JP2017094935A - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP2017094935A
JP2017094935A JP2015229096A JP2015229096A JP2017094935A JP 2017094935 A JP2017094935 A JP 2017094935A JP 2015229096 A JP2015229096 A JP 2015229096A JP 2015229096 A JP2015229096 A JP 2015229096A JP 2017094935 A JP2017094935 A JP 2017094935A
Authority
JP
Japan
Prior art keywords
steering
current
steering angle
angular velocity
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015229096A
Other languages
English (en)
Other versions
JP6609465B2 (ja
Inventor
紘章 栗原
Hiroaki Kurihara
紘章 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2015229096A priority Critical patent/JP6609465B2/ja
Publication of JP2017094935A publication Critical patent/JP2017094935A/ja
Application granted granted Critical
Publication of JP6609465B2 publication Critical patent/JP6609465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】トルク検出手段に故障が生じた場合においても、ドライバーの理想的な操舵速度でステアリングホイールを回転させることができる技術を提供する。【解決手段】車両のステアリングホイールの操舵に対する補助力を加える電動モータ110と、ステアリングホイールの操舵トルクを検出するトルクセンサ109と、ステアリングホイールの回転角度である操舵角を検出する操舵角算出部73と、トルクセンサ109が正常である場合にはトルクセンサ109が検出したトルクに基づいて、トルクセンサ109が正常ではない場合には操舵角算出部73が検出した操舵角及び目標の操舵角速度と実際の操舵角速度との偏差に基づいて電動モータ110の駆動力を制御する制御装置10と、を備える。【選択図】図2

Description

本発明は、電動パワーステアリング装置に関する。
近年、電動パワーステアリング装置において、操舵トルクを検出する検出手段(トルクセンサ)により操舵トルクを検出することができなくなった場合においても、電動モータによるアシスト力を付与することを可能とする技術が提案されている。
例えば、特許文献1に記載の電動パワーステアリング装置は、トルクセンサで故障が発生した場合に、操舵角θおよびその微分値である操舵角速度ωに基づき、モータの電流目標値を次のように設定する。θ>0かつω≧0のときには、右方向へのハンドル操作を補助すべく、車速で定まる一定電流値I(V)を電流目標値として設定する。θ<0かつω≦0のときには、左方向へのハンドル操作を補助すべく、−I(V)を電流目標値として設定する。一方、θ>0かつω<0、または、θ<0かつω>0のときは、ハンドルが戻り状態にあるので、操舵補助を停止すべく電流目標値を零と設定する。
特開2003−72580号公報
本発明は、トルク検出手段に故障が生じた場合においても、ドライバーの理想的な操舵速度でステアリングホイールを回転させることができる電動パワーステアリング装置を提供することを目的とする。
かかる目的のもと、本発明は、車両のステアリングホイールの操舵に対する補助力を加える電動モータと、前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、前記トルク検出手段が正常である場合には前記トルク検出手段が検出したトルクに基づいて、前記トルク検出手段が正常ではない場合には前記操舵角検出手段が検出した前記操舵角及び目標の操舵角速度と実際の操舵角速度との偏差に基づいて前記電動モータの駆動力を制御する制御手段と、を備えることを特徴とする電動パワーステアリング装置である。
本発明によれば、トルク検出手段に故障が生じた場合においても、ドライバーの理想的な操舵速度でステアリングホイールを回転させることができる。
実施の形態に係る電動パワーステアリング装置の概略構成を示す図である。 制御装置の概略構成図である。 目標電流算出部の概略構成図である。 操舵トルク及び車速とベース電流との対応を示す制御マップの概略図である。 制御部の概略構成図である。 センサ故障時電流決定部の概略構成図である。 仮センサ故障時電流決定部の概略構成図である。 センサ故障時ベース電流算出部の概略構成図である。 絶対値化後操舵角と仮センサ故障時ベース電流との対応を示す制御マップの概略図である。 車速補正係数と車速との対応を示す制御マップの概略図である。 戻り補正係数設定部の概略構成図である。 絶対値化後操舵角と仮戻り補正係数との対応を示す制御マップの概略図である。 モータ回転速度と回転速度補正係数との対応を示す制御マップの概略図である。 車速と車速補正係数との対応を示す制御マップの概略図である。 操舵角速度偏差電流決定部の概略構成図である。 (a)は、ステアリングホイールが切り込まれている場合の、算出操舵角及び車速と目標操舵角速度との対応を示す制御マップの概略図である。(b)は、ステアリングホイールが切り戻されている場合の、算出操舵角及び車速と目標操舵角速度との対応を示す制御マップの概略図である。 操舵角速度偏差と操舵角速度偏差電流との対応を示す制御マップである。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、実施の形態に係る電動パワーステアリング装置100の概略構成を示す図である。
電動パワーステアリング装置100(以下、単に「ステアリング装置100」と称する場合もある。)は、車両の進行方向を任意に変えるためのかじ取り装置であり、本実施の形態においては車両の一例としての自動車1に適用した構成を例示している。
ステアリング装置100は、自動車1の進行方向を変えるために運転者が操作する車輪(ホイール)状のステアリングホイール(ハンドル)101と、ステアリングホイール101に一体的に設けられたステアリングシャフト102とを備えている。また、ステアリング装置100は、ステアリングシャフト102と自在継手103aを介して連結された上部連結シャフト103と、この上部連結シャフト103と自在継手103bを介して連結された下部連結シャフト108とを備えている。下部連結シャフト108は、ステアリングホイール101の回転に連動して回転する。
また、ステアリング装置100は、転動輪としての左右の前輪150のそれぞれに連結されたタイロッド104と、タイロッド104に連結されたラック軸105とを備えている。また、ステアリング装置100は、ラック軸105に形成されたラック歯105aとともにラック・ピニオン機構を構成するピニオン106aを備えている。ピニオン106aは、ピニオンシャフト106の下端部に形成されている。これらラック軸105、ピニオンシャフト106などが、ステアリングホイール101の回転操作力を前輪150の転動力として伝達する伝達機構として機能する。ピニオンシャフト106は、前輪150を転動させるラック軸105に対して、回転することにより前輪150を転動させる駆動力(ラック軸力)を加える。
また、ステアリング装置100は、ピニオンシャフト106を収納するステアリングギヤボックス107を有している。ピニオンシャフト106は、ステアリングギヤボックス107内にてトーションバー112を介して下部連結シャフト108と連結されている。そして、ステアリングギヤボックス107の内部には、下部連結シャフト108とピニオンシャフト106との相対回転角度に基づいて、言い換えればトーションバー112の捩れ量に基づいて、ステアリングホイール101に加えられた操舵トルクTを検出するトルク検出手段の一例としてのトルクセンサ109が設けられている。
また、ステアリング装置100は、ステアリングギヤボックス107に支持された電動モータ110と、電動モータ110の駆動力を減速してピニオンシャフト106に伝達する減速機構111とを有している。減速機構111は、例えば、ピニオンシャフト106に固定されたウォームホイール(不図示)と、電動モータ110の出力軸に固定されたウォームギヤ(不図示)などから構成される。電動モータ110は、ピニオンシャフト106に回転駆動力を加えることにより、ラック軸105に前輪150を転動させる駆動力(ラック軸力)を加える。本実施の形態に係る電動モータ110は、電動モータ110の回転角度であるモータ回転角度θmに連動した回転角度信号θmsを出力するレゾルバ120を有する3相ブラシレスモータである。
また、ステアリング装置100は、電動モータ110の作動を制御する制御手段の一例としての制御装置10を備えている。制御装置10には、上述したトルクセンサ109からの出力信号が入力される。また、制御装置10には、自動車1に搭載される各種の機器を制御するための信号を流す通信を行うネットワーク(CAN)を介して、自動車1の移動速度である車速Vcを検出する車速検出部170などからの出力信号vが入力される。車速検出部170は、車速センサ自体であってもよい。
以上のように構成されたステアリング装置100は、トルクセンサ109が検出した操舵トルクTに基づいて電動モータ110を駆動し、電動モータ110の駆動力(発生トルク)をピニオンシャフト106に伝達する。これにより、電動モータ110の発生トルクが、ステアリングホイール101に加える運転者の操舵力をアシストする。
次に、制御装置10について説明する。
図2は、制御装置10の概略構成図である。
制御装置10は、CPU、ROM、RAM、バックアップRAM等からなる算術論理演算回路である。
制御装置10には、上述したトルクセンサ109にて検出された操舵トルクTが出力信号に変換されたトルク信号Td、車速検出部170からの車速Vcに対応する車速信号v、レゾルバ120からの回転角度信号θmsなどが入力される。
そして、制御装置10は、トルク信号Td、車速検出部170などからの出力信号vなどに基づいて電動モータ110が供給するのに必要となる目標電流Itを算出(設定)する目標電流算出部20と、目標電流算出部20が算出した目標電流Itに基づいてフィードバック制御などを行う制御部30とを備えている。また、制御装置10は、電動モータ110のモータ回転角度θmを算出するモータ回転角度算出部71と、モータ回転角度算出部71にて算出されたモータ回転角度θmに基づいて、モータ回転速度Vmを算出するモータ回転速度算出部72とを備えている。また、制御装置10は、ステアリングホイール101の回転角度である操舵角θsを算出する操舵角算出部73を備えている。
〔目標電流算出部〕
図3は、目標電流算出部20の概略構成図である。
目標電流算出部20は、目標電流Itを設定する上で基準となるベース電流Ibを算出するベース電流算出部21と、電動モータ110の慣性モーメントを打ち消すためのイナーシャ補償電流Isを算出するイナーシャ補償電流算出部22と、モータの回転を制限するダンパー補償電流Idを算出するダンパー補償電流算出部23とを備えている。また、目標電流算出部20は、ベース電流算出部21、イナーシャ補償電流算出部22、ダンパー補償電流算出部23にて算出された値に基づいて仮の目標電流である仮目標電流Itfを決定する仮目標電流決定部25を備えている。また、目標電流算出部20は、トルクセンサ109にて検出された操舵トルクTの位相を補償する位相補償部26を備えている。
また、目標電流算出部20は、トルクセンサ109の故障を検出するセンサ故障検出部27と、センサ故障検出部27がトルクセンサ109の故障を検出した場合に電動モータ110に供給する目標電流Itの基となる電流を算出するセンサ故障時電流決定部28とを備えている。また、目標電流算出部20は、最終的に電動モータ110に供給する目標電流Itを決定する最終目標電流決定部29を備えている。
なお、目標電流算出部20には、トルク信号Td、車速Vcに応じた車速検出部170からの出力信号、モータ回転速度Vmに応じたモータ回転速度算出部72からのモータ回転速度信号Vmsなどが入力される。
図4は、操舵トルクT及び車速Vcとベース電流Ibとの対応を示す制御マップの概略図である。
ベース電流算出部21は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Tsと、車速検出部170からの出力信号とに基づいて、図4例示の制御マップよりベース電流Ibを算出する。
イナーシャ補償電流算出部22は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Ts、車速検出部170からの出力信号に基づいてイナーシャ補償電流Isを算出する。
ダンパー補償電流算出部23は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Ts、車速検出部170からの出力信号、モータ回転速度算出部72からの出力信号などに基づいてダンパー補償電流Idを算出する。
仮目標電流決定部25は、ベース電流算出部21にて算出されたベース電流Ib、イナーシャ補償電流算出部22にて算出されたイナーシャ補償電流Is及びダンパー補償電流算出部23にて算出されたダンパー補償電流Idに基づいて仮目標電流Itfを決定する。仮目標電流決定部25は、例えば、ベース電流Ibに、イナーシャ補償電流Isを加算するとともにダンパー補償電流Idを減算して得た電流を仮目標電流Itfとして決定する。
センサ故障検出部27は、例えば、トルクセンサ109からの出力が0(V)に固定される、あるいは0〜5(V)以外の電圧が出力される等の異常を検出したときにトルクセンサ109が故障したと判定し、故障した旨を最終目標電流決定部29に出力する。
センサ故障時電流決定部28については後で詳述する。
最終目標電流決定部29は、センサ故障検出部27が故障と判定していない場合(故障した旨の信号を取得していない場合)には、仮目標電流決定部25にて決定された仮目標電流Itfを最終的な目標電流Itとして決定する。そして、最終目標電流決定部29は、センサ故障検出部27が故障と判定した場合(故障した旨の信号を取得した場合)には、最終的な目標電流Itを、センサ故障時電流決定部28にて決定されたセンサ故障時電流Ieに切り替える。
ここで、トーションバー112の捩れ量が0の状態を中立状態(中立位置)とし、中立状態(中立位置)からのステアリングホイール101の右回転時におけるステアリングホイール101(下部連結シャフト108)とピニオンシャフト106との相対回転角度が変化する方向(相対回転角度が生じる方向)をプラス(操舵トルクTがプラス)とする。また、中立状態からのステアリングホイール101の左回転時におけるステアリングホイール101(下部連結シャフト108)とピニオンシャフト106との相対回転角度が変化する方向(相対回転角度が生じる方向)をマイナス(操舵トルクTがマイナス)とする。
そして、トルクセンサ109にて検出された操舵トルクTがプラスであるときに、電動モータ110を右回転方向に回転させるようにベース電流算出部21にてベース電流Ibが算出され、そのベース電流Ibが流れる方向をプラスとする。つまり、図4に示すように、操舵トルクTがプラスのときにベース電流算出部21はプラスのベース電流Ibを算出し、電動モータ110を右回転方向に回転させる方向のトルクを発生させる。操舵トルクTがマイナスのときにベース電流算出部21はマイナスのベース電流Ibを算出し、電動モータ110を左回転方向に回転させる方向のトルクを発生させる。
また、ステアリングホイール101の回転角度である操舵角θsが0度である状態からステアリングホイール101が右方向に回転した場合に操舵角θsがプラスとなり、左方向に回転した場合に操舵角θsがマイナスとなる。
〔制御部〕
図5は、制御部30の概略構成図である。
制御部30は、図5に示すように、電動モータ110の作動を制御するモータ駆動制御部31と、電動モータ110を駆動させるモータ駆動部32と、電動モータ110に実際に流れる実電流Imを検出するモータ電流検出部33とを有している。
モータ駆動制御部31は、目標電流算出部20にて最終的に決定された目標電流Itと、モータ電流検出部33にて検出された電動モータ110へ供給される実電流Imとの偏差に基づいてフィードバック制御を行うフィードバック(F/B)制御部40と、電動モータ110をPWM駆動するためのPWM(パルス幅変調)信号を生成するPWM信号生成部60とを有している。
フィードバック制御部40は、目標電流算出部20にて最終的に決定された目標電流Itとモータ電流検出部33にて検出された実電流Imとの偏差を求める偏差演算部41と、その偏差がゼロとなるようにフィードバック処理を行うフィードバック(F/B)処理部42とを有している。
フィードバック(F/B)処理部42は、目標電流Itと実電流Imとが一致するようにフィードバック制御を行うものであり、例えば、偏差演算部41にて算出された偏差に対して、比例要素で比例処理し、積分要素で積分処理し、加算演算部でこれらの値を加算する。
PWM信号生成部60は、フィードバック制御部40からの出力値に基づいて電動モータ110をPWM(パルス幅変調)駆動するためのPWM信号を生成し、生成したPWM信号を出力する。
モータ駆動部32は、所謂インバータであり、例えば、スイッチング素子として6個の独立したトランジスタ(FET)を備え、6個の内の3個のトランジスタは電源の正極側ラインと各相の電気コイルとの間に接続され、他の3個のトランジスタは各相の電気コイルと電源の負極側(アース)ラインと接続されている。そして、6個の中から選択した2個のトランジスタのゲートを駆動してこれらのトランジスタをスイッチング動作させることにより、電動モータ110の駆動を制御する。
モータ電流検出部33は、モータ駆動部32に接続されたシャント抵抗の両端に生じる電圧から電動モータ110に流れる実電流Imの値を検出する。
モータ回転角度算出部71(図2参照)は、レゾルバ120からの回転角度信号θmsに基づいてモータ回転角度θmを算出する。
モータ回転速度算出部72(図2参照)は、モータ回転角度算出部71が算出したモータ回転角度θmに基づいて電動モータ110のモータ回転速度Vmを算出する。
操舵角算出部73(図2参照)は、ステアリングホイール101、減速機構111などが機械的に連結されているためにステアリングホイール101の回転角度(操舵角θs)と電動モータ110のモータ回転角度θmとの間に相関関係があることに鑑み、モータ回転角度算出部71にて算出されたモータ回転角度θmに基づいて操舵角θsを算出する。操舵角算出部73は、例えば、モータ回転角度算出部71にて定期的(例えば1ミリ秒毎)に算出されたモータ回転角度θmの前回値と今回値との差分の積算値に基づいて操舵角θsを算出する。操舵角算出部73は、操舵角θsを検出する操舵角検出手段の一例として機能する。
<センサ故障時電流決定部>
図6は、センサ故障時電流決定部28の概略構成図である。
センサ故障時電流決定部28は、センサ故障時電流Ieの仮の値である仮センサ故障時電流Iefを決定する仮センサ故障時電流決定部281と、目標操舵角速度と実際の操舵角速度との偏差に応じた操舵角速度偏差電流Ivを決定する操舵角速度偏差電流決定部282とを備えている。また、センサ故障時電流決定部28は、仮センサ故障時電流決定部281が決定した仮センサ故障時電流Iefと操舵角速度偏差電流決定部282が決定した操舵角速度偏差電流Ivとに基づいて最終的にセンサ故障時電流Ieを決定する最終センサ故障時電流決定部283を備えている。言い換えると、センサ故障時電流決定部28は、トルクセンサ109に故障が生じた場合に電動モータ110に供給する目標電流Itの基本となる故障時基本目標電流の一例としての仮センサ故障時電流Iefを設定する仮センサ故障時電流決定部281(故障時基本目標電流設定手段の一例)を備えている。また、センサ故障時電流決定部28は、偏差電流の一例としての操舵角速度偏差電流Ivを設定する操舵角速度偏差電流決定部282(偏差電流設定手段の一例)を備えている。また、センサ故障時電流決定部28は、トルクセンサ109に故障が生じた場合の目標電流Itを決定する最終センサ故障時電流決定部283(目標電流決定手段の一例)を備えている。
(仮センサ故障時電流決定部)
図7は、仮センサ故障時電流決定部281の概略構成図である。
仮センサ故障時電流決定部281は、操舵角算出部73にて算出された操舵角θsである算出操舵角θscに基づいて後述する制御マップに代入するための操舵角である代入操舵角θseを算出する代入操舵角算出部281aを備えている。
また、仮センサ故障時電流決定部281は、代入操舵角算出部281aが算出した代入操舵角θseに基づいて仮センサ故障時電流Iefのベースとなるセンサ故障時ベース電流Iebを算出するセンサ故障時ベース電流算出部281bを備えている。
また、仮センサ故障時電流決定部281は、ステアリングホイール101が切り戻されている場合の仮センサ故障時電流Iefが小さくなるように補正するための戻り補正係数Krを設定する戻り補正係数設定部281cを備えている。
また、仮センサ故障時電流決定部281は、センサ故障時ベース電流算出部281bが算出したセンサ故障時ベース電流Iebと戻り補正係数設定部281cが設定した戻り補正係数Krとを乗算することにより戻り補正後ベース電流Iebrを算出する戻り補正係数乗算部281dを備えている。
また、仮センサ故障時電流決定部281は、モータ回転速度Vmに応じた回転速度補正係数Kmを設定する回転速度補正係数設定部281eを備えている。
また、仮センサ故障時電流決定部281は、戻り補正係数乗算部281dにて算出された戻り補正後ベース電流Iebrと回転速度補正係数設定部281eが設定した回転速度補正係数Kmとを乗算することにより回転速度補正後ベース電流Iebvを算出する回転速度補正係数乗算部281fを備えている。
また、仮センサ故障時電流決定部281は、回転速度補正係数乗算部281fにて算出された回転速度補正後ベース電流Iebvに対してリミット処理を行うリミット処理部281gを備えている。
また、仮センサ故障時電流決定部281は、リミット処理部281gにてリミット処理後の回転速度補正後ベース電流Iebvであるリミット処理後ベース電流Ilに対して符号化処理を行う符号化処理部281hを備えている。
また、仮センサ故障時電流決定部281は、符号化処理部281hにて符号化処理が施されたリミット処理後ベース電流Ilを、車速Vcに基づいてフェード処理を施すフェード処理部281iを備えている。
次に、仮センサ故障時電流決定部281を構成する要素について詳述する。
代入操舵角算出部281aは、0度から、操舵角算出部73にて定期的(例えば1ミリ秒毎)に算出された算出操舵角θscの前回値と今回値との差分を積算することにより0度からの回転角度を算出し、この算出値を代入操舵角θseとする。そして、所定のリセット条件が成立したら代入操舵角θseを0にリセットする。リセット条件としては、ステアリングホイール101の回転角度(操舵角θs)の差分が0度となったことを把握できる条件であればよく、例えば、目標電流算出部20にて設定された目標電流Itあるいはモータ電流検出部33が検出した実電流Imが0近傍となったとき、を例示することができる。
図8は、センサ故障時ベース電流算出部281bの概略構成図である。
センサ故障時ベース電流算出部281bは、代入操舵角算出部281aにて算出された代入操舵角θseの絶対値化を行う絶対値化部281baを備えている。また、センサ故障時ベース電流算出部281bは、絶対値化部281baにて絶対値化された絶対値化後操舵角|θse|に基づいて仮のセンサ故障時ベース電流Iebである仮センサ故障時ベース電流Iebaを算出する仮ベース電流算出部281bbを備えている。また、センサ故障時ベース電流算出部281bは、車速検出部170などからの出力信号vに基づいて車速補正係数Kvを設定する車速補正係数設定部281bcを備えている。また、センサ故障時ベース電流算出部281bは、仮ベース電流算出部281bbにて算出された仮センサ故障時ベース電流Iebaと車速補正係数設定部281bcにて設定された車速補正係数Kvとを乗算することによりセンサ故障時ベース電流Iebを算出する車速補正係数乗算部281bdを備えている。センサ故障時ベース電流算出部281bは、定期的(例えば1ミリ秒毎)にセンサ故障時ベース電流Iebを算出する。
絶対値化部281baは、プラス又はマイナスの符号を持つ代入操舵角θseの絶対値を算出する。絶対値化部281baにて算出された値が絶対値化後操舵角|θse|である。
図9は、絶対値化後操舵角|θse|と仮センサ故障時ベース電流Iebaとの対応を示す制御マップの概略図である。
仮ベース電流算出部281bbは、予め経験則に基づいて作成しROMに記憶しておいた、絶対値化後操舵角|θse|と仮センサ故障時ベース電流Iebaとの対応を示す図9に例示した制御マップに、絶対値化後操舵角|θse|を代入することにより仮センサ故障時ベース電流Iebaを算出する。
図9に示した制御マップにおいては、絶対値化後操舵角|θse|が予め定められた基準操舵角θse0以下である場合には仮センサ故障時ベース電流Iebaは0である。絶対値化後操舵角|θse|が基準操舵角θse0より大きい場合には、絶対値化後操舵角|θse|が大きくなるに従って仮センサ故障時ベース電流Iebaが0から徐々に大きくなるように設定されている。
図10は、車速補正係数Kvと車速Vcとの対応を示す制御マップの概略図である。
車速補正係数設定部281bcは、予め経験則に基づいて作成しROMに記憶しておいた、車速補正係数Kvと車速Vcとの対応を示す図10に例示した制御マップに、車速Vcを代入することにより車速補正係数Kvを算出する。
図10に例示した制御マップにおいては、車速Vcが0(km/h)であるときの車速補正係数Kvを1、車速Vcが1(km/h)であるときの車速補正係数Kvを0.5としている。また、車速Vcが5(km/h)であるときの車速補正係数Kvを0.3とし、車速Vcが1から5(km/h)に変化する間に車速補正係数Kvを徐々に低下させている。また、車速Vcが40(km/h)であるときの車速補正係数Kvを0.4とし、車速Vcが5から40(km/h)に変化する間に車速補正係数Kvを徐々に上昇させている。そして、車速Vcが40(km/h)から大きくなるに従って車速補正係数Kvを徐々に低下させている。なお、上記速度域は、一例であり車両特性により適宜変更可能である。
車速補正係数乗算部281bdは、仮ベース電流算出部281bbにて算出された仮センサ故障時ベース電流Iebaと車速補正係数設定部281bcにて設定された車速補正係数Kvとを乗算することによりセンサ故障時ベース電流Iebを算出し(Ieb=Ieba×Kv)、算出したセンサ故障時ベース電流Iebを戻り補正係数乗算部281dに出力する。
図11は、戻り補正係数設定部281cの概略構成図である。
戻り補正係数設定部281cは、操舵角算出部73にて算出された算出操舵角θscの絶対値化を行う絶対値化部281caと、絶対値化部281caにて絶対値化された絶対値化後操舵角|θsc|に基づいて仮の戻り補正係数Krである仮戻り補正係数Kraを算出する仮戻り補正係数算出部281cbとを備えている。また、戻り補正係数設定部281cは、車速Vcに応じて、仮戻り補正係数算出部281cbが算出した仮戻り補正係数Kraか予め定められた値かを選択する第1選択部281ccを備えている。また、戻り補正係数設定部281cは、操舵角算出部73にて算出された算出操舵角θscと代入操舵角算出部281aにて算出された代入操舵角θseを時間微分して算出した算出操舵角速度の符号(操舵回転方向を示す)とに基づいてステアリングホイール101が切り込まれているのか切り戻されているかを判定する判定部281cdを備えている。なお、判定部281cdの判定は、操舵角算出部73にて算出された算出操舵角θscとモータ回転速度算出部72からのモータ回転速度信号Vmsの回転方向信号に基づいて判定してもよい。また、戻り補正係数設定部281cは、判定部281cdが判定した操舵状況に応じて、第1選択部281ccが選択した値か予め定められた値かを選択する第2選択部281ceを備えている。
絶対値化部281caは、プラス又はマイナスの符号を持つ算出操舵角θscの絶対値を算出する。絶対値化部281caにて算出された値が絶対値化後操舵角|θsc|である。
図12は、絶対値化後操舵角|θsc|と仮戻り補正係数Kraとの対応を示す制御マップの概略図である。
仮戻り補正係数算出部281cbは、予め経験則に基づいて作成しROMに記憶しておいた、絶対値化後操舵角|θsc|と仮戻り補正係数Kraとの対応を示す図12に例示した制御マップに、絶対値化後操舵角|θsc|を代入することにより仮戻り補正係数Kraを算出する。
図12に示した制御マップにおいては、絶対値化後操舵角|θsc|が予め定められた下側操舵角θd以下である場合には仮戻り補正係数Kraは0となり、絶対値化後操舵角|θsc|が予め定められた上側操舵角θu以上である場合には仮戻り補正係数Kraは1となる。そして、絶対値化後操舵角|θsc|が下側操舵角θdから上側操舵角θuの間では、仮戻り補正係数Kraは0から1まで増大する。
第1選択部281ccは、車速Vcが予め定められた所定車速Vcd以上である場合には仮戻り補正係数算出部281cbが算出した仮戻り補正係数Kraを選択し、所定車速Vcd未満である場合には予め定められた値である1を選択する。なお、所定車速Vcdは、1km/hであることを例示することができる。
判定部281cdは、操舵角算出部73にて算出された算出操舵角θscと代入操舵角算出部281aにて算出された代入操舵角θseを時間微分して算出した算出操舵角速度θsevとを乗算することにより得た乗算値(=θsc×θsev)が0より大きい(θsc×θsev>0)場合は切り込まれていると判定し、乗算値が0未満(θsc×θsev<0)である場合は切り戻されていると判定する。なお、上記乗算値(=θsc×θsev)として、算出操舵角速度θsevに変えてモータ回転速度算出部72からのモータ回転速度信号Vms(モータ回転速度Vm)を用いてもよい。
第2選択部281ceは、判定部281cdが切り込まれていると判定した場合には予め定められた値である1を選択し、判定部281cdが切り戻されていると判定した場合には第1選択部281ccが選択した仮戻り補正係数Kra又は1を選択する。そして、第2選択部281ceは、選択した値を戻り補正係数Krとして出力する。
以上説明した構成により、戻り補正係数設定部281cは、定期的(例えば1ミリ秒毎)に戻り補正係数Krを設定する。そして、戻り補正係数設定部281cは、ステアリングホイール101が切り込まれている場合には、戻り補正係数Krを1に設定する。また、戻り補正係数設定部281cは、ステアリングホイール101が切り戻されている場合であっても、車速Vcが所定車速Vcd未満である場合には戻り補正係数Krを1に設定する。また、戻り補正係数設定部281cは、ステアリングホイール101が切り戻されており、かつ、車速Vcが所定車速Vcd以上である場合に、絶対値化後操舵角|θsc|が上側操舵角θu以上である場合には戻り補正係数Krを1に設定する。他方、戻り補正係数設定部281cは、ステアリングホイール101が切り戻されており、かつ、車速Vcが所定車速Vcd以上である場合に、絶対値化後操舵角|θsc|が上側操舵角θu未満である場合には絶対値化後操舵角|θsc|に応じた戻り補正係数Krを設定する。
回転速度補正係数設定部281eは、モータ回転速度Vmに応じた回転速度補正係数Kmを設定する。
図13は、モータ回転速度Vmと回転速度補正係数Kmとの対応を示す制御マップの概略図である。
回転速度補正係数設定部281eは、予め経験則に基づいて作成しROMに記憶しておいた、モータ回転速度Vmと回転速度補正係数Kmとの対応を示す図13に例示した制御マップに、モータ回転速度Vmを代入することにより回転速度補正係数Kmを算出する。
図13に示した制御マップにおいては、モータ回転速度Vmが予め定められた回転速度Vm0以下である場合には回転速度補正係数Kmは1であり、モータ回転速度Vmが回転速度Vm0より大きい場合には、回転速度補正係数Kmはモータ回転速度Vmが大きくなるに従って1から0まで徐々に減少する値となる。
図14は、車速Vcと車速補正係数Kcとの対応を示す制御マップの概略図である。
回転速度補正係数設定部281eは、図13に示した制御マップに代入するモータ回転速度Vmを、図14に示した制御マップと車速Vcとに基づいて設定した車速補正係数Kcを用いて補正する(図13に示した制御マップに代入するモータ回転速度Vm=モータ回転速度算出部72にて算出されたモータ回転速度Vm×Kc)。
図14に例示した制御マップにおいては、車速Vcが0から第1車速V1であるときの車速補正係数Kcを1、車速Vcが第2車速V2よりも大きい場合には車速補正係数Kcを0.3としている。また、車速Vcが第1車速V1から第2車速V2まで大きくなる間に車速補正係数Kcは1から0.3まで徐々に小さくなる値に設定している。なお、第1車速V1は15(km/h)、第2車速V2は35(km/h)であることを例示することができる。なお、上記の所定値は、車両特性に合わせ適宜設定することができる。
以上説明した構成により、回転速度補正係数設定部281eは、定期的(例えば1ミリ秒毎)に回転速度補正係数Kmを設定する。そして、回転速度補正係数設定部281eは、モータ回転速度Vmが大きい場合、言い換えればステアリングホイール101の操舵角速度が大きい場合には、切り込み過ぎを抑制するべく回転速度補正係数Kmを1よりも小さい値に設定する。ただし、車速Vcが大きい場合の危険回避に必要なアシスト力を確保するために、車速Vcが第2車速V2よりも大きい場合には図13に示した制御マップに代入するモータ回転速度Vmが小さくなるように補正する。他方、車速Vcが第1車速V1よりも小さい場合には、ステアリング取られを防止するために、図13に示した制御マップに代入するモータ回転速度Vmを小さくする補正を行わない。
リミット処理部281gは、回転速度補正係数乗算部281fにて算出された回転速度補正後ベース電流Iebvが予め定められた上限値よりも大きい場合には、上限値をリミット処理後ベース電流Ilとして出力する。他方、リミット処理部281gは、算出された回転速度補正後ベース電流Iebvが上限値以下の場合には、算出された回転速度補正後ベース電流Iebvをリミット処理後ベース電流Ilとして出力する。
符号化処理部281hは、代入操舵角算出部281aにて算出された代入操舵角θseの符号がプラスである場合にはリミット処理部281gから出力されたリミット処理後ベース電流Ilにプラスの符号を付す。他方、符号化処理部281hは、代入操舵角算出部281aにて算出された代入操舵角θseの符号がマイナスである場合にはリミット処理部281gから出力されたリミット処理後ベース電流Ilにマイナスの符号を付す。
なお、上述した戻り補正係数乗算部281d、回転速度補正係数乗算部281f、リミット処理部281g及び符号化処理部281hは、定期的(例えば1ミリ秒毎)に各処理を行う。ゆえに、符号化処理部281hは、定期的(例えば1ミリ秒毎)に、符号が付された回転速度補正後ベース電流Iebvをフェード処理部281iに出力する。
フェード処理部281iは、定期的(例えば1ミリ秒毎)に行う処理において、センサ故障検出部27がトルクセンサ109の故障を検出した場合には、車速Vcに基づいて決定した値をセンサ故障時電流Ieと決定し、トルクセンサ109の故障を検出していない場合には、センサ故障時電流Ieを0と決定する。
そして、フェード処理部281iは、センサ故障検出部27がトルクセンサ109の故障を検出し、車速Vcに基づいてセンサ故障時電流Ieを決定する際には、車速Vcが、図10に例示した制御マップに示したように車速補正係数Kvが大きく変化する0から1(km/h)の間以外の大きさ(1(km/h)よりも大きな速度)である場合には、センサ故障時電流Ieを、符号化処理部281hにて符号が付された回転速度補正後ベース電流Iebvに決定する。他方、車速Vcが1(km/h)以下の場合には、前回のセンサ故障時電流Ieから今回符号化処理部281hにて符号が付された回転速度補正後ベース電流Iebvまで所定期間かけて徐変させる。例えば、車速Vcが1(km/h)から減速している場合には、1秒間で、前回のセンサ故障時電流Ieから今回符号化処理部281hにて符号が付された回転速度補正後ベース電流Iebvに変化する値を、定期的(例えば1ミリ秒毎)にセンサ故障時電流Ieとして決定する。一方、車速Vcが0から加速している場合には、0.5秒間で、前回のセンサ故障時電流Ieから今回符号化処理部281hにて符号が付された回転速度補正後ベース電流Iebvに変化する値を、定期的(例えば1ミリ秒毎)にセンサ故障時電流Ieとして決定する。
以上のように構成されたステアリング装置100によれば、トルクセンサ109に故障が生じてトルクセンサ109にて検出した操舵トルクTに基づいて決定した目標電流Itをアシスト電流とする通常のアシスト制御を行うことができない場合にも、レゾルバ120からの出力値に基づいて故障時のアシスト制御を行うことができる。
故障時のアシスト制御を行う際、路面の摩擦力が大きい停車時には、図10に例示した制御マップに基づいて車速補正係数Kvが1に設定されるので、車速Vcが0よりも大きい場合よりもアシスト力が大きくなる。その結果、故障時のアシスト制御であっても駐停車時の取り回し性は確保される。他方、車速Vcが1(km/h)よりも大きくなり動摩擦力の領域に移った場合には、図10に例示した制御マップに基づいて車速補正係数Kvが0.5以下に設定され、アシスト力が急激に弱められるのでアシスト過多にならないように調整される。さらに、車両の旋回が行われる、車速Vcが10(km/h)より大きな領域では、操舵力が増加する傾向にあるが、この速度では車速補正係数Kvが5(km/h)近辺よりも高められるのでアシスト力が増加する。ただし、車速Vcが40(km/h)より大きい領域では車速補正係数Kvが小さく設定されるので、アシスト力が弱められる。これにより、高車速時の車両のふらつきが抑制される。
さらに、車速Vcが0から1(km/h)の間で車速補正係数Kvが大きく変化する構成としても、フェード処理部281iによりアシスト力が徐変されるので、アシスト力が急激に変化することに起因して操舵フィーリングが悪化することが抑制される。
また、故障時のアシスト制御における切り戻し時においては、回転速度補正係数設定部281eが設定する回転速度補正係数Kmにより、ステアリングホイール101の操舵角速度が大きい場合の切り込み過ぎが抑制される。ただし、車速Vcが第2車速V2よりも大きい場合には回転速度補正係数Kmが大きくなるように設定されるので、車速Vcが大きい場合の危険回避に必要なアシスト力が確保される。また、車速Vcが第1車速V1よりも小さい場合には、回転速度補正係数Kmが小さくなるように設定されるので、低μ路低速走行時においてもステアリング取られが抑制される。また、停車時のステアリング引っ掛かりが抑制される。
このように、本実施の形態に係るステアリング装置100によれば、故障時のアシスト制御時においても、車両の使用状況に応じたアシスト力を付与することができる。つまり、危険回避のためのアシスト力の付与を実現することができるとともに、一般走行のためのアシスト力の付与も実現することができる。その結果、トルクセンサ109に故障が生じた後も自宅または最寄りのディーラーまで行くことができ、運転者の安全を確保することができる。
なお、上述した実施の形態においては、フェード処理部281iにおいて車速Vcに応じてセンサ故障時電流決定部28から出力するセンサ故障時電流Ieをフェードしているが他の部位でもフェードするようにしてもよい。例えば、リミット処理部281gの前段でリミット処理部281gに入力される回転速度補正後ベース電流Iebvをフェードするようにしてもよい。これにより、アシスト力が急激に変化することに起因して操舵フィーリングが悪化することが抑制される。
(操舵角速度偏差電流決定部)
図15は、操舵角速度偏差電流決定部282の概略構成図である。
操舵角速度偏差電流決定部282は、実際の操舵角速度Vsである実操舵角速度Vsaを算出する実操舵角速度算出部282aと、ステアリングホイール101が切り込まれているのか切り戻されているかを判定する切り込み戻し判定部282bとを備えている。また、操舵角速度偏差電流決定部282は、目標の操舵角速度Vsである目標操舵角速度Vstを設定する目標操舵角速度設定部282cと、目標操舵角速度設定部282cが設定した目標操舵角速度Vstに対してフェード処理を施す切り込み戻しフェード処理部282dとを備えている。また、操舵角速度偏差電流決定部282は、切り込み戻しフェード処理部282dがフェード処理を施した後のフェード後目標操舵角速度Vstfと実操舵角速度算出部282aが算出した実操舵角速度Vsaとの偏差である操舵角速度偏差ΔVsを算出する操舵角速度偏差算出部282eを備えている。また、操舵角速度偏差電流決定部282は、操舵角速度偏差算出部282eが算出した操舵角速度偏差ΔVsに基づいて操舵角速度偏差電流Ivを設定する操舵角速度偏差電流設定部282fを備えている。
実操舵角速度算出部282aは、操舵角算出部73にて算出された算出操舵角θscに基づいて実際の操舵角θsの変化速度である実操舵角速度Vsaを算出する。実操舵角速度算出部282aは、操舵角算出部73にて算出された算出操舵角θscを時間微分することにより実操舵角速度Vsaを算出する。
切り込み戻し判定部282bは、操舵角算出部73にて算出された算出操舵角θscと実操舵角速度算出部282aにて算出された実操舵角速度Vsaとに基づいてステアリングホイール101が切り込まれているのか切り戻されているかを判定する。例えば、切り込み戻し判定部282bは、操舵角算出部73にて算出された算出操舵角θscと実操舵角速度算出部282aにて算出された実操舵角速度Vsaとを乗算することにより得た乗算値(=θsc×Vsa)が0以上である場合は切り込まれていると判定し、乗算値が0未満である場合は切り戻されていると判定する。
図16(a)は、ステアリングホイール101が切り込まれている場合の、算出操舵角θsc及び車速Vcと目標操舵角速度Vstとの対応を示す制御マップの概略図である。図16(b)は、ステアリングホイール101が切り戻されている場合の、算出操舵角θsc及び車速Vcと目標操舵角速度Vstとの対応を示す制御マップの概略図である。
目標操舵角速度設定部282cは、操舵角算出部73にて算出された算出操舵角θscと車速Vcとに応じた目標操舵角速度Vstを算出する。ステアリングホイール101が切り込まれている場合には、目標操舵角速度設定部282cは、図16(a)に例示した、ステアリングホイール101が切り込まれている場合の算出操舵角θsc及び車速Vcと目標操舵角速度Vstとの対応を示す制御マップを用いる。他方、ステアリングホイール101が切り戻されている場合には、目標操舵角速度設定部282cは、図16(b)に例示した、ステアリングホイール101が切り戻されている場合の算出操舵角θsc及び車速Vcと目標操舵角速度Vstとの対応を示す制御マップを用いる。例えば、目標操舵角速度設定部282cは、ステアリングホイール101が切り込まれていると切り込み戻し判定部282bが判定した場合には、予め経験則に基づいて作成しROMに記憶しておいた、算出操舵角θsc及び車速Vcと目標操舵角速度Vstとの対応を示す図16(a)に例示した制御マップに、算出操舵角θsc及び車速Vcを代入することにより得た値を切り込み目標操舵角速度Vstとして設定する。他方、目標操舵角速度設定部282cは、ステアリングホイール101が切り戻されていると切り込み戻し判定部282bが判定した場合には、予め経験則に基づいて作成しROMに記憶しておいた、算出操舵角θsc及び車速Vcと目標操舵角速度Vstとの対応を示す図16(b)に例示した制御マップに、算出操舵角θsc及び車速Vcを代入することにより得た値を切り戻し目標操舵角速度Vstとして設定する。
ステアリングホイール101が切り込まれている場合を示した図16(a)の制御マップにおいては、車速Vcが同じである場合には、算出操舵角θscがプラス方向(右回転方向)に大きくなるほど目標操舵角速度Vstが大きくなるように定められている。また、算出操舵角θscが同じである場合には、車速Vcが大きくなるほど目標操舵角速度Vstが小さくなるように定められている。
他方、ステアリングホイール101が切り戻されている場合を示した図16(b)の制御マップにおいては、車速Vcが同じである場合には、算出操舵角θscが中立位置0に近づくに従い目標操舵角速度Vstがマイナス方向から0に近づくように(マイナス方向に小さくなるように)定められている。また、算出操舵角θscが同じである場合には、車速Vcが大きくなるほど目標操舵角速度Vstが大きくなるように(マイナス方向に小さくなるように)定められている。
ここで、図16(a)及び図16(b)に示すようにステアリングホイール101が切り込まれている場合と切り戻されている場合とでは目標操舵角速度Vstの方向(符号)が異なるため、切り込み戻し判定部282bが短時間の間に切り込まれていると判定することと切り戻されていると判定することを頻繁に繰り返すと挙動が不安定になるおそれがある。
そこで、切り込み戻しフェード処理部282dは、切り込み戻し判定部282bが切り込まれていると判定した状態から切り戻されていると判定した状態へ切り替わった場合及び切り戻されていると判定した状態から切り込まれていると判定した状態へ切り替わった場合には、目標操舵角速度Vstを所定期間かけて徐変させる。例えば、1秒間で、前回の目標操舵角速度Vstから今回の目標操舵角速度Vstに変化する値を、定期的(例えば1ミリ秒毎)にフェード後目標操舵角速度Vstfとして決定する。
操舵角速度偏差算出部282eは、切り込み戻しフェード処理部282dがフェード処理を施した後のフェード後目標操舵角速度Vstfから実操舵角速度算出部282aが算出した実操舵角速度Vsaを減算することにより操舵角速度偏差ΔVsを算出する(ΔVs=Vstf−Vsa)。
図17は、操舵角速度偏差ΔVsと操舵角速度偏差電流Ivとの対応を示す制御マップである。
操舵角速度偏差電流設定部282fは、操舵角速度偏差算出部282eにて算出された操舵角速度偏差ΔVsに応じた操舵角速度偏差電流Ivを算出する。操舵角速度偏差電流設定部282fは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、操舵角速度偏差ΔVsと操舵角速度偏差電流Ivとの対応を示す図17に例示した制御マップに、操舵角速度偏差ΔVsを代入することにより操舵角速度偏差電流Ivを算出する。
(最終センサ故障時電流決定部)
最終センサ故障時電流決定部283は、仮センサ故障時電流決定部281が決定した仮センサ故障時電流Iefと操舵角速度偏差電流決定部282が決定した操舵角速度偏差電流Ivとを加算することにより得た値を最終的にセンサ故障時電流Ieとして決定する。
以上のように構成されたセンサ故障時電流決定部28においては、センサ故障検出部27がトルクセンサ109の故障を検出した場合に電動モータ110に供給する目標電流Itの基となるセンサ故障時電流Ieを算出する際に、目標操舵角速度Vstと実操舵角速度Vsaとの偏差に応じた操舵角速度偏差電流Ivが加算される。それゆえ、トルクセンサ109が故障した場合においてもドライバーにとって理想的なステアリングホイール101の回転速度となるように電動モータ110が駆動する。
また、仮センサ故障時電流決定部281が決定する仮センサ故障時電流Iefは、絶対値化後操舵角|θse|が予め定められた基準操舵角θse0以下である場合には仮センサ故障時ベース電流Iebaは0となることから、ステアリングホイール101の切り量が小さい場合には0となる。ゆえに、目標電流算出部20が操舵角速度偏差電流決定部282を備えずに、トルクセンサ109が故障した場合の目標電流Itとなるセンサ故障時電流Ieに操舵角速度偏差電流Ivが付加されない場合には、操舵角θsを中立位置に戻すための電流が電動モータ110に供給されない。しかしながら、本実施の形態に係る目標電流算出部20においては、トルクセンサ109が故障した場合の目標電流Itとなるセンサ故障時電流Ieに操舵角速度偏差電流Ivが常に加算されるので、ステアリングホイール101の切り量が小さい場合においても操舵角θsを0に戻すための電流が電動モータ110に供給される。その結果、ステアリングホイール101の切り量が小さい場合においても、ステアリングホイール101が中立位置に戻る際には、ドライバーにとって理想的な戻り速度で戻る。
また、図16(a)及び図16(b)に例示した制御マップにおいては、車速Vc毎に算出操舵角θscと目標操舵角速度Vstとの対応を示しているので、全車速領域でドライバーにとって理想的なステアリングホイール101の回転速度となるように電動モータ110が駆動される。
なお、上述した実施の形態においては、レゾルバ120からの出力信号に基づいて操舵角算出部73が算出したステアリングホイール101の回転角度(操舵角θs)を用いてセンサ故障時電流Ieを決定しているが特にかかる態様に限定されない。例えば、ステアリングホイール101の回転角度を検出する操舵角センサを備え、直接操舵角センサの検出値に基づいてセンサ故障時電流Ieを決定してもよい。
また、切り込み戻し判定部282bは、操舵角算出部73にて算出された算出操舵角θscと実操舵角速度算出部282aにて算出された実操舵角速度Vsaとに基づいてステアリングホイール101が切り込まれているのか切り戻されているかを判定するが、特にかかる態様に限定されない。例えば、切り込み戻し判定部282bは、戻り補正係数設定部281cにおける判定部281cdと同様に、操舵角算出部73にて算出された算出操舵角θscと代入操舵角算出部281aにて算出された代入操舵角θseを時間微分して算出した算出操舵角速度θsevとを乗算することにより得た乗算値(=θsc×θsev)が0より大きい(θsc×θsev>0)場合は切り込まれていると判定し、乗算値が0未満(θsc×θsev<0)である場合は切り戻されていると判定してもよい。なお、算出操舵角速度θsevとしてモータ回転速度算出部72からのモータ回転速度信号Vms(モータ回転速度Vm)を用いてもよい。
10…制御装置、20…目標電流算出部、21…ベース電流算出部、27…センサ故障検出部、28…センサ故障時電流決定部、281…仮センサ故障時電流決定部、282…操舵角速度偏差電流決定部、283…最終センサ故障時電流決定部

Claims (5)

  1. 車両のステアリングホイールの操舵に対する補助力を加える電動モータと、
    前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、
    前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、
    前記トルク検出手段が正常である場合には前記トルク検出手段が検出したトルクに基づいて、前記トルク検出手段が正常ではない場合には前記操舵角検出手段が検出した前記操舵角及び目標の操舵角速度と実際の操舵角速度との偏差に基づいて前記電動モータの駆動力を制御する制御手段と、
    を備えることを特徴とする電動パワーステアリング装置。
  2. 前記制御手段は、前記操舵角検出手段が検出した前記操舵角と前記車両の移動速度とに基づいて前記目標の操舵角速度を設定する
    ことを特徴とする請求項1に記載の電動パワーステアリング装置。
  3. 前記制御手段は、
    前記操舵角に基づいて前記トルク検出手段に故障が生じた場合に前記電動モータに供給する目標電流の基本となる故障時基本目標電流を設定する故障時基本目標電流設定手段と、
    前記目標の操舵角速度と前記実際の操舵角速度との偏差に応じた偏差電流を設定する偏差電流設定手段と、
    前記故障時基本目標電流設定手段が設定した前記故障時基本目標電流と前記偏差電流設定手段が設定した前記偏差電流とに基づいて前記トルク検出手段に故障が生じた場合の前記目標電流を決定する目標電流決定手段と、
    を備えることを特徴とする請求項1又は2に記載の電動パワーステアリング装置。
  4. 前記偏差電流設定手段は、前記操舵角検出手段が検出した前記操舵角が大きいほど前記目標の操舵角速度を大きくする
    ことを特徴とする請求項3に記載の電動パワーステアリング装置。
  5. 前記偏差電流設定手段は、前記車両の移動速度が大きいほど前記目標の操舵角速度を大きくする
    ことを特徴とする請求項3に記載の電動パワーステアリング装置。
JP2015229096A 2015-11-24 2015-11-24 電動パワーステアリング装置 Active JP6609465B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229096A JP6609465B2 (ja) 2015-11-24 2015-11-24 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229096A JP6609465B2 (ja) 2015-11-24 2015-11-24 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2017094935A true JP2017094935A (ja) 2017-06-01
JP6609465B2 JP6609465B2 (ja) 2019-11-20

Family

ID=58816384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229096A Active JP6609465B2 (ja) 2015-11-24 2015-11-24 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP6609465B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001481A (ja) * 2018-06-26 2020-01-09 マツダ株式会社 パワーステアリング制御装置
WO2020194667A1 (ja) * 2019-03-28 2020-10-01 株式会社ショーワ 操舵制御装置、電動パワーステアリング装置
CN115195857A (zh) * 2022-07-15 2022-10-18 上海汽车集团股份有限公司 一种辅驱电机的控制方法及装置
WO2023203751A1 (ja) * 2022-04-22 2023-10-26 三菱電機株式会社 操舵制御装置及び電動パワーステアリング装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110071A (ja) * 1986-10-29 1988-05-14 Hitachi Ltd 電動式パワ−ステアリング制御装置
JP2002104210A (ja) * 2000-09-28 2002-04-10 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP2004114755A (ja) * 2002-09-24 2004-04-15 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2009269540A (ja) * 2008-05-09 2009-11-19 Jtekt Corp 電動パワーステアリング装置
JP2010012979A (ja) * 2008-07-04 2010-01-21 Nsk Ltd 電動パワーステアリング装置
JP2012116239A (ja) * 2010-11-29 2012-06-21 Honda Motor Co Ltd 電動パワーステアリング装置
JP2012144100A (ja) * 2011-01-07 2012-08-02 Honda Motor Co Ltd 電動パワーステアリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110071A (ja) * 1986-10-29 1988-05-14 Hitachi Ltd 電動式パワ−ステアリング制御装置
JP2002104210A (ja) * 2000-09-28 2002-04-10 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP2004114755A (ja) * 2002-09-24 2004-04-15 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2009269540A (ja) * 2008-05-09 2009-11-19 Jtekt Corp 電動パワーステアリング装置
JP2010012979A (ja) * 2008-07-04 2010-01-21 Nsk Ltd 電動パワーステアリング装置
JP2012116239A (ja) * 2010-11-29 2012-06-21 Honda Motor Co Ltd 電動パワーステアリング装置
JP2012144100A (ja) * 2011-01-07 2012-08-02 Honda Motor Co Ltd 電動パワーステアリング装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001481A (ja) * 2018-06-26 2020-01-09 マツダ株式会社 パワーステアリング制御装置
JP7144724B2 (ja) 2018-06-26 2022-09-30 マツダ株式会社 パワーステアリング制御装置
WO2020194667A1 (ja) * 2019-03-28 2020-10-01 株式会社ショーワ 操舵制御装置、電動パワーステアリング装置
JPWO2020194667A1 (ja) * 2019-03-28 2021-04-08 株式会社ショーワ 操舵制御装置、電動パワーステアリング装置
WO2023203751A1 (ja) * 2022-04-22 2023-10-26 三菱電機株式会社 操舵制御装置及び電動パワーステアリング装置
CN115195857A (zh) * 2022-07-15 2022-10-18 上海汽车集团股份有限公司 一种辅驱电机的控制方法及装置

Also Published As

Publication number Publication date
JP6609465B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
US7966114B2 (en) Electric power steering device, and control method thereof
JP6115368B2 (ja) ステアリング装置
JP6609465B2 (ja) 電動パワーステアリング装置
JP6291314B2 (ja) 電動パワーステアリング装置、プログラム
EP2572963B1 (en) Electric power steering apparatus
JPH08175406A (ja) 電動パワーステアリング装置の制御装置
US11505243B2 (en) Steering control device and electric power steering device
JP6401637B2 (ja) 電動パワーステアリング装置
JP2016159702A (ja) 電動パワーステアリング装置
JP2017043114A (ja) 電動パワーステアリング装置
JP2017088141A (ja) 電動パワーステアリング装置
JP2016165953A (ja) 電動パワーステアリング装置
JP6291310B2 (ja) 電動パワーステアリング装置、プログラム
JP2016159701A (ja) 電動パワーステアリング装置
JP2014125036A (ja) 電動パワーステアリング装置
JP6357326B2 (ja) 電動パワーステアリング装置
JP6180959B2 (ja) 電動パワーステアリング装置、レゾルバ故障検出装置、レゾルバ故障検出方法
JP2017154632A (ja) 電動パワーステアリング装置、プログラム
JP6391516B2 (ja) 電動パワーステアリング装置
JP6059063B2 (ja) 電動パワーステアリング装置
JP6873362B2 (ja) 電動パワーステアリング装置
JP2017177951A (ja) 電動パワーステアリング装置、プログラム
JP6453089B2 (ja) 電動パワーステアリング装置
JP2017149190A (ja) 電動パワーステアリング装置、プログラム
JP2017177952A (ja) 電動パワーステアリング装置、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6609465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250