EP3135562B1 - Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon - Google Patents

Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon Download PDF

Info

Publication number
EP3135562B1
EP3135562B1 EP15782525.8A EP15782525A EP3135562B1 EP 3135562 B1 EP3135562 B1 EP 3135562B1 EP 15782525 A EP15782525 A EP 15782525A EP 3135562 B1 EP3135562 B1 EP 3135562B1
Authority
EP
European Patent Office
Prior art keywords
steering
torque
assist torque
steering assist
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15782525.8A
Other languages
English (en)
French (fr)
Other versions
EP3135562A4 (de
EP3135562A1 (de
Inventor
Masaya Endo
Hidetoshi Ikeda
Yoshihiko Kinpara
Hiroaki Kitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP3135562A1 publication Critical patent/EP3135562A1/de
Publication of EP3135562A4 publication Critical patent/EP3135562A4/de
Application granted granted Critical
Publication of EP3135562B1 publication Critical patent/EP3135562B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque

Definitions

  • the present invention relates to a steering control device and the like, which are configured to adjust a steering torque required for a driver by generating a steering assist torque with a motor.
  • a steering control device including: steering torque detection means for detecting a steering torque of steering; and target steering torque setting means for setting a target steering torque based on a steering situation, in which a steering assist torque of a motor is generated so that the steering torque detected by the steering torque detection means follows the target steering torque set by the target steering torque setting means (e.g., Patent Literature 1 and 2).
  • Patent Document 3 on which the preambles of claims 1 and 10 are based, discloses a base assist section generates a base assist command so that a steering reaction according to a road surface reaction returns to a steering wheel side.
  • a modifying section generates a torque modifying command for modifying the base assist command so that an unstable movement of a vehicle converges appropriately.
  • a sum of the each command becomes a final assist torque command.
  • the base assist section estimates a road surface force based on the self-generated base assist command and a steering torque actually detected.
  • a target steering torque is generated based on the estimated force, and the base assist command is generated based on a deviation of the target steering torque and the steering torque.
  • This kind of steering control device is configured to set an steering assist torque of a motor based on a deviation between a target steering torque set by target steering torque setting means and a steering torque detected by steering torque detection means.
  • this steering control device is designed by assuming only a case where a driver holds a steering wheel for steering. Accordingly, there is a problem in that, under a hands-off state in which the driver releases his or her hands from the steering wheel, the steering wheel does not return to a neutral position, or over returns to the neutral position.
  • the present invention has been made to solve the above-mentioned problem, and it is an object of the present invention to provide a steering control device and a steering assist torque control method, which are capable of causing a steering torque to follow a target steering torque, when a driver holds a steering wheel for steering, thereby achieving smooth steering, and of returning the steering to a neutral position at an appropriate speed, when the driver releases his or her hands from the steering wheel, thereby being able to achieve satisfactory steering feelings even in a steering state and in a hands-off state.
  • the steering control device includes: a motor configured to apply a steering assist torque to a steering shaft; a steering torque detection unit configured to detect a steering torque acting on the steering shaft; a target steering torque setting unit configured to set a target steering torque; a first steering assist torque calculation unit configured to calculate a first steering assist torque that is proportional to an integral value of a deviation between the target steering torque and the steering torque; a motor rotational angular velocity detection unit configured to detect a rotational angular velocity of the motor; a second steering assist torque calculation unit configured to calculate a second steering assist torque that is proportional to the rotational angular velocity of the motor and acting in a direction of suppressing a return speed of a steering wheel when the steering wheel returns to a neutral position; a third steering assist torque calculation unit configured to calculate a third steering assist torque that is proportional to a deviation between a value obtained by multiplying the target steering torque set by the target steering torque setting unit by a correction gain, and the
  • the steering torque it is possible to cause the steering torque to follow the target steering torque when the driver holds the steering wheel for steering, thereby achieving smooth steering, and to return the steering to the neutral position at an appropriate speed, when the driver releases his or her hands from the steering wheel, because the steering torque follows the target steering torque with an appropriate following deviation, thereby being able to achieve satisfactory steering feelings even in a steering state and in a hands-off state.
  • FIG. 1 is a configuration diagram for illustrating a steering control device according to an exemplary embodiment.
  • Left and right steered wheels 3 are steered in response to rotation of a steering shaft 2 coupled to a steering wheel 1.
  • a steering angle sensor 4 configured to detect a steering angle is arranged on the steering wheel 1.
  • a torque sensor 5 serving as a steering torque detection unit is arranged on the steering shaft 2, and is configured to detect a steering torque acting on the steering shaft 2.
  • a motor 6 is coupled to the steering shaft 2 via a speed reducer 7, and a steering assist torque generated by the motor 6 can be applied to the steering shaft 2.
  • a vehicle speed sensor 8 serving as a vehicle speed detection unit is configured to detect a vehicle speed of a vehicle. Further, a current sensor 9 is configured to detect current flowing through the motor 6.
  • a motor rotational angle sensor 10 is configured to detect a rotational angle of the motor 6.
  • a control unit 11 is configured to calculate a steering assist torque generated by the motor 6, and to control current necessary for the motor 6 to generate the steering assist torque.
  • the control unit 11 includes a microcomputer (parts other than a current driver 12 within the control unit 11 of FIG. 2 ) having memories (not shown) including a ROM and a RAM, and the current driver 12 configured to cause motor current to flow (refer to FIG. 2 ).
  • control unit 11 which is a main unit of the present invention
  • control unit 11 which is a main unit of the present invention
  • FIG. 2 for illustrating a configuration of the main unit
  • FIG. 3 for illustrating an operation of the main unit.
  • the operation illustrated in the flowchart is repeatedly executed at a control cycle, which is a set time period.
  • Step S1 the steering angle sensor 4, which is a steering state detector 21 configured to detect a state amount relating to a lateral motion of the vehicle, is used to detect a steering angle.
  • the vehicle speed sensor 8 detects a vehicle speed.
  • the torque sensor 5 detects a steering torque.
  • the motor rotational angle sensor 10 detects a motor rotational angle.
  • a motor rotational angular velocity detection unit 30 differentiates the motor rotational angle detected by the motor rotational angle sensor 10 with a differentiator 30a to calculate a motor rotational angular velocity.
  • Step S2 a target steering torque setting unit 22 calculates a first target steering torque based on the detected steering angle and vehicle speed.
  • Step S3 a subtractor 23 calculates a deviation between the target steering torque set by the target steering torque setting unit 22 and the steering torque detected by the torque sensor 5.
  • Step S4 a first steering assist torque calculation unit 24 integrates the deviation between the target steering torque and the steering torque with an integrator 24a, and then calculates a first steering assist torque by multiplying the integrated deviation by an integral control gain KTI with a multiplier 24b.
  • Step S5 a second steering assist torque calculation unit 25 multiplies the motor rotational angular velocity by a velocity control gain KTV with a multiplier 25a to calculate a second steering assist torque.
  • Step S6 an adder 26 serving as an addition unit adds the first steering assist torque and the second steering assist torque to set the obtained value as a motor steering assist torque for controlling the motor 6 (hereinafter also simply referred to as "steering assist torque").
  • Step S7 the current driver 12 causes current of the motor 6 to flow so that the motor 6 generates the motor steering assist torque, that is, controls and causes the current to flow through the motor 6 in accordance with the acquired motor steering assist torque.
  • the steering control device of the vehicle needs to consider both of a state in which a driver holds the steering wheel 1 for steering and a hands-off state in which the driver releases his or her hands from the steering wheel 1.
  • a road surface reaction torque caused between the steered wheels 3 and a road surface is inclined to return the steering wheel 1 to a neutral position, but the steering wheel 1 does not return to the neutral position when the road surface reaction torque is smaller than a friction inherent in a steering mechanism.
  • FIG. 4 is a graph for showing a relationship among a steering angle SA, a road surface reaction torque RCT, and a target steering torque TST when the driver operating the steering control device according to the first exemplary embodiment steers the steering wheel.
  • T, SA, RCT, TST, and SCR indicate the torque, the steering angle, the road surface reaction torque, the target steering torque, and the steering reaction torque, respectively.
  • the broken line indicates a relationship between the steering angle SA and the road surface reaction torque RCT when the vehicle is traveling at such a low (slow) speed and the driver steers the steering wheel 1.
  • a slope of the road surface reaction torque with respect to a steering angle change is small, and thus even when the driver steers the steering wheel 1, a steering reaction torque SCT is not transmitted.
  • the target steering torque is set as shown in FIG. 4 to generate a steering reaction torque with the steering assist torque, to thereby be able to provide a hand feeling to the driver when steering the steering wheel and to improve the feeling of reaction.
  • Patent Literature 1 which is configured to calculate a steering assist torque based on the sum of a steering assist torque proportional control component, which is obtained by multiplying, by a proportional control gain, a deviation between a target steering torque set by target steering torque setting means and a steering torque detected by steering torque detection means, a steering assist torque integral control component, which is obtained by integrating the deviation and multiplying the integrated deviation by an integral control gain, and a steering assist torque derivative control component, which is obtained by differentiating the deviation and multiplying the differentiated deviation by a derivative control gain, there is the following fear.
  • a steering assist torque proportional control component which is obtained by multiplying, by a proportional control gain, a deviation between a target steering torque set by target steering torque setting means and a steering torque detected by steering torque detection means
  • a steering assist torque integral control component which is obtained by integrating the deviation and multiplying the integrated deviation by an integral control gain
  • a steering assist torque derivative control component which is obtained by differentiating the deviation and multiplying the differentiated deviation by a derivative control
  • the steering torque of the driver follows the target steering torque due to the steering assist torque integral control component when the driver holds the steering wheel, to thereby be able to provide an appropriate feeling of reaction to the driver
  • the steering torque follows the target steering torque due to the steering assist torque integral control component also when the driver releases his or her hands, to thereby possibly cause the steering wheel to excessively return to the neutral position and produce an excessive return speed.
  • FIG. 5 is a graph for showing a relationship between the steering angle and the steering torque when the driver operating the steering control device according to the first exemplary embodiment releases his or her hands from the steering wheel.
  • "A” indicates a trajectory of a behavior according to the present application
  • "B” indicates a trajectory of Patent Literature 1
  • “C” indicates a trajectory of Patent Literature 2.
  • FIG. 13 is a graph for showing behaviors of the steering angle of the first exemplary embodiment and the related art.
  • the return torque caused by the steering assist torque is small, and thus there is a fear in that the steering wheel may not return to the neutral position, or the return speed may become too low.
  • the steering assist torque integral control component (first steering assist torque) is included in the calculation, and thus when the driver holds the steering wheel 1, the steering torque of the driver follows the target steering torque and the driver can obtain an appropriate feeling of reaction.
  • the motor velocity control component (second steering assist torque), which is obtained by multiplying the motor rotational angular velocity by a velocity control gain, allows the steering torque to be adjusted between zero and the target steering torque as indicated by "A" in FIG. 5 , with the result that the return speed of the steering wheel 1 can be suppressed as indicated by the thin solid line in FIG. 13 . That is, it is possible to cause the steering torque to maintain a moderate following error and follow the target steering torque.
  • the steering torque follows the target steering torque so as to achieve smooth steering
  • the steering wheel can be returned to the neutral position at an appropriate speed, to thereby be able to achieve satisfactory steering feelings at even in a steering state and in a hands-off state.
  • the target steering torque is not required to be differentiated, and thus it is possible to suppress the noise and achieve smooth and stable steering.
  • the first steering assist torque calculation unit 24 also includes the subtractor 23.
  • Step S26 the steering assist torque calculation unit 27 calculates a third steering assist torque by multiplying a deviation between the target steering torque and the steering torque by a proportional control gain KTP with a multiplier 27a.
  • Step S27 the adder 26 adds the first steering assist torque, the second steering assist torque, and the third steering assist torque, to set the obtained value as a motor steering assist torque.
  • the responsiveness of the steering assist torque proportional control component is higher than that of the steering assist torque integral control component (first steering assist torque), and thus it is possible to achieve higher following responsiveness and reduce an overshoot. As a result, it is possible to cause the steering torque to stably follow the target steering torque and achieve smoother steering when the driver holds the steering wheel 1 for steering.
  • FIG. 14 is a graph for showing a behavior of a steering angle when the driver releases his or her hands from the steering wheel according to the first and second exemplary embodiments.
  • the following responsiveness of causing the steering torque to follow the target steering torque in the second exemplary embodiment indicated by the thick solid line in FIG. 14 is higher than that in the first exemplary embodiment indicated by the thin solid line in FIG. 14 .
  • the third steering assist torque calculation unit 27 shares the subtractor 23 with the first steering assist torque calculation unit 24.
  • Step S36 a multiplier 28 multiplies the first target steering torque by a correction gain ⁇ to calculate a second target steering torque, ⁇ is a value equal to or more than 0 and less than 1, and thus the second target steering torque is a value having a magnitude less than that of the target steering torque.
  • Step S37 a subtractor 29 calculates a deviation between the second target steering torque and the steering torque detected by the torque sensor 5.
  • a multiplier 27a multiplies the deviation between the second target steering torque and the steering torque by the proportional control gain KTP to calculate a third steering assist torque.
  • the adder 26 adds the first steering assist torque, the second steering assist torque, and the third steering assist torque, to set the obtained value as a motor steering assist torque.
  • FIG. 15 is a graph for showing responsiveness of the steering torque in the second exemplary embodiment and the first embodiment of the present invention when the target steering torque is changed in a stepwise manner.
  • the overshoot can be reduced in the case of the third embodiment on a lower side compared to the case of the second exemplary embodiment on an upper side.
  • the steering torque follows the target steering torque in both the configurations of the second exemplary embodiment and the first embodiment of the present invention. As a result, when the driver holds the steering wheel for steering, the steering torque stably follows the target steering torque, to thereby be able to achieve smoother steering.
  • the steering torque control device when applied to a steering system including a mechanism in which a relationship between the steering angle of the steering wheel 1 and the steered angle of the steered wheels 3 can be arbitrary changed, there is a fear in that the road surface reaction torque, which is changed by the steering system changing the steered angle of the steered wheels, may be transmitted to the driver as a disturbance torque, but the configuration of this embodiment enables reduction of a steering torque variation due to the disturbance torque, to thereby be able to achieve smoother steering.
  • control unit 11 which is a main unit of the present invention, with reference to a block diagram of FIG. 10 for illustrating a configuration of the main unit.
  • the integral control gain KTI, the velocity control gain KTV, the proportional control gain KTP, and the correction gain ⁇ are set variable with respect to the vehicle speed.
  • the road surface reaction torque is small at a low vehicle speed, and thus the steering wheel is less likely to return to the neutral position, whereas the road surface reaction torque is large at a high vehicle speed, and thus the steering wheel returns to the neutral position at an excessively high return speed.
  • an absolute value of the integral control gain KTI is set smaller at a high vehicle speed than at a low vehicle speed.
  • an absolute value of the velocity control gain KTV is set larger at a high vehicle speed than at a low vehicle speed. Setting the absolute value of the gain smaller means setting an influence of the control component smaller.
  • All the gains do not need to be set variable with respect to the vehicle speed, and one or more of the gains may be set variable with respect to the vehicle speed.
  • the integral control gain KTI, the velocity control gain KTV, the proportional control gain KTP, and the correction gain ⁇ are set variable with respect to the motor rotational angular velocity.
  • the motor rotational angle detected by the motor rotational angle sensor 10 is differentiated to be used as the motor rotational angular velocity, but the motor rotational angular velocity may be calculated from the steering angular velocity obtained by differentiating the steering angle detected by the steering angle sensor 4.
  • a steering control device capable of: setting an appropriate control gain depending on the motor rotational angular velocity or the steering angular velocity; causing the steering torque to follow the target steering torque stably and with high responsiveness depending on the motor rotational angular velocity or the steering angular velocity, to thereby be able to achieve smoother steering; and making an adjustment so that the steering wheel returns to the neutral position at an appropriate speed when the driver releases his or her hands from the steering wheel, to thereby be able to achieve satisfactory steering feelings at even in a steering state and in a hands-off state.
  • the return speed can be adjusted as shown in FIG. 16 , and when the speed of returning to the neutral position is excessive, that is, when the motor rotational angular velocity is excessive, the absolute value of the integral control gain KTI is set smaller at a high motor rotational angular velocity than at a low motor rotational angular velocity. In other cases, the absolute value of the speed control gain KTV is set larger at a high motor rotational angular velocity than at a low motor rotational angular velocity. As a result, when the speed of returning to the neutral position is excessive, it is possible to suppress the return speed.
  • All the gains do not need to be set variable depending on the motor rotational angular velocity, and one or more of the gains may be set variable depending on the motor rotational angular velocity.
  • the integral control gain KTI, the velocity control gain KTV, the proportional control gain KTP, and the correction gain ⁇ are set variable with respect to the steering torque.
  • a steering control device capable of: setting an appropriate gain depending on the steering torque; causing the steering torque to follow the target steering torque stably and with high responsiveness depending on the steering torque, to thereby be able to achieve smoother steering; and returning the steering wheel to the neutral position at an appropriate speed when the driver releases his or her hands from the steering wheel, to thereby be able to achieve satisfactory steering feelings even in a steering state and in a hands-off state.
  • the return speed can be adjusted as shown in FIG. 16 , and when the steering torque is large, it can be determined that the driver is steering the steering wheel.
  • the absolute value of the integral control gain KTI is set larger at a high steering torque than at a low steering torque.
  • the absolute value of the speed control gain KTV is set larger at a low steering torque than at a high steering torque.
  • the correction gain ⁇ is set small to suppress the overshoot in the vicinity of the neutral position, that is, in a region where the steering torque is small to suppress the overshoot, whereas the correction gain ⁇ is set large at a region where the steering torque is large to improve the property of the steering torque to follow the target torque.
  • All the gains do not need to be set variable depending on the steering torque, and one or more of the gains may be set variable depending on the steering torque.
  • the driver is steering the steering wheel based on the magnitude of the steering torque
  • a configuration may be employed in which the steering torque, the steering angular velocity, the steering angle, and the like are used in a composite manner to determine the steering state of the driver and change each gain depending on the steering state.
  • Each embodiment is described to employ a configuration in which the target steering torque is set based on the steering angle and the vehicle speed, but is not limited to this configuration.
  • the torque sensor 5, a yaw rate sensor of the vehicle, a lateral acceleration sensor, and the road surface reaction torque may be used other than the steering angle sensor 4 as the steering state detector 21 configured to detect the state amount relating to the lateral motion of the vehicle.
  • a fourth steering assist torque calculation unit 32 illustrated in FIG. 17 is added in the fifth embodiment.
  • a steering angular velocity detection unit 31 differentiates the steering angle detected by the steering angle sensor 4 with a differentiator 31a to calculate the steering angular velocity. Further, the steering angular velocity is low-pass filtered with a low-pass filter LPF.
  • the cut-off frequency of the low-pass filter is set to a value that enables a set frequency component including the steering frequency of the driver to be extracted.
  • the limit steering frequency of the driver is 5 Hz or less
  • the resonance frequency of the steering shaft is about ten and several Hz, and thus the cut-off frequency is set to a value larger than 0 and equal to or less than 10 Hz.
  • the fourth steering assist torque calculation unit 32 multiplies the low-pass filtered steering angular velocity by a speed control gain KTV2 to calculate a fourth steering assist torque.
  • the sign of the speed control gain KTV2 is opposite to that of the speed control gain KTV.
  • the adder 26 adds the first steering assist torque, the second steering assist torque, the third steering assist torque, and the fourth steering assist torque to set the obtained value as the motor steering assist torque.
  • the steering angular velocity contains the steering frequency component of the driver, and through low-pass filtering processing for reducing the resonance frequency component of the steering shaft, the influence of the noise caused by differentiation can be eliminated and the steering shaft is prevented from being excited at the resonance frequency. Therefore, it is possible to achieve smooth steering without degrading the stability of the control system.
  • the steering state detection unit 21 and the differentiator 31a form the steering angular velocity detection unit 31.
  • a fifth steering assist torque calculation unit 33 illustrated in FIG. 19 uses the steering torque differential value instead of that of the steering angular velocity.
  • a steering torque differential value detection unit 34 differentiates the steering torque detected by the torque sensor 5 with a differentiator 34a to calculate a steering torque differential value.
  • the steering torque differential value is low-pass filtered with the low-pass filter LPF.
  • the cut-off frequency of the low-pass filter is set to a value that enables a set frequency component including the steering frequency of the driver to be extracted.
  • the limit steering frequency of the driver is 5 Hz or less
  • the resonance frequency of the steering shaft is about ten and several Hz, and thus the cut-off frequency is set to a value larger than 0 and equal to or less than 10 Hz.
  • Step S44 the fifth steering assist torque calculation unit 33 multiplies the low-pass filtered steering torque differential value by a torque differential value gain KTD to calculate a fifth steering assist torque.
  • Step S45 the adder 26 adds the first steering assist torque, the second steering assist torque, the third steering assist torque, and the fifth steering assist torque to set the obtained value as the motor steering assist torque.
  • the steering torque differential value contains the steering frequency component of the driver, and through low-pass filtering processing for reducing the resonance frequency component of the steering shaft, the influence of the noise caused by differentiation can be eliminated and the steering shaft is prevented from being excited at the resonance frequency. Therefore, it is possible to achieve smooth steering without degrading the stability of the control system.
  • Expression (1) indicates that the steering angular velocity is estimated from the motor rotational angular velocity d ⁇ m and the steering torque differential value dTs. That is, the estimated value of the steering angular velocity calculated using Expression (1) is used instead of the steering angular velocity of the fifth embodiment, to be able to obtain the effect similar to that of the fifth embodiment.
  • the first term on the right side of Expression (1) has an effect equal to that of the second steering assist torque, and thus it is possible to obtain the effect similar to that of the fifth embodiment by multiplying the steering torque differential value dTs by the torque differential gain value KTD to calculate the fifth steering assist torque.
  • the sum of the fifth steering assist torque component due to the first term on the right side of Expression (1) and the second steering assist torque is a steering assist torque proportional to a high-pass filter or a motor rotational angular velocity to which a first order lead filter is applied. That is, it is possible to obtain the effect similar to that of the fifth embodiment also when a high-pass filter or a motor rotational angular velocity to which a first order lead filter is applied is used as the motor rotational angular velocity to be used for calculation of the second steering assist torque.
  • the torque sensor 5 and the differentiator 34a form the steering torque differential value detection unit 34.
  • the steering control device and the steering assist torque control method according to the present invention can be applied to steering control devices in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Electric Motors In General (AREA)

Claims (10)

  1. Lenkungs-Steuervorrichtung, die Folgendes aufweist:
    - eine Lenkmoment-Detektionseinheit (5), die dazu ausgebildet ist, ein auf eine Lenkwelle (2) wirkendes Lenkmoment zu detektieren;
    - eine Soll-Lenkmoment-Vorgabeeinheit (22), die dazu ausgebildet ist, ein Soll-Lenkmoment vorzugeben;
    - eine erste Lenkhilfsmoment-Berechnungseinheit (24), die dazu ausgebildet ist, ein erstes Lenkhilfsmoment zu berechnen, das proportional zu einem Integralwert der Abweichung zwischen dem Soll-Lenkmoment und dem Lenkmoment ist;
    - eine Motor-Drehwinkelgeschwindigkeits-Detektionseinheit (30), die dazu ausgebildet ist, eine Drehwinkelgeschwindigkeit des Motors (6) zu detektieren, der dazu ausgebildet ist, ein Lenkhilfsmoment auf die Lenkwelle (2) aufzubringen;
    - eine zweite Lenkhilfsmoment-Berechnungseinheit (25), die dazu ausgebildet ist, ein zweites Lenkhilfsmoment zu berechnen, das proportional zu der Drehwinkelgeschwindigkeit des Motors (6) ist und in einer Richtung wirkt, die die Rückstellgeschwindigkeit des Lenkrads (1) unterdrückt, wenn das Lenkrad (1) in die neutrale Position zurückkehrt;
    - eine Addiereinheit (26), die dazu ausgebildet ist, ein Motor-Lenkhilfsmoment des Motors basierend auf der Summe des ersten Lenkhilfsmoments und des zweiten Lenkhilfsmoments zu berechnen; und
    - eine Stromtreibereinrichtung (12), die dazu ausgebildet ist, den Strom des Motors (6) so zu steuern, dass das Lenkhilfsmoment des Motors (6) mit dem berechneten Motor-Lenkhilfsmoment übereinstimmt,
    dadurch gekennzeichnet,
    dass die Lenkungs-Steuervorrichtung ferner Folgendes aufweist:
    - ein dritte Lenkhilfsmoment-Berechnungseinheit (27), die dazu ausgebildet ist, ein drittes Lenkhilfsmoment zu berechnen, das proportional zu der Abweichung zwischen einem Wert, der durch Multiplizieren des von der Soll-Lenkmoment-Vorgabeeinheit (22) vorgegebenen Soll-Lenkmoments mit einer Korrekturverstärkung erhalten wird, und dem Lenkmoment ist,
    wobei die Addiereinheit (26) dazu ausgebildet ist, das Motor-Lenkhilfsmoment basierend auf der Summe aus dem ersten Lenkhilfsmoment, dem zweiten Lenkhilfsmoment und dem dritten Lenkhilfsmoment zu berechnen.
  2. Lenkungs-Steuervorrichtung nach Anspruch 1,
    die eine Fahrzeuggeschwindigkeits-Detektionseinheit (8) aufweist, die dazu ausgebildet ist, die Fahrzeuggeschwindigkeit eines Fahrzeugs zu detektieren,
    wobei das erste Lenkhilfsmoment durch Multiplizieren mit einer Integral-Steuerverstärkung erhalten wird, und wobei das zweite Lenkhilfsmoment durch Multiplizieren mit einer Geschwindigkeits-Steuerverstärkung erhalten wird, und
    wobei eine oder mehrere der Verstärkungen basierend auf der von der Fahrzeuggeschwindigkeits-Detektionseinheit (8) detektierten Fahrzeuggeschwindigkeit geändert werden.
  3. Lenkungs-Steuervorrichtung nach Anspruch 1,
    wobei das erste Lenkhilfsmoment durch Multiplizieren mit einer Integral-Steuerverstärkung erhalten wird, und wobei das zweite Lenkhilfsmoment durch Multiplizieren mit einer Geschwindigkeits-Steuerverstärkung erhalten wird, und
    wobei eine oder mehrere der Verstärkungen basierend auf der Drehwinkelgeschwindigkeit des Motors (6) geändert werden.
  4. Lenkungs-Steuervorrichtung nach Anspruch 1,
    wobei das erste Lenkhilfsmoment durch Multiplizieren mit einer Integral-Steuerverstärkung erhalten wird, und wobei das zweite Lenkhilfsmoment durch Multiplizieren mit einer Geschwindigkeits-Steuerverstärkung erhalten wird, und
    wobei eine oder mehrere der Verstärkungen basierend auf dem Lenkmoment geändert werden.
  5. Lenkungs-Steuervorrichtung nach Anspruch 1,
    die ferner eine Fahrzeuggeschwindigkeits-Detektionseinheit (8) aufweist, die dazu ausgebildet ist, die Fahrzeuggeschwindigkeit eines Fahrzeugs zu detektieren,
    wobei das erste Lenkhilfsmoment durch Multiplizieren mit einer Integral-Steuerverstärkung erhalten wird, das zweite Lenkhilfsmoment durch Multiplizieren mit einer Geschwindigkeits-Steuerverstärkung erhalten wird, und das dritte Lenkhilfsmoment durch Multiplizieren mit einer proportionalen Steuerverstärkung erhalten wird, und
    wobei eine oder mehrere der Verstärkungen basierend auf der von der Fahrzeuggeschwindigkeits-Detektionseinheit (8) detektierten Fahrzeuggeschwindigkeit geändert werden.
  6. Lenkungs-Steuervorrichtung nach Anspruch 1,
    wobei das erste Lenkhilfsmoment durch Multiplizieren mit einer Integral-Steuerverstärkung erhalten wird, das zweite Lenkhilfsmoment durch Multiplizieren mit einer Geschwindigkeits-Steuerverstärkung erhalten wird, und das dritte Lenkhilfsmoment durch Multiplizieren mit einer proportionalen Steuerverstärkung erhalten wird, und
    wobei eine oder mehrere der Verstärkungen basierend auf der Drehwinkelgeschwindigkeit des Motors (6) geändert werden.
  7. Lenkungs-Steuervorrichtung nach Anspruch 1,
    wobei das erste Lenkhilfsmoment durch Multiplizieren mit einer Integral-Steuerverstärkung erhalten wird, das zweite Lenkhilfsmoment durch Multiplizieren mit einer Geschwindigkeits-Steuerverstärkung erhalten wird, und das dritte Lenkhilfsmoment durch Multiplizieren mit einer proportionalen Steuerverstärkung erhalten wird, und
    wobei eine oder mehrere der Verstärkungen basierend auf dem Lenkmoment geändert werden.
  8. Lenkungs-Steuervorrichtung nach Anspruch 1,
    die ferner Folgendes aufweist:
    - eine Lenkwinkelgeschwindigkeits-Detektionseinheit (31), die dazu ausgebildet ist, die Lenkwinkelgeschwindigkeit des Lenkrads (1) zu detektieren; und
    - eine vierte Lenkhilfsmoment-Berechnungseinheit (32), die dazu ausgebildet ist, ein viertes Lenkhilfsmoment zu berechnen, das proportional zur Lenkwinkelgeschwindigkeit ist,
    wobei die Addiereinheit (26) dazu ausgebildet ist, das Motor-Lenkhilfsmoment basierend auf der Summe aus dem ersten Lenkhilfsmoment, dem zweiten Lenkhilfsmoment, dem dritten Lenkhilfsmoment und dem vierten Lenkhilfsmoment zu berechnen.
  9. Lenkungs-Steuervorrichtung nach Anspruch 1,
    die ferner Folgendes aufweist:
    - eine Lenkmoment-Differenzwert-Detektionseinheit (34), die dazu ausgebildet ist, den Lenkmoment-Differenzwert zu detektieren;
    - einen Tiefpassfilter, der dazu ausgebildet ist, eine vorgegebene Frequenzkomponente zu extrahieren, die die Lenkfrequenz eines Fahrers aus dem Lenkmoment-Differenzwert aufweist; und
    - eine fünfte Lenkhilfsmoment-Berechnungseinheit (33), die dazu ausgebildet ist, ein fünftes Lenkhilfsmoment zu berechnen, das proportional zum Lenkmoment-Differenzwert der extrahierten Frequenzkomponente ist, wobei die Addiereinheit (26) dazu ausgebildet ist, das Motor-Lenkhilfsmoment basierend auf der Summe aus dem ersten Lenkhilfsmoment, dem zweiten Lenkhilfsmoment, dem dritten Lenkhilfsmoment und dem fünften Lenkhilfsmoment zu berechnen.
  10. Lenkhilfsmoment-Steuerverfahren, das bei einer Lenkungs-Steuervorrichtung verwendet wird, wobei die Lenkungs-Steuervorrichtung dazu ausgebildet ist, abhängig von einer Abweichung (23) zwischen einem vorgegebenen Soll-Lenkmoment (22) und einem detektierten Lenkmoment (5) ein Lenkhilfsmoment eines Motors (6) vorzugeben, der dazu ausgebildet ist, ein Lenkhilfsmoment auf eine Lenkwelle (2) aufzubringen, wobei das Lenkhilfsmoment-Steuerverfahren folgende Schritte aufweist:
    - Vorgeben des Lenkhilfsmoments des Motors (6) basierend auf der Summe aus einem ersten Lenkhilfsmoment (24), das proportional zu einem Integralwert der Abweichung zwischen dem vorgegebenen Soll-Lenkmoment und dem detektierten Lenkmoment ist, und einem zweiten Lenkhilfsmoment (25) ist, das proportional zu der Drehwinkelgeschwindigkeit (10) des Motors (6) ist,
    - Einwirken in eine Richtung, um die Rückstellgeschwindigkeit des Lenkrads (1) zu unterdrücken, wenn das Lenkrad (1) in eine neutrale Position zurückkehrt,
    dadurch gekennzeichnet,
    dass das Lenkhilfsmoment-Steuerverfahren ferner folgende Schritte aufweist:
    - Vorgeben des Lenkhilfsmoments des Motors (6) basierend auf einem dritten Lenkhilfsmoment, das proportional zu der Abweichung zwischen einem Wert, der durch Multiplizieren des von der Soll-Lenkmoment-Vorgabeeinheit (22) vorgegebenen Soll-Lenkmoments mit einer Korrekturverstärkung erhalten wird, und dem Lenkmoment ist, und
    - Berechnen des Motor-Lenkhilfsmoments basierend auf der Summe aus dem ersten Lenkhilfsmoment, dem zweiten Lenkhilfsmoment und dem dritten Lenkhilfsmoment.
EP15782525.8A 2014-04-25 2015-03-19 Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon Active EP3135562B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014091416 2014-04-25
PCT/JP2015/058263 WO2015163051A1 (ja) 2014-04-25 2015-03-19 操舵制御装置およびその操舵補助トルク制御方法

Publications (3)

Publication Number Publication Date
EP3135562A1 EP3135562A1 (de) 2017-03-01
EP3135562A4 EP3135562A4 (de) 2018-02-28
EP3135562B1 true EP3135562B1 (de) 2019-04-24

Family

ID=54332221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15782525.8A Active EP3135562B1 (de) 2014-04-25 2015-03-19 Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon

Country Status (5)

Country Link
US (1) US10202146B2 (de)
EP (1) EP3135562B1 (de)
JP (1) JP6058214B2 (de)
CN (1) CN106170432B (de)
WO (1) WO2015163051A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135562B1 (de) * 2014-04-25 2019-04-24 Mitsubishi Electric Corporation Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon
KR102503307B1 (ko) * 2016-07-11 2023-02-27 현대모비스 주식회사 전동식 동력 조향장치의 조향복원 제어장치 및 방법
JP6737026B2 (ja) * 2016-07-20 2020-08-05 株式会社デンソー ステアリング制御装置
JP6809020B2 (ja) 2016-07-27 2021-01-06 いすゞ自動車株式会社 操舵補助装置及び操舵補助方法
JP6729213B2 (ja) * 2016-09-07 2020-07-22 株式会社デンソー ステアリング制御装置
US10435072B2 (en) * 2017-03-17 2019-10-08 Ford Global Technologies, Llc Road camber compensation
DE102017205030A1 (de) * 2017-03-24 2018-09-27 Volkswagen Aktiengesellschaft Fahrassistenzsystembasiertes Lenkunterstützungsverfahren, Lenkunterstützungssystem und Fahrzeug
JP6328841B1 (ja) * 2017-12-25 2018-05-23 株式会社ショーワ 制御装置、および、ステアリング装置
FR3083772B1 (fr) * 2018-07-13 2020-08-28 Jtekt Europe Sas Detection progressive de l'apparition d'un phenomene de couple de tirage
JP2020055357A (ja) * 2018-09-28 2020-04-09 日本電産株式会社 トルク制御装置およびパワーステアリング装置
JP7247508B2 (ja) * 2018-09-28 2023-03-29 日本電産株式会社 ステアリング制御装置およびパワーステアリング装置
KR20200042634A (ko) * 2018-10-16 2020-04-24 현대자동차주식회사 차량 조향 시스템의 모터토크 제어 장치
JP7117233B2 (ja) * 2018-12-14 2022-08-12 日本電産モビリティ株式会社 電子制御装置、制御方法、及び電子制御プログラム
JP7314636B2 (ja) * 2019-06-14 2023-07-26 株式会社ジェイテクト 転舵制御装置
JP2021011190A (ja) * 2019-07-05 2021-02-04 株式会社Subaru 車両の操舵支援装置
JP7433410B2 (ja) * 2020-02-27 2024-02-19 三菱電機株式会社 操舵制御装置
JP7037593B2 (ja) * 2020-03-13 2022-03-16 本田技研工業株式会社 車両制御装置および車両
CN111873991B (zh) * 2020-07-22 2022-04-08 中国第一汽车股份有限公司 一种车辆转向的控制方法、装置、终端及存储介质
KR20220165348A (ko) * 2021-06-08 2022-12-15 에이치엘만도 주식회사 조향 제어 장치 장치 및 방법
WO2023203751A1 (ja) * 2022-04-22 2023-10-26 三菱電機株式会社 操舵制御装置及び電動パワーステアリング装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155352A (ja) * 1991-12-02 1993-06-22 Omron Corp 電動式パワーステアリング装置
JP2910403B2 (ja) 1992-04-27 1999-06-23 三菱電機株式会社 電動パワーステアリング制御装置
US5473539A (en) * 1992-12-11 1995-12-05 Honda Giken Kogyo Kabushiki Kaisha Electrically operated power steering apparatus
JP3353770B2 (ja) * 1999-08-19 2002-12-03 三菱電機株式会社 電動式パワーステアリング制御装置
JP2003081112A (ja) * 1999-08-19 2003-03-19 Mitsubishi Electric Corp 電動式パワーステアリング制御装置及びその制御方法
JP3901928B2 (ja) 2000-09-28 2007-04-04 株式会社ジェイテクト 電動パワーステアリング装置の制御装置
JP3671829B2 (ja) 2000-10-16 2005-07-13 日産自動車株式会社 電動パワーステアリング装置
JP2002145100A (ja) * 2000-11-17 2002-05-22 Nsk Ltd 電動パワーステアリング装置の制御装置
US6570352B2 (en) 2000-11-17 2003-05-27 Nsk Ltd. Control unit for electric power steering apparatus
JP3551147B2 (ja) * 2000-11-17 2004-08-04 日本精工株式会社 電動パワーステアリング装置の制御装置
JP4269677B2 (ja) * 2002-12-24 2009-05-27 株式会社ジェイテクト 電動パワーステアリング装置
JP2006117181A (ja) 2004-10-25 2006-05-11 Favess Co Ltd 操舵制御装置
JP2006281882A (ja) 2005-03-31 2006-10-19 Showa Corp 電動パワーステアリング装置
JP5028863B2 (ja) * 2006-05-25 2012-09-19 日本精工株式会社 電動パワーステアリング装置の制御装置
JP4997472B2 (ja) 2007-01-09 2012-08-08 株式会社ジェイテクト 電動パワーステアリング装置
JP4603593B2 (ja) * 2008-04-23 2010-12-22 本田技研工業株式会社 電動パワーステアリング装置
JP5475973B2 (ja) 2008-09-02 2014-04-16 カヤバ工業株式会社 電動パワーステアリングの制御装置
JP4883134B2 (ja) * 2009-05-15 2012-02-22 株式会社デンソー 電動パワーステアリング制御装置
JP5532295B2 (ja) * 2009-11-12 2014-06-25 株式会社ジェイテクト モータ制御装置および車両用操舵装置
US8978814B2 (en) * 2011-04-27 2015-03-17 Honda Motor Co., Ltd. Vehicle steering device
US9254862B2 (en) * 2011-05-25 2016-02-09 Mitsubishi Electric Corporation Electric power steering control device
JP2013052792A (ja) * 2011-09-05 2013-03-21 Denso Corp 電動パワーステアリング制御装置
JP5533822B2 (ja) * 2011-09-05 2014-06-25 株式会社デンソー 電動パワーステアリング制御装置
JP2013189123A (ja) 2012-03-14 2013-09-26 Jtekt Corp 電動パワーステアリング装置
CN104684792B (zh) * 2013-02-07 2017-03-15 日本精工株式会社 电动助力转向装置
US9809246B2 (en) * 2013-04-23 2017-11-07 Nsk Ltd. Electric power steering apparatus
JP6160860B2 (ja) * 2013-06-11 2017-07-12 株式会社ジェイテクト 電動パワーステアリング装置
JP6187042B2 (ja) * 2013-08-29 2017-08-30 株式会社ジェイテクト 電動パワーステアリング装置
EP3135562B1 (de) * 2014-04-25 2019-04-24 Mitsubishi Electric Corporation Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10202146B2 (en) 2019-02-12
EP3135562A4 (de) 2018-02-28
WO2015163051A1 (ja) 2015-10-29
EP3135562A1 (de) 2017-03-01
CN106170432B (zh) 2019-01-01
JPWO2015163051A1 (ja) 2017-04-13
JP6058214B2 (ja) 2017-01-11
CN106170432A (zh) 2016-11-30
US20170015351A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
EP3135562B1 (de) Lenksteuerungsvorrichtung und lenkhilfedrehmomentsteuerungsverfahren davon
EP3053807B1 (de) Elektrisches servolenksystem
KR100605792B1 (ko) 조타 제어 장치
JP4242233B2 (ja) ステアリング制御装置
JP5200033B2 (ja) 電動パワーステアリング制御装置
US9327761B2 (en) Electric power steering apparatus
JP6107928B2 (ja) 電動パワーステアリング装置
EP2985205B1 (de) Lenksteuerungsvorrichtung und lenksteuerungsverfahren
EP3210856A2 (de) Lenksteuerungsvorrichtung
US9688307B2 (en) Electric power steering controller
US9630649B2 (en) Electric power steering control device and control method for same
CN103442970A (zh) 车辆用信息处理装置
JP2008018825A (ja) 電動パワーステアリング装置の制御装置
JP2016088274A (ja) 電動パワーステアリング装置
EP2019022B1 (de) Fahrzeuglenkungsgerät
WO2007061507A2 (en) Vehicle stability control with lateral dynamics feedback
WO2012086502A1 (ja) ステアバイワイヤの操舵反力制御装置
US10370029B2 (en) Steering control apparatus
JP2005335613A (ja) 車両用操舵装置
JP5293144B2 (ja) 車両用操舵装置
JP4552649B2 (ja) 操舵制御装置
JP5844861B2 (ja) ステアバイワイヤの操舵反力制御装置
JP4840232B2 (ja) 車両の操舵制御装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015028967

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B62D0006000000

Ipc: B62D0005040000

A4 Supplementary search report drawn up and despatched

Effective date: 20180125

RIC1 Information provided on ipc code assigned before grant

Ipc: B62D 119/00 20060101ALI20180119BHEP

Ipc: B62D 101/00 20060101ALI20180119BHEP

Ipc: B62D 113/00 20060101ALI20180119BHEP

Ipc: B62D 6/00 20060101ALI20180119BHEP

Ipc: B62D 137/00 20060101ALI20180119BHEP

Ipc: B62D 117/00 20060101ALI20180119BHEP

Ipc: B62D 5/04 20060101AFI20180119BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1123799

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015028967

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1123799

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015028967

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200319

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602015028967

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240213

Year of fee payment: 10