EP3371352B1 - Fadenabzugsdüse - Google Patents

Fadenabzugsdüse Download PDF

Info

Publication number
EP3371352B1
EP3371352B1 EP16790339.2A EP16790339A EP3371352B1 EP 3371352 B1 EP3371352 B1 EP 3371352B1 EP 16790339 A EP16790339 A EP 16790339A EP 3371352 B1 EP3371352 B1 EP 3371352B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
notch
thread
yarn
thread draw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16790339.2A
Other languages
English (en)
French (fr)
Other versions
EP3371352A1 (de
Inventor
Michael Basting
Günter BAUR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP3371352A1 publication Critical patent/EP3371352A1/de
Application granted granted Critical
Publication of EP3371352B1 publication Critical patent/EP3371352B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/40Removing running yarn from the yarn forming region, e.g. using tubes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/10Rotors

Definitions

  • the present invention relates to a yarn withdrawal nozzle for an open-end rotor spinning device having an end face, a nozzle bore and a funnel-shaped Garnumlenk Chemistry connecting the end face and the nozzle bore, wherein the end face connects to the Garnumlenk materials and wherein the end face and the Garnumlenk materials form an effective diameter of the thread take-off.
  • Thread withdrawal nozzles have become known in the prior art in open-end rotor spinning devices in many designs. Such thread take-off nozzles have the task of redirecting the spun yarn during removal from the spinning device and to give the withdrawn yarn a false twist.
  • the true twist of the yarn is introduced predominantly between the yarn draw-off nozzle and the draw-off device in the freshly spun yarn, but does not propagate sufficiently into the rotor groove.
  • the yarn draw-off nozzle must thus enable the reproduction of the genuine yarn twist into the rotor groove on the one hand and on the other hand give the yarn as much as possible an additional false twist.
  • the object of the present invention is to propose a yarn draw-off nozzle which avoids overheating of the draw-off nozzle and enables a good propagation of the yarn twist into the rotor groove.
  • a yarn withdrawal nozzle for an open-end rotor spinning device has an end face, a nozzle bore and a funnel-shaped yarn deflection surface connecting the end face and the nozzle bore.
  • the end face adjoins the Garnumlenk procedures, wherein the end face and the Garnumlenk materials form an effective diameter of the thread take-off.
  • the end face and the Garnumlenk materials thereby form an input-side region of the yarn draw-off nozzle, while the nozzle bore forms an output-side region of the yarn draw-off nozzle.
  • the nozzle bore usually has a constant inner cross section over the length or the axial extent of the yarn draw-off nozzle, while the yarn deflection surface reduces over the axial extent of the yarn draw-off nozzle Internal cross section has.
  • the end face is oriented substantially radially to the nozzle bore, but may also have a curved or radially outwardly conically sloping course.
  • the effective diameter of the yarn withdrawal nozzle is less than 8 mm and the Garnumlenk materials has a radius of curvature of less than 2.5 mm.
  • the present invention has found that in addition to the actual Garnumlenk procedures and the end face has a significant influence on the rotation propagation.
  • the present yarn withdrawal nozzle not only the radius of the Garnumlenk materials, but at the same time the entire end face is substantially reduced, so that the overall result is a very small effective diameter.
  • the combination of a small radius of Garnumlenk procedures with the small effective diameter or the smaller end face causes a change in the ratio of false rotations to actual rotations, so that much more real rotations arrive in the rotor groove.
  • the overall rotation of the thread towards the rotor groove can thus be increased and thus a very good spinning stability can be achieved.
  • the heat development is reduced by the short Garnumlenk materials and subtracted the thread gentler.
  • a head diameter of the yarn draw-off nozzle is less than 10 mm.
  • the head diameter is defined as the largest outer diameter of the yarn withdrawal nozzle.
  • the head diameter can also be equal to the effective diameter; As a rule, however, the head diameter is slightly larger than the effective diameter, so that radially outward adjoins the end face another, annular surface, which, however, is not usually in contact with the thread. Due to the very small outer diameter of the yarn withdrawal nozzle, the frictional heat generated by the circled over the yarn withdrawal nozzle thread, are dissipated much better, since the heat radiation of the part of the rotor housing in which the yarn take-off is stored, is not hindered by the Fadenabzugsdüse.
  • the Garnumlenk materials tangentially adjoins the end face.
  • no edges are arranged between the Garnumlenk materials and the end face.
  • the propagation of the true yarn twist in the rotor groove is thereby further improved.
  • the contact force of the thread is reduced at the transition from the end face to Garnumlenk materials, so that less friction occurs and thus the temperature stress of the thread is reduced.
  • the Garnumlenk materials tangentially connects to the nozzle bore.
  • Garnumlenk Materials in particular radially arranged notches having. These stimulate the thread in a manner known per se to rotate about its longitudinal axis and thereby bring a false twist into the thread in a comparatively thread-saving manner.
  • the notches have a radially outer notch inlet and a radially inner notch outlet and the notch outlet is arranged in an input region of the nozzle bore.
  • the notch thus extends into the nozzle bore into it and is characterized comparatively steep.
  • the thread can run better in the notches and thus experiences a particularly significant change in length in the circumferential yarn leg.
  • the change in length and therefore also the thread tension tip produced by the notch are greater, the steeper the notch. Due to the steeper outlet of the notches in the nozzle bore while a smoother transition when reaching and leaving the notch is achieved at the same time, so that negative influences of the notches on the yarn quality can be avoided.
  • the notch outlet is arranged at a depth of between 0.1 mm and 0.5 mm away from an inlet of the nozzle bore.
  • the notches have a flatter inlet wall and a steeper baffle wall.
  • the thread is thereby safely passed over the inlet wall to the notch base. Skipping the notches through the thread can thereby be avoided.
  • a preferably flat, scored groove bottom is arranged between the inlet wall of the notch and the baffle wall.
  • the inlet wall and the baffle wall thus do not abut each other directly in the region of the notch base, which was often rounded in the prior art.
  • the run-in over the inlet wall thread therefore runs defined along the notch and is safely guided to the notch bottom.
  • the notch bottom has a width between 0.16 mm and 0.22 mm, in particular between 0.18 mm and 0.20 mm.
  • the thread can be braked gently as it passes over the notch bottom and slide in the direction of the baffle. The yarn is thus safely and over a longer period of the effect of the notch exposed, at the same time the yarn damaging effect of the notches is reduced. It has been found that, with such a width of the notch bottom, an optimal compromise can be achieved between the spinnability enhancing effect of the notches on the one hand and the yarn quality on the other hand.
  • the inlet wall and / or the baffle wall as flat surfaces, d. H. uncoiled, are formed.
  • the notch bottom between the baffle wall and the inlet wall is formed as a flat surface. The thread is thereby defined defined within the notch over its entire length and the production of the thread take-off nozzle is facilitated.
  • inlet wall and / or the baffle wall are bent and / or bent, then a gentler thread treatment can take place in this way than in the case of an uncurved surface.
  • the kinked or curved surface shortens the steep surface and continues through a flatter surface to the top of the nozzle.
  • the yarn withdrawal nozzle is an angle of the baffle to a notch center plane between 32.5 ° and 47.5 °, preferably between 35 ° and 45 °, more preferably between 37 ° and 42 °.
  • the release of the thread after its deceleration by the baffle can thus also be gentle and an undefined jumping of the thread can also be avoided.
  • the angle of the inlet wall to a notch center plane between 50 ° and 65 °, preferably between 52 ° and 60 °, more preferably between 54 ° and 58 °.
  • the thread is performed very gently.
  • the Garnumlenk Stimsch Stimurization in the region of the notch enemas a circumferential recess, in particular a circumferential, preferably rounded, groove.
  • the recess can be directly adjacent to the notch enemas; it is likewise possible for an upper region of the notches with the original notch inlets to be removed through the cutout, and thus for new notches occurring at the transition of the cutout to the notch to be found in a deeper area of the funnel-shaped yarn deflection surface.
  • the recess itself can reach up to the end face of the thread withdrawal nozzle or even interrupt the Garnumlenk materials only. By such a recess, an aggressive effect of the notch run on the thread can be further reduced.
  • a circumferential groove it is also possible to form the recess, for example by a spherical recess.
  • the depth of the notch is preferably between 0.14 mm and 0.25 mm, preferably between 0.16 mm and 0.22 mm and particularly preferably between 0.16 and 0.20 mm ,
  • FIG. 1 shows a schematic sectional view of a spinning rotor 2 and a yarn draw-off nozzle 1 in an open-end spinning device only partially shown here.
  • the spinning rotor 2 is supplied in a known manner with a fiber material dissolved in individual fibers.
  • the spinning rotor 2 runs during the yarn production at high speeds, so that the supplied fibers are stored in the form of a fiber ring in the rotor groove 3 of the spinning rotor 2.
  • the newly spun yarn F is withdrawn continuously via the yarn draw-off nozzle 1 and reaches Due to the rotation of the spinning rotor 2 thus creates a crank-like circumferential yarn leg 4, in which the stored in the rotor groove 3 fibers are involved.
  • the yarn draw-off nozzle 1 is mounted in a manner known per se either in an extension or in an insert of a cover element of the rotor housing 17.
  • the yarn withdrawal nozzle 1 has in the usual way a cylindrical nozzle bore 6 and a curved Garnumlenk Chemistry 5 for the withdrawn thread F on.
  • an end face 16 of the yarn draw-off nozzle 1 which in different ways, for example flat, curved, or also in the direction of the outer diameter of the yarn draw-off nozzle 1, here with head diameter D. K is designated, may be formed sloping.
  • the curved Garnumlenk materials 5 and the end face 16 together form a standing with the thread F in contact effective diameter Dw of the yarn draw 1.
  • the nozzle bore 6 is generally coaxial with the axis of rotation 15 of the spinning rotor 2, so that the withdrawn thread F is deflected during its withdrawal from the rotor groove 3 on the Garnumlenk materials 5 by about 90 °. As described above, it is desirable that the rotation introduced into the thread propagate as far as possible into the rotor groove 3 in order to achieve the best possible spinning stability.
  • FIG. 2 shows in a schematic sectional view of a yarn draw-off nozzle 1, which has a Garnumlenk Chemistry 5 with a very small radius of curvature R of less than 2.5 mm and a reduced effective diameter D W of less than 8 mm.
  • R radius of curvature
  • D W reduced effective diameter
  • the yarn draw-off nozzle 1 shown here also has a particularly small head diameter D K of less than 10 mm.
  • D K head diameter
  • this is a particular large radiating surface AF on which projecting into the spinning rotor 2 part of the rotor housing 17, here an extension of a cover member of the rotor housing achieved.
  • the resulting at the yarn withdrawal 1, already reduced by the shortened Garnumlenk procedures 5 friction heat can thereby be dissipated even better.
  • the thermal load of the yarn draw-off nozzle 1 itself can also be reduced thereby.
  • damage to the withdrawn yarn F and yarn breaks are avoided by the reduced surface temperature at the yarn draw 1. This has a very beneficial effect especially on chemical fibers. Likewise, contamination of the yarn draw-off nozzle 1 are avoided especially in chemical fibers.
  • FIG. 3 shows a thread take-off nozzle 1, which is additionally provided with notches 7, in a sectional view.
  • the notches 7 (present are two Notches 7 opposite each other recognizable) are arranged in the Garnumlenk materials 5, but extend into the nozzle bore 6 into it. It has proved to be particularly advantageous if the notch run 11, which is defined here by the exit-side intersection or the exit-side intersection of the notch bottom 12 with the inner surface of the thread take-off 1, at a distance A between 0.1 mm and 0.5 mm is located away from the inlet of the nozzle bore. For example, the distance A is 0.25 mm.
  • the entrance of the nozzle bore 6 is defined as the beginning of the constant inner cross section of the yarn withdrawal nozzle 1 and is characterized by the tangential edge between the Garnumlenk materials 5 and the nozzle bore 6.
  • the notch inlet 10 is in turn defined in the case of conventional V-shaped notches by the common intersection of the inlet wall 8 and the baffle 9 with the inner surface of the nozzle funnel 5 or in the present case by the input-side cutting line of the notch bottom 12 with the inner surface of the nozzle funnel.
  • FIG. 4 shows a schematic section through a notch 7 of a yarn draw-off nozzle 1, with which a particularly good and safe effect of the notch 7 on the withdrawn yarn F can be ensured.
  • the notch 7 has in a conventional manner an inlet wall 8 and a baffle 9, which reaches the thread F during its crank-shaped circulation over the Garnumlenk materials 5 successively.
  • the direction of rotation of the thread F is symbolized here by an arrow.
  • the inlet wall 8 and the baffle 9 do not directly adjoin one another, but a defined, preferably flat, notched bottom 12 with a defined width B between the inlet wall 8 and the baffle 9 extends.
  • notch bottom 12 between the inlet wall 8 and the baffle 9 ensures that the thread F reaches the notch base or the flat notch bottom 12 in each case and thus the notch 7 can exert its effect on the thread F.
  • An undefined Jumping of the thread F from the inlet wall 8 directly on the baffle 9 can be avoided thereby.
  • the secure reaching of the notch bottom 12 is still supported according to the present illustration in that the thread F is passed over a comparatively flat inlet wall 8 slowly and gently in the direction of the notch bottom 12.
  • the angle ⁇ to a notch center plane 14 or to a parallel thereto is preferably between 54 ° and 58 ° and is designed for example at 56 °.
  • the notch bottom 12 further has a width B between 0.18 mm and 0.24 mm.
  • the width B of the notch bottom is 0.22 mm.
  • the angle ⁇ of the baffle 9 to the notch center plane 14, however, is preferably between 37 ° and 42 °. According to a particularly advantageous embodiment, the angle ⁇ is 40 °.
  • FIG. 5 shows a further embodiment of a yarn draw-off nozzle 1, in which the yarn damaging effect of the notch inlet 10 by a peripheral recess 13, here a circumferential groove, is defused.
  • the comparatively sharp transition between the curved Garnumlenk materials 5 and the notch 7 can thereby be made gentler.
  • the circumferential groove preferably has a radius of between 0.15 mm and 0.3 mm and in the present case extends as far as the end face.
  • the groove could also be designed such that it only interrupts the Garnumlenk materials 5.
  • FIG. 6 shows another embodiment of a yarn withdrawal nozzle 1, in which the notch enemas 10 was defused by a spherical recess 13.
  • the radius of the spherical recess 13b is preferably on the inner diameter D I of the nozzle bore 6 and is between 0.7 * D I and 0.9 * D I.
  • the radius R 2 is 0.8 * D I. The aggressive, yarn damaging effect of the notch enemas 10 can thereby be substantially reduced.
  • FIG. 7 a notch 7 is shown, in which the baffle 9 is formed kinked.
  • the notch bottom 12 facing first part of the baffle 9 is inclined at an angle ⁇ 1 to the notch center plane 14.
  • the edge of the yarn withdrawal nozzle 1 facing second part of the baffle 9 is formed flat and has a second angle ⁇ 2 .
  • a gentler thread treatment is possible than with the notches shown above. because the baffle 9 does not slow down the thread as much.
  • Such a kinked training is also possible for the inlet wall 8 in addition to or as an alternative to the kinked baffle 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Fadenabzugsdüse für eine Offenend-Rotorspinnvorrichtung mit einer Stirnfläche, einer Düsenbohrung sowie einer die Stirnfläche und die Düsenbohrung verbindenden, trichterförmig ausgebildeten Garnumlenkfläche, wobei die Stirnfläche an die Garnumlenkfläche anschließt und wobei die Stirnfläche und die Garnumlenkfläche einen Wirkdurchmesser der Fadenabzugsdüse bilden.
  • Fadenabzugsdüsen sind im Stand der Technik bei Offenend-Rotorspinnvorrichtungen in vielfachen Ausführungen bekannt geworden. Derartige Fadenabzugsdüsen haben die Aufgabe, das ersponnene Garn beim Abziehen aus der Spinnvorrichtung umzulenken und dem abgezogenen Garn einen Falschdrall zu erteilen. Die echte Garndrehung wird in dem frisch gesponnen Faden überwiegend zwischen der Fadenabzugsdüse und der Abzugseinrichtung eingebracht, pflanzt sich jedoch nicht ausreichend bis in die Rotorrille fort. Für eine gute Spinnstabilität ist es jedoch erforderlich, eine möglichst hohe Garndrehung auch im Bereich der Rotorrille zu erreichen. Die Fadenabzugsdüse muss somit einerseits die Fortpflanzung der echten Garndrehung bis in die Rotorrille ermöglichen und andererseits dem Garn möglichst einen zusätzlichen Falschdrall erteilen. Der Falschdrall und damit die Spinnstabilität ist dabei umso größer, je größer der Radius der Garnumlenkfläche ist. Durch den kurbelartigen Umlauf des Garns auf der Fadenabzugsdüse kommt es zudem zu einer vergleichsweise großen Temperaturbeanspruchung sowohl des abgezogenen Fadens als auch der Abzugsdüsen. Der Gestaltung der Fadenabzugsdüse kommt somit eine wesentliche Bedeutung zu.
  • Aus der DE 32 39 289 C2 ist eine Fadenabzugsdüse mit einer verkürzten Garnberührungsbahn bekannt. Die Verkürzung der Garnberührungsbahn wird dadurch erreicht, dass der obere Teil der Fadenabzugsdüse, in welchem üblicherweise die trichterförmige Garnumlenkfläche in die daran tangential anschließende Stirnfläche übergeht, abgeschnitten ist. Es entsteht somit eine ausgeprägte, umlaufende Kante am Übergang zwischen der Garnumlenkfläche und der ebenen Stirnfläche. Die Abzugskraft, die auf den gesponnenen Faden wirkt, soll dadurch reduziert werden und Fadenbrüche sollen vermieden werden.
  • Die DE 199 01 147 B4 hält hingegen eine solche Kante für nachteilig, da beim kurbelartigen Umlaufen des Fadens über diese Kante eine hohe Flächenpressung erzeugt wird. Um Überhitzungsschäden an der Fadenabzugsdüse zu vermeiden, schlägt die DE 199 01 147 B4 vor, die Garnumlenkfläche mit einem Krümmungsradius von maximal 3 mm auszubilden. An die Garnumlenkfläche soll die Stirnfläche tangential anschließen und eine das Garn stützende Leitfläche ausbilden, welche als vorteilhaft angesehen wird.
  • Aufgabe der vorliegenden Erfindung ist es, eine Fadenabzugsdüse vorzuschlagen, welche eine Überhitzung der Abzugsdüse vermeidet und eine gute Fortpflanzung der Garndrehung in die Rotorrille ermöglicht.
  • Die Aufgabe wird gelöst mit den Merkmalen des Anspruchs 1.
  • Eine Fadenabzugsdüse für eine Offenend-Rotorspinnvorrichtung weist eine Stirnfläche, eine Düsenbohrung sowie eine die Stirnfläche und die Düsenbohrung verbindende, trichterförmig ausgebildete Garnumlenkfläche auf. Die Stirnfläche schließt an die Garnumlenkfläche an, wobei die Stirnfläche und die Garnumlenkfläche einen Wirkdurchmesser der Fadenabzugsdüse bilden. Die Stirnfläche und die Garnumlenkfläche bilden dabei einen eingangsseitigen Bereich der Fadenabzugsdüse, während die Düsenbohrung einen ausgangsseitigen Bereich der Fadenabzugsdüse bildet. Die Düsenbohrung weist dabei üblicherweise einen konstanten Innenquerschnitt über die Länge bzw. die axiale Ausdehnung der Fadenabzugsdüse auf, während die Garnumlenkfläche einen sich über die axiale Ausdehnung der Fadenabzugsdüse verringernden Innenquerschnitt aufweist. Die Stirnfläche ist dabei im Wesentlichen radial zu der Düsenbohrung orientiert, kann jedoch auch einen gekrümmten oder nach radial außen hin konisch abfallenden Verlauf haben.
  • Aus dem Stand der Technik ist es bekannt, dass mit einem kleinen Krümmungsradius der Garnumlenkfläche die Garnumlenkfläche verkürzt werden und dadurch die unerwünschte Wärmeentwicklung reduziert werden kann. Allerdings steht dieser Verbesserung der Wärmeentwicklung eine Verringerung des eingebrachten Falschdralls gegenüber, was wiederum die Drehungsfortpflanzung in die Rotorrille verhindert. Die Verkürzung der Garnumlenkfläche geht somit üblicherweise mit einer Verschlechterung der Spinnstabilität einher.
  • Es ist nun vorgesehen, dass der Wirkdurchmesser der Fadenabzugsdüse weniger als 8 mm beträgt und die Garnumlenkfläche einen Krümmungsradius von weniger als 2,5 mm aufweist. Die vorliegende Erfindung hat herausgefunden, dass neben der eigentlichen Garnumlenkfläche auch die Stirnfläche einen wesentlichen Einfluss auf die Drehungsfortpflanzung hat. Bei der vorliegenden Fadenabzugsdüse ist nicht nur der Radius der Garnumlenkfläche, sondern zugleich auch die gesamte Stirnfläche wesentlich verkleinert, so dass sich insgesamt ein sehr geringer Wirkdurchmesser ergibt. Die Kombination eines kleinen Radius der Garnumlenkfläche mit dem kleinen Wirkdurchmesser bzw. der kleineren Stirnfläche bewirkt dabei eine Veränderung des Verhältnisses von Falsch-Drehungen zu Ist-Drehungen, so dass wesentlich mehr echte Drehungen in der Rotorrille ankommen. Trotz des an sich geringeren Falschdralls kann somit die Gesamtdrehung des Fadens hin zur Rotorrille erhöht werden und somit eine sehr gute Spinnstabilität erreicht werden. Zugleich wird durch die kurze Garnumlenkfläche dennoch die Wärmeentwicklung reduziert und der Faden schonender abgezogen.
  • Nach einer vorteilhaften Weiterbildung der Erfindung beträgt ein Kopfdurchmesser der Fadenabzugsdüse weniger als 10 mm. Der Kopfdurchmesser ist dabei als der größte Außendurchmesser der Fadenabzugsdüse definiert. Der Kopfdurchmesser kann dabei unter Umständen auch gleich dem Wirkdurchmesser sein; in der Regel ist der Kopfdurchmesser jedoch etwas größer als der Wirkdurchmesser, so dass radial außen an die Stirnfläche eine weitere, ringförmige Fläche anschließt, die jedoch in der Regel nicht mit dem Faden in Berührung steht. Durch den sehr geringen Außendurchmesser der Fadenabzugsdüse kann die Reibungswärme, die durch den kurbelartig über die Fadenabzugsdüse umlaufenden Faden entsteht, wesentlich besser abgeführt werden, da die Wärmeabstrahlung des Teils des Rotorgehäuses, in dem die Fadenabzugsdüse gelagert ist, nicht durch die Fadenabzugsdüse behindert wird.
  • Vorteilhaft ist es weiterhin, wenn die Garnumlenkfläche tangential an die Stirnfläche anschließt. Zwischen der Garnumlenkfläche und der Stirnfläche sind somit keinerlei Kanten angeordnet. Die Fortpflanzung der echten Garndrehung in die Rotorrille wird dadurch weiter verbessert. Zugleich ist die Anpresskraft des Fadens am Übergang von der Stirnfläche zur Garnumlenkfläche reduziert, so dass weniger Reibung entsteht und somit die Temperaturbeanspruchung des Fadens reduziert wird. Ebenso ist es vorteilhaft, wenn auch die Garnumlenkfläche tangential an die Düsenbohrung anschließt.
  • Um zusätzlich noch eine die Spinnstabilität weiter erhöhende Drehung in den Faden einzubringen, ist es vorteilhaft, wenn die Garnumlenkfläche Makrostrukturen, insbesondere radial angeordnete Kerben, aufweist. Diese regen den Faden in an sich bekannter Weise dazu an, sich um seine Längsachse zu drehen und bringen hierdurch in vergleichsweise fadenschonender Weise einen Falschdrall in den Faden ein.
  • Vorteilhaft für die Drehungsfortpflanzung bis in die Rotorrille ist es dabei, wenn die Kerben einen radial außen liegenden Kerbeinlauf und einen radial innen liegenden Kerbauslauf aufweisen und der Kerbauslauf in einem Eingangsbereich der Düsenbohrung angeordnet ist. Die Kerbe reicht somit bis in die Düsenbohrung hinein und ist dadurch vergleichsweise steil ausgeführt. Der Faden kann besser in die Kerben einlaufen und erfährt dadurch eine besonders deutliche Längenänderung im umlaufenden Garnschenkel. Dabei ist die Längenänderung und damit auch die durch die Kerbe erzeugte Fadenspannungsspitze umso größer, umso steiler die Kerbe ist. Aufgrund des steileren Auslaufens der Kerben in die Düsenbohrung hinein wird dabei zugleich ein sanfterer Übergang beim Erreichen und Verlassen der Kerbe erreicht, so dass negative Einflüsse der Kerben auf die Garnqualität vermieden werden können.
  • Vorteilhaft ist es dabei, wenn der Kerbauslauf in einer Tiefe zwischen 0,1 mm und 0,5 mm von einem Eingang der Düsenbohrung entfernt angeordnet ist. Bei einer derartigen Anordnung des Kerbauslaufs kann der Faden besonders sicher in die Kerben geführt werden und es wird eine steile Kerbe erreicht.
  • Daneben ist es vorteilhaft, wenn die Kerben eine flachere Einlaufwand und eine steilere Prallwand aufweisen. Der Faden wird hierdurch sicher über die Einlaufwand bis an den Kerbgrund geleitet. Das Überspringen der Kerben durch den Faden kann hierdurch vermieden werden.
  • Besonders vorteilhaft ist es aus diesem Grund auch, wenn zwischen der Einlaufwand der Kerbe und der Prallwand ein vorzugsweise ebener, flächig ausgeführter Kerbenboden angeordnet ist. Die Einlaufwand und die Prallwand stoßen somit im Bereich des Kerbgrundes, der im Stand der Technik oftmals gerundet ausgeführt wurde, nicht direkt aneinander. Der über die Einlaufwand eingelaufene Faden läuft daher definiert entlang der Kerbe und wird sicher bis an den Kerbengrund geführt. Im Gegensatz dazu kam es bei bisher üblichen V-förmigen Kerben trotz sanft absteigender Einlaufwand noch immer dazu, dass der Faden nicht bis zum Kerbgrund gelangt, sondern von der Einlaufwand direkt auf die Prallwand springt.
  • Vorzugsweise weist der Kerbenboden eine Breite zwischen 0,16 mm und 0,22 mm, insbesondere zwischen 0,18 mm und 0,20 mm, auf. Der Faden kann während seines Wegs über den Kerbenboden sanft abgebremst werden und in Richtung der Prallwand gleiten. Das Garn wird somit sicher und über einen längeren Zeitraum der Wirkung der Kerbe ausgebsetzt, wobei zugleich die garnschädigende Wirkung der Kerben reduziert wird. Es hat sich gezeigt, dass mit einer derartigen Breite des Kerbenbodens ein optimaler Kompromiss zwischen der die Spinnstabiltät erhöhenden Wirkung der Kerben einerseits und der Garnqualität andererseits erzielt werden kann.
  • Vorteilhaft ist es weiterhin, wenn die Einlaufwand und/oder die Prallwand als ebene Flächen, d. h. ungekrümmt, ausgebildet sind. Vorzugsweise ist auch der Kerbenboden zwischen der Prallwand und der Einlaufwand als ebene Fläche ausgebildet. Der Faden wird hierdurch innerhalb der Kerbe über seine gesamte Länge definiert geführt und die Fertigung der Fadenabzugsdüse ist dadurch erleichtert.
  • Wenn die Einlaufwand und/oder die Prallwand geknickt und/oder gebogen ausgebildet sind, so kann auf diese Weise eine schonendere Fadenbehandlung erfolgen als bei einer ungekrümmten Fläche. Durch die geknickte oder gebogene Fläche wird die steile Fläche verkürzt und durch eine flachere Fläche bis zur Oberseite der Düse fortgesetzt..
  • Nach einer weiteren vorteilhaften Ausführung der Fadenabzugsdüse beträgt ein Winkel der Prallwand zu einer Kerbmittelebene zwischen 32,5° und 47,5°, vorzugsweise zwischen 35° und 45°, besonders bevorzugt zwischen 37° und 42°. Die Freigabe des Fadens nach seinem Abbremsen durch die Prallwand kann hierdurch ebenfalls sanfter erfolgen und ein undefiniertes Springen des Fadens ebenfalls vermieden werden. Für das sichere Führen des Fadens bis zum Kerbgrund bzw. Kerbenboden ist es weiterhin vorteilhaft, wenn der Winkel der Einlaufwand zu einer Kerbmittelebene zwischen 50° und 65°, vorzugsweise zwischen 52° und 60°, besonders bevorzugt zwischen 54° und 58° beträgt.
  • Bei einer geknickten oder gebogenen Einlaufwand und/oder der Prallwand ist es vorteilhaft, wenn ein erster Winkel (β1) eines ersten Teils der Einlaufwand und/oder der Prallwand zu einer Kerbmittelebene zwischen 32,5° und 47,5°, vorzugsweise zwischen 35° und 45°, besonders bevorzugt zwischen 37° und 42° beträgt und ein zweiter Winkel (β2) eines zweiten Teils der Einlaufwand (8) und/oder der Prallwand (9) zum ersten Teil zwischen 10° und 20°, vorzugsweise zwischen 13° und 17° beträgt. Hiermit wird der Faden besonders schonend geführt.
  • Für das Erzielen einer guten Garnqualität ist es weiterhin vorteilhaft, wenn die Garnumlenkfläche im Bereich der Kerbeinläufe eine umlaufende Ausnehmung, insbesondere eine umlaufende, vorzugsweise gerundete, Nut aufweist. Die Ausnehmung kann dabei direkt an die Kerbeinläufe angrenzen; ebenso ist es möglich, dass durch die Ausnehmung ein oberer Bereich der Kerben mit den ursprünglichen Kerbeinläufen entfernt wird und somit am Übergang der Ausnehmung zur Kerbe sich neue, nun in einem tieferen Bereich der trichterförmigen Garnumlenkfläche liegenden Kerbeinläufe ergeben. Die Ausnehmung selbst kann bis an die Stirnfläche der Fadenabzugsdüse reichen oder auch die Garnumlenkfläche nur unterbrechen. Durch eine derartige Ausnehmung kann eine aggressive Wirkung des Kerbeinlaufs auf den Faden weiter reduziert werden. Anstelle einer umlaufenden Nut ist es auch möglich, die Ausnehmung beispielsweise durch eine kugelförmige Ausnehmung zu bilden.
  • Um den Faden nach dem Abbremsen sicher wieder freizugeben, beträgt vorzugsweise die Tiefe der Kerbe zwischen 0,14 mm und 0,25 mm, vorzugsweise zwischen 0,16 mm und 0,22 mm und besonders bevorzugt zwischen 0,16 und 0,20 mm.
  • Weitere Vorteile der Erfindung werden anhand der nachfolgend dargestellten Ausführungsbeispiele beschrieben. Es zeigen:
  • Figur 1
    eine schematische Darstellung einer Offenendspinnvorrichtung mit einem Spinnrotor und einer Abzugsdüse,
    Figur 2
    eine schematische Darstellung einer Fadenabzugsdüse mit einem verkleinerten Wirkdurchmesser,
    Figur 3
    eine schematische Schnittdarstellung einer Fadenabzugsdüse mit einem verkleinerten Wirkdurchmesser und mit Kerben,
    Figur 4
    eine schematische Schnittdarstellung einer Kerbe einer Fadenabzugsdüse,
    Figur 5
    eine schematische Schnittdarstellung einer weiteren Fadenabzugsdüse mit einer umlaufenden Ausnehmung,
    Figur 6
    eine weitere Ausführung einer Fadenabzugsdüse mit einer umlaufenden Ausnehmung sowie
    Figur 7
    eine weitere Ausführung einer Fadenabzugsdüse mit einer geknickten Prallwand.
  • Figur 1 zeigt eine schematische Schnittdarstellung eines Spinnrotors 2 sowie einer Fadenabzugsdüse 1 in einer vorliegend nur teilweise dargestellten Offenendspinnvorrichtung. Zur Herstellung eines Fadens F wird dem Spinnrotor 2 in bekannter Weise ein in Einzelfasern aufgelöstes Fasermaterial zugespeist. Der Spinnrotor 2 läuft während der Garnherstellung mit hohen Drehzahlen um, so dass die zugespeisten Fasern in Form eines Faserringes in der Rotorrille 3 des Spinnrotors 2 abgelegt werden. Der neu ersponnene Faden F wird über die Fadenabzugsdüse 1 kontinuierlich abgezogen und reicht mit seinem Ende bis in die Rotorrille 3 des Spinnrotors 2. Aufgrund der Rotation des Spinnrotors 2 entsteht somit ein kurbelartig umlaufender Garnschenkel 4, in welchen die in der Rotorrille 3 abgelegten Fasern eingebunden werden. Die Fadenabzugsdüse 1 ist in an sich bekannter Weise entweder in einem Fortsatz oder in einem Einsatz eines Deckelelements des Rotorgehäuses 17 gelagert.
  • Die Fadenabzugsdüse 1 weist dabei in üblicher Weise eine zylindrische Düsenbohrung 6 sowie eine gekrümmte Garnumlenkfläche 5 für den abzuziehenden Faden F auf. An den Garnumlenkfläche 5 schließt schließlich noch auf der der Düsenbohrung 6 abgewandten Seite der Fadenabzugsdüse 1 eine Stirnfläche 16 der Fadenabzugsdüse 1 an, die in unterschiedlicher Weise, beispielsweise eben, gewölbt, oder auch in Richtung des Außendurchmessers der Fadenabzugsdüse 1, der hier mit Kopfdurchmesser DK bezeichnet wird, abfallend ausgebildet sein kann. Die gekrümmte Garnumlenkfläche 5 und die Stirnfläche 16 bilden zusammen einen mit den Faden F in Kontakt stehenden Wirkdurchmesser Dw der Fadenabzugsdüse 1 aus. Die Düsenbohrung 6 liegt in der Regel koaxial zur Drehachse 15 des Spinnrotors 2, so dass der abgezogene Faden F während seines Abzugs aus der Rotorrille 3 über die Garnumlenkfläche 5 um etwa 90° umgelenkt wird. Wie eingangs geschildert, ist es dabei wünschenswert, dass die in den Faden eingebrachte Drehung sich möglichst bis in die Rotorrille 3 fortpflanzt, um eine möglichst gute Spinnstabilität zu erreichen.
  • Figur 2 zeigt in einer schematischen Schnittdarstellung eine Fadenabzugsdüse 1, welche eine Garnumlenkfläche 5 mit einem sehr geringen Krümmungsradius R von weniger als 2,5 mm sowie einen verkleinerten Wirkdurchmesser DW von weniger als 8 mm aufweist. Somit ist bei der vorliegenden Fadenabzugsdüse auch die ringförmige Stirnfläche 16 stark verkleinert. Während bei herkömmlichen Fadenabzugsdüsen eine zu starke Verkleinerung des Krümmungsradius R stets vermieden wurde, da dies zugleich mit einer Verringerung der Spinnstabilität verbunden war, hat sich nun überraschend gezeigt, dass dennoch eine gute Spinnstabilität erreicht werden kann, wenn zugleich auch die Stirnfläche 16 bzw. der gesamten Wirkdurchmesser DW verringert wird. Der Grund hierfür liegt darin, dass aufgrund der besonderen, insgesamt kleinen Abmessungen zwar weniger Falschdrall in den Faden F eingebracht wird, jedoch zugleich die Fortpflanzung der echten Drehung in die Rotorrille 3 bei sonst gleichen Spinnverhältnissen verbessert wird. Es kann somit bei gleicher Geometrie des Spinnrotors 2 allein durch den Einsatz der beschriebenen Fadenabzugsdüse 1 ohne Änderungen der Rotordrehzahl oder der Liefergeschwindigkeit die Gesamtdrehung des Fadens F bis zur Rotorrille erhöht werden. Zugleich wird durch die Geometrie der Fadenabzugsdüse 1 mit einem sehr kleinen Wirkdurchmesser DW den Faden F schonend abgezogen. Durch die geringere Reibung an der verkürzten Garnumlenkfläche 5 und Stirnfläche 16 verringert sich die Fadenabzugsspannung und zugleich auch die Temperaturbeanspruchung des Fadens F.
  • Die vorliegend gezeigte Fadenabzugsdüse 1 weist zugleich auch einen besonders geringen Kopfdurchmesser DK von weniger als 10 mm auf. Wie nun wiederum aus Fig. 1 ersichtlich, wird hierdurch eine besondere große Abstrahlfläche AF an dem in den Spinnrotor 2 hineinragenden Teil des Rotorgehäuses 17, hier einem Fortsatz eines Deckelelements des Rotorgehäuses, erzielt. Die an der Fadenabzugsdüse 1 entstehende, durch die verkürzte Garnumlenkfläche 5 ohnehin bereits reduzierte Reibungswärme kann hierdurch noch besser abgeführt werden. Die thermische Belastung der Fadenabzugsdüse 1 selbst kann hierdurch ebenfalls reduziert werden. Zugleich werden durch die verringerte Oberflächentemperatur an der Fadenabzugsdüse 1 eine Schädigung des abgezogenen Fadens F und Fadenbrüche vermieden. Dies wirkt sich insbesondere bei Chemiefasern sehr vorteilhaft aus. Ebenso werden insbesondere bei Chemiefasern Verschmutzungen der Fadenabzugsdüse 1 vermieden.
  • Figur 3 zeigt eine Fadenabzugsdüse 1, welche zusätzlich mit Kerben 7 versehen ist, in einer Schnittdarstellung. Die Kerben 7 (vorliegend sind zwei Kerben 7 einander gegenüberliegend erkennbar) sind dabei in der Garnumlenkfläche 5 angeordnet, reichen jedoch bis in die Düsenbohrung 6 hinein. Es hat sich als besonders vorteilhaft erwiesen, wenn sich der Kerbauslauf 11, welcher vorliegend durch den ausgangsseitigen Schnittpunkt bzw. die ausgangsseitige Schnittlinie des Kerbenbodens 12 mit der Innenfläche der Fadenabzugsdüse 1 definiert ist, in einem Abstand A zwischen 0,1 mm und 0,5 mm befindet vom Eingang der Düsenbohrung entfernt befindet. Beispielsweise beträgt der Abstand A 0,25 mm. Der Eingang der Düsenbohrung 6 ist dabei als der Beginn des konstanten Innenquerschnitts der Fadenabzugsdüse 1 definiert und ist vorliegend durch die Tangentialkante zwischen der Garnumlenkfläche 5 und der Düsenbohrung 6 gekennzeichnet. Der Kerbeinlauf 10 ist wiederum im Falle herkömmlicher V-förmiger Kerben durch den gemeinsamen Schnittpunkt der Einlaufwand 8 und der Prallwand 9 mit der Innenfläche des Düsentrichters 5 definiert bzw. im vorliegenden Fall durch die eingangsseitig gelegene Schnittlinie des Kerbenbodens 12 mit der Innenfläche des Düsentrichters.
  • Figur 4 zeigt einen schematischen Schnitt durch eine Kerbe 7 einer Fadenabzugsdüse 1, mit welcher eine besonders gute und sichere Wirkung der Kerbe 7 auf den abgezogenen Faden F sichergestellt werden kann. Die Kerbe 7 weist dabei in an sich bekannter Weise eine Einlaufwand 8 sowie eine Prallwand 9 auf, die der Faden F während seines kurbelförmigen Umlaufs über den Garnumlenkfläche 5 nacheinander erreicht. Die Rotationsrichtung des Fadens F ist vorliegend durch einen Pfeil symbolisiert. Im Gegensatz zu bekannten Kerbformen, welche stets V förmig ausgeführt waren, ist nun vorgesehen, dass die Einlaufwand 8 und die Prallwand 9 nicht direkt aneinandergrenzen, sondern ein definierter, vorzugsweise eben ausgebildeter, Kerbenboden 12 mit einer definierten Breite B sich zwischen der Einlaufwand 8 und der Prallwand 9 erstreckt. Durch den Kerbenboden 12 zwischen der Einlaufwand 8 und der Prallwand 9 wird sichergestellt, dass der Faden F in jedem Falle den Kerbengrund bzw. den flächigen Kerbenboden 12 erreicht und somit die Kerbe 7 ihre Wirkung auf den Faden F entfalten kann. Ein undefiniertes Springen des Fadens F von der Einlaufwand 8 direkt auf die Prallwand 9 kann hierdurch vermieden werden.
  • Das sichere Erreichen des Kerbenbodens 12 wird gemäß der vorliegenden Darstellung noch dadurch unterstützt, dass der Faden F über eine vergleichsweise flache Einlaufwand 8 langsam und sanft in Richtung des Kerbenbodens 12 geleitet wird. Der Winkel α zu einer Kerbmittelebene 14 bzw. zu einer Parallelen dazu beträgt vorzugsweise zwischen 54° und 58° und ist beispielsweise mit 56° ausgeführt. Der Kerbenboden 12 weist weiterhin eine Breite B zwischen 0,18 mm und 0,24 mm auf. Beispielsweise beträgt die Breite B des Kerbenbodens 0,22 mm. Der Winkel β der Prallwand 9 zur Kerbmittelebene 14 beträgt hingegen vorzugsweise zwischen 37° und 42°. Nach einer besonders vorteilhaften Ausführungsform beträgt der Winkel β 40°. Es ergibt sich somit ein Kerbwinkel α + β zwischen der Einlaufwand 8 und der Prallwand 9 von beispielsweise 96°. Als vorteilhaft für die Führung des Fadens F entlang der Kerbe 7 hat es sich weiterhin erwiesen, wenn die Tiefe T der Kerbe 7 zwischen 0,16 mm und 0,20 mm beträgt. Die gezeigte Kerbform trägt somit nicht nur zur Verbesserung der Spinnstabilität, sondern auch zur Verbesserung der Garnqualität bei.
  • Figur 5 zeigt eine weitere Ausführung einer Fadenabzugsdüse 1, bei welcher die garnschädigende Wirkung des Kerbeinlaufs 10 durch eine umlaufende Ausnehmung 13, hier eine umlaufende Nut, entschärft ist. Der vergleichsweise scharfe Übergang zwischen der gekrümmten Garnumlenkfläche 5 und der Kerbe 7 kann hierdurch sanfter ausgestaltet werden. Die umlaufende Nut weist vorzugsweise einen Radius zwischen 0,15 mm und 0,3 mm auf und reicht vorliegend bis an die Stirnfläche heran. Die Nut könnte jedoch ebenso derart ausgeführt sein, dass sie die Garnumlenkfläche 5 lediglich unterbricht.
  • Figur 6 zeigt eine andere Ausführung einer Fadenabzugsdüse 1, bei welcher die Kerbeinläufe 10 durch eine kugelförmige Ausnehmung 13 entschärft wurde. Der Radius der kugelförmigen Ausnehmung 13b ist vorzugsweise auf den Innendurchmesser DI der Düsenbohrung 6 abgestimmt und beträgt zwischen 0,7* DI und 0,9* DI. Beispielsweise beträgt der Radius R2 0,8* DI. Die aggressive, garnschädigende Wirkung der Kerbeinläufe 10 kann hierdurch wesentlich reduziert werden.
  • In Figur 7 ist eine Kerbe 7 dargestellt, in der die Prallwand 9 geknickt ausgebildet ist. Der dem Kerbenboden 12 zugewandte erste Teil der Prallwand 9 ist mit einem Winkel β1 zu der Kerbmittelebene 14 geneigt. Der dem Rand der Fadenabzugsdüse 1 zugewandte zweite Teil der Prallwand 9 ist flacher ausgebildet und weist einen zweiten Winkel β2 auf. Mit dieser Art der Kerbe 7 ist eine schonendere Fadenbehandlung möglich als mit den zuvor dargestellten Kerben. da die Prallfläche 9 nicht so stark den Faden abbremst. Eine solche geknickte Ausbildung ist auch für die Einlaufwand 8 zusätzlich oder alternativ zu der geknickten Prallwand 9 möglich.
  • Es hat sich gezeigt, dass der geringe Krümmungsradius in Kombination mit dem geringen Wirkdurchmesser DW insbesondere bei einer mit Kerben 7 versehenen Fadenabzugsdüse 1 vorteilhaft ist, da zusätzlich zur Erhöhung des echten Dralls auch noch ein Falschdrall in den Faden F eingebracht wird. Die Spinnstabilität wird hierdurch noch weiter verbessert.
  • Bezugszeichenliste
  • 1
    Fadenabzugsdüse
    2
    Spinnrotor
    3
    Rotorrille
    4
    umlaufender Garnschenkel
    5
    Garnumlenkfläche
    6
    Düsenbohrung
    7
    Kerbe
    8
    Einlaufwand
    9
    Prallwand
    10
    Kerbeinlauf
    11
    Kerbauslauf
    12
    Kerbenboden
    13
    Ausnehmung
    14
    Kerbmittelebene
    15
    Drehachse des Spinnrotors
    16
    Stirnfläche
    17
    Rotorgehäuse
    B
    Breite des Kerbenbodens
    T
    Tiefe der Kerbe
    F
    Faden
    DK
    Kopfdurchmesser
    DI
    Innendurchmesser der Düsenbohrung
    DW
    Wirkdurchmesser
    A
    Abstand des Kerbauslaufs vom Eingang der Düsenbohrung
    α
    Winkel der Einlaufwand
    β
    Winkel der Prallwand
    R
    Krümmungsradius der Garnumlenkfläche
    AF
    Abstrahlfläche

Claims (13)

  1. Fadenabzugsdüse (1) für eine Offenend-Rotorspinnvorrichtung mit einer Stirnfläche (16), einer Düsenbohrung (6) sowie einer die Stirnfläche (16) und die Düsenbohrung (6) verbindenden, trichterförmig ausgebildeten Garnumlenkfläche (5), wobei die Stirnfläche (16) an die Garnumlenkfläche (5) anschließt und wobei die Stirnfläche (16) und die Garnumlenkfläche (5) einen Wirkdurchmesser (DW) der Fadenabzugsdüse (1) bilden, dadurch gekennzeichnet, dass der Wirkdurchmesser (DW) der Fadenabzugsdüse (1) weniger als 8 mm beträgt und die Garnumlenkfläche (5) einen Krümmungsradius (R) von weniger als 2,5 mm aufweist.
  2. Fadenabzugsdüse nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass ein Kopfdurchmesser (DK) der Fadenabzugsdüse (1) weniger als 10 mm beträgt.
  3. Fadenabzugsdüse nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Garnumlenkfläche (5) tangential an die Stirnfläche (16) anschließt.
  4. Fadenabzugsdüse nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Garnumlenkfläche (5) Makrostrukturen, insbesondere radial angeordnete Kerben (7), aufweist.
  5. Fadenabzugsdüse nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Kerben (7) einen radial außen liegenden Kerbeinlauf (10) und einen radial innen liegenden Kerbauslauf (11) aufweisen und dass der Kerbauslauf(11) in einem Eingangsbereich der Düsenbohrung (6) angeordnet ist.
  6. Fadenabzugsdüse nach einem der beiden vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kerben (7) eine flachere Einlaufwand (8) und eine steilere Prallwand (9) aufweisen.
  7. Fadenabzugsdüse nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass zwischen der Einlaufwand (8) und der Prallwand (9) ein Kerbenboden (12) angeordnet ist, wobei vorzugsweise der Kerbenboden (12) eine Breite (B) zwischen 0,16 mm und 0,22 mm, insbesondere zwischen 0,18 mm und 0,20 mm aufweist.
  8. Fadenabzugsdüse nach einem der beiden vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Winkel (β) der Prallwand (9) zu einer Kerbmittelebene (14) zwischen 32,5° und 47,5°, vorzugsweise zwischen 35° und 45°, besonders bevorzugt zwischen 37° und 42° beträgt.
  9. Fadenabzugsdüse nach einem der Ansprüche 6 - 7, dadurch gekennzeichnet, dass ein erster Winkel (β1) eines ersten Teils der Einlaufwand (8) und/oder der Prallwand (9) zu einer Kerbmittelebene (14) zwischen 32,5° und 47,5°, vorzugsweise zwischen 35° und 45°, besonders bevorzugt zwischen 37° und 42° beträgt und ein zweiter Winkel (β2) eines zweiten Teils der Einlaufwand (8) und/oder der Prallwand (9) zum ersten Teil zwischen 10° und 20°, vorzugsweise zwischen 13° und 17° beträgt.
  10. Fadenabzugsdüse nach einem der Ansprüche 5 - 9, dadurch gekennzeichnet, dass die Garnumlenkfläche (5) im Bereich der Kerbeneinläufe (10) eine umlaufende Ausnehmung (13), insbesondere eine umlaufende, vorzugsweise gerundete, Nut aufweist.
  11. Fadenabzugsdüse nach einem der Ansprüche 6 - 10, dadurch gekennzeichnet, dass die Einlaufwand (8) und/oder die Prallwand (9) eben ausgebildet sind.
  12. Fadenabzugsdüse nach einem der Ansprüche 6 - 10, dadurch gekennzeichnet, dass die Einlaufwand (8) und/oder die Prallwand (9) geknickt und/oder gebogen ausgebildet sind.
  13. Fadenabzugsdüse nach einem der Ansprüche 4 - 12, dadurch gekennzeichnet, dass eine Tiefe (T) der Kerbe (7) zwischen 0,14 mm und 0,25 mm, vorzugsweise zwischen 0,16 mm und 0,22 mm, besonders bevorzugt zwischen 0,16 und 0,20 mm beträgt.
EP16790339.2A 2015-11-06 2016-11-02 Fadenabzugsdüse Active EP3371352B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015119114.8A DE102015119114A1 (de) 2015-11-06 2015-11-06 Fadenabzugsdüse
PCT/EP2016/076322 WO2017076846A1 (de) 2015-11-06 2016-11-02 Fadenabzugsdüse

Publications (2)

Publication Number Publication Date
EP3371352A1 EP3371352A1 (de) 2018-09-12
EP3371352B1 true EP3371352B1 (de) 2019-08-07

Family

ID=57223683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16790339.2A Active EP3371352B1 (de) 2015-11-06 2016-11-02 Fadenabzugsdüse

Country Status (5)

Country Link
US (1) US10669649B2 (de)
EP (1) EP3371352B1 (de)
CN (1) CN108291332B (de)
DE (1) DE102015119114A1 (de)
WO (1) WO2017076846A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119112A1 (de) * 2015-11-06 2017-05-11 Maschinenfabrik Rieter Ag Fadenabzugsdüse mit radial zur Düsenbohrung verlaufenden Kerben

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS163986B1 (de) * 1973-02-02 1975-11-07
DE2544721A1 (de) * 1975-10-07 1977-04-14 Feldmuehle Anlagen Prod Vorrichtung zum verspinnen
GB2128643B (en) 1982-10-23 1986-01-08 Elitex Zavody Textilniho Open-end spinning thread guides
DE4205485A1 (de) * 1992-02-22 1993-08-26 Schlafhorst & Co W Fadenabzugsduese
DE19901147B4 (de) * 1999-01-14 2010-04-08 Maschinenfabrik Rieter Ag Garnabzugsdüse für eine Offenend-Rotorspinnvorrichtung
DE19906111A1 (de) * 1999-02-13 2000-10-05 Felix Backmeister Faden-Abzugsdüse in einer Open-End-Spinnmaschine
DE19949533A1 (de) * 1999-10-14 2001-04-19 Schlafhorst & Co W Offenend-Rotorspinnvorrichtung
DE10001468A1 (de) * 2000-01-15 2001-07-19 Rieter Ingolstadt Spinnerei Fadenabzugsdüse für eine Offenend-Spinnmaschine
CZ290466B6 (cs) * 2000-05-26 2002-07-17 Rieter Cz A. S. Zadrľovač zákrutu příze na bezvřetenovém dopřádacím stroji
DE10224205A1 (de) * 2002-05-31 2003-12-11 Schlafhorst & Co W Kanalplattenadapter für eine Offenend-Spinnvorrichtung
DE10305279A1 (de) * 2003-02-08 2004-08-19 Saurer Gmbh & Co. Kg Kanalplattenadapter für eine Offenend-Rotorspinnvorrichtung
DE10305792A1 (de) * 2003-02-10 2004-08-19 Wilhelm Stahlecker Gmbh Garnabzugsdüse für Offenend-Rotorspinnvorrichtungen
DE10318305A1 (de) 2003-04-14 2004-10-28 Wilhelm Stahlecker Gmbh Garnabzugsdüse für Offenend-Spinnvorrichtungen
DE10330767A1 (de) * 2003-07-07 2005-02-10 Rieter Ingolstadt Spinnereimaschinenbau Ag Fadenberührendes Bauteil von Spinnmaschinen
DE102006040003B4 (de) * 2005-12-06 2018-01-25 Rieter Ingolstadt Gmbh Offenend-Spinnvorrichtung mit austauschbarem Drallstauelement
DE102011002972A1 (de) * 2010-06-25 2011-12-29 Rieter Ingolstadt Gmbh Fadenabzugsdüse
DE102015119112A1 (de) * 2015-11-06 2017-05-11 Maschinenfabrik Rieter Ag Fadenabzugsdüse mit radial zur Düsenbohrung verlaufenden Kerben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3371352A1 (de) 2018-09-12
US20180320293A1 (en) 2018-11-08
WO2017076846A1 (de) 2017-05-11
CN108291332A (zh) 2018-07-17
US10669649B2 (en) 2020-06-02
CN108291332B (zh) 2021-11-02
DE102015119114A1 (de) 2017-05-11

Similar Documents

Publication Publication Date Title
DE19738382B4 (de) Fadenabzugsdüse
EP0990719B1 (de) Spinnvorrichtung
CH660498A5 (de) Verfahren und vorrichtung zum erhoehen der haarigkeit und voluminositaet eines fadens.
EP0220546A1 (de) Spinnvorrichtung zum Offenend-Spinnen
DE2130722B2 (de) Vorrichtung zum offenend-spinnen von textilfasern
EP1657328B1 (de) Auflöseeinrichtung mit verbesserter Kontur aufweisenden Zähnen
DE4224632B4 (de) Vorrichtung zum Offenend-Spinnen
EP3371353B1 (de) Fadenabzugsdüse mit radial zur düsenbohrung verlaufenden kerben
EP1845180A2 (de) Spindelförmiges Bauteil für eine Luftdüsenspinnvorrichtung mit einem Injektionskanal
EP3371352B1 (de) Fadenabzugsdüse
EP1616828B1 (de) Drehteller für eine Faserbandablagevorrichtung
DE19926492A1 (de) Spinnvorrichtung
DE2340600A1 (de) Verfahren und geraet fuer das spinnen von fasern mit dem am ende offenen system
EP1284312B1 (de) Vorrichtung zur Herstellung eines gesponnenen Garnes
DE1246481B (de) Doppeldrahtzwirnvorrichtung
EP1415027B1 (de) Vorrichtung zur herstellung eines gesponnenen garnes
EP3842578B1 (de) Ringspinnmaschine und verfahren zur herstellung eines core-garns
EP3052683B1 (de) Spinnstelle einer luftspinnmaschine mit einem faserführungselement
DE10393063B4 (de) Fadenabzugsdüse
EP2578730B1 (de) Garnbildungselement für eine spinnstelle einer luftspinnmaschine mit einem drallstoppelement
DE19755972B4 (de) Spinnvorrichtung
EP3144419B1 (de) Kanalplattenadapter und offenendspinnvorrichtung mit einem kanalplattenadapter
DE10060879B4 (de) Spinntrichtervorrichtung
EP2581476B1 (de) Pressfinger für eine Vorspinnmaschine
DE1535003B2 (de) Verfahren zum Offenend-Spinnen mit einer eine glatte Fasersammeifläche aufweisenden Spinnturbine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006029

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006029

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191102

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191102

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221128

Year of fee payment: 7

Ref country code: AT

Payment date: 20221128

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221102