WO2023203751A1 - 操舵制御装置及び電動パワーステアリング装置 - Google Patents

操舵制御装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2023203751A1
WO2023203751A1 PCT/JP2022/018546 JP2022018546W WO2023203751A1 WO 2023203751 A1 WO2023203751 A1 WO 2023203751A1 JP 2022018546 W JP2022018546 W JP 2022018546W WO 2023203751 A1 WO2023203751 A1 WO 2023203751A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
steering
steering angle
calculation unit
motor
Prior art date
Application number
PCT/JP2022/018546
Other languages
English (en)
French (fr)
Inventor
光晴 木村
泰蔵 戸田
正樹 松下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018546 priority Critical patent/WO2023203751A1/ja
Priority to JP2024516033A priority patent/JPWO2023203751A1/ja
Publication of WO2023203751A1 publication Critical patent/WO2023203751A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present disclosure relates to a steering control device and an electric power steering device.
  • An electric power steering device includes a motor that generates a steering assist torque to the steering wheel, and a steering control device that controls the motor, and adds a steering assist force to the steering mechanism of a vehicle such as an automobile.
  • Such an electric power steering device has the advantage of being lighter and more compact than a hydraulic power steering device.
  • Patent Document 1 discloses an electric power steering device that is able to obtain a constant steering feeling without being affected by changes in mechanical characteristics due to road surface conditions or aging of the steering mechanism.
  • This electric power steering device maintains a constant steering force by setting the characteristics of steering force with respect to the steering angle (hereinafter referred to as "steering force angle characteristics") to be the desired steering force characteristics (target steering force angle characteristics). I try to get a feel for it.
  • the target steering force is calculated using a steering force characteristic model that includes a spring component, a viscous component, and a friction component.
  • a steering force characteristic model that includes a spring component, a viscous component, and a friction component.
  • the viscosity component or friction component is adjusted for purposes other than on-center feeling, changing the viscosity component or friction component to adjust the on-center feeling will change the steering feel that has already been set. The problem is that it could lead to the collapse of the system.
  • the present disclosure has been made in view of the above circumstances, and provides a steering control device and an electric power steering device that can adjust on-center feeling with a simple configuration while suppressing the influence on the already set steering feeling.
  • the purpose is to provide.
  • a steering control device includes a target steering torque setting unit that sets a target steering torque for the steering wheel, a steering torque that acts on the target steering torque, and a steering shaft of the steering wheel.
  • a calculation unit that calculates a steering assist torque necessary for making the steering torque follow the target steering torque based on a deviation from the target steering torque;
  • a current drive unit that generates a current drive unit, the target steering torque setting unit calculates a first shift amount that is a shift amount of the steering angle of the steering wheel by multiplying the rotational angular velocity of the motor by a steering angle gain; Based on a post-shift steering angle obtained by adding the first shift amount to the steering angle, and a base map showing a characteristic that the magnitude of the base torque gradually increases as the magnitude of the post-shift steering angle increases.
  • a first torque calculation unit that calculates a first torque using the rotational angular velocity of the motor
  • a second torque calculation unit that uses the rotational angular velocity of the motor to calculate a second torque for adding hysteresis to the target steering torque
  • a target steering torque calculation unit that adds the second torque and outputs the result as the target steering torque
  • a power steering device includes a steering torque detection section that detects a steering torque acting on a steering shaft of a steering wheel, a steering state detection section that detects a steering angle of a steering wheel, and a steering state detection section that detects a steering torque acting on a steering shaft of a steering wheel.
  • a motor that provides auxiliary torque, a motor rotational angular velocity detection unit that detects the rotational angular velocity of the motor, and controls the drive of the motor based on the detected steering torque, the steering angle, and the rotational angular velocity of the motor.
  • FIG. 1 is a block diagram showing a main part configuration of an electric power steering device according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a block diagram showing a main part configuration of a control unit as a steering control device according to Embodiment 1 of the present disclosure.
  • 1 is a flowchart showing an overview of the operation of a control unit as a steering control device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram showing an example of an internal configuration of a target steering torque setting section in Embodiment 1 of the present disclosure.
  • FIG. 6 is a diagram showing an example of a steering angle shift gain used in the first torque calculation section in Embodiment 1 of the present disclosure.
  • FIG. 1 is a block diagram showing a main part configuration of an electric power steering device according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a block diagram showing a main part configuration of a control unit as a steering control device according to Embodiment 1 of the present disclosure
  • FIG. 2 is a block diagram illustrating a configuration example of a base calculation unit provided in the first torque calculation unit in Embodiment 1 of the present disclosure.
  • FIG. 3 is a block diagram illustrating another configuration example of the base calculation section provided in the first torque calculation section in Embodiment 1 of the present disclosure.
  • 6A is a diagram showing an example of a base map used in the base calculation unit shown in FIG. 6A.
  • FIG. 6B is a diagram showing an example of a base map used in the base calculation unit shown in FIG. 6B.
  • FIG. FIG. 7 is a diagram illustrating an example of a hysteresis gain used in the second torque calculation section in Embodiment 1 of the present disclosure.
  • FIG. 3 is a block diagram illustrating a configuration example of a third torque calculation section in Embodiment 1 of the present disclosure.
  • FIG. 7 is a block diagram illustrating another configuration example of the third torque calculation unit in Embodiment 1 of the present disclosure.
  • 9A is a diagram showing an example of a damper gain map used in the third torque calculating section shown in FIG. 9A.
  • FIG. It is a figure which shows an example of a damper torque map used by the 3rd torque calculation part shown in FIG. 9B.
  • FIG. 2 is a block diagram illustrating an example of an internal configuration of a torque feedback calculation unit in Embodiment 1 of the present disclosure.
  • FIG. 3 is a diagram showing a relationship between a steering angle and a target steering torque when steering a steering wheel in Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram showing a relationship between a steering angle and a target steering torque (base torque) when steering a steering wheel in Embodiment 1 of the present disclosure.
  • 7 shows a motion trajectory of the steering angle when the driver releases the steering wheel from a state in which the steering wheel is turned.
  • FIG. 3 is a block diagram showing the configuration of a steering angle shift calculation section in Embodiment 2 of the present disclosure. It is a figure which shows an example of the steering angle application range adjustment map used by the steering angle shift calculation part in Embodiment 2 of this indication.
  • FIG. 7 is a diagram showing a relationship between a steering angle and a target steering torque (base torque) when steering a steering wheel in Embodiment 2 of the present disclosure.
  • FIG. 1 is a block diagram showing the main part configuration of an electric power steering device according to Embodiment 1 of the present disclosure.
  • the electric power steering device PS according to the present embodiment includes a steering wheel 1, a steering shaft 2, steered wheels 3, a steering angle sensor 4, a torque sensor 5 (steering torque detection section), a motor 6, and a speed reduction mechanism. 7, a vehicle speed sensor 8, a current sensor 9, a motor rotation angle sensor 10, and a control unit 11 (steering control device).
  • the steering wheel 1 is a so-called handle, and is operated by the driver of the vehicle in order to give a steering angle to the steered wheels 3 of the vehicle.
  • the steering shaft 2 is connected to the steering wheel 1 and rotates as the steering wheel 1 rotates.
  • the steered wheels 3 are provided on both left and right sides of the vehicle, and are steered according to the rotation of the steering shaft 2. Note that the mechanism that includes the steering wheel 1 and the steering shaft 2 and that steers the steered wheels 3 will be referred to as a "steering".
  • the steering angle sensor 4 is arranged on the steering wheel 1 and detects the steering angle of the steering wheel 1.
  • the torque sensor 5 is disposed on the steering shaft 2 and detects steering torque acting on the steering shaft 2.
  • the motor 6 is connected to the steering shaft 2 via a speed reduction mechanism 7, and provides steering assist torque to the steering shaft 2.
  • Vehicle speed sensor 8 detects the vehicle speed.
  • Current sensor 9 detects the current flowing through motor 6.
  • Motor rotation angle sensor 10 detects the rotation angle of motor 6.
  • the control unit 11 controls the drive of the motor 6 based on the detection results of the steering angle sensor 4, torque sensor 5, vehicle speed sensor 8, current sensor 9, and motor rotation angle sensor 10, and generates a steering assist torque for the steering wheel. let Specifically, the control unit 11 calculates the steering assist torque to be applied to the steering shaft 2 based on each of the above detection results, and controls the current of the motor 6 necessary to generate the steering assist torque.
  • the control unit 11 will be explained in detail below.
  • FIG. 2 is a block diagram showing the main configuration of a control unit as a steering control device according to Embodiment 1 of the present disclosure.
  • the control unit 11 includes a differentiator 24a, a target steering torque setting section 22, a torque feedback calculation section 23 (calculation section), and a current drive section 12.
  • the differentiator 24a differentiates the rotation angle of the motor 6 detected by the motor rotation angle sensor 10 to calculate the rotation angular velocity of the motor 6 (hereinafter referred to as "motor rotation angular velocity").
  • the differentiator 24a and the motor rotation angle sensor 10 constitute a motor rotation angular velocity detection section 24 that detects the motor rotation angular velocity.
  • the target steering torque setting unit 22 sets a target steering torque for the steering wheel.
  • the target steering torque setting unit 22 includes the steering angle of the steering wheel 1 detected by the steering state detection unit 21 including the steering angle sensor 4, the vehicle speed detected by the vehicle speed sensor 8, and the motor rotation angular velocity detection.
  • the motor rotation angular velocity detected by section 24 is input.
  • the target steering torque setting unit 22 uses these detection results to set a target steering torque for the steering wheel. Note that details of the target steering torque setting section 22 will be described later.
  • the torque feedback calculation unit 23 is necessary for making the steering torque follow the target steering torque based on the deviation between the target steering torque set by the target steering torque setting unit 22 and the steering torque detected by the torque sensor 5. Calculate the steering assist torque.
  • the current drive unit 12 controls the current flowing through the motor 6 in order to generate the steering assist torque calculated by the torque feedback calculation unit 23 in the steering wheel.
  • the configuration of the control unit 11 except for the current drive section 12 is controlled by a microcomputer including a CPU (central processing unit) and memory. Realized.
  • the memory provided in the microcomputer may include both volatile memory and nonvolatile memory.
  • the current driver 12 is realized, for example, by an analog circuit including a plurality of switching elements such as FETs (field effect transistors).
  • FIG. 3 is a flowchart showing an overview of the operation of the control unit as a steering control device according to Embodiment 1 of the present disclosure. Note that the processing in the flowchart shown in FIG. 3 is repeatedly performed at a predefined control cycle.
  • the control unit 11 first detects the steering angle detected by the steering state detection section 21, the vehicle speed detected by the vehicle speed sensor 8, the steering torque detected by the torque sensor 5, and the motor rotation angle sensor. The motor rotation angle detected in step 10 is obtained. Then, the differentiator 24a of the control unit 11 differentiates the obtained motor rotation angle to obtain the motor rotation angular velocity (step S11).
  • the target steering torque setting section 22 of the control unit 11 sets a target steering torque using the obtained steering angle and vehicle speed and the motor rotational angular velocity obtained by differentiation (step S12).
  • the torque feedback calculation unit 23 of the control unit 11 sets the steering torque to the target steering torque based on the deviation between the target steering torque set by the target steering torque setting unit 22 and the steering torque detected by the torque sensor 5.
  • the steering assist torque required to follow the steering torque is calculated (step S13).
  • the current drive unit 12 of the control unit 11 controls the current flowing through the motor 6 in order to cause the steering to generate the steering assist torque calculated by the torque feedback calculation unit 23 (step S16).
  • FIG. 4 is a block diagram showing an example of the internal configuration of the target steering torque setting section in Embodiment 1 of the present disclosure.
  • the target steering torque setting section 22 includes a first torque calculation section 25, a second torque calculation section 28, a third torque calculation section 29, and a target steering torque calculation section 30.
  • the first torque calculation unit 25 includes a steering angle shift calculation unit 26 and a base calculation unit 27, and uses the steering angle, motor rotational angular velocity, and vehicle speed to determine the first torque that is the base torque.
  • the steering angle shift calculation unit 26 includes a multiplier 26a and an adder 26b, and calculates a post-shift steering angle.
  • the multiplier 26a calculates a first shift amount, which is a shift amount of the steering angle of the steering wheel 1, by multiplying the motor rotational angular velocity by a steering angle shift gain Dg (steering angle gain).
  • the adder 26b adds the first shift amount to the steering angle to obtain a post-shift steering angle.
  • the base calculation section 27 calculates the post-shift steering angle obtained by the steering angle shift calculation section 26 and a base map showing a characteristic that the magnitude of the base torque gradually increases as the magnitude of the post-shift steering angle increases. Based on this, the first torque is determined.
  • FIG. 5 is a diagram illustrating an example of the steering angle shift gain used in the first torque calculation section in Embodiment 1 of the present disclosure.
  • the steering angle shift gain Dg shown in FIG. 5 gradually increases in value as the vehicle speed increases up to a certain vehicle speed, but becomes constant after a certain vehicle speed.
  • the first torque calculation unit 25 changes the steering angle shift gain Dg according to the vehicle speed. Note that although the steering angle shift gain Dg illustrated in FIG. 5 changes in value depending on the vehicle speed, the value may not change regardless of the vehicle speed.
  • FIG. 6A is a block diagram illustrating a configuration example of a base calculation unit provided in the first torque calculation unit in Embodiment 1 of the present disclosure.
  • the base calculation section 27 shown in FIG. 6A includes a base map 27a, a sign determination section 27b, and a multiplier 27c.
  • the base map 27a is a map in which the base torque according to the post-shift steering angle is defined.
  • FIG. 7A is a diagram showing an example of a base map used in the base calculation section shown in FIG. 6A.
  • the base map 27a shown in FIG. 7A has a characteristic that as the magnitude (absolute value) of the post-shift steering angle increases, the magnitude of the base torque in the positive direction gradually increases.
  • different base maps 27a are prepared for each vehicle speed.
  • different base maps 27a are prepared for each of "low vehicle speed,” “medium vehicle speed,” and “high vehicle speed.”
  • the first torque calculation unit 25 changes the base map 27a according to the vehicle speed.
  • the base map 27a does not necessarily need to be prepared differently for each vehicle speed.
  • the sign determination unit 27b determines whether the sign of the post-shift steering angle is positive (+1) or negative (-1).
  • the multiplier 27c multiplies the magnitude of the base torque determined using the base map 27a by the sign determined by the sign determining section 27b.
  • one base map 27a is specified according to the input vehicle speed.
  • the magnitude of the base torque (first torque) is determined using the post-shift steering angle input to the base calculation unit 27 and the specified base map 27a. Further, the sign of the input post-shift steering angle is determined by the sign determining section 27b. Then, the magnitude of the base torque (first torque) determined using the base map 27a and the sign of the rear steering angle determined by the sign determining section 27b are multiplied by the multiplier 27c, so that the base torque ( (first torque) is determined.
  • FIG. 6B is a block diagram showing another configuration example of the base calculation section provided in the first torque calculation section in Embodiment 1 of the present disclosure.
  • the base calculation unit 27 shown in FIG. 6B includes only a base map 27a.
  • the base map 27a shown in FIG. 6B is a map in which the base torque according to the post-shift steering angle is defined, similar to the base map 27a shown in FIG. 6A.
  • FIG. 7B is a diagram showing an example of a base map used in the base calculation section shown in FIG. 6B.
  • the base map 27a shown in FIG. 6B shows that as the magnitude of the positive direction of the post-shift steering angle increases, the magnitude of the base torque in the positive direction gradually increases, and as the magnitude of the positive direction of the post-shift steering angle increases, It has a characteristic that as the magnitude of the base torque increases, the magnitude of the base torque in the negative direction gradually increases.
  • a different base map 27a shown in FIG. 6B is also prepared for each vehicle speed.
  • different base maps 27a are prepared for each of "low vehicle speed,” “medium vehicle speed,” and "high vehicle speed.”
  • the first torque calculation unit 25 changes the base map 27a according to the vehicle speed.
  • the base map 27a does not necessarily need to be prepared differently for each vehicle speed.
  • one base map 27a is specified according to the input vehicle speed.
  • the base torque (first torque) is determined using the post-shift steering angle input to the base calculation unit 27 and the specified base map 27a.
  • the second torque calculation unit 28 calculates a second torque, which is friction torque, based on the motor rotational angular velocity and the vehicle speed.
  • a second torque which is friction torque
  • the second torque is expressed by the following formula.
  • the second torque (friction torque) becomes constant and becomes saturated as the motor rotational angular velocity d ⁇ m increases.
  • FIG. 8 is a diagram showing an example of a hysteresis gain used in the second torque calculation section in Embodiment 1 of the present disclosure.
  • the hysteresis gain Tf illustrated in FIG. 8 has a value that gradually decreases as the vehicle speed increases up to a certain vehicle speed, but after a certain vehicle speed, the value gradually increases as the vehicle speed increases. Note that the hysteresis gain Tf illustrated in FIG. 8 changes in value depending on the vehicle speed, but may have a value that does not change regardless of the vehicle speed.
  • the second torque calculation unit 28 may perform low-pass filter processing using a low-pass filter on the obtained second torque (friction torque).
  • the cutoff frequency of the low-pass filter is set to a value that allows extraction of a frequency component set to include the driver's steering frequency.
  • the limit steering frequency of the driver is about 5 [Hz]
  • the resonance frequency of the steering shaft 2 is around 10-odd [Hz]
  • the cutoff frequency is a value greater than 0 and less than or equal to 10 [Hz].
  • the third torque calculation unit 29 calculates the third torque, which is the damper torque, based on the motor rotational angular velocity and the vehicle speed.
  • FIG. 9A is a block diagram illustrating a configuration example of the third torque calculation unit in Embodiment 1 of the present disclosure.
  • the third torque calculation unit 29 shown in FIG. 9A includes a damper gain map 29a and a multiplier 29b.
  • the damper gain map 29a is a map in which damper gains are defined according to the motor rotational angular velocity.
  • FIG. 10A is a diagram showing an example of a damper gain map used in the third torque calculating section shown in FIG. 9A.
  • the damper gain map 29a shown in FIG. 10A shows that when the magnitude (absolute value) of the motor rotational angular velocity exceeds a certain value, the magnitude of the damper gain gradually increases as the magnitude (absolute value) of the motor rotational angular velocity increases. have characteristics. Note that the magnitude of the damper gain is zero until the magnitude (absolute value) of the motor rotational angular velocity reaches a certain value.
  • damper gain maps 29a are prepared for each vehicle speed.
  • different damper gain maps 29a are prepared for each of "low vehicle speed,” “medium vehicle speed,” and “high vehicle speed.”
  • the third torque calculation unit 29 changes the damper gain map 29a according to the vehicle speed.
  • the damper gain map 29a does not necessarily need to be different for each vehicle speed.
  • the multiplier 29b multiplies the motor rotational angular velocity by the damper gain determined using the damper gain map 29a.
  • one damper gain map 29a is specified according to the input vehicle speed.
  • the damper gain is determined using the motor rotational angular velocity input to the third torque calculation unit 29 and the specified damper gain map 29a.
  • the damper torque (third torque) is obtained by multiplying the damper gain obtained using the damper gain map 29a and the motor rotational angular velocity by the multiplier 29b.
  • FIG. 9B is a block diagram showing another configuration example of the third torque calculation section in Embodiment 1 of the present disclosure.
  • the third torque calculation section 29 shown in FIG. 9B includes a damper torque map 29c, a sign determination section 29d, and a multiplier 29e.
  • the damper torque map 29c is a map in which damper torque according to the motor rotational angular velocity is defined.
  • FIG. 10B is a diagram showing an example of a damper torque map used in the third torque calculating section shown in FIG. 9B.
  • the damper torque map 29c shown in FIG. 10B has similar characteristics to the damper gain map 29a shown in FIG. 10A.
  • the damper torque map 29c shown in FIG. 10B shows that when the magnitude (absolute value) of the motor rotational angular velocity exceeds a certain value, the magnitude of the damper torque gradually increases as the magnitude (absolute value) of the motor rotational angular velocity increases. It has the characteristic of becoming larger. Note that the magnitude of the damper torque is zero until the magnitude (absolute value) of the motor rotational angular velocity reaches a certain value.
  • damper torque maps 29c are prepared for each vehicle speed.
  • different damper torque maps 29c are prepared for each of "low vehicle speed,” “medium vehicle speed,” and “high vehicle speed.”
  • the third torque calculation unit 29 changes the damper torque map 29c according to the vehicle speed.
  • the damper torque map 29c does not necessarily need to be different for each vehicle speed.
  • the sign determination unit 29d determines whether the sign of the motor rotational angular velocity is positive (+1) or negative (-1).
  • the multiplier 29e multiplies the magnitude of the damper torque determined using the damper torque map 29c by the sign determined by the sign determining section 29d.
  • one damper torque map 29c is specified according to the input vehicle speed.
  • the magnitude of the damper torque (third torque) is determined using the motor rotational angular velocity input to the third torque calculation unit 29 and the specified damper torque map 29c. Further, the sign of the input motor rotational angular velocity is determined by the sign determining section 29d. Then, the magnitude of the damper torque (third torque) obtained using the damper torque map 29c is multiplied by the sign of the motor rotational angular velocity determined by the sign determining section 29d, and the damper torque (third torque) is multiplied by the multiplier 29e. 3 torque) is required.
  • the target steering torque calculation unit 30 includes adders 30a and 30b, and calculates the base torque (first torque) calculated by the first torque calculation unit 25 and the friction torque (first torque) calculated by the second torque calculation unit 28. 2 torque) and the damper torque (third torque) calculated by the third torque calculation unit 29. Specifically, the adder 30b adds the friction torque (second torque) and the damper torque (third torque), and the adder 30a adds the torque output from the adder 30b and the base torque (first torque). do. The target steering torque calculation unit 30 outputs the added torque as a target steering torque.
  • FIG. 11 is a block diagram illustrating an example of the internal configuration of the torque feedback calculation section in Embodiment 1 of the present disclosure.
  • the torque feedback calculating section 23 includes a subtracter 31, a first steering assist torque calculating section 32, a second steering assist torque calculating section 33, a third steering assist torque calculating section 34, and an adder. 35.
  • Such a torque feedback calculation unit 23 causes the steering torque to follow the target steering torque based on the deviation between the target steering torque set by the target steering torque setting unit 22 and the steering torque detected by the torque sensor 5.
  • the steering assist torque required for this purpose is calculated.
  • the subtractor 31 calculates the deviation between the target steering torque set by the target steering torque setting unit 22 and the steering torque detected by the torque sensor 5.
  • the first steering assist torque calculation section 32 includes an integrator 32a and a multiplier 23b, integrates the deviation obtained by the subtractor 31 with the integrator 32a, and multiplies the integrated deviation by an integral control gain KTI.
  • the first steering assist torque is calculated by performing the calculation in the multiplier 32b.
  • the second steering assist torque calculation unit 33 includes a multiplier 33a, and calculates the second steering assist torque by multiplying the motor rotational angular velocity by the speed control gain KTV using the multiplier 33a.
  • the third steering assist torque calculation unit 34 includes a multiplier 34a, and calculates the third steering assist torque by using the multiplier 34a to multiply the deviation obtained by the subtracter 31 by the proportional control gain KTP. Calculate.
  • the adder 35 calculates the first steering assist torque calculated by the first steering assist torque calculating section 32, the second steering assist torque calculated by the second steering assist torque calculating section 33, and the third steering assist torque.
  • the third steering assist torque calculated by the assist torque calculation unit 34 is added. Then, the adder 35 outputs the added torque as a steering assist torque.
  • the steering assist torque includes an integral control component (first steering assist torque)
  • first steering assist torque the driver's steering torque follows the target steering torque. This allows the driver to steer with appropriate torque.
  • the motor speed control component second steering assist torque obtained by multiplying the motor rotational angular velocity by the speed control gain KTV adjusts the steering torque to the target steering torque and zero. It is possible to adjust the value between .
  • the steering torque follows the target steering torque, making it possible to achieve smooth steering.
  • the motor speed control component second steering assist torque
  • stability of control can be ensured even when the motor 6 and torque sensor 5 are located far apart.
  • differentiation of the target steering torque is not required, noise can be suppressed and smooth and stable steering can be achieved.
  • the steering assist torque proportional control component (third steering assist torque) has a faster response than the steering assist torque integral control component (first steering assist torque), it is possible to make the tracking response faster and prevent overload. Shoots can be reduced. As a result, when the driver grips and steers the steering wheel 1, the steering torque stably follows the target steering torque, making it possible to realize smoother steering.
  • the torque feedback calculating part 23 which performs torque feedback is provided as an example of the structure for realizing stability and followability has been described. However, as long as the deviation between the target steering torque and the steering torque can be fed back, the configuration is not limited to the one that performs torque feedback.
  • the spring component base torque
  • viscous component damper torque
  • friction component friction A steering force characteristic model decomposed into torque
  • the target steering torque can be set based on a plurality of center feel evaluation indices that define center feeling.
  • FIG. 12 is a diagram showing the relationship between the steering angle and target steering torque when steering the steering wheel in Embodiment 1 of the present disclosure.
  • the target steering force angle characteristic A in FIG. 12 is a basic characteristic created by adding base torque, damper torque, and friction torque.
  • a target steering force angle characteristic B in FIG. 12 is a characteristic in this embodiment in which an on-center feeling characteristic is added to the target steering force angle characteristic A.
  • the target steering force angle characteristic C is based on the technology disclosed in Patent Document 1, in which the same on-center feeling characteristic as the target steering force angle characteristic B is given to the target steering force angle characteristic A by adjusting it with a viscous component. It is a characteristic.
  • the target steering force angle characteristic D is based on the technology disclosed in Patent Document 1 in which the same on-center feeling characteristic as the target steering force angle characteristic B is provided to the target steering force angle characteristic A by adjusting it with a friction component. It is a characteristic.
  • the target steering force angle characteristic will change significantly from the basic target steering force angle characteristic A set at the beginning. Therefore, it is necessary to re-adapt all of the base torque, damper torque, and friction torque.
  • FIG. 13 is a diagram showing the relationship between the steering angle when steering the steering wheel and the target steering torque (base torque) in Embodiment 1 of the present disclosure.
  • the control unit 11 when sine wave steering is performed as in the adaptive method, the peak of the motor rotational angular velocity appears near neutral. Therefore, as shown in FIG. 13, when the steering angle shift calculation unit 26 is enabled, torque can be applied specifically near the neutral of the base torque (first torque), so the on-center feeling can be adjusted. .
  • FIG. 14 shows the operation locus of the steering angle when the driver releases the steering wheel from a state where the steering wheel is turned.
  • the motion trajectory TR1 is obtained in this embodiment.
  • the motion trajectory TR2 is obtained when the third torque calculation unit 29 is disabled.
  • the motion trajectory TR3 is obtained when the steering angle shift calculation section 26 and the third torque calculation section 29 are disabled.
  • the steering angle shift gain Dg of the steering angle shift calculation section 26, the damper gain map 29a of the base calculation section 27 for calculating the first torque, the second torque calculation section 28 for calculating the second torque, the third A damper gain map 29a of the third torque calculation unit 29 that calculates torque is variable with respect to vehicle speed.
  • the steering state detection unit 21 is provided with a steering angle sensor 4, and the steering angle detected by the steering angle sensor 4 is used in the steering angle shift calculation unit 26.
  • the motor rotation angle detected by the motor rotation angle sensor 10 may be converted into a steering angle.
  • the motor rotation angle detected by the motor rotation angle sensor 10 may be converted into the angle of the steering shaft 2 using the reduction ratio of the reduction mechanism 7.
  • the motor rotation angle is a relative angle to the angle of the steering shaft 2, a yaw rate sensor etc. (not shown) provided in the vehicle determines that the vehicle is traveling straight, and the relative angle is set to 0.
  • the absolute angle of the steering shaft 2 may be offset.
  • the basic configuration of the steering control device according to the present embodiment is the same as that of the steering control device (control unit 11) according to the first embodiment. However, the configuration of the steering angle shift calculation section 26 of the first torque calculation section 25 provided in the target steering torque setting section 22 of the control unit 11 is different. The steering angle shift calculation unit 26 will be explained below.
  • FIG. 15 is a block diagram showing the configuration of a steering angle shift calculation section in Embodiment 2 of the present disclosure.
  • the steering angle shift calculation section 26 according to the present embodiment has a configuration in which a steering angle application range adjustment map 26c and a multiplier 26d are added to the steering angle shift calculation section 26 shown in FIG. .
  • FIG. 16 is a diagram illustrating an example of a steering angle application range adjustment map used in the steering angle shift calculating section in Embodiment 2 of the present disclosure.
  • the steering angle application range adjustment map 26c shown in FIG. 16 shows a characteristic in which the steering angle application range adjustment gain gradually decreases as the magnitude (absolute value) of the steering angle of the steering wheel 1 increases.
  • different steering angle application range adjustment maps 26c are prepared for each vehicle speed.
  • different steering angle application range adjustment maps 26c are prepared for each of "low vehicle speed,” “medium vehicle speed,” and “high vehicle speed.”
  • the first torque calculation unit 25 changes the steering angle application range adjustment map 26c according to the vehicle speed.
  • the steering angle application range adjustment map 26c does not necessarily need to be prepared differently for each vehicle speed.
  • the multiplier 26d multiplies the first shift amount output from the multiplier 26a by the steering angle applicable range adjustment gain obtained using the steering angle applicable range adjustment map 26c to obtain the result after the steering angle applicable range adjustment.
  • a second shift amount which is a shift amount of the steering angle, is calculated.
  • a steering angle shift gain Dg is specified according to the input vehicle speed, and the specified steering angle shift gain Dg and the motor rotational angular velocity are multiplied by a multiplier 26a to obtain the first A shift amount (a shift amount of the steering angle of the steering wheel 1) is calculated. Further, one steering angle application range adjustment map 26c is specified according to the input vehicle speed, and a steering angle application range adjustment gain is determined using the input steering angle and the specified steering angle application range adjustment map 26c. It will be done. The first shift amount and the steering angle application range adjustment gain are multiplied by a multiplier 26d to calculate a second shift amount (the amount of shift of the steering angle after the steering angle application range adjustment). Then, the second shift amount is added to the steering angle by the adder 26b, thereby calculating the post-shift steering angle.
  • FIG. 17 is a diagram showing the relationship between the steering angle when steering the steering wheel and the target steering torque (base torque) in Embodiment 2 of the present disclosure.
  • the steering angle application range adjustment map 26c by providing the steering angle application range adjustment map 26c, it is possible to gradually reduce the steering angle after the steering angle shift as the steering angle increases. For this reason, as shown in FIG. 17, in this embodiment, the effective range of the steering angle shift calculation section imparted to the on-center feeling can be narrowed down to a more limited range than in the first embodiment. Thereby, it is possible to suppress the influence on the steering force angle characteristic that is adjusted with an intention different from the intention of adjusting the on-center feeling characteristic.
  • the present disclosure is not limited to the above embodiments, and can be freely modified without departing from the spirit of the present disclosure.
  • the electric power steering device PS described in the above embodiment may be of a column type or a rack and pinion type.
  • performing feedback control based on the target steering torque is also applicable to a steer-by-wire reaction force device or the like that includes at least a torque sensor.
  • the figures used in the description of the above-mentioned embodiments show an example, and the present invention is not limited thereto.
  • each component (target steering torque setting section 22 and torque feedback calculation section 23) included in the control unit 11 described above has a computer system therein. Then, by recording a program for realizing the functions of each component of the control unit 11 described above on a computer-readable recording medium, and having the computer system read and execute the program recorded on this recording medium. You may perform the process in each structure with which the control unit 11 mentioned above is provided.
  • “reading a program recorded on a recording medium into a computer system and executing it” includes installing the program on the computer system.
  • the "computer system” herein includes an OS and hardware such as peripheral devices.
  • a "computer system” may include a plurality of computer devices connected via the Internet or a network including a communication line such as a WAN, LAN, or a dedicated line.
  • a communication line such as a WAN, LAN, or a dedicated line.
  • computer-readable recording medium refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
  • the recording medium also includes a recording medium provided internally or externally that can be accessed from the distribution server to distribute the program.
  • the program may be divided into a plurality of parts, downloaded at different timings, and then combined into each component of the control unit 11.
  • the distribution servers that distribute each of the divided programs may be different. It's okay.
  • a "computer-readable recording medium” refers to a storage medium that retains a program for a certain period of time, such as a volatile memory (RAM) inside a computer system that is a server or client when the program is transmitted via a network. This shall also include things.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions.
  • it may be a so-called difference file (difference program) that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • SYMBOLS 1 Steering wheel, 2... Steering shaft, 5... Torque sensor, 6... Motor, 11... Control unit, 12... Current drive section, 21... Steering state detection section, 22... Target steering torque setting section, 23... Torque feedback calculation Part, 24... Motor rotation angular speed detection unit, 25... First torque calculation unit, 26... Steering angle shift calculation unit, 26c... Steering angle applicable range adjustment map, 27... Base calculation unit, 28... Second torque calculation unit, 29 ...Third torque calculation unit, 29a...Damper gain map, 29c...Damper torque map, 30...Target steering torque calculation unit, PS...Electric power steering device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

操舵制御装置(11)は、目標操舵トルクを設定する目標操舵トルク設定部(22)と、操舵トルクを目標操舵トルクに追従させる操舵補助トルクを演算する演算部(23)と、モータに流れる電流を制御して操舵補助トルクを発生させる電流駆動部(12)と、を備え、目標操舵トルク設定部は、モータの回転角速度に舵角ゲインを乗じてステアリングホイールの操舵角度のシフト量である第1シフト量を演算し、操舵角度に第1シフト量を加算して得られるシフト後操舵角度と、シフト後操舵角度に応じてベーストルクが徐々に大きくなる特性を示すベースマップとに基づいて第1トルクを求める第1トルク演算部と、モータの回転角速度を用いて、目標操舵トルクにヒステリシスを付与するための第2トルクを求める第2トルク演算部と、第1トルクと第2トルクとを加算して目標操舵トルクとして出力する目標操舵トルク演算部と、を備える。

Description

操舵制御装置及び電動パワーステアリング装置
 本開示は、操舵制御装置及び電動パワーステアリング装置に関する。
 電動パワーステアリング装置は、ステアリングに対して操舵補助トルクを発生させるモータと、そのモータを制御する操舵制御装置とを備えており、自動車等の車両の操舵機構に操舵補助力を付加する。このような電動パワーステアリング装置は、油圧式のパワーステアリング装置に比べて軽量コンパクトであるというメリットを有する。
 以下の特許文献1には、路面状態又はステアリング機構の経年劣化による機構特性の変化に影響されず、一定の操舵フィーリングを得ることができるようにした電動パワーステアリング装置が開示されている。この電動パワーステアリング装置は、操舵角度に対する操舵力の特性(以下、「操舵力角特性」という)を所望の操舵力特性(目標操舵力角特性)となるように設定することで、一定の操舵フィーリングを得るようにしている。
特許第6129409号公報
 ところで、上述した特許文献1に開示された電動パワーステアリング装置では、目標操舵力を、ばね成分、粘性成分、及び摩擦成分を含む操舵力特性モデルを用いて演算している。一方、ステアリング中立付近のオンセンタフィーリングを調整するには、粘性成分(ダンパトルク)又は摩擦成分(摩擦トルク)を増減させる必要がある。ここで、粘性成分又は摩擦成分は、オンセンタフィーリング以外の目的で調整されていることから、オンセンタフィーリングの調整のために粘性成分又は摩擦成分を変化させると、既に設定していた操舵フィーリングを崩しかねないという課題がある。
 本開示は上記事情に鑑みてなされたものであり、既に設定された操舵フィーリングへの影響を抑えつつ、簡単な構成でオンセンタフィーリングを調整することができる操舵制御装置及び電動パワーステアリング装置を提供することを目的とする。
 上記課題を解決するために、本開示の一態様による操舵制御装置は、ステアリングに対する目標操舵トルクを設定する目標操舵トルク設定部と、前記目標操舵トルクと、前記ステアリングのステアリング軸に作用する操舵トルクとの偏差に基づいて、前記操舵トルクを前記目標操舵トルクに追従させるために必要な操舵補助トルクを演算する演算部と、モータに流れる電流を制御して、前記ステアリングに対して前記操舵補助トルクを発生させる電流駆動部と、を備え、前記目標操舵トルク設定部が、前記モータの回転角速度に舵角ゲインを乗じてステアリングホイールの操舵角度のシフト量である第1シフト量を演算し、前記操舵角度に前記第1シフト量を加算して得られるシフト後操舵角度と、前記シフト後操舵角度の大きさが大きくなるにつれてベーストルクの大きさが徐々に大きくなる特性を示すベースマップとに基づいて第1トルクを求める第1トルク演算部と、前記モータの回転角速度を用いて、前記目標操舵トルクにヒステリシスを付与するための第2トルクを求める第2トルク演算部と、前記第1トルクと前記第2トルクとを加算して前記目標操舵トルクとして出力する目標操舵トルク演算部と、を備える。
 また、本開示の一態様によるパワーステアリング装置は、ステアリングのステアリング軸に作用する操舵トルクを検出する操舵トルク検出部と、ステアリングホイールの操舵角度を検出する操舵状態検出部と、前記ステアリング軸に操舵補助トルクを与えるモータと、前記モータの回転角速度を検出するモータ回転角速度検出部と、検出された前記操舵トルク、前記操舵角度、及び前記モータの回転角速度に基づいて、前記モータの駆動を制御する上記の操舵制御装置と、を備える。
 本開示によれば、既に設定された操舵フィーリングへの影響を抑えつつ、簡単な構成でオンセンタフィーリングを調整することができる。
本開示の実施の形態1による電動パワーステアリング装置の要部構成を示すブロック図である。 本開示の実施の形態1による操舵制御装置としての制御ユニットの要部構成を示すブロック図である。 本開示の実施の形態1による操舵制御装置としての制御ユニットの動作の概要を示すフローチャートである。 本開示の実施の形態1における目標操舵トルク設定部の内部構成の一例を示すブロック図である。 本開示の実施の形態1における第1トルク演算部で用いられる舵角シフトゲインの一例を示す図である。 本開示の実施の形態1における第1トルク演算部に設けられるベース演算部の構成例を示すブロック図である。 本開示の実施の形態1における第1トルク演算部に設けられるベース演算部の他の構成例を示すブロック図である。 図6Aに示すベース演算部で用いられるベースマップの一例を示す図である。 図6Bに示すベース演算部で用いられるベースマップの一例を示す図である。 本開示の実施の形態1における第2トルク演算部で用いられるヒステリシスゲインの一例を示す図である。 本開示の実施の形態1における第3トルク演算部の構成例を示すブロック図である。 本開示の実施の形態1における第3トルク演算部の他の構成例を示すブロック図である。 図9Aに示す第3トルク演算部で用いられるダンパゲインマップの一例を示す図である。 図9Bに示す第3トルク演算部で用いられるダンパトルクマップの一例を示す図である。 本開示の実施の形態1におけるトルクフィードバック演算部の内部構成の一例を示すブロック図である。 本開示の実施の形態1において、ステアリングホイール操舵時の操舵角度と目標操舵トルクとの関係を示す図である。 本開示の実施の形態1において、ステアリングホイール操舵時の操舵角度と目標操舵トルク(ベーストルク)との関係を示す図である。 運転者がステアリングホイールを切り込んだ状態から手放しした場合の操舵角度の動作軌跡を示すである。 本開示の実施の形態2における舵角シフト演算部の構成を示すブロック図である。 本開示の実施の形態2における舵角シフト演算部で用いられる操舵角度適用範囲調整マップの一例を示す図である。 本開示の実施の形態2において、ステアリングホイール操舵時の操舵角度と目標操舵トルク(ベーストルク)との関係を示す図である。
 以下、図面を参照して、本開示の実施の形態による操舵制御装置及び電動パワーステアリング装置について詳細に説明する。尚、各実施の形態において、同一又は相当する部分には同一符号をしており、重複する部分の説明は省略する。
〔実施の形態1〕
 〈電動パワーステアリング装置〉
 図1は、本開示の実施の形態1による電動パワーステアリング装置の要部構成を示すブロック図である。図1に示す通り、本実施の形態による電動パワーステアリング装置PSは、ステアリングホイール1、ステアリング軸2、転舵輪3、操舵角度センサ4、トルクセンサ5(操舵トルク検出部)、モータ6、減速機構7、車速センサ8、電流センサ9、モータ回転角度センサ10、及び制御ユニット11(操舵制御装置)を備える。
 ステアリングホイール1は、所謂ハンドルであり、車両の転舵輪3に対して操舵角を与えるために、車両の運転者によって操作される。ステアリング軸2は、ステアリングホイール1に連結されており、ステアリングホイール1の回転に応じて回転する。転舵輪3は、車両の左右両側に設けられており、ステアリング軸2の回転に応じて転舵する。尚、ステアリングホイール1及びステアリング軸2を含む、転舵輪3を転舵させる機構を「ステアリング」と呼ぶこととする。
 操舵角度センサ4は、ステアリングホイール1に配置されており、ステアリングホイール1の操舵角度を検出する。トルクセンサ5は、ステアリング軸2に配置されており、ステアリング軸2に作用する操舵トルクを検出する。モータ6は、減速機構7を介してステアリング軸2に連結しており、ステアリング軸2に操舵補助トルクを与える。車速センサ8は、車両の車速を検出する。電流センサ9は、モータ6に流れる電流を検出する。モータ回転角度センサ10は、モータ6の回転角度を検出する。
 制御ユニット11は、操舵角度センサ4、トルクセンサ5、車速センサ8、電流センサ9、及びモータ回転角度センサ10の検出結果に基づいてモータ6の駆動を制御して、ステアリングに対する操舵補助トルクを発生させる。具体的に、制御ユニット11は、上記の各検出結果に基づいてステアリング軸2に与える操舵補助トルク演算し、その操舵補助トルクを発生するために必要なモータ6の電流を制御する。以下、制御ユニット11について詳細に説明する。
 〈操舵制御装置〉
 図2は、本開示の実施の形態1による操舵制御装置としての制御ユニットの要部構成を示すブロック図である。図2に示す通り、制御ユニット11は、微分器24a、目標操舵トルク設定部22、トルクフィードバック演算部23(演算部)、及び電流駆動部12を備える。微分器24aは、モータ回転角度センサ10で検出されたモータ6の回転角度を微分して、モータ6の回転角速度(以下、「モータ回転角速度」という)を演算する。尚、微分器24aは、モータ回転角度センサ10とともに、モータ回転角速度を検出するモータ回転角速度検出部24を構成する。
 目標操舵トルク設定部22は、ステアリングに対する目標操舵トルクを設定する。ここで、目標操舵トルク設定部22には、操舵角度センサ4を含む操舵状態検出部21で検出されたステアリングホイール1の操舵角度、車速センサ8で検出された車両の車速、及びモータ回転角速度検出部24で検出されたモータ回転角速度が入力される。目標操舵トルク設定部22は、これらの検出結果を用いてステアリングに対する目標操舵トルクを設定する。尚、目標操舵トルク設定部22の詳細については後述する。
 トルクフィードバック演算部23は、目標操舵トルク設定部22で設定された目標操舵トルクと、トルクセンサ5で検出された操舵トルクとの偏差に基づいて、操舵トルクを目標操舵トルクに追従させるために必要な操舵補助トルクを演算する。電流駆動部12は、トルクフィードバック演算部23で演算された操舵補助トルクをステアリングに発生させるために、モータ6に流れる電流を制御する。
 尚、制御ユニット11の構成のうち、電流駆動部12を除く構成(微分器24a、目標操舵トルク設定部22、及びトルクフィードバック演算部23)は、CPU(中央処理装置)及びメモリを備えるマイコンによって実現される。マイコンに設けられるメモリは、揮発性のメモリと不揮発性のメモリとの双方を含んでいてもよい。電流駆動部12は、例えば、FET(電界効果トランジスタ)等の複数のスイッチング素子を備えるアナログ回路によって実現される。
 図3は、本開示の実施の形態1による操舵制御装置としての制御ユニットの動作の概要を示すフローチャートである。尚、図3に示すフローチャートの処理は、予め規定された制御周期で繰り返し行われる。処理が開始されると、まず、制御ユニット11が、操舵状態検出部21で検出された操舵角度、車速センサ8で検出された車速、トルクセンサ5で検出された操舵トルク、及びモータ回転角度センサ10で検出されたモータ回転角度を取得する。そして、制御ユニット11の微分器24aが、取得したモータ回転角度を微分してモータ回転角速度を求める(ステップS11)。
 次に、制御ユニット11の目標操舵トルク設定部22が、取得した操舵角度及び車速と、微分して得られたモータ回転角速度とを用いて目標操舵トルクを設定する(ステップS12)。次いで、制御ユニット11のトルクフィードバック演算部23が、目標操舵トルク設定部22で設定された目標操舵トルクと、トルクセンサ5で検出された操舵トルクとの偏差に基づいて、操舵トルクを目標操舵トルクに追従させるために必要な操舵補助トルクを演算する(ステップS13)。続いて、制御ユニット11の電流駆動部12が、トルクフィードバック演算部23で演算された操舵補助トルクをステアリングに発生させるために、モータ6に流れる電流を制御する(ステップS16)。
 図4は、本開示の実施の形態1における目標操舵トルク設定部の内部構成の一例を示すブロック図である。図4に示す通り、目標操舵トルク設定部22は、第1トルク演算部25、第2トルク演算部28、第3トルク演算部29、及び目標操舵トルク演算部30を備える。
 第1トルク演算部25は、舵角シフト演算部26とベース演算部27とを備えており、操舵角度、モータ回転角速度、及び車速を用いて、ベーストルクである第1トルクを求める。舵角シフト演算部26は、乗算器26aと加算器26bとを備えており、シフト後操舵角度を求める。乗算器26aは、モータ回転角速度に舵角シフトゲインDg(舵角ゲイン)を乗じてステアリングホイール1の操舵角度のシフト量である第1シフト量を演算する。加算器26bは、操舵角度に第1シフト量を加算してシフト後操舵角度を求める。ベース演算部27は、舵角シフト演算部26で求められたシフト後操舵角度と、シフト後操舵角度の大きさが大きくなるにつれてベーストルクの大きさが徐々に大きくなる特性を示すベースマップとに基づいて第1トルクを求める。
 図5は、本開示の実施の形態1における第1トルク演算部で用いられる舵角シフトゲインの一例を示す図である。図5に示す舵角シフトゲインDgは、ある車速までは車速が大きくなるにつれて値が徐々に大きくなるが、ある車速を超えると値が一定になるものである。このような舵角シフトゲインDgが用いられる場合には、第1トルク演算部25では、舵角シフトゲインDgが車速に応じて変更されることになる。尚、図5に例示する舵角シフトゲインDgは、車速に応じて値が変わるものであるが、車速に拘わらず値が変わらないものであってもよい。
 図6Aは、本開示の実施の形態1における第1トルク演算部に設けられるベース演算部の構成例を示すブロック図である。図6Aに示すベース演算部27は、ベースマップ27a、符号判定部27b、及び乗算器27cを備える。ベースマップ27aは、シフト後操舵角度に応じたベーストルクが規定されたマップである。図7Aは、図6Aに示すベース演算部で用いられるベースマップの一例を示す図である。図7Aに示すベースマップ27aは、シフト後操舵角度の大きさ(絶対値)が大きくなるにつれてベーストルクの正方向の大きさが徐々に大きくなる特性を有する。
 また、ベースマップ27aは、車速毎に異なるものが用意されている。図7Aに示す例では、「低車速」、「中車速」、及び「高車速」毎に、異なるベースマップ27aが用意されている。このようなベースマップ27aが用意されている場合には、第1トルク演算部25では、ベースマップ27aが車速に応じて変更されることになる。但し、ベースマップ27aは、必ずしも車速毎に異なるものが用意されている必要はない。符号判定部27bは、シフト後操舵角度の符号が正(+1)であるか、負(-1)であるかを判定する。乗算器27cは、ベースマップ27aを用いて求められたベーストルクの大きさと符号判定部27bで判定された符号とを乗算する。
 このようなベース演算部27では、入力される車速に応じて1つのベースマップ27aが特定される。ベース演算部27に入力されるシフト後操舵角度と特定されたベースマップ27aとを用いてベーストルク(第1トルク)の大きさが求められる。また、入力されるシフト後操舵角度の符号が、符号判定部27bによって判定される。そして、ベースマップ27aを用いて求められたベーストルク(第1トルク)の大きさと、符号判定部27bによって判定された後操舵角度の符号とが乗算器27cで乗算されることによって、ベーストルク(第1トルク)が求められる。
 図6Bは、本開示の実施の形態1における第1トルク演算部に設けられるベース演算部の他の構成例を示すブロック図である。図6Bに示すベース演算部27は、ベースマップ27aのみを備える。図6Bに示すベースマップ27aは、図6Aに示すベースマップ27aと同様に、シフト後操舵角度に応じたベーストルクが規定されたマップである。図7Bは、図6Bに示すベース演算部で用いられるベースマップの一例を示す図である。
 図6Bに示すベースマップ27aは、図7Bに示す通り、シフト後操舵角度の正方向の大きさが大きくなるにつれてベーストルクの正方向の大きさが徐々に大きくなり、シフト後操舵角度の負方向の大きさが大きくなるにつれてベーストルクの負方向の大きさが徐々に大きくなる特性を有する。図6Bに示すベースマップ27aも、車速毎に異なるものが用意されている。図7Bに示す例では、図7Aに示す例と同様に、「低車速」、「中車速」、及び「高車速」毎に、異なるベースマップ27aが用意されている。このようなベースマップ27aが用意されている場合には、第1トルク演算部25では、ベースマップ27aが車速に応じて変更されることになる。但し、ベースマップ27aは、必ずしも車速毎に異なるものが用意されている必要はない。
 このようなベース演算部27では、入力される車速に応じて1つのベースマップ27aが特定される。ベース演算部27に入力されるシフト後操舵角度と特定されたベースマップ27aとを用いてベーストルク(第1トルク)が求められる。
 第2トルク演算部28は、モータ回転角速度及び車速に基づいて、摩擦トルクである第2トルクを求める。モータ回転角速度をdθm、ヒステリシスゲインをTfとすると、第2トルク(摩擦トルク)は、以下の式で表される。以下の式から分かる通り、第2トルク(摩擦トルク)は、モータ回転角速度dθmが大きくなると一定の大きさになり、飽和状態になる。
Figure JPOXMLDOC01-appb-M000001
 図8は、本開示の実施の形態1における第2トルク演算部で用いられるヒステリシスゲインの一例を示す図である。図8に例示するヒステリシスゲインTfは、ある車速までは車速が大きくなるにつれて値が徐々に小さくなるが、ある車速を超えると車速が大きくなるにつれて値が徐々に大きくなるものである。尚、図8に例示するヒステリシスゲインTfは、車速に応じて値が変わるものであるが、車速に拘わらず値が変わらないものであってもよい。
 尚、第2トルク演算部28において、求められた第2トルク(摩擦トルク)に対して、ローパスフィルタによるローパスフィルタ処理を行ってもよい。ここで、ローパスフィルタのカットオフ周波数は、運転者の操舵周波数を含むように設定された周波数成分を抽出できる値に設定する。一般的に、運転者の限界操舵周波数は5[Hz]程度であり、ステアリング軸2の共振周波数は十数[Hz]付近にあるため、カットオフ周波数は0より大きく10[Hz]以下の値に設定する。
 第3トルク演算部29は、モータ回転角速度及び車速に基づいて、ダンパトルクである第3トルクを求める。
 図9Aは、本開示の実施の形態1における第3トルク演算部の構成例を示すブロック図である。図9Aに示す第3トルク演算部29は、ダンパゲインマップ29a及び乗算器29bを備える。ダンパゲインマップ29aは、モータ回転角速度に応じたダンパゲインが規定されたマップである。図10Aは、図9Aに示す第3トルク演算部で用いられるダンパゲインマップの一例を示す図である。
 図10Aに示すダンパゲインマップ29aは、モータ回転角速度の大きさ(絶対値)がある値を超えると、モータ回転角速度の大きさ(絶対値)が大きくなるにつれてダンパゲインの大きさが徐々に大きくなる特性を有する。尚、ダンパゲインの大きさは、モータ回転角速度の大きさ(絶対値)がある値になるまでは零である。
 また、ダンパゲインマップ29aは、車速毎に異なるものが用意されている。図10Aに示す例では、「低車速」、「中車速」、及び「高車速」毎に、異なるダンパゲインマップ29aが用意されている。このようなダンパゲインマップ29aが用意されている場合には、第3トルク演算部29では、ダンパゲインマップ29aが車速に応じて変更されることになる。但し、ダンパゲインマップ29aは、必ずしも車速毎に異なるものが用意されている必要はない。乗算器29bは、モータ回転角速度と、ダンパゲインマップ29aを用いて求められたダンパゲインとを乗算する。
 このような第3トルク演算部29では、入力される車速に応じて1つのダンパゲインマップ29aが特定される。第3トルク演算部29に入力されるモータ回転角速度と特定されたダンパゲインマップ29aとを用いてダンパゲインが求められる。そして、ダンパゲインマップ29aを用いて求められたダンパゲインと、モータ回転角速度とが乗算器29bで乗算されることによって、ダンパトルク(第3トルク)が求められる。
 図9Bは、本開示の実施の形態1における第3トルク演算部の他の構成例を示すブロック図である。図9Bに示す第3トルク演算部29は、ダンパトルクマップ29c、符号判定部29d、及び乗算器29eを備える。ダンパトルクマップ29cは、モータ回転角速度に応じたダンパトルクが規定されたマップである。図10Bは、図9Bに示す第3トルク演算部で用いられるダンパトルクマップの一例を示す図である。
 図10Bに示すダンパトルクマップ29cは、図10Aに示すダンパゲインマップ29aと同様の特性を有する。つまり、図10Bに示すダンパトルクマップ29cは、モータ回転角速度の大きさ(絶対値)がある値を超えると、モータ回転角速度の大きさ(絶対値)が大きくなるにつれてダンパトルクの大きさが徐々に大きくなる特性を有する。尚、ダンパトルクの大きさは、モータ回転角速度の大きさ(絶対値)がある値になるまでは零である。
 また、ダンパトルクマップ29cは、車速毎に異なるものが用意されている。図10Bに示す例では、「低車速」、「中車速」、及び「高車速」毎に、異なるダンパトルクマップ29cが用意されている。このようなダンパトルクマップ29cが用意されている場合には、第3トルク演算部29では、ダンパトルクマップ29cが車速に応じて変更されることになる。但し、ダンパトルクマップ29cは、必ずしも車速毎に異なるものが用意されている必要はない。符号判定部29dは、モータ回転角速度の符号が正(+1)であるか、負(-1)であるかを判定する。乗算器29eは、ダンパトルクマップ29cを用いて求められたダンパトルクの大きさと符号判定部29dで判定された符号とを乗算する。
 このような第3トルク演算部29では、入力される車速に応じて1つのダンパトルクマップ29cが特定される。第3トルク演算部29に入力されるモータ回転角速度と特定されたダンパトルクマップ29cとを用いてダンパトルク(第3トルク)の大きさが求められる。また、入力されるモータ回転角速度の符号が、符号判定部29dによって判定される。そして、ダンパトルクマップ29cを用いて求められたダンパトルク(第3トルク)の大きさと、符号判定部29dによって判定されたモータ回転角速度の符号とが乗算器29eで乗算されることによって、ダンパトルク(第3トルク)が求められる。
 目標操舵トルク演算部30は、加算器30a,30bを備えており、第1トルク演算部25で演算されたベーストルク(第1トルク)、第2トルク演算部28で演算された摩擦トルク(第2トルク)、及び第3トルク演算部29で演算されたダンパトルク(第3トルク)を加算する。具体的に、摩擦トルク(第2トルク)とダンパトルク(第3トルク)とを加算器30bによって加算し、加算器30bから出力されるトルクとベーストルク(第1トルク)とを加算器30aによって加算する。目標操舵トルク演算部30は、加算して得られたトルクを目標操舵トルクとして出力する。
 図11は、本開示の実施の形態1におけるトルクフィードバック演算部の内部構成の一例を示すブロック図である。図11に示す通り、トルクフィードバック演算部23は、減算器31、第1の操舵補助トルク演算部32、第2の操舵補助トルク演算部33、第3の操舵補助トルク演算部34、及び加算器35を備える。このようなトルクフィードバック演算部23は、目標操舵トルク設定部22で設定された目標操舵トルクと、トルクセンサ5で検出された操舵トルクとの偏差に基づいて、操舵トルクを目標操舵トルクに追従させるために必要な操舵補助トルクを演算する。
 減算器31は、目標操舵トルク設定部22で設定された目標操舵トルクと、トルクセンサ5で検出された操舵トルクとの偏差を求める。第1の操舵補助トルク演算部32は、積分器32a及び乗算器23bを備えており、減算器31で求められた偏差を積分器32aで積分し、積分された偏差に積分制御ゲインKTIを掛ける演算を乗算器32bで行うことにより、第1の操舵補助トルクを演算する。
 第2の操舵補助トルク演算部33は、乗算器33aを備えており、モータ回転角速度に速度制御ゲインKTVを掛ける演算を乗算器33aで行うことにより、第2の操舵補助トルクを演算する。第3の操舵補助トルク演算部34は、乗算器34aを備えており、減算器31で求められた偏差に比例制御ゲインKTPを掛ける演算を乗算器34aで行うことにより、第3の操舵補助トルクを演算する。
 加算器35は、第1の操舵補助トルク演算部32で演算された第1の操舵補助トルク、第2の操舵補助トルク演算部33で演算された第2の操舵補助トルク、及び第3の操舵補助トルク演算部34で演算された第3の操舵補助トルクを加算する。そして、加算器35は、加算して得られたトルクを、操舵補助トルクとして出力する。
 ここで、操舵補助トルクは、積分制御成分(第1の操舵補助トルク)を含んでいるため、運転者の操舵トルクが目標操舵トルクに追従する。これにより、運転者は適切なトルクで操舵することができる。また、運転者がステアリングホイール1から手を離した場合には、モータ回転角速度に速度制御ゲインKTVを掛けたモータ速度制御成分(第2の操舵補助トルク)により、操舵トルクを目標操舵トルクと零との間の値に調整することが可能となる。これにより、操舵トルクが目標操舵トルクに追従することで、滑らかな操舵を実現することができる。また、モータ速度制御成分(第2の操舵補助トルク)を用いることで、モータ6とトルクセンサ5との位置が離れている場合においても、制御の安定性を確保することができる。更に、目標操舵トルクの微分が不要であるため、ノイズを抑えることでき、滑らかなで安定した操舵を実現できる。
 操舵補助トルク比例制御成分(第3の操舵補助トルク)は、操舵補助トルク積分制御成分(第1の操舵補助トルク)に比べて応答性が速いため、追従応答性を早くすることができ、オーバーシュートを低減できる。その結果、運転者がステアリングホイール1を把持して操舵している場合には、操舵トルクが目標操舵トルクに安定的に追従し、より滑らかな操舵を実現することができる。尚、本実施の形態では、安定性及び追従性を実現するための構成として、トルクフィードバックを行うトルクフィードバック演算部23を備える場合を例に挙げて説明した。しかしながら、目標操舵トルクと操舵トルクとの偏差をフィードバックできるのであれば、トルクフィードバックを行う構成に限られない。
 次に、以上説明した制御ユニット11(操舵制御装置)を備える効果について説明する。操舵状況に応じて目標操舵トルクを設定し、目標操舵トルクに操舵トルクが追従するように制御する操舵制御装置では、運転者は車の操舵フィーリングを設定する際、目標操舵トルクが所望の特性になるように目標操舵力角特性の適合を行っていく。具体的な適合方法は適合したい車速において0.2[Hz]程度の正弦波でステアリングホイール1を操作し横加速度が0.2[G]以下となるような操舵方法を想定している。
 前述した特許文献1に開示された技術では、所望のフィーリングを実現するために目標操舵力角特性を設定する際において、ばね成分(ベーストルク)、粘性成分(ダンパトルク)、及び摩擦成分(摩擦トルク)に分解した操舵力特性モデルを用いている。また、前述した特許文献1に開示された技術では、センターフィーリングを規定した複数のセンターフィール評価指数に基づいて目標操舵トルクを設定できる。しかしながら、操舵力特性モデルで操舵角度の中立付近のオンセンタフィーリング特性を調整する場合には、それ以外の舵角範囲の特性に影響を及ぼしてしまう虞があった。
 図12は、本開示の実施の形態1において、ステアリングホイール操舵時の操舵角度と目標操舵トルクとの関係を示す図である。図12中の目標操舵力角特性Aは、ベーストルク、ダンパトルク、摩擦トルクを加算して作成した基本的な特性である。図12中の目標操舵力角特性Bは、目標操舵力角特性Aに対してオンセンタフィーリングの特性が付与された本実施の形態における特性である。
 目標操舵力角特性Cは、目標操舵力角特性Aに対して、目標操舵力角特性Bと同様のオンセンタフィーリング特性を、粘性成分で調整して付与した特許文献1に開示された技術における特性である。目標操舵力角特性Dは、目標操舵力角特性Aに対して、目標操舵力角特性Bと同様のオンセンタフィーリング特性を、摩擦成分で調整して付与した特許文献1に開示された技術における特性である。
 図12に示す通り、オンセンタフィーリングを粘性成分又は摩擦成分で付与しようとすると、目標操舵力角特性は、最初に設定した基本的な目標操舵力角特性Aから大幅に変わってしまう。このため、ベーストルク、ダンパトルク、摩擦トルクの全てについて再度の適合が必要になる。
 図13は、本開示の実施の形態1において、ステアリングホイール操舵時の操舵角度と目標操舵トルク(ベーストルク)との関係を示す図である。本実施の形態による制御ユニット11では、適合方法のように正弦波操舵した場合には、モータ回転角速度のピークが中立付近に現れる。このため、図13に示す通り、舵角シフト演算部26が有効の場合には、ベーストルク(第1トルク)の中立付近に特化してトルクを付与できるためオンセンタフィーリングを調節することができる。
 図14は、運転者がステアリングホイールを切り込んだ状態から手放しした場合の操舵角度の動作軌跡を示すである。動作軌跡TR1は、本実施の形態で得られるものである。動作軌跡TR2は、第3トルク演算部29を無効にした場合に得られるものである。動作軌跡TR3は、舵角シフト演算部26及び第3トルク演算部29を無効にした場合に得られるものである。図14を参照すると、本実施の形態では、舵角シフト演算部26及び第3トルク演算部29が設けられていることで、ステアリングホイール1の挙動を抑制することができ、高い収れん性を持たせることが可能になる。その結果、ステアリングホイール1をオーバーシュート及び発振させることなく収束させる事ができる。
 更に、本実施の形態では、舵角シフト演算部26の舵角シフトゲインDg、第1トルクを求めるベース演算部27のダンパゲインマップ29a、第2トルクを求める第2トルク演算部28、第3トルクを求める第3トルク演算部29のダンパゲインマップ29aが車速に対して可変になっている。これにより、車速によって変化する路面反力トルクの特性に対応して、適切な制御ゲインを設定することができ、車速に応じて目標操舵トルクを柔軟に設定できることで多種多様な操舵フィーリングを実現できる。尚、全てのゲインを車速に対して可変にする必要はなく、少なくとも1つのゲイン又はマップを車速に対して可変にしてもよい。
 また、本実施の形態では、操舵状態検出部21に操舵角度センサ4を設け、操舵角度センサ4で検出された操舵角度を舵角シフト演算部26で用いている。しかしながら、操舵角度センサ4の検出結果の代わりに、モータ回転角度センサ10で検出されたモータ回転角度を操舵角度に換算したものを用いてもよい。例えば、モータ回転角度センサ10で検出されたモータ回転角度を、減速機構7の減速比を用いてステアリング軸2の角度に換算したものを用いてもよい。更に、モータ回転角度がステアリング軸2の角度に対して相対角度である場合は、車両に備えたヨーレートセンサ等(図示省略)により直進走行であると判断し、その相対角度が0となるようにオフセットさせステアリング軸2の絶対角度としてもよい。
〔実施の形態2〕
 〈電動パワーステアリング装置〉
 本実施の形態による電動パワーステアリング装置の構成は、基本的に、図1に示す電動パワーステアリング装置PSの構成と同様である。このため、本実施の形態による電動パワーステアリング装置の詳細な説明は省略する。
 〈操舵制御装置〉
 本実施の形態による操舵制御装置の基本的な構成は、実施の形態1による操舵制御装置(制御ユニット11)と同様である。但し、制御ユニット11の目標操舵トルク設定部22に設けられる第1トルク演算部25の舵角シフト演算部26の構成が異なる。以下、舵角シフト演算部26について説明する。
 図15は、本開示の実施の形態2における舵角シフト演算部の構成を示すブロック図である。図15に示す通り、本実施の形態による舵角シフト演算部26は、図4に示す舵角シフト演算部26に対して操舵角度適用範囲調整マップ26c及び乗算器26dが追加された構成である。図4に示す舵角シフト演算部26と、図15に示す本実施の形態における舵角シフト演算部26とは、ステアリングホイール1の操舵角度のシフト量である第1シフト量を演算する方法が異なる。
 図16は、本開示の実施の形態2における舵角シフト演算部で用いられる操舵角度適用範囲調整マップの一例を示す図である。図16に示す操舵角度適用範囲調整マップ26cは、ステアリングホイール1の操舵角度の大きさ(絶対値)が大きくなるにつれて操舵角度適用範囲調整ゲインが徐々に小さくなる特性を示す。
 また、操舵角度適用範囲調整マップ26cは、車速毎に異なるものが用意されている。図16に示す例では、「低車速」、「中車速」、及び「高車速」毎に、異なる操舵角度適用範囲調整マップ26cが用意されている。このような操舵角度適用範囲調整マップ26cが用意されている場合には、第1トルク演算部25では、操舵角度適用範囲調整マップ26cが車速に応じて変更されることになる。但し、操舵角度適用範囲調整マップ26cは、必ずしも車速毎に異なるものが用意されている必要はない。
 乗算器26dは、乗算器26aから出力される第1シフト量と、操舵角度適用範囲調整マップ26cを用いて求められた操舵角度適用範囲調整ゲインとを乗算して、操舵角度適用範囲調整後の操舵角度のシフト量である第2シフト量を演算する。
 このような舵角シフト演算部26では、入力される車速に応じて舵角シフトゲインDgが特定され、特定された舵角シフトゲインDgとモータ回転角速度とが乗算器26aで乗算されて第1シフト量(ステアリングホイール1の操舵角度のシフト量)が演算される。また、入力される車速に応じて1つの操舵角度適用範囲調整マップ26cが特定され、入力される操舵角度と特定された操舵角度適用範囲調整マップ26cとを用いて操舵角度適用範囲調整ゲインが求められる。上記の第1シフト量と上記の操舵角度適用範囲調整ゲインとが乗算器26dで乗算されて第2シフト量(操舵角度適用範囲調整後の操舵角度のシフト量)が算出される。そして、操舵角度に対して、第2シフト量が加算器26bにおいて加算されることにより、シフト後操舵角度が演算される。
 図17は、本開示の実施の形態2において、ステアリングホイール操舵時の操舵角度と目標操舵トルク(ベーストルク)との関係を示す図である。本実施の形態では、操舵角度適用範囲調整マップ26cを設けることで、操舵角度の増加に伴って徐々に舵角シフト後操舵角度を小さくすることがきる。このため、図17に示す通り、本実施の形態では、オンセンタフィーリングに付与する舵角シフト演算部の効果範囲を、実施の形態1よりも限定的な範囲に絞ることができる。これにより、オンセンタフィーリング特性を調整する意図とは異なる意図で調整された操舵力角特性への影響を抑えることができる。
 以上、本開示の実施の形態について説明したが、本開示は、上記の実施の形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で自由に変更が可能である。例えば、上述した実施の形態で説明した電動パワーステアリング装置PSは、コラム方式のものであってもよく、ラックアンドピニオン方式のものであってもよい。また、目標操舵トルクに基づくフィードバック制御を行うということでは、トルクセンサを少なくとも備えるステアバイワイヤ反力装置等にも適用可能である。また、上述の実施形態の説明において使用した図は一例を示すものであり、これらに限られない。
 尚、上述した制御ユニット11が備える各構成(目標操舵トルク設定部22及びトルクフィードバック演算部23)は、内部に、コンピュータシステムを有している。そして、上述した制御ユニット11が備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述した制御ユニット11が備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OS及び周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、インターネット又はWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。
 また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。尚、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に制御ユニット11が備える各構成で合体される構成であってもよく、また、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。更に「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバ又はクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。更に、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 1…ステアリングホイール、2…ステアリング軸、5…トルクセンサ、6…モータ、11…制御ユニット、12…電流駆動部、21…操舵状態検出部、22…目標操舵トルク設定部、23…トルクフィードバック演算部、24…モータ回転角速度検出部、25…第1トルク演算部、26…舵角シフト演算部、26c…操舵角度適用範囲調整マップ、27…ベース演算部、28…第2トルク演算部、29…第3トルク演算部、29a…ダンパゲインマップ、29c…ダンパトルクマップ、30…目標操舵トルク演算部、PS…電動パワーステアリング装置

Claims (12)

  1.  ステアリングに対する目標操舵トルクを設定する目標操舵トルク設定部と、
     前記目標操舵トルクと、前記ステアリングのステアリング軸に作用する操舵トルクとの偏差に基づいて、前記操舵トルクを前記目標操舵トルクに追従させるために必要な操舵補助トルクを演算する演算部と、
     モータに流れる電流を制御して、前記ステアリングに対して前記操舵補助トルクを発生させる電流駆動部と、
     を備え、
     前記目標操舵トルク設定部は、前記モータの回転角速度に舵角ゲインを乗じてステアリングホイールの操舵角度のシフト量である第1シフト量を演算し、前記操舵角度に前記第1シフト量を加算して得られるシフト後操舵角度と、前記シフト後操舵角度の大きさが大きくなるにつれてベーストルクの大きさが徐々に大きくなる特性を示すベースマップとに基づいて第1トルクを求める第1トルク演算部と、
     前記モータの回転角速度を用いて、前記目標操舵トルクにヒステリシスを付与するための第2トルクを求める第2トルク演算部と、
     前記第1トルクと前記第2トルクとを加算して前記目標操舵トルクとして出力する目標操舵トルク演算部と、
     を備える操舵制御装置。
  2.  前記第1トルク演算部は、前記シフト後操舵角度を演算する舵角シフト演算部と、
     前記シフト後操舵角度と前記ベースマップとに基づいて前記第1トルクを求めるベース演算部と、
     を備える請求項1記載の操舵制御装置。
  3.  前記舵角シフト演算部は、前記操舵角度に応じた操舵角度適用範囲調整ゲインが規定された操舵角度適用範囲調整マップを更に備え、
     前記操舵角度適用範囲調整マップから得られる前記操舵角度に応じた操舵角度適用範囲調整ゲインと前記第1シフト量とを乗じて操舵角度適用範囲調整後の前記操舵角度のシフト量である第2シフト量を演算し、前記第2シフト量に前記操舵角度を加算して前記シフト後操舵角度を演算する、
     請求項2記載の操舵制御装置。
  4.  前記操舵角度適用範囲調整マップは、前記操舵角度の大きさが大きくなるにつれて前記操舵角度適用範囲調整ゲインが徐々に小さくなる特性を示すマップである、請求項3記載の操舵制御装置。
  5.  前記第1トルク演算部は、前記舵角ゲイン、前記ベースマップ、及び前記操舵角度適用範囲調整マップの少なくとも1つを車両の車速に応じて変更する、請求項3又は請求項4記載の操舵制御装置。
  6.  前記第2トルク演算部は、前記モータの回転角速度と、車両の車速毎に規定されたヒステリシスゲインとを用いて前記第2トルクを求める、請求項1から請求項5の何れか一項に記載の操舵制御装置。
  7.  前記目標操舵トルク設定部は、前記モータの回転角速度に基づいて、ダンパトルクとしての第3トルクを求める第3トルク演算部を更に備え、
     前記目標操舵トルク演算部は、前記第1トルク、前記第2トルク、及び前記第3トルクを加算して前記目標操舵トルクとして出力する、
     請求項1から請求項6の何れか一項に記載の操舵制御装置。
  8.  前記第3トルク演算部は、前記モータの回転角速度に応じたダンパゲインが規定されたダンパゲインマップを更に備え、
     前記ダンパゲインマップを用いて前記モータの回転角速度に応じたダンパゲインを特定し、特定した前記ダンパゲインと前記モータの回転角速度とを乗じて前記第3トルクを求める、
     請求項7記載の操舵制御装置。
  9.  前記第3トルク演算部は、車両の車速に応じて前記ダンパゲインマップを変更する、請求項8記載の操舵制御装置。
  10.  前記第3トルク演算部は、前記モータの回転角速度に応じたダンパトルクが規定されたダンパトルクマップを更に備え、
     前記モータの回転角速度と前記ダンパトルクマップとに基づいて前記第3トルクを求める、
     請求項7記載の操舵制御装置。
  11.  前記第3トルク演算部は、車両の車速に応じて前記ダンパトルクマップを変更する、請求項10記載の操舵制御装置。
  12.  ステアリングのステアリング軸に作用する操舵トルクを検出する操舵トルク検出部と、
     ステアリングホイールの操舵角度を検出する操舵状態検出部と、
     前記ステアリング軸に操舵補助トルクを与えるモータと、
     前記モータの回転角速度を検出するモータ回転角速度検出部と、
     検出された前記操舵トルク、前記操舵角度、及び前記モータの回転角速度に基づいて、前記モータの駆動を制御する請求項1から請求項11の何れか一項に記載の操舵制御装置と、
     を備える電装パワーステアリング装置。
PCT/JP2022/018546 2022-04-22 2022-04-22 操舵制御装置及び電動パワーステアリング装置 WO2023203751A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/018546 WO2023203751A1 (ja) 2022-04-22 2022-04-22 操舵制御装置及び電動パワーステアリング装置
JP2024516033A JPWO2023203751A1 (ja) 2022-04-22 2022-04-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018546 WO2023203751A1 (ja) 2022-04-22 2022-04-22 操舵制御装置及び電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2023203751A1 true WO2023203751A1 (ja) 2023-10-26

Family

ID=88419448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018546 WO2023203751A1 (ja) 2022-04-22 2022-04-22 操舵制御装置及び電動パワーステアリング装置

Country Status (2)

Country Link
JP (1) JPWO2023203751A1 (ja)
WO (1) WO2023203751A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120745A (ja) * 2000-10-19 2002-04-23 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
WO2012073760A1 (ja) * 2010-11-29 2012-06-07 本田技研工業株式会社 電動パワーステアリング装置
WO2015163051A1 (ja) * 2014-04-25 2015-10-29 三菱電機株式会社 操舵制御装置およびその操舵補助トルク制御方法
JP6129409B2 (ja) 2014-04-10 2017-05-17 三菱電機株式会社 入出力装置、ステアリング測定装置、および、制御装置
JP2017094935A (ja) * 2015-11-24 2017-06-01 株式会社ショーワ 電動パワーステアリング装置
JP2018047815A (ja) * 2016-09-23 2018-03-29 Kyb株式会社 電動パワーステアリング装置
WO2020100411A1 (ja) * 2018-11-15 2020-05-22 日本精工株式会社 車両用操向装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120745A (ja) * 2000-10-19 2002-04-23 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
WO2012073760A1 (ja) * 2010-11-29 2012-06-07 本田技研工業株式会社 電動パワーステアリング装置
JP6129409B2 (ja) 2014-04-10 2017-05-17 三菱電機株式会社 入出力装置、ステアリング測定装置、および、制御装置
WO2015163051A1 (ja) * 2014-04-25 2015-10-29 三菱電機株式会社 操舵制御装置およびその操舵補助トルク制御方法
JP2017094935A (ja) * 2015-11-24 2017-06-01 株式会社ショーワ 電動パワーステアリング装置
JP2018047815A (ja) * 2016-09-23 2018-03-29 Kyb株式会社 電動パワーステアリング装置
WO2020100411A1 (ja) * 2018-11-15 2020-05-22 日本精工株式会社 車両用操向装置

Also Published As

Publication number Publication date
JPWO2023203751A1 (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
JP6058214B2 (ja) 操舵制御装置およびその操舵補助トルク制御方法
JP5126357B2 (ja) 車両の操舵装置
US8140222B2 (en) Electric power steering system
WO2018142650A1 (ja) 電動パワーステアリング装置
JP4019825B2 (ja) 電動パワーステアリング装置
US20060042860A1 (en) Steering control device
US20070100524A1 (en) Control device for electric power steering system
US10556619B2 (en) Steering control apparatus
JP2020163990A (ja) 操舵制御装置
JP7376243B2 (ja) 操舵制御装置
EP1951564A1 (en) Electrical power assisted steering system
JP2020163989A (ja) 操舵制御装置
JPWO2019082835A1 (ja) 車両用操向装置
WO2023203751A1 (ja) 操舵制御装置及び電動パワーステアリング装置
JP7338520B2 (ja) 操舵制御装置
JP2001247049A (ja) 電動パワーステアリング装置
JP2022049967A (ja) 操舵制御装置
JP7322461B2 (ja) 操舵制御装置
JP2020163988A (ja) 操舵制御装置
JP2007099060A (ja) 車両の操舵装置
WO2022085536A1 (ja) ステアリング装置
JP2019206293A (ja) 操舵制御装置
JP7268488B2 (ja) 車両用操向装置
JP2022160308A (ja) 操舵制御装置
WO2020026492A1 (ja) 操舵制御装置及び操舵制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024516033

Country of ref document: JP