EP3221486A1 - Procédé et dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide - Google Patents

Procédé et dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide

Info

Publication number
EP3221486A1
EP3221486A1 EP15775410.2A EP15775410A EP3221486A1 EP 3221486 A1 EP3221486 A1 EP 3221486A1 EP 15775410 A EP15775410 A EP 15775410A EP 3221486 A1 EP3221486 A1 EP 3221486A1
Authority
EP
European Patent Office
Prior art keywords
metal strip
displacement
blower
electromagnetic
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15775410.2A
Other languages
German (de)
English (en)
Other versions
EP3221486B1 (fr
Inventor
Dominique Fontaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fontaine Engineering und Maschinen GmbH
Original Assignee
Fontaine Engineering und Maschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fontaine Engineering und Maschinen GmbH filed Critical Fontaine Engineering und Maschinen GmbH
Priority to SI201530296T priority Critical patent/SI3221486T1/en
Priority to PL15775410T priority patent/PL3221486T3/pl
Publication of EP3221486A1 publication Critical patent/EP3221486A1/fr
Application granted granted Critical
Publication of EP3221486B1 publication Critical patent/EP3221486B1/fr
Priority to HRP20181054TT priority patent/HRP20181054T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/526Controlling or regulating the coating processes with means for measuring or sensing for visually inspecting the surface quality of the substrate

Definitions

  • the invention relates to a method and apparatus for coating a metal strip with an initially liquid coating material, for. As zinc.
  • the method and the device are used in particular for hot-dip galvanizing the metal strip.
  • Such devices for coating a metal strip are basically known in the art, such. B. from DE 10 2009 051 932 A1. Specifically, this document discloses a coating container which is filled with liquid coating material. For coating, the metal strip is passed through the container with the coating material. After leaving the coating container, the metal strip passes through a blow-off device arranged above the coating container for blowing off excess parts of the still liquid coating material from the surface of the metal strip. Above the blow-off device, an electromagnetic stabilization device supported by the blow-off device is arranged to stabilize the metal strip after leaving the coating container and the blow-off device.
  • the electromagnetic stabilizing device causes the band to be held centrally in a center plane of the entire apparatus and to prevent or at least reduce vibrations of the metal band during passage through the coating container and the blower.
  • Both the blow-off device and the electromagnetic stabilization device each have a slot through which the metal strip is guided.
  • the metal strip runs in a predetermined desired center position through the slot of the blower. Only then is it ensured that the effect of the blow-off nozzles on the top and bottom of the metal belt is the same and that a desired uniform thickness distribution of the coating material settles on the metal belt.
  • the desired center position is defined in particular by a preferably uniform spacing of the broad sides and the narrow sides of the metal strip to the opposite sides of the slot of the blow-off device and in particular in that the metal strip is not inclined or rotated relative to the longitudinal orientation of the slot.
  • the said disturbance of the leadership of the metal strip through the slot of the blower affects not necessarily on the leadership of the metal strip through the slot of the electromagnetic stabilization device. Therefore, the simultaneous displacement of the electromagnetic stabilization device described in DE 10 2008 039 244 A1 together with the blower is generally undesirable, because this leads to an asymmetrical and thus undesirable change in the force of the electromagnetic stabilizer on the metal strip.
  • the present invention seeks to develop a known method and a known device for coating a metal strip to the effect that an undesirable displacement of the electromagnetic stabilization device in the event of a displacement of the blower is prevented.
  • This object is procedurally achieved by the method claimed in claim 1.
  • This method is characterized by the following method step: displacing the electromagnetic stabilizing device relative to the blower in a plane transverse to the transport direction of the metal strip so that the actual position of the metal strip at least approximately coincides with a predetermined desired center position in the slot of the electromagnetic stabilization device.
  • the electromagnetic stabilizer is also referred to by the applicant as Dynamic Electro Magnetic Coating Optimizer DEMCO.
  • this claimed method step a relative movement of the electromagnetic stabilization device relative to the blow-off device is made possible, and thus advantageously ensures that a displacement of the blow-off device does not necessarily lead to an undesired displacement of the electromagnetic stabilization device.
  • the metal strip n the slot of the electromagnetic stabilizing device are held in a desired center position, even if the blower moves in a plane transverse to the transport direction of the metal strip.
  • the electromagnetic stabilizing device is moved relative to the blow-off device in exactly the opposite direction as the blow-off device (compensation).
  • the proper function of the electromagnetic stabilization device is ensured by this method step, even if the blower must be moved to restore the leadership of the metal strip in the desired center position through the slot of the blower.
  • a deviation of the actual position of the metal strip is detected by a predetermined desired center position in the slot of the blower and controlled the actual position of the metal strip to the predetermined desired center position by suitable displacement of the blower in a plane transverse to the transport direction of the metal band.
  • the displacement of the electromagnetic stabilization device according to the invention can take place either in accordance with the detected deviation of the actual position of the metal strip from the predetermined desired center position in the slot of the blower or in accordance with and in the opposite direction of the detected detected displacement of the blower. in the latter alternative, the detection of the displacement of the blower relative to a pass line reference position takes place.
  • the pass line reference position is defined by the constructive center of the plant, as defined in particular by the fixed position of a first deflection roller for the metal strip within the coating container and the fixed position of a second deflection roller above the stabilization device.
  • the deviation of the actual position of the metal strip is detected by the predetermined target center position in the slot of the electromagnetic stabilizer and the inventive displacement of the electromagnetic stabilizing device in accordance with the detected deviation of the actual position of the metal strip from the predetermined desired center position in the Slot of the electromagnetic stabilizer.
  • the detected deviation of the actual position of the metal strip from its desired center position in the slot of the electromagnetic stabilizing device or the blow-off device may either be a translational displacement parallel to a longitudinal direction defined by the desired center position or a rotation with respect to the predetermined target -Mittenlage act.
  • These two types of deviation of the actual position from the desired center position of the metal strip or a corresponding displacement or rotation of the electromagnetic stabilization device is also referred to by the applicant as a skew function.
  • the detected deviation of the actual position of the metal strip is a translational displacement in the width direction x (opposite) of the predetermined nominal center position of the metal strip in the slot of the electromagnetic stabilization device or blow-off device.
  • a deviation of the actual position from the desired center position of the metal strip or a corresponding displacement of the electromagnetic stabilization device is also referred to by the applicant as a scan function.
  • the device has a human machine interface (HMI) for an operator of the device for visualizing, for example, the detected deviation of the actual position of the metal strip from the desired center position in the slot of the blower or in the slot of the electromagnetic stabilization device or for visualizing the detected deviation of the blower from the pass-line reference position or for visualizing the time variation of said deviations.
  • HMI human machine interface
  • Figure 1 shows the device according to the invention.
  • FIGS. 2 and 3 show top views of the slots of the blow-off device according to the invention or the electromagnetic stabilization device according to the invention, each with marking of the desired center position and different undesired actual positions of the metal strip.
  • FIG. 1 shows the device 100 according to the invention for coating a metal strip 200 with a liquid coating material 300, for example, As zinc.
  • a liquid coating material 300 for example, As zinc.
  • the first uncoated metal strip 200 is passed in the transport direction R in a coating container 1 10, which is filled with the liquid coating material.
  • the metal strip 200 is deflected by means of a deflection roller, so that it leaves the coating container upwards. After passing through the coating container, the still liquid coating material adheres to the metal strip 200.
  • a blower 120 is arranged, which spans a slot 122 through which the metal strip 200 is guided. With the help of the blower excess coating material is blown off the surface of the metal strip 200.
  • the metal strip 200 passes through the slot 122 of the blower 120 in a predetermined desired center position 128, as in the form of the solid line in X in FIG Direction is symbolized.
  • This desired central position is characterized in particular by uniform distances or distance distributions to the inner edges of the slot 122 of the blower 120.
  • possible unwanted actual positions of the metal strip are also shown as dashed lines in FIG.
  • undesired actual layers for the metal strip for example, in that it is rotated relative to the desired center position or moved parallel in the Y direction.
  • FIG. 3 shows a third possible undesired actual position in which the metal strip 200 is displaced parallel to the desired central position in the X direction, ie in the width direction.
  • an electromagnetic stabilization device 140 can be seen, which in turn has a slot 142, through which the metal strip 200 is likewise guided.
  • the metal strip 200 preferably passes through the slot 142 in a predetermined desired center position 128, as shown in FIGS. 2 and 3, so that the forces provided by the electromagnetic stabilization device 140 can act in a uniform manner on the metal strip 200 in a uniform manner.
  • the slot 142 and the target center position also sought there the same applies as previously described with reference to FIGS. 2 and 3 for the slot 122 of the blower 120.
  • the electromagnetic stabilizer 140 is mechanically supported on the blower 120.
  • this support is not rigid, but rather via a first displacement device 160, which is provided between the blow-off device 120 and the electromagnetic stabilization device 140.
  • the first displacement device 160 allows a displacement of the electromagnetic stabilization device 140 relative to the blower in a plane transverse to the transport direction R of the metal strip.
  • the first displacement device 160 is controlled by means of a control device 170.
  • a first detection device 154 is further arranged for detecting a deviation of the actual position of the metal strip 200 from a predetermined desired center position in the slot 122 of the blower 120.
  • the first detection device 154 only for detection the actual position of the metal strip may be formed.
  • a control device 180 is provided for regulating the actual position of the metal strip 200 to a predetermined desired center position in the slot 122 of the blower, as explained above with reference to Figures 2 and 3, by displacement of the blower 120 by means a second displacement device 130. The regulation takes place in response to the detected deviation.
  • the determination of the deviation of the actual position from the desired center position does not take place in the first detection device 154, it can also take place within the control device 180, for example.
  • the displacement takes place in a plane transverse to the transport direction R of the metal strip in accordance with the detected deviation of the actual position of the metal strip from the predetermined desired center position in the slot 122 of the blower.
  • the blower 120 is displaced by means of the second displacement device 30 such that the metal strip returns the slot 122 of the blower back to the predetermined target position.
  • Center layer 128 passes through.
  • the first detection device 154 is designed for this purpose so that it can preferably detect all three actual positions of the metal strip 200 deviating from the desired center layer 128 described above with reference to FIGS. 2 and 3.
  • the said displacement of the blow-off device 120 should not affect the electromagnetic stabilization device 140, which is supported on the blow-off device 120.
  • the control device 170 is designed to control the first displacement device 160 in such a way that the electromagnetic stabilization device 140 in the case of a displacement of the blow-off device 120 is not moved with respect to a reference line reference position but can remain in its original location.
  • the control device 170 thus acts on the first displacement device 160 in such a way that, in the event of a displacement of the blow-off device 120, the electrical stabilization device 140 preferably makes the exactly opposite movement as the blow-off device 120, that is, as a result preferably remains in its original location.
  • the control device 170 can evaluate various situations.
  • control device 170 may be designed to carry out the displacement of the electromagnetic stabilization device 140 in accordance with the deviation of the actual position of the metal strip from the predetermined desired center position of the metal strip in the slot 122 of the blower device 120, as detected by the first detection device 154.
  • control device 170 may be configured to perform the displacement of the electromagnetic stabilization device in accordance with and in the opposite direction to the displacement of the blow-off device 120 detected by a second detection device 155.
  • control device 170 may be designed to cause the displacement of the electromagnetic stabilization device 140 in accordance with a detected deviation of the actual position of the metal strip from a predetermined desired center position in the slot 142 of the electromagnetic stabilization device.
  • a third detection means 145 is provided for detecting the said deviation of the actual position of the metal strip from the predetermined desired center position in the slot 142 of the electromagnetic stabilization device 140.
  • the first, second and third detection means 154, 155, 145 are designed to detect preferably all conceivable deviations of an actual position of the metal strip from the desired desired center position. These include, in particular, a (parallel) displacement of the metal strip in the x or y direction or a rotation, as explained above with reference to FIGS. 2 and 3.
  • the first and second displacement devices 130, 160 are - with suitable control by the control device 180 or the control device 170 - formed, the blower 120 and the electromagnetic stabilizer 140 in a plane transverse to the transport direction R to move the metal strip in any way, in particular (parallel) to shift o- to twist to the passage of the metal strip in the desired center position realize.
  • the representation of the first and second displacement means 160, 130 as a carriage or piston-cylinder unit is insofar only exemplary, but not limiting.
  • the first and third detection means 154, 145 and optionally also the second detection means 155 may be realized in the form of a single sensor device 150, for example a confocal or laser-based sensor.
  • the sensor device also referred to as "laser” for short, forms a structural unit for the abovementioned detection devices
  • the sensor device 150 can also generally be referred to as a distance detection device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Coating With Molten Metal (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide, telle que du zinc. Les dispositifs connus de ce type présentent une cuve de revêtement (110) contenant la matière de revêtement liquide (300). Pour le processus de revêtement, la bande métallique (200) est dirigée à travers la cuve de revêtement. À la sortie de la cuve de revêtement, la matière de revêtement encore liquide adhère à la bande métallique (200); l'excès de matière de revêtement (300) est ensuite éliminé par soufflage de la surface de la bande métallique (200) par un dispositif d'élimination par soufflage. En aval du dispositif d'élimination par soufflage, la bande métallique passe par un dispositif de stabilisation électromagnétique qui s'appuie traditionnellement sur le dispositif d'élimination par soufflage (120). En raison d'effets d'interférence, il peut être nécessaire que la bande métallique ne soit plus guidée dans sa position centrale théorique prédéterminée à l'intérieur d'une fente (122) du dispositif d'élimination par soufflage (120); un déplacement ou un nouvel alignement du dispositif d'élimination par soufflage (120) peut alors être nécessaire pour que la bande métallique soit guidée de nouveau dans la position centrale théorique. Pour empêcher dans ce cas un déplacement indésirable du dispositif de stabilisation électromagnétique, il est prévu selon l'invention un premier dispositif de déplacement destiné à déplacer le dispositif de stabilisation électromagnétique (140) par rapport au dispositif d'élimination par soufflage (120) dans le plan perpendiculairement au sens de transport de la bande métallique.
EP15775410.2A 2014-11-21 2015-10-02 Procédé et dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide Active EP3221486B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI201530296T SI3221486T1 (en) 2014-11-21 2015-10-02 A process and apparatus for coating a metal strip with, initially, a liquid coating material
PL15775410T PL3221486T3 (pl) 2014-11-21 2015-10-02 Sposób i urządzenie do powlekania taśmy metalowej początkowo jeszcze ciekłym materiałem powlekającym
HRP20181054TT HRP20181054T1 (hr) 2014-11-21 2018-07-05 Postupak i uređaj za oblaganje metalne trake s materijalom za oblaganje koji je na početku još tekućina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014223818.8A DE102014223818B3 (de) 2014-11-21 2014-11-21 Verfahren und Vorrichtung zum Beschichten eines Metallbandes mit einem zunächst noch flüssigen Beschichtungsmaterial
PCT/EP2015/071859 WO2016078803A1 (fr) 2014-11-21 2015-10-02 Procédé et dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide

Publications (2)

Publication Number Publication Date
EP3221486A1 true EP3221486A1 (fr) 2017-09-27
EP3221486B1 EP3221486B1 (fr) 2018-04-11

Family

ID=54256729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15775410.2A Active EP3221486B1 (fr) 2014-11-21 2015-10-02 Procédé et dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide

Country Status (25)

Country Link
US (3) US20170283929A1 (fr)
EP (1) EP3221486B1 (fr)
JP (1) JP6530499B2 (fr)
KR (1) KR101884715B1 (fr)
CN (1) CN107208240B (fr)
AU (1) AU2015348884B2 (fr)
BR (1) BR112017008048B1 (fr)
CA (1) CA2968156C (fr)
CY (1) CY1120330T1 (fr)
DE (1) DE102014223818B3 (fr)
DK (1) DK3221486T3 (fr)
ES (1) ES2669726T3 (fr)
HR (1) HRP20181054T1 (fr)
HU (1) HUE037947T2 (fr)
LT (1) LT3221486T (fr)
MX (1) MX2017006591A (fr)
MY (1) MY191015A (fr)
NO (1) NO2786187T3 (fr)
PL (1) PL3221486T3 (fr)
PT (1) PT3221486T (fr)
RU (1) RU2665660C1 (fr)
SI (1) SI3221486T1 (fr)
TR (1) TR201808955T4 (fr)
WO (1) WO2016078803A1 (fr)
ZA (1) ZA201702216B (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222230A1 (de) * 2016-08-26 2018-03-01 Sms Group Gmbh Verfahren und Beschichtungseinrichtung zum Beschichten eines Metallbandes
CN110352262B (zh) * 2017-04-14 2021-04-20 普锐特冶金技术日本有限公司 镀敷附着量控制机构以及镀敷附着量控制方法
DE102017109559B3 (de) 2017-05-04 2018-07-26 Fontaine Engineering Und Maschinen Gmbh Vorrichtung zum Behandeln eines Metallbandes
IT201900023484A1 (it) * 2019-12-10 2021-06-10 Danieli Off Mecc Apparato di stabilizzazione

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135006A (en) * 1974-07-29 1979-01-16 United States Steel Corporation Automatic coating weight controls for automatic coating processes
JPS62194756U (fr) * 1986-05-31 1987-12-11
JPH02277755A (ja) * 1989-01-31 1990-11-14 Kawasaki Steel Corp 連続溶融金属めっきの通板位置制御方法とストリップ通過位置制御装置
JP3442901B2 (ja) * 1995-05-01 2003-09-02 三菱重工業株式会社 溶融金属めっきラインの付着量制御装置
TW476679B (en) * 1999-05-26 2002-02-21 Shinko Electric Co Ltd Device for suppressing the vibration of a steel plate
JP3530514B2 (ja) 2001-08-02 2004-05-24 三菱重工業株式会社 鋼板形状矯正装置及び方法
US20040050323A1 (en) * 2001-08-24 2004-03-18 Hong-Kook Chae Apparatus for controlling coating weight on strip in continuous galvanizing process
ZA200205875B (en) * 2001-09-24 2003-03-31 Rohm & Haas Method for providing improved polymeric composition.
SE527507C2 (sv) 2004-07-13 2006-03-28 Abb Ab En anordning och ett förfarande för stabilisering av ett metalliskt föremål samt en användning av anordningen
RU2296179C2 (ru) * 2005-02-07 2007-03-27 Общество С Ограниченной Ответственностью "Исследовательско-Технологический Центр "Аусферр" Способ стабилизации положения вертикально движущейся стальной полосы и устройство для его осуществления
JP5123165B2 (ja) * 2005-03-24 2013-01-16 アーベーベー・リサーチ・リミテッド 鋼板を安定させるためのデバイス及び方法
JP5355568B2 (ja) * 2007-08-22 2013-11-27 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト 溶融漬浸被覆装備のエアナイフノズル間に案内された被覆を備えたストリップを安定化させる方法と溶融漬浸被覆装備
CN101376961A (zh) * 2007-08-31 2009-03-04 宝山钢铁股份有限公司 镀层合金化均匀性的控制方法
SE0702163L (sv) * 2007-09-25 2008-12-23 Abb Research Ltd En anordning och ett förfarande för stabilisering och visuell övervakning av ett långsträckt metalliskt band
DE102009051932A1 (de) * 2009-11-04 2011-05-05 Sms Siemag Ag Vorrichtung zum Beschichten eines metallischen Bandes und Verfahren hierfür
JP5221732B2 (ja) * 2010-10-26 2013-06-26 日新製鋼株式会社 ガスワイピング装置
JP5552415B2 (ja) * 2010-11-15 2014-07-16 三菱日立製鉄機械株式会社 溶融金属めっき設備
WO2012172648A1 (fr) * 2011-06-14 2012-12-20 三菱日立製鉄機械株式会社 Équipement de placage par immersion à chaud en continu

Also Published As

Publication number Publication date
RU2665660C1 (ru) 2018-09-03
MX2017006591A (es) 2017-09-01
PL3221486T3 (pl) 2018-08-31
AU2015348884B2 (en) 2018-11-29
TR201808955T4 (tr) 2018-07-23
MY191015A (en) 2022-05-28
US10907242B2 (en) 2021-02-02
PT3221486T (pt) 2018-06-15
CY1120330T1 (el) 2019-07-10
CA2968156C (fr) 2019-02-19
WO2016078803A1 (fr) 2016-05-26
JP6530499B2 (ja) 2019-06-12
AU2015348884A1 (en) 2017-06-01
KR20170052677A (ko) 2017-05-12
SI3221486T1 (en) 2018-08-31
US20230399731A1 (en) 2023-12-14
ZA201702216B (en) 2018-05-30
KR101884715B1 (ko) 2018-08-03
CN107208240A (zh) 2017-09-26
CN107208240B (zh) 2019-07-23
EP3221486B1 (fr) 2018-04-11
CA2968156A1 (fr) 2016-05-26
HUE037947T2 (hu) 2018-09-28
NO2786187T3 (fr) 2018-07-28
DK3221486T3 (en) 2018-07-23
ES2669726T3 (es) 2018-05-29
JP2017535678A (ja) 2017-11-30
BR112017008048A2 (pt) 2017-12-19
LT3221486T (lt) 2018-06-25
BR112017008048B1 (pt) 2021-08-03
US20180363116A1 (en) 2018-12-20
HRP20181054T1 (hr) 2018-08-24
US20170283929A1 (en) 2017-10-05
DE102014223818B3 (de) 2016-04-14

Similar Documents

Publication Publication Date Title
EP3221486B1 (fr) Procédé et dispositif pour revêtir une bande métallique d'une matière de revêtement initialement encore liquide
EP3504352B1 (fr) Procédé et appareil de revêtement d'une bande metallique
EP3212556B1 (fr) Procédé d'installation de rails de guidage
EP3210681B1 (fr) Dispositif et procédé de laminage de matériau en bande à épaisseur variable
EP3221487B1 (fr) Procédé et dispositif pour revêtir une bande métallique
EP3234204B1 (fr) Dispositif et procédé de traitement en continu d'une bande métallique
EP3344792B1 (fr) Dispositif de traitement d'une bande bande métallique
EP4210877B1 (fr) Procédé et dispositif pour le revêtement électrostatique de bandes de métal
WO2018137932A1 (fr) Mécanisme d'application à nappe et procédé d'application d'une substance à appliquer
DE19638238C1 (de) Vorrichtung zur Regelung der Zugkraft eines Spulenwickeldrahtes
EP2983841B1 (fr) Dispositif destiné à guider un produit métallique allongé entre un appareil d'évacuation de produit et un consommateur
DE102015001714A1 (de) Vorrichtung zur Herstellung von Produkten der Tabak verarbeitenden Industrie
WO2018202389A1 (fr) Dispositif pour le traitement d'une bande métallique
DE102016222224A1 (de) Verfahren zum Betreiben einer Beschichtungseinrichtung zum Beschichten eines Metallbandes sowie Beschichtungseinrichtung
DE19751098C2 (de) Verfahren und Vorrichtung zum Verstellen eines langgestreckten, sich in Breitenrichtung einer laufenden Materialbahn erstreckenden Bauteils
DE102008003713A1 (de) Walzvorrichtung
DE202012001302U1 (de) Maschine zur Herstellung und/oder Behandlung einer Faserbahn
EP2992975A1 (fr) Système de cylindres pour un laminoir
DE102013212952A1 (de) Vorrichtung und Verfahren zum Stützen eines Stranges beim Stranggießen
AT15866U1 (de) Anordnung zum Messen der Position der Spitzenleiste im Stoffauflaufkasten einer Faserbahnmaschine
DE102006048511A1 (de) Strangführungsvorrichtung und Verfahren für deren Betrieb
EP3199247A1 (fr) Verseur a fentes et installation de revetement
DE102013113563A1 (de) Vorrichtung zur Bearbeitung einer Faserbahn
DE102015004543A1 (de) Verfahren zum Betreiben eines Roboters und Roboter
DE102014202328A1 (de) Blattbildungssystem einer Maschine zur Herstellung einer Faserstoffbahn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20171109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988113

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015003869

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2669726

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180529

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3221486

Country of ref document: PT

Date of ref document: 20180615

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20180607

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20181054

Country of ref document: HR

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E015510

Country of ref document: EE

Effective date: 20180531

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180716

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180411

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20181054

Country of ref document: HR

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E037947

Country of ref document: HU

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20180924

Year of fee payment: 4

Ref country code: LT

Payment date: 20180924

Year of fee payment: 4

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20180401511

Country of ref document: GR

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015003869

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181019

Year of fee payment: 12

Ref country code: BG

Payment date: 20181026

Year of fee payment: 4

Ref country code: CH

Payment date: 20181019

Year of fee payment: 4

26N No opposition filed

Effective date: 20190114

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20181054

Country of ref document: HR

Effective date: 20181002

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20181031

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191002

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191003

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20201030

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230929

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230925

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230925

Year of fee payment: 9

Ref country code: PT

Payment date: 20230921

Year of fee payment: 9

Ref country code: PL

Payment date: 20230926

Year of fee payment: 9

Ref country code: NL

Payment date: 20231019

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231019

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231019

Year of fee payment: 9

Ref country code: IT

Payment date: 20231026

Year of fee payment: 9

Ref country code: HU

Payment date: 20231024

Year of fee payment: 9

Ref country code: FR

Payment date: 20231026

Year of fee payment: 9

Ref country code: FI

Payment date: 20231020

Year of fee payment: 9

Ref country code: EE

Payment date: 20231018

Year of fee payment: 9

Ref country code: DE

Payment date: 20231020

Year of fee payment: 9

Ref country code: AT

Payment date: 20231020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231019

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230921

Year of fee payment: 9