A (en) * 2009-03-10 2010-09-24 Seiko Epson Corp Liquid jetting apparatus
DE102009029946A1 (en) 2009-06-19 2010-12-30 Epainters GbR (vertretungsberechtigte Gesellschafter Burkhard Büstgens, 79194 Gundelfingen und Suheel Roland Georges, 79102 Freiburg) Print head or dosing head
JP5126185B2 (en) 2009-08-26 2013-01-23 カシオ計算機株式会社 Coating device
EP2301671B1 (en) * 2009-09-18 2012-06-06 Groz-Beckert KG Nozzle strip for a textile processing machine
JP2011230410A (en) 2010-04-28 2011-11-17 Panasonic Corp Liquid droplet ejection head and liquid droplet ejection apparatus with the same
DE102010019612A1 (en) 2010-05-06 2011-11-10 Dürr Systems GmbH Coating device, in particular with an application device, and associated coating method that emits a droplets of coating agent droplet
CN102294317A (en) 2010-06-28 2011-12-28 无锡华润上华半导体有限公司 Photoresist spraying device and method
DE202011001109U1 (en) 2011-01-07 2011-03-17 Basf Se Apparatus for applying liquid reaction mixtures to a cover layer
US8567909B2 (en) 2011-09-09 2013-10-29 Eastman Kodak Company Printhead for inkjet printing device
DE102011056823A1 (en) 2011-12-21 2013-06-27 Thyssen Krupp Steel Europe AG A nozzle device for a furnace for heat treating a flat steel product and equipped with such a nozzle device furnace
JP5974543B2 (en) 2012-02-29 2016-08-23 ブラザー工業株式会社 Droplet discharge device and droplet discharge adjustment method thereof
EP2880298A1 (en) 2012-08-01 2015-06-10 3M Innovative Properties Company Fuel injectors with non-coined three-dimensional nozzle inlet face
DE102013002413A1 (en) 2013-02-11 2014-08-14 Dürr Systems GmbH Perforated plate for an application device and corresponding application and manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165226A (en) * 2001-11-30 2003-06-10 Hitachi Printing Solutions Ltd Method for manufacturing orifice plate of ink jet head
US20030155451A1 (en) * 2002-02-21 2003-08-21 Kazuhiko Nakamura Wide slit nozzle and coating method by wide slit nozzle
US20090002441A1 (en) * 2006-12-28 2009-01-01 Toshiba Tec Kabushiki Kaisha Ink-jet head and head unit

Also Published As

Publication number Publication date
DE102016000390A1 (en) 2017-07-20
US20190022672A1 (en) 2019-01-24
ES2902471T3 (en) 2022-03-28
JP2019501771A (en) 2019-01-24
CN108698054A (en) 2018-10-23
WO2017121644A1 (en) 2017-07-20
JP6927984B2 (en) 2021-09-01
US11097291B2 (en) 2021-08-24
KR20180102601A (en) 2018-09-17
MX2018008622A (en) 2019-05-15
KR102637863B1 (en) 2024-02-19
EP3402599A1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
EP2953729B1 (en) Perforated plate for an application device and corresponding application and production method
DE102005037026B4 (en) cavitation mixer
EP3402599B1 (en) Perforated plate with increased hole spacing in one or both edge regions of a row of nozzles
EP0676245A2 (en) Assembly foam dispensing gun
DE2023146A1 (en) Micro-cross-section line for flowing media and processes for their production
DE1964981A1 (en) Spray nozzle for liquids and gases and processes for their production
DE1908693B2 (en) METHOD OF FORMING THE SPRAY WALL OF SEPARATING NOZZLES
EP3402607A1 (en) Perforated plate with a reduced diameter in one or both edge regions of a row of nozzles
EP3088087A1 (en) Spray nozzle and method for producing non-round spray cones
EP0421262A2 (en) Method of treating objects with a fluid and apparatus for realising this method
DE4126420C1 (en) Metallic filter element of improved mechanical stability - obtd. from chromium@-nickel@-molybdenum@-titanium@-contg. steel sheet and has round orifices or slits on inflow side, used for sepn. of particles from gases
DE2647845C3 (en) Stud welding gun
DE2437644C3 (en) Oxygen lance for converter
DE10315906B4 (en) Device for distributing plastic plastic material
DE102007039867B4 (en) An outlet device for coating a substrate with a liquid
DE10054591A1 (en) Device for producing a polymer membrane
EP3338882A1 (en) Mixing element with high strength and mixing effect
EP2907582B1 (en) Method and nozzle for mixing and spraying medical fluids
EP1932649B1 (en) Porous metering element with coating
DE102020103232A1 (en) Method for applying particles to a substrate
DE102004059721A1 (en) Irrigation hose has several longitudinal discharge openings formed by sectional grooves in hose wall whereby flow limiter is arranged at inside portion of hose
DE10159985A1 (en) microemulsifying
WO2016046250A1 (en) Arrangement for a temperature control device, and temperature control device
DE102012210901B4 (en) Method and device for coating a component with a liquid
Werz An Arabic Musical and Socio-Cultural Glossary of Kitāb al-Aġānī

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011770

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1439472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902471

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 39122

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011770

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220721

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220113

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1439472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230106

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230110

Year of fee payment: 7

Ref country code: IT

Payment date: 20230120

Year of fee payment: 7

Ref country code: GB

Payment date: 20230119

Year of fee payment: 7

Ref country code: DE

Payment date: 20230123

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230405

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170113