EP3221486A1 - Verfahren und vorrichtung zum beschichten eines metallbandes mit einem zunächst noch flüssigen beschichtungsmaterial - Google Patents
Verfahren und vorrichtung zum beschichten eines metallbandes mit einem zunächst noch flüssigen beschichtungsmaterialInfo
- Publication number
- EP3221486A1 EP3221486A1 EP15775410.2A EP15775410A EP3221486A1 EP 3221486 A1 EP3221486 A1 EP 3221486A1 EP 15775410 A EP15775410 A EP 15775410A EP 3221486 A1 EP3221486 A1 EP 3221486A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal strip
- displacement
- blower
- electromagnetic
- slot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 title claims abstract description 123
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 123
- 239000011248 coating agent Substances 0.000 title claims abstract description 55
- 238000000576 coating method Methods 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000007788 liquid Substances 0.000 title claims abstract description 17
- 238000006073 displacement reaction Methods 0.000 claims abstract description 59
- 230000006641 stabilisation Effects 0.000 claims abstract description 50
- 238000007664 blowing Methods 0.000 claims abstract description 10
- 238000011105 stabilization Methods 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 22
- 239000003381 stabilizer Substances 0.000 claims description 13
- 230000000087 stabilizing effect Effects 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 239000011701 zinc Substances 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical class [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
- C23C2/00344—Means for moving substrates, e.g. immersed rollers or immersed bearings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0035—Means for continuously moving substrate through, into or out of the bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/24—Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/51—Computer-controlled implementation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
- C23C2/524—Position of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
- C23C2/524—Position of the substrate
- C23C2/5245—Position of the substrate for reducing vibrations of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
- C23C2/526—Controlling or regulating the coating processes with means for measuring or sensing for visually inspecting the surface quality of the substrate
Definitions
- the invention relates to a method and apparatus for coating a metal strip with an initially liquid coating material, for. As zinc.
- the method and the device are used in particular for hot-dip galvanizing the metal strip.
- Such devices for coating a metal strip are basically known in the art, such. B. from DE 10 2009 051 932 A1. Specifically, this document discloses a coating container which is filled with liquid coating material. For coating, the metal strip is passed through the container with the coating material. After leaving the coating container, the metal strip passes through a blow-off device arranged above the coating container for blowing off excess parts of the still liquid coating material from the surface of the metal strip. Above the blow-off device, an electromagnetic stabilization device supported by the blow-off device is arranged to stabilize the metal strip after leaving the coating container and the blow-off device.
- the electromagnetic stabilizing device causes the band to be held centrally in a center plane of the entire apparatus and to prevent or at least reduce vibrations of the metal band during passage through the coating container and the blower.
- Both the blow-off device and the electromagnetic stabilization device each have a slot through which the metal strip is guided.
- the metal strip runs in a predetermined desired center position through the slot of the blower. Only then is it ensured that the effect of the blow-off nozzles on the top and bottom of the metal belt is the same and that a desired uniform thickness distribution of the coating material settles on the metal belt.
- the desired center position is defined in particular by a preferably uniform spacing of the broad sides and the narrow sides of the metal strip to the opposite sides of the slot of the blow-off device and in particular in that the metal strip is not inclined or rotated relative to the longitudinal orientation of the slot.
- the said disturbance of the leadership of the metal strip through the slot of the blower affects not necessarily on the leadership of the metal strip through the slot of the electromagnetic stabilization device. Therefore, the simultaneous displacement of the electromagnetic stabilization device described in DE 10 2008 039 244 A1 together with the blower is generally undesirable, because this leads to an asymmetrical and thus undesirable change in the force of the electromagnetic stabilizer on the metal strip.
- the present invention seeks to develop a known method and a known device for coating a metal strip to the effect that an undesirable displacement of the electromagnetic stabilization device in the event of a displacement of the blower is prevented.
- This object is procedurally achieved by the method claimed in claim 1.
- This method is characterized by the following method step: displacing the electromagnetic stabilizing device relative to the blower in a plane transverse to the transport direction of the metal strip so that the actual position of the metal strip at least approximately coincides with a predetermined desired center position in the slot of the electromagnetic stabilization device.
- the electromagnetic stabilizer is also referred to by the applicant as Dynamic Electro Magnetic Coating Optimizer DEMCO.
- this claimed method step a relative movement of the electromagnetic stabilization device relative to the blow-off device is made possible, and thus advantageously ensures that a displacement of the blow-off device does not necessarily lead to an undesired displacement of the electromagnetic stabilization device.
- the metal strip n the slot of the electromagnetic stabilizing device are held in a desired center position, even if the blower moves in a plane transverse to the transport direction of the metal strip.
- the electromagnetic stabilizing device is moved relative to the blow-off device in exactly the opposite direction as the blow-off device (compensation).
- the proper function of the electromagnetic stabilization device is ensured by this method step, even if the blower must be moved to restore the leadership of the metal strip in the desired center position through the slot of the blower.
- a deviation of the actual position of the metal strip is detected by a predetermined desired center position in the slot of the blower and controlled the actual position of the metal strip to the predetermined desired center position by suitable displacement of the blower in a plane transverse to the transport direction of the metal band.
- the displacement of the electromagnetic stabilization device according to the invention can take place either in accordance with the detected deviation of the actual position of the metal strip from the predetermined desired center position in the slot of the blower or in accordance with and in the opposite direction of the detected detected displacement of the blower. in the latter alternative, the detection of the displacement of the blower relative to a pass line reference position takes place.
- the pass line reference position is defined by the constructive center of the plant, as defined in particular by the fixed position of a first deflection roller for the metal strip within the coating container and the fixed position of a second deflection roller above the stabilization device.
- the deviation of the actual position of the metal strip is detected by the predetermined target center position in the slot of the electromagnetic stabilizer and the inventive displacement of the electromagnetic stabilizing device in accordance with the detected deviation of the actual position of the metal strip from the predetermined desired center position in the Slot of the electromagnetic stabilizer.
- the detected deviation of the actual position of the metal strip from its desired center position in the slot of the electromagnetic stabilizing device or the blow-off device may either be a translational displacement parallel to a longitudinal direction defined by the desired center position or a rotation with respect to the predetermined target -Mittenlage act.
- These two types of deviation of the actual position from the desired center position of the metal strip or a corresponding displacement or rotation of the electromagnetic stabilization device is also referred to by the applicant as a skew function.
- the detected deviation of the actual position of the metal strip is a translational displacement in the width direction x (opposite) of the predetermined nominal center position of the metal strip in the slot of the electromagnetic stabilization device or blow-off device.
- a deviation of the actual position from the desired center position of the metal strip or a corresponding displacement of the electromagnetic stabilization device is also referred to by the applicant as a scan function.
- the device has a human machine interface (HMI) for an operator of the device for visualizing, for example, the detected deviation of the actual position of the metal strip from the desired center position in the slot of the blower or in the slot of the electromagnetic stabilization device or for visualizing the detected deviation of the blower from the pass-line reference position or for visualizing the time variation of said deviations.
- HMI human machine interface
- Figure 1 shows the device according to the invention.
- FIGS. 2 and 3 show top views of the slots of the blow-off device according to the invention or the electromagnetic stabilization device according to the invention, each with marking of the desired center position and different undesired actual positions of the metal strip.
- FIG. 1 shows the device 100 according to the invention for coating a metal strip 200 with a liquid coating material 300, for example, As zinc.
- a liquid coating material 300 for example, As zinc.
- the first uncoated metal strip 200 is passed in the transport direction R in a coating container 1 10, which is filled with the liquid coating material.
- the metal strip 200 is deflected by means of a deflection roller, so that it leaves the coating container upwards. After passing through the coating container, the still liquid coating material adheres to the metal strip 200.
- a blower 120 is arranged, which spans a slot 122 through which the metal strip 200 is guided. With the help of the blower excess coating material is blown off the surface of the metal strip 200.
- the metal strip 200 passes through the slot 122 of the blower 120 in a predetermined desired center position 128, as in the form of the solid line in X in FIG Direction is symbolized.
- This desired central position is characterized in particular by uniform distances or distance distributions to the inner edges of the slot 122 of the blower 120.
- possible unwanted actual positions of the metal strip are also shown as dashed lines in FIG.
- undesired actual layers for the metal strip for example, in that it is rotated relative to the desired center position or moved parallel in the Y direction.
- FIG. 3 shows a third possible undesired actual position in which the metal strip 200 is displaced parallel to the desired central position in the X direction, ie in the width direction.
- an electromagnetic stabilization device 140 can be seen, which in turn has a slot 142, through which the metal strip 200 is likewise guided.
- the metal strip 200 preferably passes through the slot 142 in a predetermined desired center position 128, as shown in FIGS. 2 and 3, so that the forces provided by the electromagnetic stabilization device 140 can act in a uniform manner on the metal strip 200 in a uniform manner.
- the slot 142 and the target center position also sought there the same applies as previously described with reference to FIGS. 2 and 3 for the slot 122 of the blower 120.
- the electromagnetic stabilizer 140 is mechanically supported on the blower 120.
- this support is not rigid, but rather via a first displacement device 160, which is provided between the blow-off device 120 and the electromagnetic stabilization device 140.
- the first displacement device 160 allows a displacement of the electromagnetic stabilization device 140 relative to the blower in a plane transverse to the transport direction R of the metal strip.
- the first displacement device 160 is controlled by means of a control device 170.
- a first detection device 154 is further arranged for detecting a deviation of the actual position of the metal strip 200 from a predetermined desired center position in the slot 122 of the blower 120.
- the first detection device 154 only for detection the actual position of the metal strip may be formed.
- a control device 180 is provided for regulating the actual position of the metal strip 200 to a predetermined desired center position in the slot 122 of the blower, as explained above with reference to Figures 2 and 3, by displacement of the blower 120 by means a second displacement device 130. The regulation takes place in response to the detected deviation.
- the determination of the deviation of the actual position from the desired center position does not take place in the first detection device 154, it can also take place within the control device 180, for example.
- the displacement takes place in a plane transverse to the transport direction R of the metal strip in accordance with the detected deviation of the actual position of the metal strip from the predetermined desired center position in the slot 122 of the blower.
- the blower 120 is displaced by means of the second displacement device 30 such that the metal strip returns the slot 122 of the blower back to the predetermined target position.
- Center layer 128 passes through.
- the first detection device 154 is designed for this purpose so that it can preferably detect all three actual positions of the metal strip 200 deviating from the desired center layer 128 described above with reference to FIGS. 2 and 3.
- the said displacement of the blow-off device 120 should not affect the electromagnetic stabilization device 140, which is supported on the blow-off device 120.
- the control device 170 is designed to control the first displacement device 160 in such a way that the electromagnetic stabilization device 140 in the case of a displacement of the blow-off device 120 is not moved with respect to a reference line reference position but can remain in its original location.
- the control device 170 thus acts on the first displacement device 160 in such a way that, in the event of a displacement of the blow-off device 120, the electrical stabilization device 140 preferably makes the exactly opposite movement as the blow-off device 120, that is, as a result preferably remains in its original location.
- the control device 170 can evaluate various situations.
- control device 170 may be designed to carry out the displacement of the electromagnetic stabilization device 140 in accordance with the deviation of the actual position of the metal strip from the predetermined desired center position of the metal strip in the slot 122 of the blower device 120, as detected by the first detection device 154.
- control device 170 may be configured to perform the displacement of the electromagnetic stabilization device in accordance with and in the opposite direction to the displacement of the blow-off device 120 detected by a second detection device 155.
- control device 170 may be designed to cause the displacement of the electromagnetic stabilization device 140 in accordance with a detected deviation of the actual position of the metal strip from a predetermined desired center position in the slot 142 of the electromagnetic stabilization device.
- a third detection means 145 is provided for detecting the said deviation of the actual position of the metal strip from the predetermined desired center position in the slot 142 of the electromagnetic stabilization device 140.
- the first, second and third detection means 154, 155, 145 are designed to detect preferably all conceivable deviations of an actual position of the metal strip from the desired desired center position. These include, in particular, a (parallel) displacement of the metal strip in the x or y direction or a rotation, as explained above with reference to FIGS. 2 and 3.
- the first and second displacement devices 130, 160 are - with suitable control by the control device 180 or the control device 170 - formed, the blower 120 and the electromagnetic stabilizer 140 in a plane transverse to the transport direction R to move the metal strip in any way, in particular (parallel) to shift o- to twist to the passage of the metal strip in the desired center position realize.
- the representation of the first and second displacement means 160, 130 as a carriage or piston-cylinder unit is insofar only exemplary, but not limiting.
- the first and third detection means 154, 145 and optionally also the second detection means 155 may be realized in the form of a single sensor device 150, for example a confocal or laser-based sensor.
- the sensor device also referred to as "laser” for short, forms a structural unit for the abovementioned detection devices
- the sensor device 150 can also generally be referred to as a distance detection device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Coating With Molten Metal (AREA)
- Coating Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15775410T PL3221486T3 (pl) | 2014-11-21 | 2015-10-02 | Sposób i urządzenie do powlekania taśmy metalowej początkowo jeszcze ciekłym materiałem powlekającym |
SI201530296T SI3221486T1 (en) | 2014-11-21 | 2015-10-02 | A process and apparatus for coating a metal strip with, initially, a liquid coating material |
HRP20181054TT HRP20181054T1 (hr) | 2014-11-21 | 2018-07-05 | Postupak i uređaj za oblaganje metalne trake s materijalom za oblaganje koji je na početku još tekućina |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014223818.8A DE102014223818B3 (de) | 2014-11-21 | 2014-11-21 | Verfahren und Vorrichtung zum Beschichten eines Metallbandes mit einem zunächst noch flüssigen Beschichtungsmaterial |
PCT/EP2015/071859 WO2016078803A1 (de) | 2014-11-21 | 2015-10-02 | Verfahren und vorrichtung zum beschichten eines metallbandes mit einem zunächst noch flüssigen beschichtungsmaterial |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3221486A1 true EP3221486A1 (de) | 2017-09-27 |
EP3221486B1 EP3221486B1 (de) | 2018-04-11 |
Family
ID=54256729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15775410.2A Active EP3221486B1 (de) | 2014-11-21 | 2015-10-02 | Verfahren und vorrichtung zum beschichten eines metallbandes mit einem zunächst noch flüssigen beschichtungsmaterial |
Country Status (25)
Country | Link |
---|---|
US (3) | US12018379B2 (de) |
EP (1) | EP3221486B1 (de) |
JP (1) | JP6530499B2 (de) |
KR (1) | KR101884715B1 (de) |
CN (1) | CN107208240B (de) |
AU (1) | AU2015348884B2 (de) |
BR (1) | BR112017008048B1 (de) |
CA (1) | CA2968156C (de) |
CY (1) | CY1120330T1 (de) |
DE (1) | DE102014223818B3 (de) |
DK (1) | DK3221486T3 (de) |
ES (1) | ES2669726T3 (de) |
HR (1) | HRP20181054T1 (de) |
HU (1) | HUE037947T2 (de) |
LT (1) | LT3221486T (de) |
MX (1) | MX2017006591A (de) |
MY (1) | MY191015A (de) |
NO (1) | NO2786187T3 (de) |
PL (1) | PL3221486T3 (de) |
PT (1) | PT3221486T (de) |
RU (1) | RU2665660C1 (de) |
SI (1) | SI3221486T1 (de) |
TR (1) | TR201808955T4 (de) |
WO (1) | WO2016078803A1 (de) |
ZA (1) | ZA201702216B (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016222230A1 (de) | 2016-08-26 | 2018-03-01 | Sms Group Gmbh | Verfahren und Beschichtungseinrichtung zum Beschichten eines Metallbandes |
WO2018189874A1 (ja) * | 2017-04-14 | 2018-10-18 | Primetals Technologies Japan株式会社 | めっき付着量制御機構及びめっき付着量制御方法 |
DE102017109559B3 (de) | 2017-05-04 | 2018-07-26 | Fontaine Engineering Und Maschinen Gmbh | Vorrichtung zum Behandeln eines Metallbandes |
IT201900023484A1 (it) * | 2019-12-10 | 2021-06-10 | Danieli Off Mecc | Apparato di stabilizzazione |
EP3910089A1 (de) * | 2020-05-12 | 2021-11-17 | Clecim Sas | Anlage zur beschichtung eines durchlaufenden metallprodukts |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135006A (en) * | 1974-07-29 | 1979-01-16 | United States Steel Corporation | Automatic coating weight controls for automatic coating processes |
JPS62194756U (de) * | 1986-05-31 | 1987-12-11 | ||
JPH02277755A (ja) * | 1989-01-31 | 1990-11-14 | Kawasaki Steel Corp | 連続溶融金属めっきの通板位置制御方法とストリップ通過位置制御装置 |
JP3442901B2 (ja) * | 1995-05-01 | 2003-09-02 | 三菱重工業株式会社 | 溶融金属めっきラインの付着量制御装置 |
TW476679B (en) * | 1999-05-26 | 2002-02-21 | Shinko Electric Co Ltd | Device for suppressing the vibration of a steel plate |
JP3530514B2 (ja) * | 2001-08-02 | 2004-05-24 | 三菱重工業株式会社 | 鋼板形状矯正装置及び方法 |
US20040050323A1 (en) * | 2001-08-24 | 2004-03-18 | Hong-Kook Chae | Apparatus for controlling coating weight on strip in continuous galvanizing process |
ZA200205875B (en) * | 2001-09-24 | 2003-03-31 | Rohm & Haas | Method for providing improved polymeric composition. |
SE527507C2 (sv) * | 2004-07-13 | 2006-03-28 | Abb Ab | En anordning och ett förfarande för stabilisering av ett metalliskt föremål samt en användning av anordningen |
RU2296179C2 (ru) * | 2005-02-07 | 2007-03-27 | Общество С Ограниченной Ответственностью "Исследовательско-Технологический Центр "Аусферр" | Способ стабилизации положения вертикально движущейся стальной полосы и устройство для его осуществления |
JP5123165B2 (ja) * | 2005-03-24 | 2013-01-16 | アーベーベー・リサーチ・リミテッド | 鋼板を安定させるためのデバイス及び方法 |
BRPI0815633B1 (pt) * | 2007-08-22 | 2018-10-23 | Sms Group Gmbh | processo e instalação de tratamento por imersão em fusão para estabilização de fita de uma fita provida de um revestimento, guiada entre bocais de raspagem da instalação de tratamento por imersão em fusão |
CN101376961A (zh) * | 2007-08-31 | 2009-03-04 | 宝山钢铁股份有限公司 | 镀层合金化均匀性的控制方法 |
SE0702163L (sv) * | 2007-09-25 | 2008-12-23 | Abb Research Ltd | En anordning och ett förfarande för stabilisering och visuell övervakning av ett långsträckt metalliskt band |
JP5543726B2 (ja) * | 2009-05-08 | 2014-07-09 | 三菱日立製鉄機械株式会社 | ガスワイピング装置 |
DE102009051932A1 (de) * | 2009-11-04 | 2011-05-05 | Sms Siemag Ag | Vorrichtung zum Beschichten eines metallischen Bandes und Verfahren hierfür |
JP5221732B2 (ja) * | 2010-10-26 | 2013-06-26 | 日新製鋼株式会社 | ガスワイピング装置 |
JP5552415B2 (ja) * | 2010-11-15 | 2014-07-16 | 三菱日立製鉄機械株式会社 | 溶融金属めっき設備 |
WO2012172648A1 (ja) * | 2011-06-14 | 2012-12-20 | 三菱日立製鉄機械株式会社 | 連続溶融金属めっき設備 |
DE102014225516B3 (de) * | 2014-11-21 | 2016-03-31 | Fontaine Engineering Und Maschinen Gmbh | Verfahren und Vorrichtung zum Beschichten eines Metallbandes |
DE102015216721B3 (de) * | 2015-09-01 | 2016-11-24 | Fontaine Engineering Und Maschinen Gmbh | Vorrichtung zum Behandeln eines Metallbandes |
-
2012
- 2012-11-26 NO NO12805939A patent/NO2786187T3/no unknown
-
2014
- 2014-11-21 DE DE102014223818.8A patent/DE102014223818B3/de active Active
-
2015
- 2015-10-02 RU RU2017120074A patent/RU2665660C1/ru active
- 2015-10-02 TR TR2018/08955T patent/TR201808955T4/tr unknown
- 2015-10-02 JP JP2017546011A patent/JP6530499B2/ja active Active
- 2015-10-02 KR KR1020177009759A patent/KR101884715B1/ko active IP Right Grant
- 2015-10-02 HU HUE15775410A patent/HUE037947T2/hu unknown
- 2015-10-02 SI SI201530296T patent/SI3221486T1/en unknown
- 2015-10-02 CA CA2968156A patent/CA2968156C/en active Active
- 2015-10-02 MX MX2017006591A patent/MX2017006591A/es unknown
- 2015-10-02 US US15/528,572 patent/US12018379B2/en active Active
- 2015-10-02 ES ES15775410.2T patent/ES2669726T3/es active Active
- 2015-10-02 CN CN201580063036.7A patent/CN107208240B/zh active Active
- 2015-10-02 PL PL15775410T patent/PL3221486T3/pl unknown
- 2015-10-02 EP EP15775410.2A patent/EP3221486B1/de active Active
- 2015-10-02 PT PT157754102T patent/PT3221486T/pt unknown
- 2015-10-02 LT LTEP15775410.2T patent/LT3221486T/lt unknown
- 2015-10-02 DK DK15775410.2T patent/DK3221486T3/en active
- 2015-10-02 MY MYPI2017701777A patent/MY191015A/en unknown
- 2015-10-02 AU AU2015348884A patent/AU2015348884B2/en active Active
- 2015-10-02 BR BR112017008048-6A patent/BR112017008048B1/pt active IP Right Grant
- 2015-10-02 WO PCT/EP2015/071859 patent/WO2016078803A1/de active Application Filing
-
2017
- 2017-03-29 ZA ZA2017/02216A patent/ZA201702216B/en unknown
-
2018
- 2018-06-12 CY CY20181100610T patent/CY1120330T1/el unknown
- 2018-07-05 HR HRP20181054TT patent/HRP20181054T1/hr unknown
- 2018-08-23 US US16/110,027 patent/US10907242B2/en active Active
-
2023
- 2023-06-26 US US18/341,255 patent/US20230399731A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3221486B1 (de) | Verfahren und vorrichtung zum beschichten eines metallbandes mit einem zunächst noch flüssigen beschichtungsmaterial | |
EP3221487B1 (de) | Verfahren und vorrichtung zum beschichten eines metallbandes | |
EP3504352B1 (de) | Verfahren und beschichtungseinrichtung zum beschichten eines metallbandes | |
EP3212556B1 (de) | Verfahren zur installation von führungsschienen | |
EP3210681B1 (de) | Vorrichtung und verfahren zum walzen von bandmaterial mit veränderlicher banddicke | |
EP3344792B1 (de) | Vorrichtung zum behandeln eines metallbandes | |
EP3234204B1 (de) | Vorrichtung und verfahren zur kontinuierlichen behandlung eines metallbandes | |
EP2496728A1 (de) | Vorrichtung zum beschichten eines metallischen bandes und verfahren hierfür | |
EP4210877B1 (de) | Verfahren und vorrichtung zur elektrostatischen beschichtung von metallbändern | |
DE102008032932A1 (de) | Verfahren zum Längsführen eines Walzgutes, insbesondere eines warmgewalzten Stahlbandes und Warmwalzwerk zur Durchführung des Verfahrens | |
WO2018137932A1 (de) | Vorhang-auftragswerk und verfahren zum auftragen eines auftragsmediums | |
DE19638238C1 (de) | Vorrichtung zur Regelung der Zugkraft eines Spulenwickeldrahtes | |
EP2983841B1 (de) | Vorrichtung zum führen von langgestrecktem metallischem gut zwischen einer gutablaufeinrichtung und einem verbraucher | |
EP3619333A1 (de) | Vorrichtung zum behandeln eines metallbandes | |
DE102016222224A1 (de) | Verfahren zum Betreiben einer Beschichtungseinrichtung zum Beschichten eines Metallbandes sowie Beschichtungseinrichtung | |
DE19751098C2 (de) | Verfahren und Vorrichtung zum Verstellen eines langgestreckten, sich in Breitenrichtung einer laufenden Materialbahn erstreckenden Bauteils | |
DE102008003713A1 (de) | Walzvorrichtung | |
DE202012001302U1 (de) | Maschine zur Herstellung und/oder Behandlung einer Faserbahn | |
EP2992975A1 (de) | Walzenanordnung für eine Walzvorrichtung | |
EP2492027B1 (de) | Vorrichtung zum Tiefziehen eines Werkstücks | |
DE102013212952A1 (de) | Vorrichtung und Verfahren zum Stützen eines Stranges beim Stranggießen | |
AT15866U1 (de) | Anordnung zum Messen der Position der Spitzenleiste im Stoffauflaufkasten einer Faserbahnmaschine | |
DE102006048511A1 (de) | Strangführungsvorrichtung und Verfahren für deren Betrieb | |
EP3199247A1 (de) | Schlitzgiesser sowie beschichtungsanlage | |
DE102014202328A1 (de) | Blattbildungssystem einer Maschine zur Herstellung einer Faserstoffbahn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170412 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20171109 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 988113 Country of ref document: AT Kind code of ref document: T Effective date: 20180415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015003869 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2669726 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180529 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH Ref country code: PT Ref legal event code: SC4A Ref document number: 3221486 Country of ref document: PT Date of ref document: 20180615 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20180607 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20181054 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E015510 Country of ref document: EE Effective date: 20180531 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20180716 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20181054 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E037947 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20180924 Year of fee payment: 4 Ref country code: LT Payment date: 20180924 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20180401511 Country of ref document: GR Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015003869 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181019 Year of fee payment: 12 Ref country code: BG Payment date: 20181026 Year of fee payment: 4 Ref country code: CH Payment date: 20181019 Year of fee payment: 4 |
|
26N | No opposition filed |
Effective date: 20190114 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20181054 Country of ref document: HR Effective date: 20181002 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MM4D Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191002 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 Ref country code: LV Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191003 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20201030 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230929 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20231019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20231020 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231227 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231019 Year of fee payment: 9 Ref country code: IT Payment date: 20231026 Year of fee payment: 9 Ref country code: HU Payment date: 20231024 Year of fee payment: 9 Ref country code: FR Payment date: 20231026 Year of fee payment: 9 Ref country code: FI Payment date: 20231020 Year of fee payment: 9 Ref country code: EE Payment date: 20231018 Year of fee payment: 9 Ref country code: DE Payment date: 20231020 Year of fee payment: 9 Ref country code: AT Payment date: 20231020 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MK Payment date: 20230921 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240919 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240923 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240920 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240924 Year of fee payment: 10 |