EP3385462B1 - Thermisch isolierendes bauelement - Google Patents

Thermisch isolierendes bauelement Download PDF

Info

Publication number
EP3385462B1
EP3385462B1 EP17000569.8A EP17000569A EP3385462B1 EP 3385462 B1 EP3385462 B1 EP 3385462B1 EP 17000569 A EP17000569 A EP 17000569A EP 3385462 B1 EP3385462 B1 EP 3385462B1
Authority
EP
European Patent Office
Prior art keywords
thrust
insulating body
thrust bearing
bearing
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17000569.8A
Other languages
English (en)
French (fr)
Other versions
EP3385462A1 (de
Inventor
Lutz Hollerbuhl
Tina Keller
Enrico Eckardt
Thorsten Heidolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leviat GmbH
Original Assignee
Halfen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halfen GmbH and Co KG filed Critical Halfen GmbH and Co KG
Priority to EP17000569.8A priority Critical patent/EP3385462B1/de
Priority to PL17000569T priority patent/PL3385462T3/pl
Priority to US15/938,439 priority patent/US20180291620A1/en
Priority to CN201810310123.3A priority patent/CN108691366A/zh
Publication of EP3385462A1 publication Critical patent/EP3385462A1/de
Application granted granted Critical
Publication of EP3385462B1 publication Critical patent/EP3385462B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the invention relates to a thermally insulating component of the type specified in the preamble of claim 1.
  • thermally insulating component of the generic type is known.
  • Such thermally insulating components with an insulating body are used in joints between load-absorbing structural parts, for example between building ceilings and balcony slabs.
  • thrust thrust bearings are provided in the insulating body, which project into the building ceiling on one long side of the component and into the balcony slab on the opposite long side.
  • Tension rods are also provided for the transmission of tensile forces.
  • thermally insulating component for connecting a building ceiling and a balcony slab which comprises an insulating body and tension rods for absorbing tensile forces, transverse force rods for absorbing shear forces and pressure elements for absorbing compressive forces.
  • the EP 0 499 590 A1 discloses for the transmission of shear forces and pressure forces reinforcing irons that protrude through the thermally insulating component.
  • plate-shaped connecting elements are provided which protrude through the insulating body. Project parallel on each side of the insulator crossbars to the insulating body, which are connected to the connecting elements and can thereby introduce transverse forces.
  • the EP 2 610 410 A2 discloses different components for thermal insulation that have tension rods. Either transverse force rods and pressure elements or, in other exemplary embodiments, thrust thrust bearings are provided for transmitting pressure forces and thrust forces. To optimize the component with regard to the transmission of pressure force, it is provided to secure the critical area of the load-bearing component with an additional reinforcement element in the form of a bridging element.
  • the invention has for its object to provide a thermally insulating component of the generic type, which has an improved insulating effect.
  • thermally insulating components which have thrust thrust bearings for absorbing horizontal and vertical forces are often oversized with regard to absorbing vertical forces.
  • the invention now provides to replace at least one of the thrust slide bearings by a thrust bearing.
  • the thrust bearing is designed exclusively to absorb horizontal forces.
  • thrust bearings have a reduced cross-section in normal loading and installation situations.
  • the thermally insulating component can be adapted well to the acting forces. Accordingly, different elements, namely both thrust thrust bearings and thrust bearings, are provided to absorb the horizontal forces.
  • Horizontal forces are pressure and tensile forces. In the installed position, the compressive and tensile forces have an advantageous effect horizontal direction, in particular in the transverse direction of the component.
  • Vertical forces are shear forces that act in the vertical direction of the component. Vertical forces have an advantageous effect in the vertical direction when installed.
  • the transverse direction advantageously extends in the horizontal direction from one to the other structural part.
  • the transverse direction is in particular perpendicular to the longitudinal direction.
  • the transverse direction is advantageously also perpendicular to the long sides of the insulating body.
  • the long sides are advantageously oriented approximately vertically.
  • the longitudinal sides do not have to be flat, but can be structured, for example by extensions extending in the longitudinal direction on the top and / or bottom of the insulating body.
  • the vertical direction of the insulating body is vertical in the installed position.
  • the long side advantageously extends approximately in the longitudinal direction and approximately in the vertical direction.
  • Thrust bearings and thrust thrust bearings differ in the type of forces that can be absorbed by the respective bearing. Thrust bearings are only designed to absorb horizontal forces that act in a transverse direction of the thermally insulating component. This results in a uniaxial stress state in the thrust bearing. Thrust bearings are advantageously designed with a low height and are arranged near the underside of the thermally insulating component. This results in a low center of gravity in the thermally insulating component and, preferably in the vertical direction, a large distance from components that transmit tensile force.
  • Thrust thrust bearings are designed to absorb horizontal and vertical forces.
  • the vertical forces act in the connection plane perpendicular to the horizontal forces, i.e. in the vertical direction of the insulating body.
  • the horizontal forces acting on the thrust bearing In order to intercept the moment introduced into the thrust bearing by the horizontal forces, the horizontal forces acting on the thrust bearing have an axial offset from one another, so that a biaxial stress state in the thrust bearing results.
  • the height of the thrust bearing measured on this long side in the vertical direction is smaller than the height of the thrust bearing on the long side of the insulating body.
  • Thrust thrust bearings advantageously have a significantly greater height measured in the vertical direction than thrust bearings for absorbing the torque introduced by the horizontal forces on at least one long side, in particular at least on the long side facing a balcony slab in the installed state.
  • the height of the thrust bearing on the at least one long side is advantageously less than 50%, in particular less than 30% of the height of the thrust bearing on this long side of the insulating body.
  • the height of the thrust bearing and thrust bearing is measured in the vertical direction on the same long side of the insulating body.
  • the thrust slide bearings advantageously protrude over the long sides with a protrusion of at least 1.0 cm.
  • the protrusion is preferably about 2.0 cm.
  • the protrusion is measured between the thrust bearing and the area of the insulating body directly adjacent to the thrust bearing, so that extensions, ledges or the like running on the top and bottom of the insulating body, for example, are not taken into account.
  • the thrust slide bearings protrude beyond each long side with at least one protrusion. It can be provided that the thrust thrust bearings have on each longitudinal side a projection arranged adjacent to the top and another adjacent to the bottom. However, it can also be provided that the thrust slide bearings have a projection on the long side on the upper side and a projection on the lower side on the opposite long side. In an alternative design, a projection arranged between the top and bottom can also be advantageous.
  • the protrusion of the thrust slide bearing is measured in the area which projects furthest beyond the long side, in particular in the at least one projection.
  • the protrusion advantageously forms a projection surface in the vertical direction, by means of which forces acting in the vertical direction, that is to say in the vertical direction, can be transmitted.
  • the thrust thrust bearing can also have one or more depressions, via the projection surface of which vertical forces acting in the vertical direction, namely thrust forces, can be transmitted.
  • the transferable thrust depends on the total size of the projection surface.
  • the projection surface can be formed by a single projection or a single depression or be composed of the projection surfaces on a plurality of projections or depressions.
  • the thrust bearings can also protrude over the long sides with a protrusion. It can also be provided that the end faces of the thrust bearings are flush with the long sides lie. However, the thrust bearings do not form a horizontal projection surface on which forces can be transmitted.
  • the thermally insulating component can have at least one tension rod, at least one compression rod and / or at least one transverse force rod, which each protrude through the insulating body.
  • the thermally insulating component has thrust thrust bearings, thrust bearings and tension rods, but no compression rods and no transverse force rods. This is particularly advantageous in the case of thermally insulating components for connecting cantilever plates.
  • the thermally insulating component has thrust thrust bearings, thrust bearings, tension rods and shear force rods, but no compression rods.
  • the thermally insulating component has thrust thrust bearings, thrust bearings and shear force rods.
  • This thermally insulating component advantageously has no tension rods and no compression rods. This achieves an optimal ratio of the pressure forces and thrust forces to be absorbed. If increased compressive forces are to be absorbed, it is provided that the thermally insulating component contains thrust thrust bearings, thrust bearings, compression rods and shear force rods, but not tension rods. This is particularly advantageous for a thermally insulating component that is used to connect supported plates.
  • the thermally insulating component has thrust bearing, thrust bearing, tension rods, compression rods and shear force rods.
  • the insulating body advantageously has an underside running in the longitudinal direction between the longitudinal sides. In the installed position, the underside of the thermally insulating component is advantageously at the bottom.
  • the thrust bearing and the thrust thrust bearing are advantageously arranged near the underside of the thermally insulating component.
  • the distance between the thrust bearing and the underside is advantageously less than 3 cm, in particular less than 2 cm.
  • the distance between the thrust slide bearings and the underside is less than 3 cm, in particular less than 2 cm.
  • the distance between the thrust bearing and the distance between the thrust bearing to the underside are approximately the same.
  • the distance between the thrust bearing and the bottom is advantageously 80% to 120% of the distance between the thrust bearing and the bottom.
  • the building parts can move in the transverse direction to each other.
  • the area of the thrust thrust bearing protruding over the long sides of the insulating body is at least partially formed in a radius around at least one axis running in the vertical direction.
  • the area of the thrust bearing protruding over the longitudinal sides of the insulating body is advantageously at least partially formed in a radius around at least one axis running in the vertical direction.
  • both the area of the thrust thrust bearing projecting over the long sides of the insulating body and the area of the thrust bearing projecting over the long sides of the insulating body are at least partially around a radius formed at least one axis extending in the vertical direction.
  • the thrust thrust bearings and the thrust bearings can move in relation to the structural parts in the manner of joints.
  • Different radii can be provided for different areas of the thrust bearing or thrust bearing. It can be advantageous that all centers of the different radii of a thrust bearing or a thrust thrust bearing lie on the same axis on one long side. An offset between the centers of the radii in plan view of the thrust bearing can also be advantageous. The centers of the radii then lie on different axes running in the vertical direction.
  • the center points of the radii advantageously lie between the planes formed by the longitudinal sides of the insulating body, that is to say within the insulating body. In a preferred design, the center points of the radii lie on planes parallel to the long sides of the insulating body. An arrangement in the extension of the long side of the insulating body can also be advantageous.
  • the at least one axis is preferably not outside the insulating body.
  • Fig. 1 shows schematically a thermally insulating component 1, which is arranged in a parting line 4 between two building parts, in the exemplary embodiment a balcony slab 2 and a building ceiling 3.
  • the component 1 has an insulating body 5, which has an elongated, in the embodiment a cuboid shape.
  • the insulating body 5 is used for at least partially thermal separation of the building ceiling 3 from the balcony plate 2.
  • the insulating body 5 has a longitudinal direction 6, which extends in the longitudinal direction of the parting line 4 between the balcony plate 2 and the building ceiling 3.
  • the longitudinal direction 6 is aligned horizontally in the installed position.
  • the insulating body 5 also has a transverse direction 7, which is perpendicular to the longitudinal direction 6 in the exemplary embodiment.
  • the insulating body 5 has a first longitudinal side 9 running along the balcony plate 2 and an opposite second longitudinal side 10 running along the building ceiling 3.
  • the transverse direction 7 runs from the balcony plate 2 to the building ceiling 3 and transversely to the longitudinal sides 9 and 10.
  • the Transverse direction 7 is advantageously arranged horizontally in the installed position.
  • the insulating body 5 also has a vertical direction 8, which is perpendicular to the longitudinal direction 6 and the transverse direction 7 and which is advantageously oriented vertically in the installed position.
  • the insulating body 5 has an underside 13 which is arranged at the bottom in the installed position and which extends between the longitudinal sides 9 and 10.
  • the underside 13 is advantageously aligned horizontally and perpendicular to the vertical direction 8.
  • the insulating body 5 has an upper side 14 opposite the lower side 13, which in the exemplary embodiment is also oriented horizontally and perpendicular to the vertical direction 8.
  • the top 14 is arranged at the top of the insulating body 5 in the installed position.
  • the length of the insulating body 5 measured in the longitudinal direction 6 can be selected to be adapted to the application.
  • the insulating body 5 has a width g measured in the transverse direction 7 and a height h measured in the vertical direction 8. In the exemplary embodiment, the height h is greater than the width g.
  • the insulating body 5 can for example be designed as a box which is filled with insulating material.
  • the insulating body 5 is in particular not suitable for absorbing the forces to be transmitted between the balcony slab 2 and the building ceiling 3.
  • 5 thrust thrust bearings 11 and thrust bearings 12 are arranged in the insulating body.
  • the thrust bearing 11 and the thrust bearing 12 are arranged alternately in the longitudinal direction 6 in the embodiment.
  • Another, in particular another regular arrangement of thrust bearings 12 and thrust thrust bearings 11 can, however, also be advantageous.
  • An irregular arrangement of thrust bearings 12 and thrust bearings 11 can also be advantageous.
  • the thrust bearings 12 are at a distance n from adjacent thrust bearing 11.
  • Adjacent thrust bearing 11 are at a distance p from one another.
  • Adjacent thrust bearings 12 are at a distance o from one another.
  • the distances o and p can be the same for all thrust bearings 12 and all thrust bearing 11, so that the thrust bearing 12 and the thrust bearing 11 are evenly spaced from one another.
  • the distance n is the same between all thrust bearing 11 and thrust bearing 12.
  • the horizontal forces F H include compressive forces F D and tensile forces Fz, which in Fig. 1 are also shown schematically.
  • the horizontal forces F H have an advantageous effect in the horizontal direction in the installed position.
  • the vertical forces Fv include thrust forces in both directions, i.e. upwards and downwards. In the installed position, the vertical forces Fv have an advantageous effect in the vertical direction.
  • the thrust thrust bearings 11 are provided. In this exemplary embodiment, the number and size of the thrust bearing 11 is dimensioned such that all vertical forces Fv to be absorbed can be transmitted by the thrust bearing 11. In an alternative exemplary embodiment, in particular in the case of additionally provided transverse force bars, the thrust thrust bearings 11 do not have to transmit the entire vertical forces Fv.
  • the thrust bearings 12 are therefore provided, which are provided only for absorbing horizontal forces F H. This is achieved in that the thrust bearings 12 do not have a horizontally running projection surface, via which vertical forces Fv can be transmitted. If the thrust bearing 12 protrudes over the long sides 9 and 10 into the balcony slab 2 and the building ceiling 3, soft material such as expanded polystyrene (EPS) or the like can be arranged on the thrust bearing 12, the thrust bearing 12 can be rounded with a large radius, or have an air gap in the vertical direction to the surrounding concrete of the balcony slab 2 or the building ceiling 3. In this way, in the case of a thrust bearing 12 projecting into the balcony slab 2 or the building ceiling 3, this can prevent vertical forces Fv, that is to say thrust forces, from being introduced into the thrust bearing 12.
  • EPS expanded polystyrene
  • a thermally insulating component 1 which has only pressure thrust bearings 11 for absorbing the horizontal forces F H , in particular the pressure forces F D , and the vertical forces Fv, the number of pressure thrust bearings 11 is reduced.
  • Tension rods, not shown, may be provided.
  • the thrust bearing 12 and the thrust bearing 11 differ in their geometric design.
  • the thrust thrust bearings 11 have a height c measured in the vertical direction 8 on the long side 9, which is significantly greater than a height d of the thrust bearing 12 measured in the same direction on the long side 9.
  • the height d of the thrust bearing 12 is advantageously less than 50%, in particular less than 30% of the height c of the thrust bearing 11.
  • a comparatively large height c of the thrust bearing 11 is required to absorb the vertical forces Fv.
  • the vertical forces Fv generate a moment on the thrust bearing 11 which is supported by the vertical distance of the horizontal forces F H introduced .
  • the active forces are in Fig.
  • the horizontal forces F H are exclusively pressure forces F D.
  • the horizontal forces F H can also include tensile forces Fz. Since the thrust bearing 12 only absorb the pressure forces F D , the height d of the thrust bearing 12 is significantly lower.
  • the dimensions of the thrust bearing 12 and the thrust bearing 11 are each measured on the relevant long side 9, 10 directly on the thrust bearing 12 or thrust bearing 11.
  • the height c of the thrust slide bearing 11 can be the same size on both longitudinal sides 9 and 10. However, it can also be provided that the thrust slide bearings 11 have a significantly lower height on the long side 10 than on the long side 9.
  • the height of the thrust bearing 11 on the long side 10 can approximately correspond to the height d of the thrust bearing 12 in an advantageous design.
  • both the thrust bearing 12 and the thrust bearing 11 are arranged near the bottom 13 of the insulating body 5.
  • the thrust slide bearings 11 are at a distance a from the underside 13.
  • the distance a is advantageously less than 3 cm, in particular less than 2 cm.
  • the thrust bearings 12 are at a distance b from the underside 13.
  • the distance b is advantageously less than 3 cm, in particular less than 2 cm. Distances a and b between 1 cm and 2 cm are considered to be particularly advantageous.
  • the distance b between the thrust bearing 12 and the underside 13 is advantageous 80% to 120% of the distance a between the thrust bearings 11 and the underside 13. In a preferred embodiment, the distances a and b are the same.
  • the thrust bearing 11 protrude beyond the long side 9.
  • the thrust bearing 11 protrude beyond the opposite long side 10.
  • the thrust bearing 11 have projections 16 and 17, which are described in more detail below and with which the thrust bearing 11 protrude beyond the long sides 9 and 10.
  • the projection e on the projections 16 and 17 is advantageously more than 1.0 cm, in particular more than 1.5 cm.
  • a protrusion e of 1.5 from 2.5 cm, in particular of about 2 cm, is considered to be particularly advantageous.
  • the thrust bearings 12 project with a protrusion f over the long sides 9, 10, which in the exemplary embodiment is less than the protrusion e of the thrust thrust bearing 11.
  • the thrust bearing 12 is designed and / or arranged in such a way that the projection f does not form a projection surface in the vertical direction 8, on which vertical forces Fv act and can be introduced into the thrust bearing 12. As a result, only horizontal forces F H are transmitted via the thrust bearing 12.
  • the projection f can also be zero, so that the thrust bearings 12 lie flush in the long sides 9, 10.
  • the projections e and f are measured in the transverse direction 7, in particular perpendicular to the respective long side 9 or 10, and directly on the respective thrust bearing 12 or thrust bearing 11.
  • the 2 to 4 show different embodiments for thrust bearing 12.
  • the in Fig. 2 The thrust bearing 12 shown has a cuboid base body, on which rounded end regions 15, which are semi-cylindrical in the exemplary embodiment, are formed.
  • the thrust bearing 12 has a length k, which in the installed state in the transverse direction 7 ( Fig. 1 ) of the insulating body 5 is measured.
  • the length k is the greatest extent of the thrust bearing 12.
  • the end regions 15 are the regions which protrude beyond the long sides 9 and 10 of the insulating body 5.
  • the end regions 15 run with a radius s about an axis 31.
  • the axis 31 lies in the insulating body in the installed state 5 advantageously in the area between the planes formed by the long sides 9 and 10 of the insulating body 5.
  • the axis 31 is therefore advantageously within the insulating body.
  • An arrangement of the axis 31 in the extension of the long side 9 or 10 can, however, also be advantageous.
  • the thrust bearing 12 has a width m which is aligned in the longitudinal direction 6 in the installed position.
  • the width m is significantly smaller than the length k.
  • the width m can be, for example, 15% to 60% of the length k.
  • the thrust bearing 12 also has the in Fig. 1 shown height d, which is significantly smaller than the length k. In the exemplary embodiment, the height d is smaller than the width m.
  • Fig. 3 shows a thrust bearing 12 which is cylindrical.
  • the longitudinal center axis of the thrust bearing 12 is to be arranged in the transverse direction 7 in the insulating body 5.
  • the thrust bearing 12 has end faces 32 which are advantageously arranged flush in the longitudinal sides 9 and 10 in the installed state and do not protrude beyond them. In an alternative design, the end faces 32 can be convexly curved and protrude beyond the long sides 9 or 10.
  • the thrust bearing 12 has a length k 'which corresponds to the width g of the insulating body 5.
  • the height d and the width m of the thrust bearing 12 are the same due to the cylindrical shape.
  • the width m can be, for example, 15% to 60% of the length k '.
  • Fig. 4 shows a thrust bearing 12 which is designed as a cuboid.
  • the thrust bearing 12 has end faces 32 which come to rest in the longitudinal sides 9 and 10 in the installed state.
  • the thrust bearing 12 has a length k 'measured in the transverse direction 7 and a width m measured in the longitudinal direction 6, which is significantly smaller than the length k'.
  • the end faces 32 are flat.
  • the end faces 32 are convex and protrude over the long sides 9 and 10 in the installed state.
  • Other forms of thrust bearings 12 can also be advantageous. Provision can be made to provide the end faces 32 of the thrust bearing 12 with a sliding layer.
  • Fig. 5 shows an embodiment of a thrust bearing 11.
  • the thrust bearing 11 has an upper side 18, which is arranged in the installation position in a parting line 4 above, and an underside 19 arranged in the installed position.
  • the bottom 19 and the top 18 are flat and parallel aligned with the longitudinal direction 6 and the transverse direction 7.
  • the thrust bearing 11 has a width 1 which is aligned in the longitudinal direction 6 and which is significantly smaller than the height c of the thrust bearing 11.
  • the thrust bearing 11 also has a length i, which is measured in the transverse direction 7 and which is greater than the width g of the insulating body 5.
  • the thrust bearing 11 is, as well Fig. 1 shows, arranged in the insulating body 5, that the thrust bearing 11 protrudes on both ends 9 and 10 over the insulating body 5.
  • the thrust thrust bearing 11 has end faces 33 on the areas projecting beyond the longitudinal sides 9 and 10.
  • the end faces 33 do not run parallel to the vertical direction 8, but instead are curved.
  • the end faces 33 have a central region 21, in which the overhang over the long sides 9 and 10 is only slight.
  • a corresponding projection 17 is arranged on the underside 19, which also protrudes beyond the longitudinal side 9 by the projection e. This in Fig.
  • a thrust slide bearing 11 is mirror-symmetrical to three planes, namely to a plane spanned by the vertical direction 8 and the longitudinal direction 6, to a plane spanned by the vertical direction 8 and the transverse direction 7, and to a plane spanned by the longitudinal direction 6 and the transverse direction 7 .
  • the thrust slide bearing 11 can be inserted into the insulating body 5 in any orientation.
  • the long side 9 and the long side 10 can thereby be oriented both to the balcony slab 2 and to the building ceiling 3.
  • Fig. 6 shows an embodiment of a component 1, which in addition to the insulating body 5, the thrust bearing 11 and the thrust bearings 12 has tie rods 26, compression rods 27 and shear bars 28.
  • Both tension rods 26 and compression rods 27 and transverse force rods 28 are shown schematically. Which of these elements a component 1 are provided, can be selected adapted to the respective application. As a result, the component 1 can be adapted well to the respective application.
  • An advantageous embodiment of a thermally insulating component 1 advantageously comprises thrust bearing 11, thrust bearing 12 and tension rods 26.
  • the tension rods 26 are arranged closer to the top 14 of the insulating body 5 than on the bottom 13.
  • the tension rods 26 are closer to the top 14 of the Insulator 5 arranged as the upper sides 18 of the thrust bearing 11.
  • a further advantageous embodiment of a component 1 has thrust thrust bearings 11, thrust bearings 12, tension rods 26 and transverse force rods 28 Fig. 6 schematically shows, a transverse force rod 28 on the long side 9 runs closer to the upper side 14 than on the lower side 13.
  • the transverse force rod 28 runs obliquely in the direction of the lower side 13 and leaves the insulating body 5 on the long side 10 in an area, which is closer to the underside 13 than to the top 14.
  • Another transverse force rod 28 is guided in the opposite direction and runs on the long side 9 closer to the underside 13, in the insulating body 5 obliquely in the direction of the top 14 and leaves the insulating body 5 on the long side 10 closer to the top 14 than to the bottom 13.
  • only one of the shear bars 28 can be provided.
  • the arrangement of tension rods 26 and transverse force rods 28 results in a higher shear force carrying capacity of component 1.
  • a further advantageous variant of a component 1 has thrust thrust bearings 11, thrust bearings 12 and transverse force rods 28. This enables an optimized ratio of the transmittable horizontal forces F H , in particular the compressive forces F D , to the transmittable vertical forces Fv to be achieved.
  • a component 1 which comprises thrust bearing 11, thrust bearing 12, thrust rods 27 and transverse force rods 28.
  • an optimized ratio of the transferable horizontal force F H in particular the pressure force F D to the transferable vertical force Fv, can be set.
  • the pressure rods 27 run closer to the underside 13 than to the top 14.
  • the pressure rods 27 run at a distance from the underside 13, which is approximately the distance a, b of the thrust bearing 11 or the pressure bearing 12 from the underside 13 ( Fig. 1 ) corresponds.
  • a component 1 which comprises thrust bearing 11, thrust bearing 12, tension rods 26 and compression rods 27.
  • a component 1 is particularly suitable for cantilevered panels in which an increased load-bearing capacity for bending moments is required.
  • a component 1 thrust thrust bearings 11, thrust bearings 12, tension rods 26, pressure rods 27 and transverse force rods 28 are provided.
  • a component 1 is particularly advantageous for connecting continuous plates.
  • a maximum load-bearing capacity of the component 1 can be achieved by the arrangement of tension rods 26, compression rods 27 and transverse force rods 28 in a component 1.
  • the arrangement of the tension rods 26, compression rods 27 and / or transverse force rods 28 is advantageous as in FIG Fig. 6 shown and how to Fig. 6 described provided.
  • Fig. 7 shows schematically the arrangement of the thrust bearing 11 in the insulating body 5. How Fig. 7 shows, the thrust bearing 11 protrudes on each long side 9, 10 with a projecting area 20 beyond the long sides 9 and 10, respectively.
  • the arrangement of the projections 16 and 17 on the upper side 18 and the lower side 19 as well as the central region 21, which is arranged between the projections 16 and 17, is also shown.
  • the thrust bearing 11 projects with the projection e the long sides 9 and 10 also.
  • the thrust slide bearing 11 projects beyond the long sides 9 and 10 with a reduced projection v.
  • the protrusion e is advantageously at least 0.5 cm, in particular at least 1.0 cm larger than the reduced protrusion v.
  • the difference between the projection e and the reduced projection v is advantageously matched to the number of load-bearing projections 16, 17 on each side of the thrust bearing 11.
  • a load-bearing projection 16 or 17 is provided on each side of the thrust bearing 11.
  • the respective other projection 16, 17 does not act load-bearing due to an air gap on the top 18 or the bottom 19.
  • the projections 16 are therefore only intended to absorb upward forces and the projections 17 only to absorb downward forces.
  • the projection e is advantageously at least 1.0 cm larger than the reduced projection v.
  • the projection e can be smaller, advantageously at least 0.5 cm larger than the reduced projection v.
  • the vertical forces Fv are transmitted via the mutually facing pressure surfaces 36 of the projections 16 and 17.
  • an air gap to the surrounding concrete is formed on the top 18 and the bottom 19 of the thrust bearing 12, so that no vertical forces Fv can be introduced into the thrust bearing 12 on the top 18 and the bottom 19.
  • the projection surface 35 of the pressure surface 36 which is perpendicular to the vertical direction, is decisive for the magnitude of the force to be transmitted Fig. 8 is shown schematically.
  • the projection surface 35 is the surface formed in a plan view in the vertical direction 8 between the outer contour of the central region 21 and the outer contour of the projections 16 and 17, respectively.
  • For the projection surface 35 only those areas of the pressure-thrust bearing 11 are taken into account that lie non-positively between the adjacent components, that is to say the building ceiling 3 and the concrete slab 2.
  • the projection surface 35 can be formed on projections or on depressions.
  • the thrust slide bearing 11 is provided on the projections 16 with rounded corners 30.
  • the radius u at the rounded corners 30 is in the in 7 to 9 Embodiment of a push drawer 11 shown is smaller than half the width 1 of the push drawer 11 ( Fig. 9 ).
  • a straight section 34 is thereby formed on the projections 16, in which the projection 16 runs parallel to the longitudinal side 9 or 10.
  • the radius u runs around an axis 23.
  • the axis 23 is advantageously between the longitudinal sides 9 and 10.
  • the pressure-thrust bearing 11 is advantageously rounded with a radius x around an axis 37 at its edges running in the vertical direction 8.
  • the thrust bearing 12 is advantageously rounded with a radius s about an axis 31 ( Fig. 2 ).
  • the axes 37 of the radii x lie in the central region 21 of the thrust bearing 11 and the axes 31 of the radii s of the thrust bearing 12 of a component 1 lie in a common plane which runs parallel to the long side 9.
  • Fig. 10 shows an embodiment of the thrust bearing 11, in which the projections 16 are carried out in a radius r.
  • the radius r runs around an axis 23.
  • the axis 23 is advantageously between the extension of the long side 9 and the extension of the long side 10, that is to say in the insulating body 5, as in FIG Fig. 10 is shown schematically for the long side 9.
  • the radius r is therefore larger than the projection e ( Fig. 1 ) of the thrust slide bearing 11.
  • the projection 16 like the projection 17, advantageously runs over the entire projection 20 in a constant radius r.
  • the 11 and 12 show another embodiment of a thrust bearing 11.
  • the projections 16 and 17 are each provided with a groove 22 on their mutually facing sides.
  • the central region 21 is set back from the projections 16 and 17 in a side view, so that the thrust bearing 11 in the central region 21 projects less far beyond the long sides 9 and 10, respectively.
  • the tops 18 and 19 are flat and parallel to each other.
  • the thrust thrust bearing 11 is formed symmetrically to a plane spanned by the longitudinal direction 6 and the transverse direction 7, to a plane spanned by the transverse direction 7 and in the vertical direction 8 and to a plane spanned by the longitudinal direction 6 and the vertical direction 8.
  • the outer contour on the projections 16 extends in a radius r about an axis 23.
  • the axis 23 extends in the installed state in the vertical direction 8 ( Fig. 1 ) and in the extension of the long side 9 or 10.
  • the groove 22 connects directly to the end face 33 in the exemplary embodiment.
  • the groove 22 runs in a radius t around the axis 23.
  • the end face 33 also runs in the radius t around the axis 23.
  • the groove 22 forms an undercut in the transverse direction 7 and in the longitudinal direction 6 in the installed state, since the material is in the groove 22 the concrete slab 2 or the building ceiling 3, for example concrete, can intervene. How Fig.
  • the radius r is greater than half the width w of the thrust slide bearing 11 in the region lying between the projections 16 and 17.
  • the width w is advantageously measured centrally between the projections 16 and 17. It can be advantageous to design the thrust bearing 11 without the grooves 22.
  • a thrust slide bearing 11 has two projections 16 and 17 respectively on the top 18 and the bottom 19.
  • a projection 16 is arranged on the top 18.
  • No projection 16 is arranged on the opposite side of the thrust bearing 11.
  • the projection 16 is advantageously arranged on the end face 43 of the push-slide bearing 11 facing the building ceiling 3.
  • a projection 17 is provided on the underside 19.
  • the protrusion 17 protrudes on the long side 9 of the insulating body 5 and the protrusion 16 on the long side 10.
  • the protrusions 16 and 17 can each have a groove 22.
  • Fig. 14 shows a further embodiment of a thrust bearing 12, which comprises two bearing bodies 25.
  • Each bearing body 25 can be designed corresponding to one of the thrust bearings 12 of the previous exemplary embodiments.
  • the bearing bodies 25 of the thrust bearing 12 each have a recess 24 on their upper side 18, at which the height of the bearing body 25 is reduced.
  • the bearing bodies 25 each have two projections 29, which are provided for over the longitudinal sides 9, 10 of the insulating body 5 ( Fig. 1 ) to preside.
  • the projections 29 are designed with rounded corners and extend with a constant cross-section over the entire height of the bearing body 25.
  • a circular-arc-shaped design of the projections 29, that is to say a design with a continuous radius, can also be advantageous.
  • Other configurations of the bearing body 25 can also be advantageous.
  • two bearing bodies can also be provided for a pressure slide bearing 11, which are combined to form a common pressure slide bearing 11.
  • the thrust slide bearing 11 has an end face 33, in which a projection 17 is arranged adjacent to the underside 19. No projection is provided on the top side 18 on the end face 33.
  • the thrust bearing 11 On the front side 33, the thrust bearing 11 has a vertical direction 8 ( Fig. 1 ) measured height c. How Fig. 15 shows, the height of the thrust bearing 11 decreases from the end face 33 to an opposite end face 43.
  • the end face 33 is provided for installation on the longitudinal side 10 of the insulating body 5 facing a building ceiling 3, while the end face 43 on the opposite side, facing a balcony slab 2 Long side 9 is to be provided.
  • the thrust slide bearing 11 has longitudinal sides 40 which extend between the end faces 33 and 43 approximately in the vertical direction 8.
  • the thrust thrust bearing 11 in the exemplary embodiment has a recess 38 in each case.
  • a stiffening strut 39 is provided on the long sides 40 adjacent to the underside 39 and extends approximately in the transverse direction 7 of the insulating body 5 ( Fig. 1 ) extends.
  • the width 1 of the thrust slide bearing 11 is smaller in the area to be arranged in the insulating body 5 than on the end faces 33 and 43. In the area to be arranged in the insulating body 5, the width 1 increases from the side facing the front side 33 to the side facing the front side 43.
  • the top 18 of the thrust slide bearing 11 is inclined in a central region and drops towards the end face 43.
  • the thrust slide bearing 11 On the end face 43, the thrust slide bearing 11 has a height c 'which is less than the height c.
  • the height c 'can advantageously be between 40% and 80%, in particular from 50% to 70% of the height c.
  • design of a thrust bearing 11 can be a reduced heat transfer between the balcony slab 2 and the building ceiling 3 ( Fig. 1 ) to reach.
  • Other asymmetrical designs of a thrust slide bearing 11 can also be advantageous.
  • the 17 and 18 show a thrust bearing 12, which is advantageous in combination with that in the 15 and 16 Pressure thrust bearing 12 shown is provided in a thermally insulating component 1.
  • the thrust bearing 12 is cuboidal in the exemplary embodiment and has end faces 32. Because of the symmetrical design of the thrust bearing 12, different installation positions are possible.
  • the thrust bearing 12 has a vertical direction 8 when installed ( Fig. 1 ) measured height d.
  • the height d is smaller than the height c of the thrust slide bearing 11 on the end face 33 ( 15 and 16 ).
  • the height d can approximately correspond to the height c 'on the end face 43.
  • the height d is greater than the height c '.
  • the height c of the pressure slide bearing 11 is greater than the height d of the pressure bearing 12.
  • the Figures 19 to 24 show further possible arrangements of thrust bearings 12 and thrust bearings 11 in an insulating body 5.
  • the arrangement in Fig. 19 are four thrust bearing 11 and two thrust bearing 12 symmetrical in the component 1 shown arranged to the center of the component 1.
  • the two outer thrust bearing 11 each have the same distance p from one another, while the two middle thrust bearing 11 have a reduced distance p 'from one another.
  • the thrust bearings 12 are arranged at a distance n 'from the outer thrust bearing 11, which is significantly smaller than the distance n of the thrust bearing 12 from the adjacent middle thrust bearing 11.
  • the thrust bearings 12 are at a distance o from one another which is significantly greater than the distances n, n ', p and p'.
  • Fig. 20 are the thrust slide bearing 11 as in the embodiment according to Fig. 19 arranged.
  • the thrust bearings 12 are arranged at a reduced distance n 'from the first and third thrust thrust bearings and have the increased distance n from the second and fourth thrust thrust bearings 11, respectively. This results in a regular arrangement which is asymmetrical with respect to the center. An arrangement in which the distance n 'is greater than the distance n can also be advantageous.
  • two thrust bearings 12 and two thrust thrust bearings 11 are provided in the thermally insulating component 1, which are arranged alternately.
  • the thrust bearings 12 have different distances n and n 'from the adjacent thrust thrust bearings 11.
  • the distance p between adjacent thrust bearings 11 and the distance o between adjacent thrust bearings 12 are the same, so that there is a regular arrangement.
  • two thrust bearing 11 and two thrust bearing 12 are provided. Both thrust bearings 12 are arranged at a distance o from one another between the two thrust bearing 11. The distance p between the thrust bearing is at least twice the distance o.
  • Fig. 23 shows how Fig. 22 a symmetrical arrangement of pressure layers 12 and thrust bearing 11.
  • the thermally insulating component 1 has five thrust bearing 11 and two thrust bearing 12. At the end regions of the component 1 there are two Thrust slide bearing 11 arranged adjacent to each other.
  • the two thrust bearings 12 with a thrust thrust bearing 11 arranged between them are arranged between the two groups of two thrust bearing 11 each.
  • the distance n 'between the thrust bearing 12 and the middle thrust bearing 11 is greater than the distance n from the outside thrust bearing 11.
  • Fig. 24 The exemplary embodiment shown has essentially the same arrangement as the exemplary embodiment Fig. 23 , However, the thrust bearings 12 are not arranged symmetrically to the center, but have the in Fig. 24 to the left of the thrust bearing 12 arranged thrust bearing 11 the distance n 'and in Fig. 24 arranged on the right next to the thrust bearing 12 thrust bearing 11 the greater distance n.
  • Another symmetrical or asymmetrical arrangement and number of thrust bearings 12 and thrust bearing 11 can also be advantageous.
  • the arrangements shown can be repeated any number of times in order to form components 1 of greater length.
  • the thrust thrust bearing 11 and / or the thrust bearing 12 advantageously consist essentially of a pourable and / or injectable, hardenable material.
  • the material advantageously comprises plastic or a mineral base material.
  • the thrust bearing 11 consist of dimensionally stable plastic or fiber cement.
  • the height of the thrust slide bearing 11 need not be constant in the transverse direction 7 or in the longitudinal direction 6, but can change in the transverse direction 7 and / or in the longitudinal direction 6.
  • the thrust bearing 12 and the thrust bearing 11 do not have to have symmetry.
  • the width and / or the protrusion of the thrust bearing 12 and / or the thrust bearing 11 can the long side 9 and the long side 10 may be different sizes.
  • the radii on the two long sides 9 and 10 and / or the position of the center points of the radii on the two long sides 9 and 10 can also be different for a thrust bearing 12 and / or for a thrust bearing 11.
  • the thrust bearing 12 and the thrust bearing 11 can have the same width in the longitudinal sides 9 and 10 measured in the longitudinal direction 6. However, different widths for the thrust bearing 12 and the thrust bearing 11 can also be advantageous. In particular, if the thrust bearing 12 has a greater width than the thrust bearing 11, it can be advantageous for the thrust bearing 12 to have a larger radius on its end faces than the thrust bearing 11. The projection f of the thrust bearing 12 into the adjacent component can also be greater than the projection e of the thrust bearing 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Building Environments (AREA)

Description

  • Die Erfindung betrifft ein thermisch isolierendes Bauelement der im Oberbegriff des Anspruchs 1 angegebenen Gattung.
  • Aus der EP 1 564 336 A1 ist ein thermisch isolierendes Bauelement der gattungsgemäßen Art bekannt. Derartige thermisch isolierende Bauelemente mit einem Isolierkörper werden in Trennfugen zwischen lastaufhehmenden Bauwerksteilen, beispielsweise zwischen Gebäudedecken und Balkonplatten, eingesetzt. Zur Aufnahme von Druckkräften und Schubkräften sind in dem Isolierkörper Druckschublager vorgesehen, die an einer Längsseite des Bauelements in die Gebäudedecke und an der gegenüberliegenden Längsseite in die Balkonplatte ragen. Zur Übertragung von Zugkräften sind außerdem Zugstäbe vorgesehen.
  • Es ist auch bekannt, die Elemente zur Aufnahme von Druckkräften und von Schubkräften separat auszubilden. Aus der DE 10 2011 054 275 A1 ist ein thermisch isolierendes Bauelement zum Verbinden einer Gebäudedecke und einer Balkonplatte bekannt, das einen Isolierkörper sowie Zugstäbe zur Aufnahme von Zugkräften, Querkraftstäbe zur Aufnahme von Schubkräften sowie Druckelemente zur Aufnahme von Druckkräften umfasst.
  • Die EP 0 499 590 A1 offenbart zur Übertragung von Schubkräften und von Drucckräften Armierungseisen, die durch das thermisch isolierende Bauelement ragen. Zur Aufnahme von Schubkräften sind plattenförmige Verbindungselemente vorgesehen, die durch den Isolierkörper hindurchragen. Auf jeder Seite des Isolierkörpers ragen parallel zum Isolierkörper Querstäbe, die mit den Verbindungselementen verbunden sind und dadurch Querkräfte einleiten können.
  • Die EP 2 610 410 A2 offenbart unterschiedliche Bauelemente zur Wärmedämmung, die Zugstäbe aufweisen. Zur Übertragung von Druckkräften und Schubkräften sind entweder Querkraftstäbe und Druckelemente oder in anderen Ausführungsbeispielen Druckschublager vorgesehen. Zur Optimierung des Bauelements hinsichtlich der Druckkraftübertragung ist vorgesehen, den kritischen Bereich des tragenden Bauteils durch ein zusätzliches Bewehrungselement in Form eines Überbrückungselements zu sichern.
  • Der Erfindung liegt die Aufgabe zugrunde, ein thermisch isolierendes Bauelement der gattungsgemäßen Art zu schaffen, das eine verbesserte Isolierwirkung besitzt.
  • Diese Aufgabe wird durch ein thermisch isolierendes Bauelement mit den Merkmalen des Anspruchs 1 gelöst.
  • Es hat sich gezeigt, dass thermisch isolierende Bauelemente, die Druckschublager zur Aufnahme von Horizontalkräften und Vertikalkräften besitzen, hinsichtlich der Aufnahme von Vertikalkräften oft überdimensioniert sind. Die Erfindung sieht nun vor, mindestens eines der Druckschublager durch ein Drucklager zu ersetzen. Das Drucklager ist dabei ausschließlich zur Aufnahme von Horizontalkräften ausgebildet. Für die Übertragung gleicher Horizontalkräfte wie ein Druckschublager besitzen Drucklager in üblichen Belastungs- und Einbausituationen einen verringerten Querschnitt. Durch den Ersatz mindestens eines Druckschublagers durch ein Drucklager kann der Wärmeübergang zwischen den Bauwerksteilen verringert werden. Gleichzeitig kann das thermisch isolierende Bauelement gut auf die wirkenden Kräfte angepasst werden. Zur Aufnahme der Horizontalkräfte sind demnach unterschiedliche Elemente, nämlich sowohl Druckschublager als auch Drucklager vorgesehen. Horizontalkräfte sind dabei Drucckräfte und Zugkräfte. In Einbaulage wirken die Druckkräfte und Zugkräfte vorteilhaft in horizontaler Richtung, insbesondere in Querrichtung des Bauelements. Vertikalkräfte sind Schubkräfte, die in Hochrichtung des Bauelements wirken. Vertikalkräfte wirken in Einbaulage vorteilhaft in vertikaler Richtung.
  • Im Einbauzustand des thermisch isolierenden Bauelements in einer Trennfuge zwischen lastaufhehmenden Bauwerksteilen, insbesondere zwischen einer Gebäudedecke und einer Balkonplatte, erstreckt sich die Querrichtung vorteilhaft in horizontaler Richtung von dem einen zu dem anderen Bauwerksteil. Die Querrichtung liegt insbesondere senkrecht zur Längsrichtung. Die Querrichtung liegt vorteilhaft auch senkrecht zu den Längsseiten des Isolierkörpers. Die Längsseiten sind vorteilhaft etwa vertikal ausgerichtet. Die Längsseiten müssen dabei nicht eben ausgebildet sein, sondern können strukturiert sein, beispielsweise durch an der Oberseite und/oder der Unterseite des Isolierkörpers in Längsrichtung verlaufende Fortsätze. Die Hochrichtung des Isolierkörpers verläuft in Einbaulage senkrecht. Die Längsseite erstreckt sich vorteilhaft etwa in Längsrichtung und etwa in Hochrichtung.
  • Drucklager und Druckschublager unterscheiden sich in der Art der Kräfte, die von dem jeweiligen Lager aufgenommen werden können. Drucklager sind nur zur Aufnahme von Horizontalkräften ausgebildet, die in einer Querrichtung des thermisch isolierenden Bauelements wirken. In dem Drucklager herrscht dadurch ein einachsiger Spannungszustand. Drucklager sind vorteilhaft mit geringer Höhe ausgebildet und nahe der Unterseite des thermisch isolierenden Bauelements angeordnet. Dadurch ergibt sich ein niedriger Schwerpunkt im thermisch isolierenden Bauelement und bevorzugt in Hochrichtung ein großer Abstand zu zugkraftübertragenden Komponenten.
  • Druckschublager sind zur Aufnahme von Horizontalkräften und Vertikalkräften ausgebildet. Die Vertikalkräfte wirken in der Anschlussebene senkrecht zu den Horizontalkräften, also in Hochrichtung des Isolierkörpers. Um das durch die Horizontalkräfte in das Druckschublager eingeleitete Moment abzufangen, besitzen die am Druckschublager wirkenden Horizontalkräfte einen axialen Versatz zueinander, so dass sich ein zweiachsiger Spannungszustand im Druckschublager ergibt. An zumindest einer Längsseite des Isolierkörpers ist die an dieser Längsseite in Hochrichtung gemessene Höhe des Drucklagers kleiner als die an dieser Längsseite des Isolierkörpers in Hochrichtung gemessene Höhe des Druckschublagers. Druckschublager besitzen zur Aufnahme des durch die Horizontalkräfte eingeleiteten Moments an mindestens einer Längsseite, insbesondere zumindest an der im Einbauzustand einer Balkonplatte zugewandten Längsseite, vorteilhaft eine deutlich größere in Hochrichtung gemessene Höhe als Drucklager. Die Höhe des Drucklagers beträgt an der zumindest einen Längsseite vorteilhaft weniger als 50%, insbesondere weniger als 30% der Höhe des Druckschublagers an dieser Längsseite des Isolierkörpers. Die Höhe von Drucklager und Druckschublager ist dabei an der gleichen Längsseite des Isolierkörpers in Hochrichtung gemessen.
  • Die Druckschublager stehen über die Längsseiten vorteilhaft mit einem Überstand von mindestens 1,0 cm über. Als besonders vorteilhaft wird ein Überstand von mindestens 1,5 cm, insbesondere von 1,5 cm bis 2,5 cm angesehen. Bevorzugt beträgt der Überstand etwa 2,0 cm. Der Überstand ist dabei zwischen dem Druckschublager und dem unmittelbar an das Druckschublager angrenzenden Bereich des Isolierkörpers gemessen, so dass für den Überstand beispielsweise an der Oberseite und Unterseite des Isolierkörpers verlaufende Fortsätze, Leisten oder dgl. nicht berücksichtigt werden.
  • Die Druckschublager ragen mit mindestens einem Vorsprung über jede Längsseite hinaus. Dabei kann vorgesehen sein, dass die Druckschublager an jeder Längsseite einen benachbart zur Oberseite und einen weiteren benachbart zur Unterseite angeordneten Vorsprung besitzen. Es kann jedoch auch vorgesehen sein, dass die Druckschublager an einer Längsseite einen Vorsprung an der Oberseite und an der gegenüberliegenden Längsseite einen Vorsprung an der Unterseite aufweisen. In alternativer Gestaltung kann auch ein zwischen Oberseite und Unterseite angeordneter Vorsprung vorteilhaft sein. Der Überstand des Druckschublagers ist an dem am weitesten über die Längsseite hinaus ragenden Bereich, insbesondere an dem mindestens einen Vorsprung, gemessen. Der Überstand bildet vorteilhaft eine Projektionsfläche in Hochrichtung, über die in Hochrichtung, also in vertikaler Richtung wirkende Kräfte übertragen werden können. Anstatt oder zusätzlich zu mindestens einem Vorsprung kann das Druckschublager auch eine oder mehrere Vertiefungen besitzen, über deren Projektionsfläche in vertikaler Richtung wirkende Vertikalkräfte, nämlich Schubkräfte übertragen werden können. Die übertragbare Schubkraft ist dabei abhängig von der Gesamtgröße der Projektionsfläche. Die Projektionsfläche kann durch einen einzigen Vorsprung oder eine einzige Vertiefung gebildet sein oder sich aus den Projektionsflächen an mehreren Vorsprüngen oder Vertiefungen zusammensetzen.
  • Die Drucklager können ebenfalls mit einem Überstand über die Längsseiten überstehen. Es kann auch vorgesehen sein, dass die Stirnseiten der Drucklager bündig in den Längsseiten liegen. Die Drucklager bilden jedoch keine horizontale Projektionsfläche, an der Kräfte übertragen werden können.
  • Um die Möglichkeiten zur Anpassung des thermisch isolierenden Bauelements an den Einsatzfall weiter zu verbessern, kann das thermisch isolierende Bauelement mindestens einen Zugstab, mindestens einen Druckstab und/oder mindestens einen Querkraftstab besitzen, die den Isolierkörper jeweils durchragen.
  • Zur Abstimmung auf ein optimales Verhältnis der aufzunehmenden Biegemomente und Schubkräfte ist vorteilhaft vorgesehen, dass das thermisch isolierende Bauelement Druckschublager, Drucklager und Zugstäbe, jedoch keine Druckstäbe und keine Querkraftstäbe aufweist. Dies ist insbesondere bei thermisch isolierenden Bauelementen zum Anschluss auskragender Platten vorteilhaft.
  • Zur Erhöhung der Schubkraft-Tragfähigkeit, insbesondere bei thermisch isolierenden Bauelementen zum Anschluss auskragender Platten, ist vorteilhaft vorgesehen, dass das thermisch isolierende Bauelement Druckschublager, Drucklager, Zugstäbe sowie Querkraftstäbe, jedoch keine Druckstäbe aufweist.
  • Für ein thermisch isolierendes Bauelement, das insbesondere zum Anschluss gestützter Platten dient, ist vorteilhaft vorgesehen, dass das thermisch isolierende Bauelement Druckschublager, Drucklager sowie Querkraftstäbe besitzt. Dieses thermisch isolierende Bauelement besitzt vorteilhaft keine Zugstäbe und keine Druckstäbe. Dadurch wird ein optimales Verhältnis der aufzunehmenden Druckkräfte und Schubkräfte erreicht. Sollen erhöhte Druckkräfte aufgenommen werden, ist vorgesehen, dass das thermisch isolierende Bauelement Druckschublager, Drucklager, Druckstäbe und Querkraftstäbe, jedoch keine Zugstäbe enthält. Dies ist insbesondere für ein thermisch isolierendes Bauelement, das zum Anschluss gestützter Platten dient, vorteilhaft. Ein thermisch isolierendes Bauelement, das beispielsweise zum Anschluss auskragender Platten dienen kann und eine höhere Tragfähigkeit für Biegemomente besitzt, besitzt vorteilhaft Druckschublager, Drucklager, Zugstäbe und Druckstäbe, jedoch keine Querkraftstäbe.
  • Für ein thermisch isolierendes Bauelement, das insbesondere zum Anschluss durchlaufender Platten dient, und mit dem eine maximale Tragfähigkeit erreicht wird, ist vorteilhaft vorgesehen, dass das thermisch isolierende Bauelement Druckschublager, Drucklager, Zugstäbe, Druckstäbe und Querkraftstäbe besitzt.
  • Der Isolierkörper besitzt vorteilhaft eine zwischen den Längsseiten in Längsrichtung verlaufende Unterseite. In Einbaulage liegt die Unterseite des thermisch isolierenden Bauelements vorteilhaft unten. Die Drucklager und die Druckschublager sind vorteilhaft nahe der Unterseite des thermisch isolierenden Bauelements angeordnet. Der Abstand der Drucklager zur Unterseite beträgt vorteilhaft weniger als 3 cm, insbesondere weniger als 2 cm. Insbesondere beträgt der Abstand der Druckschublager zur Unterseite weniger als 3 cm, insbesondere weniger als 2 cm. In bevorzugter Gestaltung sind der Abstand der Drucklager und der Abstand der Druckschublager zur Unterseite näherungsweise gleich groß. Der Abstand der Drucklager zur Unterseite beträgt vorteilhaft 80% bis 120% des Abstands der Druckschublager zur Unterseite.
  • Im Betrieb können sich die Bauwerksteile in Querrichtung zueinander bewegen. Um diese Relativbewegung zuzulassen, ist vorteilhaft vorgesehen, dass der über die Längsseiten des Isolierkörpers vorstehende Bereich der Druckschublager mindestens teilweise in einem Radius um mindestens eine in Hochrichtung verlaufende Achse ausgebildet ist. Alternativ oder zusätzlich ist der über die Längsseiten des Isolierkörpers vorstehende Bereich der Drucklager vorteilhaft mindestens teilweise in einem Radius um mindestens eine in Hochrichtung verlaufende Achse ausgebildet.
  • In bevorzugter Gestaltung sind sowohl der über die Längsseiten des Isolierkörpers vorstehende Bereich der Druckschublager als auch der über die Längsseiten des Isolierkörpers vorstehende Bereich der Drucklager mindestens teilweise in einem Radius um mindestens eine in Hochrichtung verlaufende Achse ausgebildet. Dadurch können sich die Druckschublager und die Drucklager nach Art von Gelenken gegenüber den Bauwerksteilen bewegen. Dabei können unterschiedliche Radien für unterschiedliche Bereiche der Drucklager oder der Druckschublager vorgesehen sein. Es kann vorteilhaft sein, dass alle Mittelpunkte der unterschiedlichen Radien eines Drucklagers oder eines Druckschublagers an einer Längsseite auf der gleichen Achse liegen. Auch ein Versatz zwischen den Mittelpunkten der Radien in Draufsicht auf das Druckschublager kann vorteilhaft sein. Die Mittelpunkte der Radien liegen dann auf unterschiedlichen in Hochrichtung verlaufenden Achsen. Vorteilhaft liegen die Mittelpunkte der Radien zwischen den durch die Längsseiten des Isolierkörpers gebildeten Ebenen, also innerhalb des Isolierkörpers. In bevorzugter Gestaltung liegen die Mittelpunkte der Radien auf Ebenen parallel zu den Längsseiten des Isolierkörpers. Auch eine Anordnung in der Verlängerung der Längsseite des Isolierkörpers kann vorteilhaft sein. Bevorzugt liegt die mindestens eine Achse nicht außerhalb des Isolierkörpers.
  • Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Zeichnung erläutert. Es zeigen:
  • Fig. 1
    eine schematische perspektivische Darstellung eines thermisch isolierenden Bauelements in Einbaulage,
    Fig. 2 bis Fig. 4
    perspektivische Darstellungen von Ausführungsbeispielen von Drucklagern,
    Fig. 5
    eine perspektivische Darstellung eines Ausführungsbeispiel eines Druckschublagers,
    Fig. 6
    eine schematische perspektivische Darstellung eines thermisch isolierenden Bauelements,
    Fig. 7
    eine schematische Seitenansicht eines thermisch isolierenden Bauelements mit Druckschublager,
    Fig. 8
    eine Ansicht auf das Druckschublager aus Fig. 7 in Richtung des Pfeils VIII in Fig. 7,
    Fig. 9
    eine schematische Seitenansicht auf das Druckschublager aus Fig. 7 in Richtung des Pfeils IX in Fig. 7,
    Fig. 10
    eine Draufsicht auf ein Ausführungsbeispiel eines Druckschublagers in Richtung des Pfeils VIII in Fig. 7,
    Fig. 11
    eine schematische Seitenansicht eines Ausführungsbeispiels eines Druckschublagers,
    Fig. 12
    eine schematische Draufsicht auf das Druckschublager in Richtung des Pfeils XII in Fig. 11,
    Fig. 13
    eine Seitenansicht eines Ausführungsbeispiels eines Druckschublagers,
    Fig. 14
    eine perspektivische Darstellung eines Ausführungsbeispiel eines Drucklagers,
    Fig. 15
    eine perspektivische Darstellung eines Ausführungsbeispiels eines Druckschublagers,
    Fig. 16
    eine Seitenansicht des Druckschublagers aus Fig. 15,
    Fig. 17
    eine perspektivische Darstellung eines Ausführungsbeispiels eines Drucklagers,
    Fig. 18
    eine Seitenansicht des Drucklagers aus Fig. 17,
    Fig. 19 bis 24
    Ausführungsbeispiele von thermisch isolierenden Bauelementen mit unterschiedlicher Anordnung von Drucklagern und Druckschublagern.
  • Fig. 1 zeigt schematisch ein thermisch isolierendes Bauelement 1, das in einer Trennfuge 4 zwischen zwei Bauwerksteilen, im Ausführungsbeispiel einer Balkonplatte 2 und einer Gebäudedecke 3, angeordnet ist. Das Bauelement 1 besitzt einen Isolierkörper 5, der eine längliche, im Ausführungsbeispiel eine quaderförmige Gestalt besitzt. Der Isolierkörper 5 dient zur mindestens teilweise thermischen Trennung der Gebäudedecke 3 von der Balkonplatte 2. Der Isolierkörper 5 besitzt eine Längsrichtung 6, die sich in Längsrichtung der Trennfuge 4 zwischen der Balkonplatte 2 und der Gebäudedecke 3 erstreckt. Die Längsrichtung 6 ist in Einbaulage horizontal ausgerichtet. Der Isolierkörper 5 besitzt außerdem eine Querrichtung 7, die im Ausführungsbeispiel senkrecht zur Längsrichtung 6 steht. Der Isolierkörper 5 besitzt eine erste, an der Balkonplatte 2 entlang verlaufende Längsseite 9 sowie eine gegenüberliegende zweite, an der Gebäudedecke 3 entlang verlaufende Längsseite 10. Die Querrichtung 7 verläuft von der Balkonplatte 2 zur Gebäudedecke 3 und quer zu den Längsseiten 9 und 10. Die Querrichtung 7 ist vorteilhaft in Einbaulage horizontal angeordnet. Der Isolierkörper 5 besitzt außerdem eine Hochrichtung 8, die senkrecht zur Längsrichtung 6 und zur Querrichtung 7 steht und die in Einbaulage vorteilhaft senkrecht ausgerichtet ist.
  • Der Isolierkörper 5 besitzt eine Unterseite 13, die in Einbaulage unten angeordnet ist und die sich zwischen den Längsseiten 9 und 10 erstreckt. Die Unterseite 13 ist vorteilhaft horizontal und senkrecht zur Hochrichtung 8 ausgerichtet. Der Isolierkörper 5 besitzt eine der Unterseite 13 gegenüberliegende Oberseite 14, die im Ausführungsbeispiel ebenfalls horizontal und senkrecht zur Hochrichtung 8 ausgerichtet ist. Die Oberseite 14 ist in Einbaulage oben am Isolierkörper 5 angeordnet. Die in Längsrichtung 6 gemessene Länge des Isolierkörpers 5 kann auf den Einsatzfall angepasst gewählt werden.
  • Der Isolierkörper 5 besitzt eine in Querrichtung 7 gemessene Breite g sowie eine in Hochrichtung 8 gemessene Höhe h. Im Ausführungsbeispiel ist die Höhe h größer als die Breite g. Der Isolierkörper 5 kann beispielsweise als Kasten ausgebildet sein, der mit Isoliermaterial gefüllt ist. Der Isolierkörper 5 ist insbesondere nicht zur Aufnahme der zwischen der Balkonplatte 2 und der Gebäudedecke 3 zu übertragenden Kräfte geeignet. Zur Übertragung der Kräfte sind im Isolierkörper 5 Druckschublager 11 sowie Drucklager 12 angeordnet. Die Druckschublager 11 und die Drucklager 12 sind im Ausführungsbeispiel in Längsrichtung 6 abwechselnd angeordnet. Auch eine andere, insbesondere eine andere regelmäßige Anordnung von Drucklagern 12 und Druckschublagern 11 kann jedoch vorteilhaft sein. Auch eine unregelmäßige Anordnung von Drucklagern 12 und Druckschublagern 11 kann vorteilhaft sein.
  • Im Ausführungsbeispiel besitzen die Drucklager 12 zu benachbarten Druckschublagern 11 einen Abstand n. Benachbarte Druckschublager 11 besitzen zueinander einen Abstand p. Benachbarte Drucklager 12 besitzen zueinander einen Abstand o. Die Abstände o und p können für alle Drucklager 12 bzw. alle Druckschublager 11 gleich sein, so dass die Drucklager 12 und die Druckschublager 11 in gleichmäßigem Abstand zueinander angeordnet sind. Der Abstand n ist im Ausführungsbeispiel zwischen allen Druckschublagern 11 und Drucklagern 12 gleich.
  • Über das Bauelement 1 sind von der Balkonplatte 2 in die Gebäudedecke 3 Horizontalkräfte FH und Vertikalkräfte Fv zu übertragen, die in Fig. 1 schematisch eingezeichnet sind. Die Horizontalkräfte FH umfassen Druckkräfte FD und Zugkräfte Fz, die in Fig. 1 ebenfalls schematisch eingezeichnet sind. Die Horizontalkräfte FH wirken in Einbaulage vorteilhaft in horizontaler Richtung. Die Vertikalkräfte Fv umfassen Schubkräfte in beiden Richtungen, also nach oben und nach unten. Die Vertikalkräfte Fv wirken in Einbaulage vorteilhaft in vertikaler Richtung. Zur Aufnahme der Horizontalkräfte FH und der Vertikalkräfte Fv sind die Druckschublager 11 vorgesehen. Die Anzahl und Größe der Druckschublager 11 ist in diesem Ausführungsbeispiel so bemessen, dass alle aufzunehmenden Vertikalkräfte Fv von den Druckschublagern 11 übertragen werden können. In einem alternativen Ausführungsbeispiel, insbesondere bei zusätzlich vorgesehenen Querkraftstäben, müssen die Druckschublager 11 nicht die gesamten Vertikalkräfte Fv übertragen.
  • Üblicherweise wird zur Aufnahme der zu übertragenden Druckkräfte FD eine größere Anzahl von Druckschublagern 11 benötigt als zur Übertragung der Vertikalkräfte Fv. Zur Aufnahme der zusätzlichen Horizontalkräfte FH sind deshalb die Drucklager 12 vorgesehen, die ausschließlich zur Aufnahme von Horizontalkräften FH vorgesehen sind. Dies wird dadurch erreicht, dass die Drucklager 12 keine horizontal verlaufende Projektionsfläche besitzen, über die Vertikalkräfte Fv übertragen werden können. Ragt das Drucklager 12 über die Längsseiten 9 und 10 in die Balkonplatte 2 und die Gebäudedecke 3 hinein, so kann am Drucklager 12 weiches Material wie beispielsweise expandiertes Polystyrol (EPS) oder dgl. angeordnet sein, das Drucklager 12 mit großem Radius abgerundet ausgebildet sein oder einen Luftspalt in vertikaler Richtung zum umgebenden Beton der Balkonplatte 2 oder der Gebäudedecke 3 aufweisen. Dadurch kann konstruktiv bei einem in die Balkonplatte 2 oder die Gebäudedecke 3 ragenden Drucklager 12 verhindert werden, dass Vertikalkräfte Fv, also Schubkräfte, in das Drucklager 12 eingeleitet werden können.
  • Gegenüber einem thermisch isolierenden Bauelement 1, das zur Aufnahme der Horizontalkräfte FH, insbesondere der Druckkräfte FD, und der Vertikalkräfte Fv ausschließlich Druckschublager 11 besitzt, ist die Anzahl der Druckschublager 11 verringert. Einige der Druckschublager 11, im Ausführungsbeispiel jedes zweite Druckschublager 11, sind durch Drucklager 12 ersetzt. Zur Aufnahme der Zugkräfte Fz können beispielsweise in Fig. 1 nicht gezeigte Zugstäbe vorgesehen sein.
  • Die Drucklager 12 und die Druckschublager 11 unterscheiden sich in ihrer geometrischen Gestaltung. Die Druckschublager 11 besitzen eine in Hochrichtung 8 an der Längsseite 9 gemessene Höhe c, die deutlich größer als eine in gleicher Richtung an der Längsseite 9 gemessene Höhe d der Drucklager 12 ist. Die Höhe d der Drucklager 12 beträgt vorteilhaft weniger als 50%, insbesondere weniger als 30% der Höhe c der Druckschublager 11. Zur Aufnahme der Vertikalkräfte Fv wird eine vergleichsweise große Höhe c der Druckschublager 11 benötigt. Die Vertikalkräfte Fv erzeugen am Druckschublager 11 ein Moment, das über den vertikalen Abstand der eingeleiteten Horizontalkräfte FH abgestützt wird. Die wirkenden Kräfte sind in Fig. 5 für eine Einbaulage, bei der die rechts dargestellte Seite des Druckschublagers 11 an der Längsseite 9 und die links dargestellte Seite an der Längsseite 10 angeordnet ist, schematisch eingezeichnet. Die Horizontalkräfte FH sind im Ausführungsbeispiel ausschließlich Drucckräfte FD. Die Horizontalkräfte FH können in alternativer Ausführung auch Zugkräfte Fz umfassen. Da die Drucklager 12 nur die Druckkräfte FD aufnehmen, ist die Höhe d der Drucklager 12 deutlich geringer. Die Maße der Drucklager 12 und der Druckschublager 11 sind dabei jeweils an der betreffenden Längsseite 9, 10 unmittelbar an dem Drucklager 12 bzw. Druckschublager 11 gemessen. Die Höhe c der Druckschublager 11 kann auf beiden Längsseiten 9 und 10 gleich groß sein. Es kann jedoch auch vorgesehen sein, dass die Druckschublager 11 auf der Längsseite 10 eine deutlich geringere Höhe als auf der Längsseite 9 besitzen. Die Höhe der Druckschublager 11 auf der Längsseite 10 kann in vorteilhafter Gestaltung näherungsweise der Höhe d der Drucklager 12 entsprechen.
  • Wie Fig. 1 auch zeigt, sind sowohl die Drucklager 12 als auch die Druckschublager 11 nahe der Unterseite 13 des Isolierkörpers 5 angeordnet. Die Druckschublager 11 besitzen zur Unterseite 13 einen Abstand a. Der Abstand a beträgt vorteilhaft weniger als 3 cm, insbesondere weniger als 2 cm. Die Drucklager 12 besitzen zur Unterseite 13 einen Abstand b. Der Abstand b beträgt vorteilhaft weniger als 3 cm, insbesondere weniger als 2 cm. Als besonders vorteilhaft werden Abstände a und b zwischen 1 cm und 2 cm angesehen. Der Abstand b der Drucklager 12 zur Unterseite 13 beträgt vorteilhaft 80% bis 120% des Abstands a der Drucklager 11 zur Unterseite 13. In bevorzugter Gestaltung sind die Abstände a und b gleich.
  • Wie Fig. 1 auch zeigt, ragen die Druckschublager 11 über die Längsseite 9 hinaus. In entsprechender Weise ragen die Druckschublager 11 über die gegenüberliegende Längsseite 10 hinaus. Die Druckschublager 11 besitzen Vorsprünge 16 und 17, die im Folgenden noch näher beschrieben werden und mit denen die Druckschublager 11 über die Längsseiten 9 und 10 hinausstehen. Der Überstand e an den Vorsprüngen 16 und 17 beträgt vorteilhaft mehr als 1,0 cm, insbesondere mehr als 1,5 cm. Als besonders vorteilhaft wird ein Überstand e von 1,5 von bis 2,5 cm, insbesondere von etwa 2 cm, angesehen.
  • Die Drucklager 12 stehen mit einem Überstand f über die Längsseiten 9, 10 über, der im Ausführungsbeispiel geringer als der Überstand e der Druckschublager 11 ist. Das Drucklager 12 ist so ausgebildet und/oder angeordnet, dass durch den Überstand f keine Projektionsfläche in Hochrichtung 8 gebildet ist, an der Vertikalkräfte Fv angreifen und in das Drucklager 12 eingeleitet werden können. Dadurch werden über das Drucklager 12 nur Horizontalkräfte FH übertragen. Der Überstand f kann auch null betragen, so dass die Drucklager 12 bündig in den Längsseiten 9, 10 liegen. Die Überstände e und f sind in Querrichtung 7, insbesondere senkrecht zur jeweiligen Längsseite 9 oder 10, und unmittelbar an dem jeweiligen Drucklager 12 oder Druckschublager 11 gemessen.
  • Die Fig. 2 bis 4 zeigen unterschiedliche Ausführungsbeispiele für Drucklager 12. Das in Fig. 2 gezeigte Drucklager 12 besitzt einen quaderförmigen Grundkörper, an dem abgerundete, im Ausführungsbeispiel halbzylinderförmige Endbereiche 15 angeformt sind. Das Drucklager 12 besitzt eine Länge k, die im Einbauzustand in Querrichtung 7 (Fig. 1) des Isolierkörpers 5 gemessen ist. Die Länge k ist die größte Erstreckung des Drucklagers 12. Die Endbereiche 15 sind die Bereiche, die über die Längsseiten 9 und 10 des Isolierkörpers 5 hinausragen. Im Ausführungsbeispiel verlaufen die Endbereiche 15 mit einem Radius s um eine Achse 31. Die Achse 31 liegt dabei im Einbauzustand im Isolierkörper 5 vorteilhaft in dem Bereich zwischen den durch die Längsseiten 9 und 10 des Isolierkörpers 5 gebildeten Ebenen. Die Achse 31 liegt demnach vorteilhaft innerhalb des Isolierkörpers. Auch eine Anordnung der Achse 31 in der Verlängerung der Längsseite 9 bzw. 10 kann jedoch vorteilhaft sein. Das Drucklager 12 besitzt eine Breite m, die in Einbaulage in Längsrichtung 6 ausgerichtet ist. Die Breite m ist deutlich kleiner als die Länge k. Die Breite m kann beispielsweise 15% bis 60% der Länge k betragen. Das Drucklager 12 besitzt außerdem die auch in Fig. 1 gezeigte Höhe d, die deutlich kleiner als die Länge k ist. Im Ausführungsbeispiel ist die Höhe d kleiner als die Breite m.
  • Fig. 3 zeigt ein Drucklager 12, das zylindrisch ausgebildet ist. Die Längsmittelachse des Drucklagers 12 ist dabei in Querrichtung 7 im Isolierkörper 5 anzuordnen. Das Drucklager 12 besitzt Stirnseiten 32, die im Einbauzustand vorteilhaft bündig in den Längsseiten 9 und 10 angeordnet sind und nicht über diese hinausragen. In einer alternativen Gestaltung können die Stirnseiten 32 konvex ausgewölbt sein und über die Längsseiten 9 bzw. 10 hinausragen. Das Drucklager 12 besitzt eine Länge k', die der Breite g des Isolierkörpers 5 entspricht. Die Höhe d und die Breite m des Drucklagers 12 sind aufgrund der zylindrischen Form gleich. Die Breite m kann beispielsweise 15% bis 60% der Länge k' betragen.
  • Fig. 4 zeigt ein Drucklager 12, das als Quader ausgebildet ist. Das Drucklager 12 besitzt Stirnseiten 32, die im Einbauzustand in den Längsseiten 9 und 10 zu liegen kommen. Das Drucklager 12 besitzt eine in Querrichtung 7 gemessene Länge k' sowie eine in Längsrichtung 6 gemessene Breite m, die deutlich kleiner als die Länge k' ist. In der Darstellung in Fig. 4 sind die Stirnseiten 32 eben ausgebildet. In einer alternativen Ausführung sind die Stirnseiten 32 konvex ausgewölbt und stehen im Einbauzustand über die Längsseiten 9 bzw. 10 über. Auch andere Formen von Drucklagern 12 können vorteilhaft sein. Es kann vorgesehen sein, die Stirnseiten 32 des Drucklagers 12 mit einer Gleitschicht zu versehen.
  • Fig. 5 zeigt ein Ausführungsbeispiel für ein Druckschublager 11. Das Druckschublager 11 besitzt eine Oberseite 18, die in Einbaulage in einer Trennfuge 4 oben angeordnet ist, sowie eine in Einbaulage unten angeordnete Unterseite 19. Im Ausführungsbeispiel sind die Unterseite 19 und die Oberseite 18 eben ausgebildet und parallel zur Längsrichtung 6 und zur Querrichtung 7 ausgerichtet. Das Druckschublager 11 besitzt eine Breite 1, die in Längsrichtung 6 ausgerichtet ist und die deutlich kleiner als die Höhe c des Druckschublagers 11 ist. Das Druckschublager 11 besitzt außerdem eine Länge i, die in Querrichtung 7 gemessen ist und die größer als die Breite g des Isolierkörpers 5 ist. Das Druckschublager 11 ist, wie auch Fig. 1 zeigt, so im Isolierköper 5 angeordnet, dass das Druckschublager 11 an beiden Stirnseiten 9 und 10 über den Isolierkörper 5 hervorsteht.
  • Das Druckschublager 11 besitzt an den über die Längsseiten 9 und 10 überstehenden Bereichen Stirnseiten 33. Im Ausführungsbeispiel verlaufen die Stirnseiten 33 nicht parallel zur Hochrichtung 8, sondern gewölbt. Die Stirnseiten 33 besitzen einen mittleren Bereich 21, in dem der Überstand über die Längsseiten 9 und 10 nur gering ist. An der Oberseite 18 ist ein Vorsprung 16 angeordnet, der um den Überstand e (Fig. 1) über die Längsseite 9 hinaussteht. An der Unterseite 19 ist ein entsprechender Vorsprung 17 angeordnet, der ebenfalls um den Überstand e über die Längsseite 9 hinaussteht. Das in Fig. 5 gezeigte Ausführungsbeispiel eines Druckschublagers 11 ist zu drei Ebenen, nämlich zu einer durch die Hochrichtung 8 und die Längsrichtung 6 aufgespannten Ebene, zu einer durch die Hochrichtung 8 und die Querrichtung 7 aufgespannten Ebene sowie zu einer durch die Längsrichtung 6 und die Querrichtung 7 aufgespannten Ebene spiegelsymmetrisch. Dadurch kann das Druckschublager 11 in beliebiger Orientierung in den Isolierkörper 5 eingesetzt werden. Die Längsseite 9 und die Längsseite 10 können dadurch sowohl zur Balkonplatte 2 als auch zur Gebäudedecke 3 orientiert werden.
  • Fig. 6 zeigt ein Ausführungsbeispiel eines Bauelements 1, das zusätzlich zu dem Isolierkörper 5, den Druckschublagern 11 und den Drucklagern 12 Zugstäbe 26, Druckstäbe 27 sowie Querkraftstäbe 28 aufweist. In Fig. 6 sind dabei schematisch sowohl Zugstäbe 26 als auch Druckstäbe 27 und Querkraftstäbe 28 gezeigt. Welche dieser Elemente bei einem Bauelement 1 vorgesehen werden, kann auf den jeweiligen Einsatzfall angepasst ausgewählt werden. Dadurch kann das Bauelement 1 gut auf den jeweiligen Anwendungsfall angepasst werden.
  • Eine vorteilhafte Ausführung eines thermisch isolierenden Bauelements 1 umfasst vorteilhaft Druckschublager 11, Drucklager 12 und Zugstäbe 26. Die Zugstäbe 26 sind dabei näher an der Oberseite 14 des Isolierkörpers 5 angeordnet als an der Unterseite 13. Vorteilhaft sind die Zugstäbe 26 näher an der Oberseite 14 des Isolierkörpers 5 angeordnet als die Oberseiten 18 der Druckschublager 11.
  • Eine weitere vorteilhafte Ausführung eines Bauelements 1 besitzt Druckschublager 11, Drucklager 12, Zugstäbe 26 und Querkraftstäbe 28. Wie Fig. 6 schematisch zeigt, verläuft ein Querkraftstab 28 an der Längsseite 9 näher an der Oberseite 14 als an der Unterseite 13. Durch den Isolierkörper 5 verläuft der Querkraftstab 28 schräg in Richtung auf die Unterseite 13 und verlässt den Isolierkörper 5 an der Längsseite 10 in einem Bereich, der näher an der Unterseite 13 liegt als an der Oberseite 14. Ein weiterer Querkraftstab 28 ist entgegengerichtet geführt und verläuft an der Längsseite 9 näher an der Unterseite 13, im Isolierkörper 5 schräg in Richtung auf die Oberseite 14 und verlässt den Isolierkörper 5 an der Längsseite 10 näher an der Oberseite 14 als an der Unterseite 13. Je nach den zu übertragenden Kräften kann auch nur einer der Querkraftstäbe 28 vorgesehen sein. Durch die Anordnung von Zugstäben 26 und Querkraftstäben 28 ergibt sich eine höhere Schubkrafttragfähigkeit des Bauelements 1.
  • Eine weitere vorteilhafte Variante eines Bauelements 1 besitzt Druckschublager 11, Drucklager 12 sowie Querkraftstäbe 28. Dadurch kann ein optimiertes Verhältnis der übertragbaren Horizontalkräfte FH, insbesondere der Druckkräfte FD, zu den übertragbaren Vertikalkräften Fv erreicht werden.
  • In einer weiteren vorteilhaften Gestaltung ist ein Bauelement 1 vorgesehen, das Druckschublager 11, Drucklager 12, Druckstäbe 27 und Querkraftstäbe 28 umfasst. Dadurch kann bei einem Bauelement 1, das insbesondere zum Anschluss für gestützte Platten dient, ein optimiertes Verhältnis der übertragbaren Horizontalkraft FH, insbesondere der Druckkraft FD zur übertragbaren Vertikalkraft Fv eingestellt werden. Die Druckstäbe 27 verlaufen näher an der Unterseite 13 als an der Oberseite 14. Im Ausführungsbeispiel verlaufen die Druckstäbe 27 in einem Abstand zur Unterseite 13, der näherungsweise dem Abstand a, b der Druckschublager 11 oder der Drucklager 12 zur Unterseite 13 (Fig. 1) entspricht.
  • In einer weiteren vorteilhaften Gestaltung ist ein Bauelement 1 vorgesehen, das Druckschublager 11, Drucklager 12, Zugstäbe 26 und Druckstäbe 27 umfasst. Ein solches Bauelement 1 ist insbesondere für auskragende Platten geeignet, bei denen eine erhöhte Tragfähigkeit für Biegemomente erforderlich ist.
  • In einer weiteren vorteilhaften Gestaltung eines Bauelements 1 sind Druckschublager 11, Drucklager 12, Zugstäbe 26, Druckstäbe 27 sowie Querkraftstäbe 28 vorgesehen. Ein solches Bauelement 1 ist insbesondere vorteilhaft zum Anschluss von durchlaufenden Platten. Durch die Anordnung von Zugstäben 26, Druckstäben 27 und Querkraftstäben 28 in einem Bauelement 1 kann eine maximale Tragfähigkeit des Bauelementes 1 erzielt werden.
  • In allen Ausführungsbespielen ist die Anordnung der Zugstäbe 26, Druckstäbe 27 und/oder Querkraftstäbe 28 dabei vorteilhaft wie in Fig. 6 gezeigt und wie zu Fig. 6 beschrieben vorgesehen.
  • Fig. 7 zeigt schematisch die Anordnung des Druckschublagers 11 im Isolierkörper 5. Wie Fig. 7 zeigt, ragt das Druckschublager 11 an jeder Längsseite 9, 10 mit einem überstehenden Bereich 20 über die Längsseiten 9 bzw. 10 hinaus. In Fig. 7 ist auch die Anordnung der Vorsprünge 16 und 17 an der Oberseite 18 und der Unterseite 19 sowie der mittlere Bereich 21 gezeigt, der zwischen den Vorsprüngen 16 und 17 angeordnet ist. An den Vorsprüngen 16 und 17 ragt das Druckschublager 11 mit dem Überstand e über die Längsseiten 9 und 10 hinaus. In dem mittleren Bereich 21 ragt das Druckschublager 11 mit einem verringerten Überstand v über die Längsseiten 9 und 10 hinaus. Der Überstand e ist vorteilhaft um mindestens 0,5 cm, insbesondere um mindestens 1,0 cm größer als der verringerte Überstand v. Vorteilhaft ist die Differenz zwischen dem Überstand e und dem verringerten Überstand v auf die Anzahl der lasttragenden Vorsprünge 16, 17 an jeder Seite des Druckschublagers 11 abgestimmt. In Fig. 7 ist an jeder Seite des Druckschublagers 11 ein lasttragender Vorsprung 16 bzw. 17 vorgesehen. Der jeweils andere Vorsprung 16, 17 wirkt aufgrund eines Luftspalts an der Oberseite 18 bzw. der Unterseite 19 nicht lasttragend. Die Vorsprünge 16 sind demnach nur zur Aufnahme von aufwärtsgerichteten und die Vorsprünge 17 nur zur Aufnahme von abwärts gerichteten Kräften vorgesehen. Bei einem lasttragenden Vorsprung 16 oder 17 an jeder Seite des Druckschublagers 11 ist der Überstand e vorteilhaft um mindestens 1,0 cm größer als der verringerte Überstand v. In einer alternativen, nicht dargestellten Ausführung mit mindestens zwei lasttragenden Vorsprüngen je Seite des Druckschublagers 11 und je Kraftrichtung kann der Überstand e kleiner sein, vorteilhaft um mindestens 0,5 cm größer als der verringerte Überstand v.
  • Die Vertikalkräfte Fv werden über die einander zugewandten Druckflächen 36 der Vorsprünge 16 und 17 übertragen. An der Oberseite 18 und der Unterseite 19 des Druckschublagers 12 ist bei üblichem Einbau ein Luftspalt zum umgebenden Beton gebildet, so dass an der Oberseite 18 und der Unterseite 19 keine Vertikalkräfte Fv in das Druckschublager 12 eingeleitet werden können. Für die Größe der zu übertragenden Kraft ist die senkrecht zur Hochrichtung liegende Projektionsfläche 35 der Druckfläche 36 maßgeblich, die in Fig. 8 schematisch eingezeichnet ist. Die Projektionsfläche 35 ist die in einer Draufsicht in Hochrichtung 8 zwischen der Außenkontur des mittleren Bereichs 21 und der Außenkontur der Vorsprünge 16 bzw. 17 gebildete Fläche. Für die Projektionsfläche 35 werden nur die Bereiche des Druckschublagers 11 berücksichtigt, die kraftschlüssig zwischen den angrenzenden Bauteilen, also der Gebäudedecke 3 und der Betonplatte 2, liegen. Die Projektionsfläche 35 kann dabei an Vorsprüngen oder an Vertiefungen gebildet sein.
  • Wie Fig. 8 zeigt, ist das Druckschublager 11 an den Vorsprüngen 16 mit abgerundeten Ecken 30 versehen. Der Radius u an den abgerundeten Ecken 30 ist in dem in den Fig. 7 bis 9 gezeigten Ausführungsbeispiel eines Druckschublagers 11 kleiner als die halbe Breite 1 des Druckschublagers 11 (Fig. 9). Zwischen den abgerundeten Ecken 30 ist an den Vorsprüngen 16 dadurch ein gerader Abschnitt 34 gebildet, in dem der Vorsprung 16 parallel zur Längsseite 9 bzw. 10 verläuft. Der Radius u verläuft um eine Achse 23. Die Achse 23 liegt vorteilhaft zwischen den Längsseiten 9 und 10. In dem mittleren Bereich 21 ist das Druckschublager 11 an seinen in Hochrichtung 8 verlaufenden Kanten vorteilhaft mit einem Radius x um eine Achse 37 abgerundet ausgebildet. Das Drucklager 12 ist vorteilhaft mit einem Radius s um eine Achse 31 abgerundet (Fig. 2). In besonders vorteilhafter Gestaltung liegen die Achsen 37 der Radien x in dem mittleren Bereich 21 der Druckschublager 11 und die Achsen 31 der Radien s der Drucklager 12 eines Bauelements 1 in einer gemeinsamen Ebene, die parallel zur Längsseite 9 verläuft.
  • Fig. 10 zeigt ein Ausführungsbeispiel des Druckschublagers 11, bei dem die Vorsprünge 16 in einem Radius r ausgeführt sind. Der Radius r verläuft um eine Achse 23. Die Achse 23 liegt vorteilhaft zwischen der Verlängerung der Längsseite 9 und der Verlängerung der Längsseite 10, also im Isolierkörper 5, wie in Fig. 10 schematisch für die Längsseite 9 eingezeichnet ist. Der Radius r ist dadurch größer als der Überstand e (Fig. 1) des Druckschublagers 11. Auch eine andere Anordnung der Achse 23 kann jedoch vorteilhaft sein. Vorteilhaft verläuft der Vorsprung 16 ebenso wie der Vorsprung 17 über den gesamten Überstand 20 in einem konstanten Radius r.
  • Die Fig. 11 und 12 zeigen ein weiteres Ausführungsbeispiel eines Druckschublagers 11. Wie Fig. 11 zeigt, sind die Vorsprünge 16 und 17 an ihren einander zugewandten Seiten jeweils mit einer Nut 22 versehen. Der mittlere Bereich 21 ist in Seitenansicht gegenüber den Vorsprüngen 16 und 17 zurückgesetzt, so dass das Druckschublager 11 in dem mittleren Bereich 21 weniger weit über die Längsseiten 9 bzw. 10 hinausragt. Die Oberseiten 18 und 19 sind eben und parallel zueinander ausgebildet. Das Druckschublager 11 ist symmetrisch zu einer durch die Längsrichtung 6 und die Querrichtung 7 aufgespannten Ebene, zu einer durch die Querrichtung 7 und in Hochrichtung 8 aufgespannten Ebene sowie zu einer durch die Längsrichtung 6 und die Hochrichtung 8 aufgespannten Ebene ausgebildet.
  • Wie Fig. 12 zeigt, verläuft die Außenkontur an den Vorsprüngen 16 in einem Radius r um eine Achse 23. Die Achse 23 verläuft im Einbauzustand in Hochrichtung 8 (Fig. 1) sowie in Verlängerung der Längsseite 9 bzw. 10. Die Nut 22 schließt im Ausführungsbeispiel unmittelbar an die Stirnseite 33 an. Die Nut 22 verläuft in einem Radius t um die Achse 23. Auch die Stirnseite 33 verläuft in dem Radius t um die Achse 23. Die Nut 22 bildet im Einbauzustand einen Hinterschnitt in Querrichtung 7 und in Längsrichtung 6, da in die Nut 22 das Material der Betonplatte 2 bzw. der Gebäudedecke 3, beispielsweise Beton, eingreifen kann. Wie Fig. 12 auch zeigt, ist der Radius r größer als die halbe Breite w des Druckschublagers 11 in dem zwischen den Vorsprüngen 16 und 17 liegenden Bereich. Die Breite w ist dabei vorteilhaft mittig zwischen den Vorsprüngen 16 bzw. 17 gemessen. Es kann vorteilhaft sein, das Druckschublager 11 ohne die Nuten 22 auszubilden.
  • Bei dem in den Fig. 11 und 12 gezeigten Ausführungsbeispiel eines Druckschublagers 11 sind an der Oberseite 18 und der Unterseite 19 jeweils zwei Vorsprünge 16 bzw. 17 angeordnet. Bei dem in Fig. 13 gezeigten Ausführungsbeispiel ist an der Oberseite 18 ein Vorsprung 16 angeordnet. An der gegenüberliegenden Seite des Druckschublagers 11 ist kein Vorsprung 16 angeordnet. Der Vorsprung 16 ist vorteilhaft an der der Gebäudedecke 3 zugewandten Stirnseite 43 des Druckschublagers 11 angeordnet. An der gegenüberliegenden, insbesondere der Balkonplatte 2 zugewandten Stirnseite 33 des Druckschublagers 11 ist ein Vorsprung 17 an der Unterseite 19 vorgesehen. Dadurch ragt an der Längsseite 9 des Isolierkörpers 5 der Vorsprung 17 hervor und an der Längsseite 10 der Vorsprung 16. Die Vorsprünge 16 und 17 können jeweils eine Nut 22 aufweisen.
  • Fig. 14 zeigt ein weiteres Ausführungsbeispiel eines Drucklagers 12, das zwei Lagerkörper 25 umfasst. Jeder Lagerkörper 25 kann entsprechend zu einem der Drucklager 12 der vorangegangenen Ausführungsbeispiele ausgebildet sein. Im Ausführungsbeispiel besitzen die Lagerkörper 25 des Drucklagers 12 an ihrer Oberseite 18 jeweils eine Vertiefung 24, an der die Höhe des Lagerkörpers 25 verringert ist. Die Lagerkörper 25 besitzen jeweils zwei Vorsprünge 29, die dazu vorgesehen sind, über die Längsseiten 9, 10 des Isolierkörpers 5 (Fig. 1) vorzustehen. Im Ausführungsbeispiel sind die Vorsprünge 29 mit abgerundeten Ecken ausgebildet und erstrecken sich mit konstantem Querschnitt über die gesamte Höhe der Lagerkörper 25. Auch eine kreisbogenförmige Gestaltung der Vorsprünge 29, also eine Gestaltung mit durchgehendem Radius, kann vorteilhaft sein. Auch andere Gestaltungen der Lagerkörper 25 können vorteilhaft sein. In entsprechender Weise können auch zwei Lagerkörper für ein Druckschublager 11 vorgesehen sein, die zu einem gemeinsamen Druckschublager 11 zusammengefasst sind.
  • In den Fig. 15 und 16 ist ein weiteres Ausführungsbeispiel eines Druckschublagers 11 gezeigt. Das Druckschublager 11 besitzt eine Stirnseite 33, bei der ein Vorsprung 17 benachbart zur Unterseite 19 angeordnet ist. An der Oberseite 18 ist an der Stirnseite 33 kein Vorsprung vorgesehen. An der Stirnseite 33 besitzt das Druckschublager 11 eine in Hochrichtung 8 (Fig. 1) gemessene Höhe c. Wie Fig. 15 zeigt, verringert sich die Höhe des Druckschublagers 11 von der Stirnseite 33 zu einer gegenüberliegenden Stirnseite 43. Die Stirnseite 33 ist zum Einbau an der einer Gebäudedecke 3 zugewandten Längsseite 10 des Isolierkörpers 5 vorgesehen, während die Stirnseite 43 an der gegenüberliegenden, einer Balkonplatte 2 zugewandten Längsseite 9 vorzusehen ist. Das Druckschublager 11 besitzt Längsseiten 40, die sich zwischen den Stirnseiten 33 und 43 etwa in Hochrichtung 8 erstrecken. An seinen Längsseiten 40 besitzt das Druckschublager 11 im Ausführungsbeispiel jeweils eine Vertiefung 38. Benachbart zur Unterseite 39 ist an den Längsseiten 40 eine Versteifungsstrebe 39 vorgesehen, die sich etwa in Querrichtung 7 des Isolierkörpers 5 (Fig. 1) erstreckt. Die Breite 1 des Druckschublagers 11 ist in dem im Isolierkörper 5 anzuordnenden Bereich geringer als an den Stirnseiten 33 und 43. In dem im Isolierkörper 5 anzuordnenden Bereich nimmt die Breite 1 von der der Stirnseite 33 zugewandten Seite zu der der Stirnseite 43 zugewandten Seite zu.
  • Wie die Fig. 15 und 16 zeigen, verläuft die Oberseite 18 des Druckschublagers 11 in einem mittleren Bereich geneigt und fällt in Richtung auf die Stirnseite 43 hin ab. An der Stirnseite 43 besitzt das Druckschublager 11 eine Höhe c', die geringer als die Höhe c ist. Die Höhe c' kann vorteilhaft zwischen 40% und 80%, insbesondere von 50% bis 70% der Höhe c betragen.
  • Durch die in den Fig. 15 und 16 gezeigte Gestaltung eines Druckschublagers 11 lässt sich ein verringerter Wärmeübergang zwischen der Balkonplatte 2 und der Gebäudedecke 3 (Fig. 1) erreichen. Auch andere unsymmetrische Gestaltungen eines Druckschublagers 11 können vorteilhaft sein.
  • Die Fig. 17 und 18 zeigen ein Drucklager 12, das vorteilhaft in Kombination mit dem in den Fig. 15 und 16 gezeigten Druckschublager 12 in einem thermisch isolierenden Bauelement 1 vorgesehen ist. Das Drucklager 12 ist im Ausführungsbeispiel quaderförmig ausgebildet und besitzt Stirnseiten 32. Aufgrund der symmetrischen Gestaltung des Drucklagers 12 sind unterschiedliche Einbaulagen möglich. Das Drucklager 12 besitzt eine im Einbauzustand in Hochrichtung 8 (Fig. 1) gemessene Höhe d. Die Höhe d ist kleiner als die Höhe c des Druckschublagers 11 an der Stirnseite 33 (Fig. 15 und 16). Die Höhe d kann jedoch näherungsweise der Höhe c' an der Stirnseite 43 entsprechen. Es kann auch vorgesehen sein, dass die Höhe d größer als die Höhe c' ist. Zumindest an einer Längsseite des Bauelements 1, insbesondere an der einer Balkonplatte 2 zugewandten Längsseite 9, ist die Höhe c des Druckschublagers 11 jedoch größer als die Höhe d des Drucklagers 12.
  • Die Figuren 19 bis 24 zeigen weitere mögliche Anordnungen von Drucklagern 12 und Druckschublagern 11 in einem Isolierkörper 5. Bei der Anordnung in Fig. 19 sind in dem gezeigten Bauelement 1 vier Druckschublager 11 und zwei Drucklager 12 symmetrisch zur Mitte des Bauelements 1 angeordnet. Die beiden äußeren Druckschublager 11 besitzen jeweils den gleichen Abstand p zueinander, während die beiden mittleren Druckschublager 11 einen verringerten Abstand p' zueinander besitzen. Die Drucklager 12 sind in einem Abstand n' zu den äußeren Druckschublagern 11 angeordnet, der deutlich kleiner als der Abstand n der Drucklager 12 zu den benachbarten mittleren Druckschublagern 11 ist. Die Drucklager 12 besitzen zueinander einen Abstand o, der deutlich größer als die Abstände n, n', p und p' ist.
  • Beim Ausführungsbeispiel nach Fig. 20 sind die Druckschublager 11 wie beim Ausführungsbeispiel nach Fig. 19 angeordnet. Die Drucklager 12 sind zum ersten und zum dritten Druckschublager in dem verringerten Abstand n' angeordnet und besitzen zum zweiten bzw. vierten Druckschublager 11 den vergrößerten Abstand n. Dadurch ergibt sich eine regelmäßige, zur Mitte unsymmetrische Anordnung. Auch eine Anordnung, bei der der Abstand n' größer als der Abstand n ist, kann vorteilhaft sein.
  • Beim Ausführungsbeispiel nach Fig. 21 sind zwei Drucklager 12 und zwei Druckschublager 11 in dem thermisch isolierenden Bauelement 1 vorgesehen, die abwechselnd angeordnet sind. Die Drucklager 12 besitzen zu den benachbarten Druckschublagern 11 unterschiedliche Abstände n und n'. Der Abstand p zwischen benachbarten Druckschublagern 11 und der Abstand o zwischen benachbarten Drucklagern 12 sind gleich, so dass sich eine regelmäßige Anordnung ergibt.
  • Beim Ausführungsbeispiel nach Fig. 22 sind zwei Druckschublager 11 und zwei Drucklager 12 vorgesehen. Beide Drucklager 12 sind zwischen den beiden Druckschublagern 11 in einem Abstand o zueinander angeordnet. Der Abstand p zwischen den Druckschublagern ist mindestens doppelt so groß wie der Abstand o.
  • Fig. 23 zeigt wie Fig. 22 eine symmetrische Anordnung von Drucklagen 12 und Druckschublagern 11. Das thermisch isolierende Bauelement 1 besitzt fünf Druckschublager 11 und zwei Drucklager 12. An den Endbereichen des Bauelements 1 sind jeweils zwei Druckschublager 11 benachbart zueinander angeordnet. Zwischen den beiden Gruppen von jeweils zwei Druckschublagern 11 sind die beiden Drucklager 12 mit einem dazwischen angeordneten Druckschublager 11 angeordnet. Der Abstand n' der Drucklager 12 zum mittleren Druckschublager 11 ist größer als der Abstand n zu den außen liegenden Druckschublagern 11.
  • Das in Fig. 24 gezeigte Ausführungsbeispiel weist im Wesentlichen die gleiche Anordnung auf wie das Ausführungsbeispiel aus Fig. 23. Allerdings sind die Drucklager 12 nicht symmetrisch zur Mitte angeordnet, sondern besitzen zu dem in Fig. 24 links vom Drucklager 12 angeordneten Druckschublager 11 den Abstand n' und zu dem in Fig. 24 jeweils rechts neben dem Drucklager 12 angeordneten Druckschublager 11 den größeren Abstand n.
  • Auch eine andere symmetrische oder unsymmetrische Anordnung und Anzahl von Drucklagern 12 und Druckschublagern 11 kann vorteilhaft sein. Die gezeigten Anordnungen können beliebig oft wiederholt werden, um Bauelemente 1 mit größerer Länge zu bilden.
  • Die Druckschublager 11 und/oder die Drucklager 12 bestehen vorteilhaft im Wesentlichen aus einem gieß- und/oder spritzfähigen, aushärtbaren Material. Das Material umfasst vorteilhaft Kunststoff oder ein mineralisches Grundmaterial. In besonders vorteilhafter Gestaltung bestehen die Druckschublager 11 aus formbeständigem Kunststoff oder Faserzement.
  • Weitere vorteilhafte Gestaltungen ergeben sich durch beliebige Kombinationen der Merkmale der vorstehend beschriebenen Ausführungsbeispiele. Die Höhe der Druckschublager 11 muss weder in Querrichtung 7 noch in Längsrichtung 6 konstant sein, sondern kann sich in Querrichtung 7 und/oder in Längsrichtung 6 ändern. Die Drucklager 12 und die Druckschublager 11 müssen keine Symmetrie aufweisen. Die Breite und/oder der Überstand der Drucklager 12 und/oder der Druckschublager 11 kann an der Längsseite 9 und der Längsseite 10 unterschiedlich groß sein. Auch die Radien an den beiden Längsseiten 9 und 10 und/oder die Lage der Mittelpunkte der Radien an den beiden Längsseiten 9 und 10 können bei einem Drucklager 12 und/oder bei einem Druckschublager 11 unterschiedlich sein. Die Drucklager 12 und die Druckschublager 11 können in den Längsseiten 9 und 10 die gleiche in Längsrichtung 6 gemessene Breite besitzen. Auch unterschiedliche Breiten für die Drucklager 12 und die Druckschublager 11 können jedoch vorteilhaft sein. Insbesondere, wenn das Drucklager 12 eine größere Breite aufweist als das Druckschublager 11, kann es vorteilhaft sein, dass das Drucklager 12 an seinen Stirnseiten einen größeren Radius aufweist als das Druckschublager 11. Auch der Überstand f des Drucklagers 12 in das angrenzende Bauteil kann größer sein als der Überstand e des Druckschublagers 11.

Claims (12)

  1. Thermisch isolierendes Bauelement zum Einsatz in einer Trennfuge (4) zwischen lastaufhehmenden Bauwerksteilen, insbesondere zwischen einer Gebäudedecke (3) und einer Balkonplatte (2), mit einem Isolierkörper (5), wobei der Isolierkörper (5) eine Längsrichtung (6) und in Längsrichtung (6) verlaufende, einander gegenüberliegende Längsseiten (9, 10) besitzt, wobei der Isolierkörper (5) eine quer zu den Längsseiten (9, 10) verlaufende Querrichtung (7) und eine senkrecht zur Längsrichtung (6) und senkrecht zur Querrichtung (7) verlaufende Hochrichtung (8) besitzt, wobei der Isolierkörper (5) Druckschublager (11) besitzt, die zur Aufnahme von Horizontalkräften (FH) und Vertikalkräften (FV) ausgebildet sind, wobei die Druckschublager (11) den Isolierkörper (5) in Querrichtung (7) durchragen und an beiden Längsseiten (9, 10) des Isolierkörpers (5) über den Isolierkörper (5) hervorstehen,
    wobei
    - die Druckschublager (11) mit mindestens einem lasttragenden Vorsprung (16, 17) über jede Längsseite (9, 10) hinausragen, wobei das Druckschublager (11) einen Überstand (e) aufweist, der an dem am weitesten über die Längsseite (9, 10) hinaus ragenden Bereich an dem Vorsprung (16, 17) gemessen ist, wobei der Überstand (e) eine Projektionsfläche (35) in Hochrichtung (8) bildet, über die die Vertikalkräfte (FV) übertragen werden können,
    oder
    - die Druckschublager (11) eine oder mehrere Vertiefungen besitzen, über deren Projektionsfläche (35) die Vertikalkräfte (FV) übertragen werden können,
    wobei die übertragbare Schubkraft von der Gesamtgröße der Projektionsfläche (35) abhängig ist, wobei die Druckschublager (11) bezogen auf die Längsrichtung (6) zueinander beabstandet angeordnet sind,
    dadurch gekennzeichnet, dass der Isolierkörper (5) mindestens ein Drucklager (12) umfasst, das ausschließlich zur Aufnahme von Horizontalkräften (FH) ausgebildet ist und sich in Querrichtung (7) des Isolierkörpers (5) erstreckt, wobei an zumindest einer Längsseite (9, 01) des Isolierkörpers (5) die an dieser Längsseite (9, 10) in Hochrichtung (8) gemessene Höhe (d) des Drucklagers (12) kleiner als die an dieser Längsseite (9, 10) des Isolierkörpers (5) in Hochrichtung (8) gemessene Höhe (c) des Druckschublagers (11) ist.
  2. Bauelement nach Anspruch 1,
    dadurch gekennzeichnet, dass die an der zumindest einen Längsseite (9, 10) des Isolierkörpers (5) in Hochrichtung (8) gemessene Höhe (d) des Drucklagers (12) weniger als 50%, insbesondere weniger als 30% der an dieser Längsseite (9, 10) des Isolierkörpers (5) in Hochrichtung (8) gemessenen Höhe (c) des Druckschublagers (11) beträgt.
  3. Bauelement nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Druckschublager (11) über die Längsseiten (9, 10) mit einem Überstand (e) von mindestens 1,0 cm überstehen.
  4. Bauelement nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Druckschublager (11) eine Oberseite (18) und eine Unterseite (19) besitzen und dass mindestens ein Vorsprung (16) an der Oberseite (18) und mindestens ein Vorsprung (17) an der Unterseite (19) angeordnet ist.
  5. Bauelement nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass das Bauelement mindestens einen Zugstab (26) besitzt, der durch den Isolierkörper (5) ragt.
  6. Bauelement nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass das Bauelement (1) mindestens einen Druckstab (27) besitzt, der durch den Isolierkörper (5) ragt.
  7. Bauelement nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass das Bauelement (1) mindestens einen Querkraftstab (28) besitzt, der durch den Isolierkörper (5) ragt.
  8. Bauelement nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass der Isolierkörper (5) eine zwischen den Längsseiten (9, 10) in Längsrichtung verlaufende Unterseite (13) besitzt.
  9. Bauelement nach Anspruch 8,
    dadurch gekennzeichnet, dass der Abstand (b) der Drucklager (12) zur Unterseite (13) weniger als 3 cm beträgt.
  10. Bauelement nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass der Abstand (a) der Druckschublager (11) zur Unterseite (13) weniger als 3 cm beträgt.
  11. Bauelement nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, dass der Abstand (b) der Drucklager (12) zur Unterseite (13) 80% bis 120% des Abstands (a) der Druckschublager (11) zur Unterseite (13) beträgt.
  12. Bauelement nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, dass die über die Längsseiten (9, 10) des Isolierkörpers (5) vorstehenden Bereiche der Druckschublager (11) und der Drucklager (12) mindestens teilweise in einem Radius (r, s, x) um in Hochrichtung (8) verlaufende Achsen (23, 31, 37) ausgebildet sind.
EP17000569.8A 2017-04-05 2017-04-05 Thermisch isolierendes bauelement Active EP3385462B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17000569.8A EP3385462B1 (de) 2017-04-05 2017-04-05 Thermisch isolierendes bauelement
PL17000569T PL3385462T3 (pl) 2017-04-05 2017-04-05 Termoizolacyjny element budowlany
US15/938,439 US20180291620A1 (en) 2017-04-05 2018-03-28 Thermally insulating construction element
CN201810310123.3A CN108691366A (zh) 2017-04-05 2018-04-03 起热隔离作用的结构元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17000569.8A EP3385462B1 (de) 2017-04-05 2017-04-05 Thermisch isolierendes bauelement

Publications (2)

Publication Number Publication Date
EP3385462A1 EP3385462A1 (de) 2018-10-10
EP3385462B1 true EP3385462B1 (de) 2020-03-04

Family

ID=58544680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17000569.8A Active EP3385462B1 (de) 2017-04-05 2017-04-05 Thermisch isolierendes bauelement

Country Status (4)

Country Link
US (1) US20180291620A1 (de)
EP (1) EP3385462B1 (de)
CN (1) CN108691366A (de)
PL (1) PL3385462T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124736A1 (de) * 2016-12-19 2018-06-21 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
GB201819196D0 (en) * 2018-11-26 2019-01-09 Ancon Ltd Building element, system and method
US12110678B2 (en) * 2020-07-09 2024-10-08 Meadow Burke, Llc Reinforcement for a connector in a precast concrete panel
US20230160207A1 (en) * 2021-11-19 2023-05-25 Stella Nuva Corporation Thermal break product and solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499590A1 (de) * 1991-02-15 1992-08-19 Reto Bonomo Wärmedämmendes Kragplattenanschlusselement und Verwendung desselben
EP2610410A2 (de) * 2011-12-30 2013-07-03 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1058548A (en) * 1912-10-14 1913-04-08 Francois Cancalon Construction of armored-concrete floors and ceilings.
DE10102930A1 (de) * 2001-01-23 2002-07-25 Schoeck Entwicklungsgmbh Bauelement zur Wärmedämmung
DE20010770U1 (de) * 2000-06-13 2000-09-21 Dießler, Jörg, Dipl.-Ing. (FH), 01768 Reinhardtsgrimma Hochwärmedämmender Bewehrungskorb mit wärmedämmenden Bewehrungsgliedern
DE10102931A1 (de) * 2001-01-23 2002-07-25 Schoeck Entwicklungsgmbh Bauelement zur Wärmedämmung
EP1564336B1 (de) 2004-02-11 2007-09-19 HALFEN GmbH Thermisch isolierendes Bauelement
DE102005039025A1 (de) * 2005-08-18 2007-02-22 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
DE102006011335A1 (de) * 2006-03-09 2007-09-13 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
DE102006011336A1 (de) * 2006-03-09 2007-09-13 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
PL1892344T3 (pl) * 2006-08-22 2009-04-30 Halfen Gmbh Termoizolacyjny element konstrukcyjny
DE102008029701A1 (de) * 2008-06-24 2009-12-31 Schöck Bauteile GmbH Bauelement zur Wärmedämmung und Dämmmaterial für Bauanwendungen
US8991124B2 (en) * 2008-10-17 2015-03-31 Schöck Bauteile GmbH Concrete material, construction element for a thermal insulation, and brick-shaped thermally insulating element, each using the concrete material
DE102011054275A1 (de) 2011-10-07 2013-04-11 Max Frank Gmbh & Co Kg Kragplattenanschlusselement
EP2653625B1 (de) * 2012-04-20 2018-11-21 HALFEN GmbH Thermisch isolierendes Bauelement
DE202013006229U1 (de) * 2013-07-11 2014-10-13 H-Bau Technik Gmbh Thermisch isolierendes Bauteil
CN205804643U (zh) * 2016-04-27 2016-12-14 青岛被动屋工程技术有限公司 一种用于室内外结构连接的断桥隔热构件
CN205857423U (zh) * 2016-07-22 2017-01-04 欧联(杭州)节能建筑技术研究有限公司 用于建筑外维护结构下的断桥非金属保温构件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499590A1 (de) * 1991-02-15 1992-08-19 Reto Bonomo Wärmedämmendes Kragplattenanschlusselement und Verwendung desselben
EP2610410A2 (de) * 2011-12-30 2013-07-03 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung

Also Published As

Publication number Publication date
PL3385462T3 (pl) 2020-11-16
CN108691366A (zh) 2018-10-23
US20180291620A1 (en) 2018-10-11
EP3385462A1 (de) 2018-10-10

Similar Documents

Publication Publication Date Title
EP3385462B1 (de) Thermisch isolierendes bauelement
EP1892344B1 (de) Thermisch isolierendes Bauelement
EP2653625B1 (de) Thermisch isolierendes Bauelement
EP2949828A1 (de) Deckenelement zur ausbildung von gebäudedecken
EP1267458A1 (de) Lagerfuss und -vorrichtung, insbesondere für einen Laserresonator
DE19711813C2 (de) Thermisch isolierendes Bauelement
EP2281959B1 (de) Kragplattenanschlusselement
EP3296476B1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
DE19543768A1 (de) Balkonanschluß
DE2646020A1 (de) Bauteilsatz zur herstellung von kastenmauern
EP3067484B1 (de) Holzplatte für eine holz-beton-verbundkonstruktion, holz-beton-verbundkonstruktion und verfahren zu deren herstellung
WO2003054313A1 (de) Kragplattenanschlusselement und kragplattenanschlussbaugruppe mit einer anzahl solcher kragplattenanschlusselementen
EP3502350A1 (de) Verbindung zweier leitwandelemente
EP0657592B1 (de) Bauelement zur Wärmedämmung
EP1072729A1 (de) Bauteil als Verbindungselement zwischen zwei Gebäudeteilen
EP0933482B1 (de) Fertigbauteil für eine auskragende Balkonplatte
EP2080845B1 (de) Holzfertigbauelement
EP3663474B1 (de) Vorrichtung zur wärmeentkopplung zwischen einer betonierten gebäudewand und einer geschossdecke sowie herstellverfahren
DE202021105966U1 (de) Abstandhalterleiste
EP3118382A1 (de) Bauelement zur wärmedämmung
EP3202991A1 (de) Thermisch isolierendes bauelement
AT520195B1 (de) Dämmmaterialfreier Hochlochziegel mit tragender Lamellenstruktur zur Gebäudekonstruktion
WO2015062617A1 (de) Verbundplatte
EP3733988B1 (de) Thermisch isolierendes bauelement
EP0584659B1 (de) Bausatz zum Herstellen einer Glasbausteinwand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20190328

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20190506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240505

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017004029

Country of ref document: DE

Representative=s name: PATENTANWAELTE DIPL.-ING. W. JACKISCH & PARTNE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004029

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200405

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200405

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017004029

Country of ref document: DE

Owner name: LEVIAT GMBH, DE

Free format text: FORMER OWNER: HALFEN GMBH, 40764 LANGENFELD, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210405

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: LEVIAT GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: HALFEN GMBH

Effective date: 20220211

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: LEVIAT GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: HALFEN GMBH

Effective date: 20220316

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1240505

Country of ref document: AT

Kind code of ref document: T

Owner name: LEVIAT GMBH, DE

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 8

Ref country code: FR

Payment date: 20240425

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240403

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240418

Year of fee payment: 8

Ref country code: BE

Payment date: 20240418

Year of fee payment: 8