EP3064233A1 - Bioresorbierbarer stent aus einer legierung auf eisenbasis - Google Patents
Bioresorbierbarer stent aus einer legierung auf eisenbasis Download PDFInfo
- Publication number
- EP3064233A1 EP3064233A1 EP14858500.3A EP14858500A EP3064233A1 EP 3064233 A1 EP3064233 A1 EP 3064233A1 EP 14858500 A EP14858500 A EP 14858500A EP 3064233 A1 EP3064233 A1 EP 3064233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- iron
- based alloy
- stent
- poly
- degradable polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 420
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 214
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 131
- 239000000956 alloy Substances 0.000 title claims abstract description 131
- 229920000728 polyester Polymers 0.000 claims abstract description 108
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 230000000593 degrading effect Effects 0.000 claims abstract description 4
- -1 poly(butylene succinate) Polymers 0.000 claims description 64
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 46
- 239000011248 coating agent Substances 0.000 claims description 42
- 238000000576 coating method Methods 0.000 claims description 42
- 229920001610 polycaprolactone Polymers 0.000 claims description 42
- 229920000954 Polyglycolide Polymers 0.000 claims description 40
- 239000004633 polyglycolic acid Substances 0.000 claims description 40
- 239000004632 polycaprolactone Substances 0.000 claims description 39
- 229920000642 polymer Polymers 0.000 claims description 39
- 229920000520 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymers 0.000 claims description 32
- 239000004626 polylactic acid Substances 0.000 claims description 31
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 21
- 229920001397 Poly-beta-hydroxybutyrate Polymers 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 11
- 229940079593 drug Drugs 0.000 claims description 9
- 239000003814 drug Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000001727 in vivo Methods 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 125000004185 ester group Chemical group 0.000 claims description 2
- 238000002513 implantation Methods 0.000 abstract description 55
- 238000006731 degradation reaction Methods 0.000 abstract description 24
- 230000015556 catabolic process Effects 0.000 abstract description 23
- 239000012265 solid product Substances 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 4
- 230000003205 diastolic effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 62
- 238000005260 corrosion Methods 0.000 description 51
- 230000007797 corrosion Effects 0.000 description 51
- 238000001228 spectrum Methods 0.000 description 34
- 230000004580 weight loss Effects 0.000 description 29
- 210000000702 aorta abdominal Anatomy 0.000 description 28
- 241000283973 Oryctolagus cuniculus Species 0.000 description 27
- 239000000047 product Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 16
- 210000004204 blood vessel Anatomy 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 14
- 239000002244 precipitate Substances 0.000 description 14
- 229920001432 poly(L-lactide) Polymers 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 11
- 229920000747 poly(lactic acid) Polymers 0.000 description 10
- 229960000448 lactic acid Drugs 0.000 description 8
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 6
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 6
- 229960002930 sirolimus Drugs 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229960001592 paclitaxel Drugs 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 150000002505 iron Chemical class 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- ZMKVBUOZONDYBW-UHFFFAOYSA-N 1,6-dioxecane-2,5-dione Chemical compound O=C1CCC(=O)OCCCCO1 ZMKVBUOZONDYBW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940124599 anti-inflammatory drug Drugs 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127218 antiplatelet drug Drugs 0.000 description 2
- 229940127217 antithrombotic drug Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960004588 cilostazol Drugs 0.000 description 2
- RRGUKTPIGVIEKM-UHFFFAOYSA-N cilostazol Chemical compound C=1C=C2NC(=O)CCC2=CC=1OCCCCC1=NN=NN1C1CCCCC1 RRGUKTPIGVIEKM-UHFFFAOYSA-N 0.000 description 2
- 229920006237 degradable polymer Polymers 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 231100001231 less toxic Toxicity 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000120 microwave digestion Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- GIPOFCXYHMWROH-UHFFFAOYSA-L 2-aminoacetate;iron(2+) Chemical compound [Fe+2].NCC([O-])=O.NCC([O-])=O GIPOFCXYHMWROH-UHFFFAOYSA-L 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- DKKCQDROTDCQOR-UHFFFAOYSA-L Ferrous lactate Chemical compound [Fe+2].CC(O)C([O-])=O.CC(O)C([O-])=O DKKCQDROTDCQOR-UHFFFAOYSA-L 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 241000283977 Oryctolagus Species 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- MCDLETWIOVSGJT-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O MCDLETWIOVSGJT-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- YYXHRUSBEPGBCD-UHFFFAOYSA-N azanylidyneiron Chemical compound [N].[Fe] YYXHRUSBEPGBCD-UHFFFAOYSA-N 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- FZWBABZIGXEXES-UHFFFAOYSA-N ethane-1,2-diol;hexanedioic acid Chemical compound OCCO.OC(=O)CCCCC(O)=O FZWBABZIGXEXES-UHFFFAOYSA-N 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229940037907 ferrous lactate Drugs 0.000 description 1
- 235000013925 ferrous lactate Nutrition 0.000 description 1
- 239000004225 ferrous lactate Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- SORXVYYPMXPIFD-UHFFFAOYSA-N iron palladium Chemical compound [Fe].[Pd] SORXVYYPMXPIFD-UHFFFAOYSA-N 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- YYSFXUWWPNHNAZ-PKJQJFMNSA-N umirolimus Chemical compound C1[C@@H](OC)[C@H](OCCOCC)CC[C@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 YYSFXUWWPNHNAZ-PKJQJFMNSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/041—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/042—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91575—Adjacent bands being connected to each other connected peak to trough
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0076—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/23—Carbohydrates
- A61L2300/236—Glycosaminoglycans, e.g. heparin, hyaluronic acid, chondroitin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/432—Inhibitors, antagonists
- A61L2300/434—Inhibitors, antagonists of enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
- A61L2300/604—Biodegradation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/06—Coatings containing a mixture of two or more compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/20—Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
Definitions
- the present invention relates to a biodegradable implantable medical device, and particularly relates to an absorbable iron-based alloy stent capable of degrading rapidly and controllably within a predetermined period.
- the implantable medical devices are usually made from metals and their alloys, ceramics, polymers and the related composite materials, wherein the metal materials are particularly popular because of their superior mechanical properties, such as high strength, and high toughness.
- the degradable polyester mainly comprises polylactic acid (PLA), polyglycolic acid (PGA) and poly (lactic acid-co-glycolic acid) (PLGA), polycaprolactone (PCL), etc.
- PLA polylactic acid
- PGA polyglycolic acid
- PLGA poly (lactic acid-co-glycolic acid)
- PCL polycaprolactone
- the Biomatrix drug-eluting stent made by the Biosensor Company takes 316L stainless steel as a substrate, and PLA as a drug carrier for carrying a Biolimus drug, and the polymer coating can completely degrade within 6 to 9 months;
- a Synergy drug-eluting stent made by Boston Scientific Corporation takes a Pt - Cr alloy as a substrate, and PLGA as a drug carrier for carrying an Everolimus drug, and the polymer coating can completely degrade within 4 months.
- PLLA poly (L- lactic acid)
- the degradable polyester coating would produce a product with a carboxyl group in the degradation process in the human body, so that the pH value of the local microenvironment around the implantation position dropped to form a local subacid environment, the overpotential of hydrogen evolution reaction on the surface of the iron-based alloy substrate was reduced, and the hydrogen evolution corrosion was produced in the iron-based alloy substrate, thus producing an iron salt as a degradation product.
- the degradable polyester could be used as the coating of the iron-based alloy substrate to speed up the hydrogen evolution corrosion rate of the iron-based alloy substrate, and reduce the toxic reaction of the stent at the initial stage of degradation, thus being favorable for rapid endothelialization of endothelial cells on the surface of the stent.
- the local subacid environment and the hydrogen evolution have not been confirmed in the industry, and the matching between the degradable polymer degradation and the iron substrate corrosion was not involved in the report.
- the degradable polyester may accelerate the corrosion of the iron-based alloy, and the concentration of iron ions is increased by providing local lactate ions; however, whether the degradation rate of the degradable polyester matches the corrosion rate of the iron-based alloy or not affects the form of the final corrosion product and the iron corrosion period length. Specifically, when the corrosion rate is too fast, the structural integrity and mechanical properties of the implanted iron-based alloy stent at early stage (such as 3 months) will be affected; if the release of iron ions exceeds the absorption power of blood vessels, iron formed by corrosion will be deposited as solid iron rust again in peripheral blood vessels at a certain distance from the implantation position, and remains in the human body for a long time.
- the enhancement of the degradable polyester working on the corrosion rate of iron is limited, resulting in a relatively long degradation period of the iron-based alloy stent, for example, for a coronary stent, the stent cannot completely degrade and be absorbed within 1 to 3 years after implantation; for a peripheral vascular stent, the stent cannot completely degrade and be absorbed within 2 to 4 years after implantation yet, which is difficult to highlight the characteristics of degradation and absorption of the iron-based alloy stent.
- the corrosion period of the iron-based alloy substrate is matched with the degradation period of the degradable polyester or not also strongly affects the overall degradation period of the iron stent.
- the degradable polyester only exists at early stage of corrosion of the iron-based alloy and accelerates the corrosion of the iron-based alloy, after the completion of degradation of the degradable polyester at late stage, the iron-based alloy has not completely corroded, the degradation rate of the remaining iron-based alloy will be relatively slow and the solid iron rust is formed, resulting in the relatively long overall degradation period of the iron-based alloy stent, which still cannot meet the clinical time requirement of degradation and absorption of the degradable stent.
- An object of the present invention is to select a specific degradable polyester coating to be in contact with the surface of an iron-based alloy substrate or filled inside the iron-based alloy substrate so as to accelerate the corrosion rate of the iron-based alloy substrate in the human body and the controllability of rate and period, and realize the matching between the corrosion rate of the iron-based alloy and the degradation rate of the polyester coating in the whole period, so that the stent not only plays a mechanical support role at early stage but also gradually degrades and is metabolized and absorbed by the human body, and with minimal or no solid product produced from iron corrosion during the absorption process after the implantation of the stent into the human body.
- Another object of the present invention is to provide an absorbable iron-based alloy stent comprising the degradable polyester.
- the iron-based alloy in the iron-based alloy stent can not only rapidly corrode and be absorbed in the human body within a predetermined period of time but also have the mechanical property required by supporting the vessel at early stage of corrosion period under the action of the polyester coating.
- Still another object of the present invention is to provide an absorbable iron-based alloy stent comprising the degradable polyester.
- the iron-based alloy in the iron-based alloy stent can not only rapidly corrode in the human body within a predetermined period of time but also meet the requirements of mechanical properties at early stage and can uniformly corrode within the whole predetermined period of time under the action of the polyester coating, so that the generation rate and the internal absorption rate of a corrosion product of the iron-based alloy substrate are consistent, so that minimal solid product is produced, and the accumulation of the solid product is reduced.
- the iron corrosion product generated can be completely absorbed, so that there is no accumulation.
- the term "rapid" means that for an iron-based alloy instrument with an iron-based alloy stent strut of which the thickness is more than or equal to 30 ⁇ m and less than 100 ⁇ m, the mass loss is more than 10% at three months after the iron-based alloy instrument is implanted into an animal body, and the iron-based alloy completely degrades and is completely absorbed within 1 to 3 years after implantation; for an instrument with an iron-based alloy stent strut of which the thickness is in the range of 100 ⁇ m to 300 ⁇ m, the mass loss is more than 5% at three month after the iron-based alloy instrument is implanted into the animal body, and the iron-based alloy completely corrodes and degrades and is completely absorbed within 2 to 4 years after implantation.
- controllable means that the rapid corrosion of the iron-based alloy caused by the degradable polyester ensures that the iron-based alloy can maintain sufficient mechanical properties at early stage after the iron-based alloy instrument is implanted into the human body, for example, for the iron-based alloy stent with a stent strut of which the thickness is more than or equal to 30 ⁇ m and less than 100 ⁇ m, the thickness of the degradable polyester coating is more than or equal to 3 ⁇ m and less than or equal to 35 ⁇ m, the radial support force is more than 80kPa at three months after the date of implantation, and the iron-based alloy can completely degrade and be completely absorbed within 2 to 3 years after implantation; for the iron-based alloy stent with a stent strut of which the thickness is in the range of 100 ⁇ m to 300 ⁇ m, the thickness of the degradable polyester coating is in the range of 10 ⁇ m to 60 ⁇ m, the radial support force is more than 40kPa at three months after
- the term "complete absorption” means that the degradable polyester stent of the present invention (the mass of the corresponding bare iron-based alloy stent is M) is implanted into the animal body, the stent and the vessel into which the stent is implanted are taken out at a predetermined observation point in time, such as 3 months, 6 months, 1 year, 2 years, 3 years or longer, from the date of implantation, and are digested by concentrated nitric acid in a microwave digestion instrument and diluted to V 0 with water, and the concentration of iron ions in the diluted solution is C 0 by testing; if C 0 ⁇ V 0 M ⁇ 5 % , the stent is considered to be completely absorbed.
- the specific conditions for testing the concentration of the iron ions are as follows: the Agilent 240 FS atomic absorption spectrometer is used, the wavelength is 248.3 nm, the slit is 0.2 nm, an oxidant gas is acetylene, and the flow rate is 2.0 L/min.
- the degradable polyester is a polymer that contains an ester group - COO - and can degrade in vivo to produce a carboxyl group - COOH.
- the degradable polyester has a weight average molecular weight in the range of 20,000 to 1,000,000 and a polydispersity index in the range of 1.2 to 30.
- the weight average molecular weight of the degradable polyester may be more than or equal to 20,000 and less than 50,000, or more than or equal to 50,000 and less than 100,000, or more than or equal to 100,000 and less than 200,000, or more than or equal to 200,000 and less than 300,000, or more than or equal to 300,000 and less than 400,000, or more than or equal to 400,000 and less than 600,000, or more than or equal to 600,000 and less than or equal to 1,000,000 respectively
- the polydispersity index may be more than or equal to 1.2 and less than 5, or more than or equal to 5 and less than 10, or more than or equal to 10 and less than 20, or more than or equal to 20 and less than or equal to 30 respectively.
- the numerical interval is in accordance with the mathematical knowledge, namely, [a, b] is more than or equal to a and less than or equal to b; (a, b] is more than a and less than or equal to b; [a, b) is more than or equal to a and less than b.
- [a, b] is more than or equal to a and less than b.
- the degradable polyester may only be any one from the group consisting of polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic -co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- PGA polyglycolic acid
- PBS poly(butylene succinate)
- PBS poly (beta-hydroxy butyrate)
- PCL polycaprolactone
- PDA poly(ethyleneglycol adipate)
- PLA poly(lactic -co-glycolic acid)
- PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- the degradable polyester may also be a mixture of at least two kinds of the same type of degradable polyester polymers with different weight average molecular weights.
- the "same type" refers to a general term of polymers with the same polymeric monomer (structural unit) and different weight average molecular weights.
- the above-mentioned mixture may comprise a first kind of degradable polyester polymer with a weight average molecular weight in the range of 20,000 to 50,000 and a second kind of the same type of degradable polyester polymer with a weight average molecular weight in the range of 60,000 to 1,000,000.
- the second kind of degradable polyester polymer and the first kind of degradable polyester polymer belong to the same type polymer, and the content ratio of the two is in the range of 1: 9 to 9: 1 in percentage by weight.
- the degradable polyester may be any one of the following: polylactic acid (PLA), polyglycolic acid (PGA), poly (butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic-co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- PGA polyglycolic acid
- PBS poly (butylene succinate)
- PBS poly (beta-hydroxy butyrate)
- PCL polycaprolactone
- PEA poly(ethyleneglycol adipate)
- PLA poly(lactic-co-glycolic
- the degradable polyester comprises two kinds of polylactic acids with different weight average molecular weights, the weight average molecular weights of the two kinds of polylactic acids are in the range of 20,000 to 50,000, and in the range of 60,000 to 1,000,000 respectively, and the content ratio of the two is between 1: 9 and 9: 1.
- the degradable polyester may also be formed by blending at least two of polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic -co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), or formed by copolymerizing monomers of at least two of polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic -co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- the mixture may comprise polylactic acid (PLA) and poly( lactic-co-glycolic acid)(PLGA), wherein the weight average molecular weight of PLGA is in the range of 20,000 to 300,000, the weight average molecular weight of PLA is in the range of 20,000 to 1,000,000, and the content ratio of the two is in the range of 1 : 9 to 9 : 1.
- PLA polylactic acid
- PLA poly( lactic-co-glycolic acid)
- the degradable polyester may also be a blend comprising polymers with different crystallinities and different degradation periods.
- the degradable polyester may be a blend of crystalline and non-crystalline degradable polyester polymers, or a blend of degradable polyester polymers with a high crystallinity and a low crystallinity, wherein the content of polyester with a crystallinity in the range of 5% to 50% is in the range of 10% to 90% in percentage by weight.
- the degradable polyester may be selected from the group consisting of polylactic acid (PLA), polyglycolic acid (PGA), poly (butylene succinate) (PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly (ethyleneglycol adipate) (PEA), poly (lactic-co-glycolic acid) (PLGA), and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- PGA polyglycolic acid
- PBS poly (butylene succinate)
- PBS poly (beta-hydroxy butyrate)
- PCL polycaprolactone
- PEA poly (ethyleneglycol adipate)
- PLA poly (lactic-co-glycolic acid)
- PHBV poly (3-hydroxybutyrate-co-3-hydroxyvalerate)
- the polylactic acid may be poly (DL-lactic acid) or poly (L-lactic acid).
- the degradable polyester may also be mixed with an active pharmaceutical ingredient, wherein the active pharmaceutical ingredient may be a vascular proliferation inhibiting drug such as paclitaxel, rapamycin and their derivatives; or an antiplatelet drug selected from cilostazol; or an antithrombotic drug such as heparin; or an anti-inflammatory drug such as dexamethasone, etc, or any drug suitable for being used and compatible with the stent, which is not limited by the present invention; or a mixture of the above-mentioned drugs.
- the active pharmaceutical ingredient may be a vascular proliferation inhibiting drug such as paclitaxel, rapamycin and their derivatives; or an antiplatelet drug selected from cilostazol; or an antithrombotic drug such as heparin; or an anti-inflammatory drug such as dexamethasone, etc, or any drug suitable for being used and compatible with the stent, which is not limited by the present invention; or a mixture of the above-mentioned drugs.
- the iron-based alloy substrate is selected from pure iron or medical iron-based alloys.
- at least one of nutrient elements and harmless elements in the human body, or less toxic elements, such as C, N, O, S, P, Mn, Pd, Si, W, Ti, Co, Cr, Cu, and Re may be doped into the pure iron to form a medical iron-based alloy.
- the surface of the iron-based alloy substrate is coated with the degradable polyester; or the iron-based alloy substrate is provided with gaps or grooves, and the degradable polyester is embedded in the gaps or grooves; or the iron-based alloy substrate is provided with a cavity, and the degradable polyester is filled in the cavity.
- the "surface” of "in contact with the surface of the substrate” not only refers to the outer surface, but also refers to all circumstances in which the degradable polyester or degradable polymer has a contact point or contact surface with the iron-based alloy substrate.
- the specific degradable polyester used by the absorbable iron-based alloy stent provided by the present invention can allow the metal substrate of the iron-based alloy to controllably and rapidly corrode within a predetermined period, not only plays a mechanical support role at early stage but also gradually degrades and is metabolized and completely absorbed by the human body within a predetermined period after being implanted into the human body, thus avoiding the long-term risks possibly caused by long-term retention in the human body.
- the degradable stent provided by the present invention produces minimal or no solid product from iron corrosion during the absorption process.
- the radial support force and the weight loss were tested at the corresponding point in time, such as at 3 months, 6 months, 1 year, 2 years, and 3 years, after the date of implantation, and the section of a stent strut of the stent was tested by using an X-ray energy dispersive spectrometer (EDS), and whether a ratio of the mass of iron ions in a solution to the mass of a bare stent (i.e., an iron-based alloy stent uncoated with the degradable polyester) is less than or equal to 5% or not was tested after the stent and the vessel in which the stent was placed were digested to form the solution in order to characterize the rapid and controllable corrosion and complete absorption of the absorbable iron-based alloy stent provided by the present invention during the degradation period.
- EDS X-ray energy dispersive spectrometer
- the iron-based alloy substrate is selected from pure iron or medical iron-based alloys.
- any of the nutrient elements and harmless elements in the human body, or less toxic elements, such as C, N, O, S, P, Mn, Pd, Si, W, Ti, Co, Cr, Cu, and Re can be doped into the pure iron to form a medical iron-based alloy.
- the radial support force can be tested by means of a radial support force tester produced by the MSI Company; namely, the radial support force could be obtained by taking out the stent implanted into the animal body at a predetermined observation point in time together with the blood vessel and directly testing after dewatering and drying.
- the weight loss can be tested by the following method: after the vessel in which the stent was implanted into the animal body was cut out at a predetermined observation point in time, the vessel was stripped, the stent was taken out and ultrasonically cleaned in acetonitrile for 20 min, and the degradable polyester coating and its products were removed; then the stent was ultrasonically cleaned in 3% of tartaric acid for at least 20 min, and an iron-based alloy corrosion product adhered onto the surface of the stent was removed; the stent was dried and weighed to obtain the weight of the implanted stent body, and the weight was compared with the weight of the un-implanted original bare stent to obtain a difference value, i.e., the weight loss of the iron-based alloy stent. A percentage of the weight difference value in weight of the original bare stent is usually expressed as the weight loss.
- the EDS energy spectrum test was carried out by taking the vessel in which the stent was placed out of the animal body at the predetermined observation point in time, fixing in formalin, processing by dewatering, embedding the blood vessel with methacrylic resin, slicing and polishing along the axial cross section of the stent strut, and putting in a scanning electron microscope after metal spraying for observing and testing, wherein the energy spectrometer is produced by the Oxford Instruments company, and the testing conditions are as follows: the processing time is 5, the spectral range is 0 to 20 KeV, and the channel number is 1 K.
- the iron ion concentration test was carried out by taking out the degradable polyester stent (the mass of the bare iron-based alloy stent is M) implanted into the animal body and the vessel in which the stent was placed at the predetermined observation point in time, digesting the stent and the vessel in which the stent was placed in a microwave digestion instrument by using concentrated nitric acid, and testing the concentration C 0 of iron ions in a solution under the conditions that the wavelength is 248.3 nm, the slit is 0.2 nm, the oxidants gas is acetylene, and the flow rate is 2.0 L/min by using an Agilent 240 FS atomic absorption spectrometer after diluting with water to form the solution (volume: V 0 ). If C 0 ⁇ V 0 M ⁇ 5 % , the stent is considered to be absorbed completely.
- the weight average molecular weight and the polydispersity index of the degradable polyester were tested by using an eight-angle laser light scattering instrument produced by the Wyatt Technology Corporation.
- the present invention related experiments show that the degradable polyester polymers with different molecular structures have different degradation rates, for example, under the same conditions, the degradation rate of polyglycolic acid (PGA) is greater than that of polylactic acid (PLA); for the same type of degradable polyester polymers, the degradation rate can be affected by the size and distribution of weight average molecular weight and crystallinity. In general, the greater the weight average molecular weight, the slower the degradation rate; the higher the crystallinity, the slower the degradation rate.
- PGA polyglycolic acid
- PLA polylactic acid
- the absorbable iron-based alloy stent provided by the present invention comprises an iron-based alloy substrate and a degradable polyester in contact with the surface of the substrate.
- the degradable polyester for the absorbable iron-based alloy stent provided by the present invention needs to meet the following conditions that: the weight average molecular weight is in the range of 20,000 to 1,000,000 and the polydispersity index is in the range of 1.2 to 30.
- the weight average molecular weight of the degradable polyester may be more than or equal to 20,000 and less than 50,000, or more than or equal to 50,000 and less than 100,000, or more than or equal to 100,000 and less than 200,000, or more than or equal to 200,000 and less than 300,000, or more than or equal to 300,000 and less than 400,000, or more than or equal to 400,000 and less than 600,000, or more than or equal to 600,000 and less than or equal to 1,000,000 respectively.
- the polydispersity index may be more than or equal to 1.2 and less than 5, or more than or equal to 5 and less than 10, or more than or equal to 10 and less than 20, or more than or equal to 20 and less than or equal to 30 respectively.
- the degradable polyester may only be any one of the followings: polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic-co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- PGA polyglycolic acid
- PBS poly(butylene succinate)
- PBS poly (beta-hydroxy butyrate)
- PCL polycaprolactone
- PEA poly(ethyleneglycol adipate)
- PLA poly(lactic-co-glycolic acid)
- PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- the degradable polyester polymer may also be a mixture of at least two kinds of the same type of degradable polyester polymers with different weight average molecular weights.
- the above-mentioned mixture may comprise a first kind of degradable polyester polymer with a weight average molecular weight in the range of 20,000 to 50,000 and a second kind of degradable polyester polymer with a weight average molecular weight in the range of 60,000 to 1,000,000.
- the second kind of degradable polyester polymer and the first kind of degradable polyester polymer belong to the same type, and the content ratio of the two is in the range of 1: 9 to 9:1 in percentage by weight.
- the degradable polyester polymer may be any one component selected from the group consisting of polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic-co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- PGA polyglycolic acid
- PBS poly(butylene succinate)
- PBS poly (beta-hydroxy butyrate)
- PCL polycaprolactone
- PEA poly(ethyleneglycol adipate)
- PLA poly(lactic-co-glycolic acid)
- PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- the degradable polyester may also be formed by blending at least two of the followings: polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic -co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), or be formed by copolymerizing monomers of at least two of the followings: polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic-co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- the mixture may comprise polylactic acid (PLA) and poly (lactic-co-glycolic acid)(PLGA), wherein the weight average molecular weight of PLGA is in the range of 20,000 to 300,000, the weight average molecular weight of PLA is in the range of 20,000 to 1,000,000, and the content ratio of the two is in the range of 1 : 9 to 9 : 1 in percentage by weight.
- PLA polylactic acid
- PLA poly (lactic-co-glycolic acid)
- the degradable polyester may also be a blend comprising polymers with different crystallinities and different degradation periods such as an example, a blend of crystalline and non-crystalline degradable polyester polymers, or a blend of degradable polyester polymers with a high crystallinity and a low crystallinity, in which the content of polyester with a crystallinity in the range of 5% to 50% is in the range of 10% to 90% in percentage by weight.
- the degradable polyester may be selected from the group consisting of polylactic acid (PLA), polyglycolic acid (PGA), poly(butylene succinate)(PBS) and poly (beta-hydroxy butyrate) (PHB), polycaprolactone (PCL), poly(ethyleneglycol adipate) (PEA), poly(lactic-co-glycolic acid) (PLGA), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
- PLA polylactic acid
- PGA polyglycolic acid
- PBS poly(butylene succinate)
- PBS poly (beta-hydroxy butyrate)
- PCL polycaprolactone
- PEA poly(ethyleneglycol adipate)
- PLA poly(lactic-co-glycolic acid)
- PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- the lactic acid above may be poly (DL-lactic acid) or poly (L-lactic acid).
- the degradable polyester may also be mixed with an active pharmaceutical ingredient, wherein the active pharmaceutical ingredient may be a vascular proliferation inhibiting drug such as paclitaxel, rapamycin and their derivatives, an antiplatelet drug selected from cilostazol, an antithrombotic drug such as heparin, an anti-inflammatory drug such as dexamethasone, or a mixture of the above-mentioned drugs.
- the active pharmaceutical ingredient may be a vascular proliferation inhibiting drug such as paclitaxel, rapamycin and their derivatives, an antiplatelet drug selected from cilostazol, an antithrombotic drug such as heparin, an anti-inflammatory drug such as dexamethasone, or a mixture of the above-mentioned drugs.
- the surface of the iron-based alloy substrate may be completely or partially coated with the degradable polyester; or the iron-based alloy substrate is provided with gaps or grooves, and the degradable polyester is embedded in the gaps or grooves; or the iron-based alloy substrate is provided with an inner cavity, and the degradable polyester is filled in the cavity; or a combination of the above-mentioned methods is used.
- the absorbable iron-based alloy stent provided by the present invention is further illustrated in conjunction with the following accompanying drawings and examples. It should be especially noted that the iron-based alloy stents adopted by the following examples and control examples have the same shape and size, as shown in Figure 1 . It should be understood that the following examples are only preferred examples of the present invention described herein, but not to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should fall in the scope of the present invention described herein.
- the surface of a nitrided pure iron stent with a stent strut of which the thickness is between 60 ⁇ m and 70 ⁇ m was completely coated with a poly (DL-lactic acid) coating with a thickness of between 8 ⁇ m and 15 ⁇ m, a weight average molecular weight of 50, 000 and a polydispersity index of 2 to obtain an absorbable iron-based alloy stent after drying.
- the iron-based alloy stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out at a corresponding observation point in time, the weight loss percentage and the radial support force of the stent were tested, and the EDS energy spectrum test on the axial cross section of the stent strut was carried out.
- the test results show that the weight loss of the stent is 25%, the radial support force is 100kPa, and the EDS energy spectrum test results are shown in Figure 2 at three months from the date of implantation. It can be seen from Figure 2 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months, and no precipitate of solid product was accumulated.
- the iron ion concentration was 3% by testing after 2.5 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- the surface of an electrodeposited pure iron (550 °C annealing) stent with a stent strut of which the thickness is between 80 ⁇ m and 100 ⁇ m was entirely coated with a 15 to 25 ⁇ m thick mixture coating of polycaprolactone (PCL) and paclitaxel, wherein the polycaprolactone (PCL) was formed by mixing two kinds of polycaprolactones (PCL) with weight average molecular weights of 20, 000 and 80, 000 according to a ratio of 1 to 1, the polydispersity index of the mixed polycaprolactones (PCL) was 5, and the mass ratio of polycaprolactones (PCL) to paclitaxel was 2 to 1.
- An absorbable iron-based alloy stent was obtained after drying.
- the iron-based alloy stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out at a corresponding observation point in time, the weight loss percentage and the radial support force of the stent were tested, and the EDS energy spectrum test on the axial cross section of the stent strut was carried out.
- the test results show that the weight loss of the stent is 20%, the radial support force is 95kPa, and the EDS energy spectrum test results are shown in Figure 3 at three months from the date of implantation. It can be seen from Figure 3 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months, and no precipitate of solid product was accumulated.
- the iron ion concentration was 5% by testing after 2.5 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- the outer wall surface of a nitrided iron stent obtained after heat treatment was coated with a mixture coating of poly (L-lactic acid) and rapamycin by spraying, wherein the mass ratio of the polymer to rapamycin was 2 to 1, the thickness of a stent strut was between 140 ⁇ m and 160 ⁇ m, and the thickness of the coating was between 30 ⁇ m and 40 ⁇ m.
- the poly (L-lactic acid) has an average weight molecular weight of 200, 000, a polydispersity index of 4 and a crystallinity of 50%.
- An absorbable iron-based alloy stent was obtained after drying. The iron-based alloy stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out at a corresponding observation point in time, the weight loss percentage and the radial support force of the stent were tested, and the EDS energy spectrum test on the axial cross section of the stent strut was carried out.
- the test results show that the weight loss of the stent is 8%, the radial support force is 60kPa, and the EDS energy spectrum test results are shown in Figure 4 at three months from the date of implantation. It can be seen from Figure 4 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated.
- the iron ion concentration was 5% by testing after 3 years from the date of implantation, showing that the stent completely degraded and was absorbed.
- a Fe-30Mn-6Si alloy (solid solution treatment) stent was polished so that grooves were distributed in the surface of the stent.
- a stent strut 1 of the stent has a thickness of between 100 ⁇ m and 200 ⁇ m, and the groove 2 is formed in the surface of the stent strut 1.
- the surface of the stent strut 1 and the inside of the groove 2 were uniformly coated with a degradable polyester mixture coating 3.
- the degradable polyester coating was formed by mixing poly (L-lactic acid) with a weight average molecular weight of 70, 000 and poly (lactic -co-glycolic acid) with a weight average molecular weight of 30, 000 (the molar ratio of lactic acid to glycolic acid was 50 to 50) according to a weight ratio of 1 to 1, the polydispersity index of the mixed poly lactic acid was 5, and the thickness of the mixture coating was between 15 ⁇ m and 25 ⁇ m.
- An absorbable iron-based alloy stent was obtained after drying. The iron-based alloy stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out at a corresponding observation point in time, the weight loss percentage and the radial support force of the stent were tested, and the EDS energy spectrum test on the axial cross section of the stent strut was carried out.
- the test results show that the weight loss of the stent is 11%, the radial support force is 80kPa, and the EDS energy spectrum test results are shown in Figure 6 at three months from the date of implantation. It can be seen from Figure 6 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated.
- the iron ion concentration was 4% by testing after 3 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- the stent was implanted into the abdominal aorta of a rabbit. The stent was taken out at a corresponding observation point in time, and the weight loss, the radial support force and the EDS test of the stent were tested.
- the test results show that the weight loss of the stent is 28%, the radial support force is 90kPa, and the EDS energy spectrum test results are shown in Figure 7 at three months from the date of implantation. It can be seen from Figure 7 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated. The iron ion concentration was 2% by testing after 1.5 years from the date of implantation, showing that the stent completely degraded and was absorbed.
- the surface of a sulfurized pure iron stent strut with a thickness of between 240 ⁇ m and 260 ⁇ m was uniformly coated with a 35 to 55 ⁇ m thick coating.
- the coating comprises two layers, i.e., a PLLA coating with a thickness of between 20 ⁇ m and 25 ⁇ m as a bottom layer in contact with the stent strut, and a mixed coating of PLGA and heparin according to a ratio of 1 to 1 as a top layer coated on the bottom layer, wherein the PLLA coating has a weight average molecular weight of 100, 000 and a polydispersity index of 5 and is at an amorphous state, and the PLGA has a weight average molecular weight of 30, 000 and a polydispersity index of 1.8.
- the stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out at a corresponding observation point in time, and the weight loss, the radial support force and the EDS test of the stent were tested.
- the test results show that the weight loss of the stent is 10%, the radial support force is 50kPa, and the EDS energy spectrum test results are shown in Figure 8 at three months from the date of implantation. It can be seen from Figure 8 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated.
- the iron ion concentration was 5% by testing after 4 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- the surface of an iron-manganese alloy stent strut with a thickness of between 120 ⁇ m and 150 ⁇ m was coated with a 20 to 30 ⁇ m thick coating by spraying.
- the coating was formed by mixing PLGA, PLLA and rapamycin according to a weight ratio of 1 to 9 to 1, wherein the PLLA has a weight average molecular weight of 800, 000, a crystallinity of 30%, and a polydispersity index of 2, and the PLGA has a weight average molecular weight of 30,000, a polydispersity index of 3 and a crystallinity of 5%.
- the stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out at a corresponding observation point in time, and then the weight loss, the radial support force and the EDS test of the stent were tested.
- the test results show that the weight loss of the stent is 8%, the radial support force is 60kPa, and the EDS energy spectrum test results are shown in Figure 9 at three months from the date of implantation. It can be seen from Figure 9 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated.
- the iron ion concentration was 3% by testing after 3 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- the surface of a carburized iron stent with a thickness of between 70 ⁇ m and 90 ⁇ m was coated with a coating with an average thickness of between 10 ⁇ m and 20 ⁇ m.
- the coating was formed by mixing poly (DL-lactic acid) (PDLLA) and polyglycolic acid (PGA) according to a weight ratio of 2 to 1, wherein the PDLLA has a weight average molecular weight of 150, 000, the PGA has a weight average molecular weight of 50, 000, and the polydispersity index after mixing is 10.
- PDLLA poly (DL-lactic acid)
- PGA polyglycolic acid
- the stent was taken out at a corresponding observation point in time, and then the weight loss, the radial support force and the EDS test of the stent were tested.
- the results show that the weight loss of the stent is 18%, the radial support force is 80kPa, and the EDS energy spectrum test results are shown in Figure 10 at three months from the date of implantation. It can be seen from Figure 10 that the corrosion product of the iron stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated.
- the iron ion concentration was 4% by testing after 3 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- the surface of an iron-cobalt alloy stent with a thickness of between 80 ⁇ m and 100 ⁇ m was coated with a 20 to 35 ⁇ m thick coating.
- the coating comprises two layers, i.e., a bottom layer and a top layer, wherein polylactic acid (PLA) coating as the bottom layer has a weight average molecular weight of 600, 000, a polydipersity index of 7 and a crystallinity of 35%, the top layer is formed by mixing crystalline polylactic acid (PLA), non-crystalline polylactic acid (PLA) and rapamycin according to a ratio of 9 to 1 to 1, and the non-crystalline polylactic acid (PLA) has a weight average molecular weight of 250, 000 and a polydispersity index of 1.2.
- the stent was implanted into the abdominal aorta of a rabbit. A sampling test was carried out at a corresponding observation point in time. The weight loss of the stent is 20%, the radial support force is 85kPa, and the EDS energy spectrum is shown in Figure 11 at three months from the date of implantation. It can be seen from Figure that the corrosion product of the stent strut was uniformly distributed in the blood vessel at three months from the date of implantation, and no precipitate of solid product was accumulated. The iron ion concentration was 3% by testing after 2.5 years from the date of implantation, indicating that the stent completely degraded and was absorbed.
- An iron-palladium alloy stent with a stent strut of which the thickness is between 280 ⁇ m and 300 ⁇ m was coated with a 30 to 60 ⁇ m thick coating.
- the coating was formed by mixing polylactic acid and polyglycolic acid according to a ratio of 9 to 1, wherein the weight average molecular weight is 400, 000 and the polydispersity index is 20 after mixing.
- the stent was implanted into the abdominal aorta of a pig. A sampling test was carried out at a corresponding observation point in time. The test results show that the radial support force is 45kPa, the weight loss of the stent is 6%, and the EDS energy spectrum test results are shown in Figure 12 at three months from the date of implantation.
- the surface of a pure iron stent with a stent strut of which the thickness is between 40 ⁇ m and 50 ⁇ m was coated with a 3 to 10 ⁇ m thick poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coating.
- the polymer has a weight average molecular weight of 300, 000 and a polydispersity index of 25.
- the stent was implanted into the abdominal aorta of a rabbit. The stent was respectively taken out at three months and 3 rd years from the date of implantation to be correspondingly tested.
- the test results show that the weight loss of the stent is 12%, the radial support force is 80kPa, and the EDS test results are shown in Figure 13 at three months from the date of implantation. It can be seen from Figure that the stent strut uniformly corroded, and no precipitate of solid product was accumulated. The iron ion concentration was 4 % by testing after 3 years from the date of implantation, indicating that the stent completely corroded and was absorbed.
- the polymer has a weight average molecular weight of 350, 000 and a polydispersity index of 15.
- the stent was implanted into the abdominal aorta of a rabbit. A test was carried out at three months and 3.5 years from the date of implantation, respectively. The test results show that the weight loss of the stent is 9%, the radial support force is 55kPa, and the EDS energy spectrum test results are shown in Figure 14 at three months from the date of implantation.
- the surface of a pure iron stent with a stent strut of which the thickness is between 120 ⁇ m and 150 ⁇ m was coated with a 15 to 20 ⁇ m thick polylactic acid and polyglycolic acid blend coating.
- the polylactic acid has a weight average molecular weight of 1,000, 000, a crystallinity of 50% and the content of 70%
- the polyglycolic acid has a weight average molecular weight of 20, 000 and a crystallinity of 15%
- the blend has a polydispersity index of 30.
- the stent was implanted into the coronary artery of a pig. A corresponding test was carried out at three months and four years from the date of implantation, respectively.
- the test results show that the weight loss of the stent is 13%, the radial support force is 90kPa, and the EDS energy spectrum test results are shown in Figure 15 at three months from the date of implantation. It can be seen from Figure that the stent uniformly corroded, and no precipitate of solid product was accumulated. The iron ion concentration was 4% by testing after 4 years from the date of implantation, indicating that the stent completely corroded.
- a nitrided pure iron stent (uncoated with any coating on the surface) with a stent strut of which the thickness is between 60 ⁇ m and 70 ⁇ m was implanted into the abdominal aorta of a rabbit. After 3 months from the date of implantation, the stent was taken out, the weight loss percentage and the radial support force of the stent were tested, and an EDS energy spectrum test on the axial cross section of the stent strut was carried out (see Figure 16 ). The test results show that the weight loss of the stent is 5%, and the radial support force is 120 kPa.
- the surface of a nitrided pure iron stent with a stent strut of which the thickness is between 60 ⁇ m and 70 ⁇ m was uniformly coated with a 15 ⁇ m thick poly (lactic acid-co-glycolic acid) (the molar ratio of lactic acid to glycolic acid is 50 : 50).
- An absorbable iron-based alloy stent was obtained after drying.
- the poly (lactic acid-co-glycolic acid) has a weight average molecular weight of 15, 000 and a polydispersity index of 1.3.
- the absorbable iron-based alloy stent was implanted into the abdominal aorta of a rabbit.
- the stent was taken out after 3 months from the date of implantation, the weight loss percentage and the radial support force of the stent were tested, and the EDS energy spectrum test on the axial cross section of the stent strut was carried out (see Figure 17 ).
- the test results show that the weight loss of the stent is 30%, and the radial support force is 60kPa, indicating that the early corrosion is too rapid, resulting in too rapid decline in early support force, thus being unfavorable for the effective support of the stent on the blood vessel at early stage of implantation. It can be seen from Figure 12 that because the iron corroded too rapidly at early stage, the release of excessive iron ions was beyond the absorbing capacity of the blood vessel, and a new corrosion product deposition layer was formed around an initial position of the stent strut.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310533326.6A CN104587534A (zh) | 2013-10-31 | 2013-10-31 | 可吸收铁基合金支架 |
PCT/CN2014/090110 WO2015062547A1 (zh) | 2013-10-31 | 2014-10-31 | 可吸收铁基合金支架 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3064233A1 true EP3064233A1 (de) | 2016-09-07 |
EP3064233A4 EP3064233A4 (de) | 2017-07-19 |
EP3064233B1 EP3064233B1 (de) | 2020-12-09 |
Family
ID=53003389
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14858500.3A Active EP3064233B1 (de) | 2013-10-31 | 2014-10-31 | Bioresorbierbarer stent aus einer legierung auf eisenbasis |
EP14857514.5A Active EP3064232B1 (de) | 2013-10-31 | 2014-10-31 | Absorbierbarer eisenlegierungsstent |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14857514.5A Active EP3064232B1 (de) | 2013-10-31 | 2014-10-31 | Absorbierbarer eisenlegierungsstent |
Country Status (8)
Country | Link |
---|---|
US (2) | US10058639B2 (de) |
EP (2) | EP3064233B1 (de) |
JP (2) | JP2016534807A (de) |
KR (2) | KR102202431B1 (de) |
CN (4) | CN104587534A (de) |
AU (2) | AU2014344308B2 (de) |
NZ (2) | NZ720013A (de) |
WO (2) | WO2015062546A1 (de) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8741378B1 (en) * | 2001-06-27 | 2014-06-03 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device |
US9119906B2 (en) * | 2008-09-24 | 2015-09-01 | Integran Technologies, Inc. | In-vivo biodegradable medical implant |
US8685433B2 (en) | 2010-03-31 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Absorbable coating for implantable device |
JP6820745B2 (ja) * | 2014-10-28 | 2021-01-27 | 株式会社Jimro | 薬剤溶出型ステント |
CN105797220B (zh) * | 2014-12-31 | 2020-07-31 | 先健科技(深圳)有限公司 | 可降解铁基合金支架 |
CN106310394B (zh) * | 2015-07-01 | 2020-03-06 | 先健科技(深圳)有限公司 | 铁基可吸收植入医疗器械及其制备方法 |
CN106474545B (zh) * | 2015-08-28 | 2020-04-10 | 元心科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
CN106491240B (zh) * | 2015-09-07 | 2019-07-05 | 先健科技(深圳)有限公司 | 可吸收封堵器 |
CN106581778B (zh) * | 2015-10-14 | 2020-07-21 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械及其制备方法 |
CN106581784B (zh) * | 2015-10-19 | 2020-07-17 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
CN106693043B (zh) * | 2015-11-18 | 2020-06-16 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械及其制备方法 |
CN106806938B (zh) * | 2015-11-27 | 2020-04-14 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
CN106902395B (zh) * | 2015-12-22 | 2020-04-07 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
CN105597163B (zh) * | 2015-12-29 | 2019-05-31 | 先健科技(深圳)有限公司 | 铁基合金植入医疗器械及其制备方法 |
CN106924822B (zh) * | 2015-12-31 | 2020-02-28 | 先健科技(深圳)有限公司 | 可吸收铁基合金内固定植入医疗器械 |
CN106955374B (zh) * | 2016-01-08 | 2019-11-08 | 先健科技(深圳)有限公司 | 植入式器械 |
ES2854729T3 (es) * | 2016-05-16 | 2021-09-22 | Lightlab Imaging Inc | Método y sistema para la detección de endoprótesis autoexpansible, o stent, intravascular absorbible |
JP2019516468A (ja) * | 2016-05-25 | 2019-06-20 | キュースリー メディカル デヴァイシズ リミテッドQ3 Medical Devices Limited | 生体分解性支持デバイス |
CN108261570A (zh) * | 2016-12-30 | 2018-07-10 | 先健科技(深圳)有限公司 | 可吸收铁基器械 |
CN108261559B (zh) * | 2016-12-30 | 2021-07-30 | 元心科技(深圳)有限公司 | 可吸收铁基器械 |
CN108261275A (zh) * | 2016-12-31 | 2018-07-10 | 先健科技(深圳)有限公司 | 可吸收支架 |
WO2018137763A1 (en) * | 2017-01-25 | 2018-08-02 | B. Braun Melsungen Ag | Endoluminal device |
CN106798952B (zh) * | 2017-02-13 | 2019-12-10 | 先健科技(深圳)有限公司 | 可吸收铁基骨折内固定材料 |
EP3459469A1 (de) | 2017-09-23 | 2019-03-27 | Universität Zürich | Medizinische okklusionsvorrichtung |
WO2019075343A1 (en) * | 2017-10-13 | 2019-04-18 | The Secant Group, Llc | HOLLOW LIGHT ALESE |
CN109925536B (zh) * | 2017-12-15 | 2021-01-26 | 先健科技(深圳)有限公司 | 可吸收铁基植入式器械 |
CN109954171A (zh) * | 2017-12-26 | 2019-07-02 | 先健科技(深圳)有限公司 | 可吸收植入式器械 |
CN109966562B (zh) * | 2017-12-27 | 2021-12-17 | 元心科技(深圳)有限公司 | 可吸收金属支架 |
US11786632B2 (en) * | 2018-03-01 | 2023-10-17 | Tepha, Inc. | Hernia repair, breast reconstruction and sling devices containing poly(butylene succinate) and copolymers thereof |
US20210047484A1 (en) | 2018-03-01 | 2021-02-18 | Tepha, Inc. | Medical devices containing poly(butylene succinate) and copolymers thereof |
IL279785B2 (en) * | 2018-07-09 | 2024-08-01 | Nat Inst Materials Science | Non-woven fabric, method for its production, and compound for electrospinning |
CN109224137B (zh) * | 2018-08-10 | 2021-03-16 | 中南大学 | 一种可加快降解的铁基骨植入物的制备方法 |
CN111407474B (zh) * | 2018-12-18 | 2021-07-20 | 元心科技(深圳)有限公司 | 可吸收植入式器械 |
JP7531236B2 (ja) | 2019-09-26 | 2024-08-09 | ウニベルシタット チューリッヒ | 左心耳閉鎖デバイス |
CN113116595B (zh) * | 2019-12-30 | 2022-06-21 | 元心科技(深圳)有限公司 | 可吸收铁基器械 |
CN113116616B (zh) * | 2019-12-31 | 2022-07-22 | 元心科技(深圳)有限公司 | 可吸收器械 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW333456B (en) * | 1992-12-07 | 1998-06-11 | Takeda Pharm Ind Co Ltd | A pharmaceutical composition of sustained-release preparation the invention relates to a pharmaceutical composition of sustained-release preparation which comprises a physiologically active peptide. |
JP3586815B2 (ja) * | 1995-03-24 | 2004-11-10 | タキロン株式会社 | セル構造体の製造方法 |
US8172897B2 (en) * | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US20040267349A1 (en) * | 2003-06-27 | 2004-12-30 | Kobi Richter | Amorphous metal alloy medical devices |
SE0000363L (sv) * | 2000-02-04 | 2001-08-05 | Zoucas Kirurgkonsult Ab | Belagd medicinsk anordning |
JP2005538809A (ja) | 2002-09-18 | 2005-12-22 | メドトロニック ヴァスキュラー インコーポレイテッド | 医療装置のための制御可能な薬剤放出勾配コーティング |
US20060271168A1 (en) * | 2002-10-30 | 2006-11-30 | Klaus Kleine | Degradable medical device |
US7758892B1 (en) * | 2004-05-20 | 2010-07-20 | Boston Scientific Scimed, Inc. | Medical devices having multiple layers |
NZ562957A (en) * | 2005-04-05 | 2011-03-31 | Elixir Medical Corp | Degradable implantable medical devices with material to control degradation rate |
US7166364B2 (en) * | 2005-04-19 | 2007-01-23 | Sanchem, Inc. | Polyester conversion coated metal or its alloys |
US20060257448A1 (en) * | 2005-05-10 | 2006-11-16 | The University Of Zurich | Resorbable polymer composition, implant and method of making implant |
DE102005033101A1 (de) * | 2005-07-15 | 2007-01-25 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Resorbierbare Polyetherester und ihre Verwendung zur Herstellung von medizinischen Implantaten |
EP2420526B1 (de) * | 2005-08-22 | 2016-06-29 | The General Hospital Corporation | Oxidationsbeständiges homogenisiertes polymeres Material |
US20070224244A1 (en) * | 2006-03-22 | 2007-09-27 | Jan Weber | Corrosion resistant coatings for biodegradable metallic implants |
CA2652753C (en) * | 2006-05-12 | 2015-12-08 | Cordis Corporation | Balloon expandable bioabsorbable drug eluting stent |
US20070270942A1 (en) * | 2006-05-19 | 2007-11-22 | Medtronic Vascular, Inc. | Galvanic Corrosion Methods and Devices for Fixation of Stent Grafts |
US8066824B2 (en) * | 2006-07-07 | 2011-11-29 | Intezyne Technologies, Inc. | Covalent modification of metal surfaces |
DE102006038241A1 (de) * | 2006-08-07 | 2008-02-14 | Biotronik Vi Patent Ag | Stent mit einer genisteinhaltigen Beschichtung oder Kavitätenfüllung |
US20130150943A1 (en) * | 2007-01-19 | 2013-06-13 | Elixir Medical Corporation | Biodegradable endoprostheses and methods for their fabrication |
US7753962B2 (en) * | 2007-01-30 | 2010-07-13 | Medtronic Vascular, Inc. | Textured medical devices |
WO2008098418A1 (en) * | 2007-02-14 | 2008-08-21 | Shandong Intech Medical Technology Co., Ltd. | Intracoronary stent with asymmetric drug releasing controlled coating |
EP2134380A2 (de) * | 2007-03-28 | 2009-12-23 | Boston Scientific Scimed, Inc. | Medizinische vorrichtungen mit biologisch abbaubaren schichten zur freisetzung von therapeutika |
US7931683B2 (en) * | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8961589B2 (en) * | 2007-08-01 | 2015-02-24 | Abbott Cardiovascular Systems Inc. | Bioabsorbable coating with tunable hydrophobicity |
EP2397306B1 (de) * | 2007-12-11 | 2014-09-24 | Abbott Cardiovascular Systems Inc. | Verfahren zur Herstellung eines Stents aus einem blasgeformten Schlauch |
DE102008006455A1 (de) * | 2008-01-29 | 2009-07-30 | Biotronik Vi Patent Ag | Implantat mit einem Grundkörper aus einer biokorrodierbaren Legierung und einer korrosionshemmenden Beschichtung |
US9789233B2 (en) * | 2008-04-17 | 2017-10-17 | Micell Technologies, Inc. | Stents having bioabsorbable layers |
US7998192B2 (en) * | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US20090299464A1 (en) * | 2008-06-02 | 2009-12-03 | Medtronic Vascular, Inc. | Reducing Bioabsorbtion Time of Polymer Coated Implantable Medical Devices Using Polymer Blends |
CN101337090B (zh) * | 2008-08-29 | 2012-12-12 | 乐普(北京)医疗器械股份有限公司 | 一种复合涂层镁/镁合金生物医用器件及其制备方法 |
US8158187B2 (en) * | 2008-12-19 | 2012-04-17 | Medtronic Vascular, Inc. | Dry diazeniumdiolation methods for producing nitric oxide releasing medical devices |
US9254350B2 (en) * | 2009-04-10 | 2016-02-09 | Medtronic Vascular, Inc. | Implantable medical devices having bioabsorbable primer polymer coatings |
US9492587B2 (en) * | 2009-04-13 | 2016-11-15 | Abbott Cardiovascular Systems Inc. | Stent made from an ultra high molecular weight bioabsorbable polymer with high fatigue and fracture resistance |
WO2011088405A1 (en) * | 2010-01-15 | 2011-07-21 | Intezyne Technologies, Incorporated | Plasma modification of metal surfaces |
WO2011119430A1 (en) * | 2010-03-26 | 2011-09-29 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US9072618B2 (en) * | 2010-05-06 | 2015-07-07 | Biotronik Ag | Biocorrodable implant in which corrosion may be triggered or accelerated after implantation by means of an external stimulus |
ES2916750T3 (es) * | 2010-09-13 | 2022-07-05 | Meril Life Sciences Pvt Ltd | Stents con grosor de puntales bajo y geometría de puntales variable |
EP2696815B1 (de) * | 2011-04-13 | 2019-03-20 | Micell Technologies, Inc. | Stents mit gesteuerter elution |
CN102228721A (zh) * | 2011-06-09 | 2011-11-02 | 中国科学院金属研究所 | 一种可降解冠脉支架及其制备方法 |
US8632847B2 (en) * | 2011-07-13 | 2014-01-21 | Abbott Cardiovascular Systems Inc. | Methods of manufacture of bioresorbable and durable stents with grooved lumenal surfaces for enhanced re-endothelialization |
WO2013025535A1 (en) * | 2011-08-12 | 2013-02-21 | Micell Technologies, Inc. | Stents having controlled elution |
US9333099B2 (en) * | 2012-03-30 | 2016-05-10 | Abbott Cardiovascular Systems Inc. | Magnesium alloy implants with controlled degradation |
CN103371876B (zh) * | 2012-04-12 | 2016-01-20 | 先健科技(深圳)有限公司 | 生物可吸收的医疗器械或医疗器械部件、及其制作方法 |
CN102626528A (zh) * | 2012-04-16 | 2012-08-08 | 上海交通大学 | 一种渐张式血管支架 |
CN102908675A (zh) * | 2012-10-29 | 2013-02-06 | 东南大学 | 吻合器用可吸收缝钉 |
CN102961787B (zh) * | 2012-12-13 | 2015-06-03 | 北京大学 | 一种全降解心血管支架用铁基复合材料及其制备方法 |
US20140166473A1 (en) * | 2012-12-17 | 2014-06-19 | General Electric Company | Erosion and corrosion resistant components and methods thereof |
CN103060803B (zh) * | 2013-01-10 | 2014-12-03 | 西安科技大学 | 一种钕铁硼永磁体表面复合涂层的制备方法 |
CN105797220B (zh) * | 2014-12-31 | 2020-07-31 | 先健科技(深圳)有限公司 | 可降解铁基合金支架 |
-
2013
- 2013-10-31 CN CN201310533326.6A patent/CN104587534A/zh active Pending
-
2014
- 2014-10-31 KR KR1020167014074A patent/KR102202431B1/ko active IP Right Grant
- 2014-10-31 CN CN201480056253.9A patent/CN105636617A/zh active Pending
- 2014-10-31 CN CN201810917911.9A patent/CN109010930B/zh active Active
- 2014-10-31 JP JP2016526948A patent/JP2016534807A/ja active Pending
- 2014-10-31 EP EP14858500.3A patent/EP3064233B1/de active Active
- 2014-10-31 NZ NZ720013A patent/NZ720013A/en unknown
- 2014-10-31 US US15/032,100 patent/US10058639B2/en active Active
- 2014-10-31 NZ NZ720002A patent/NZ720002A/en unknown
- 2014-10-31 JP JP2016526758A patent/JP2016534797A/ja active Pending
- 2014-10-31 WO PCT/CN2014/090107 patent/WO2015062546A1/zh active Application Filing
- 2014-10-31 WO PCT/CN2014/090110 patent/WO2015062547A1/zh active Application Filing
- 2014-10-31 KR KR1020167014075A patent/KR102201025B1/ko active IP Right Grant
- 2014-10-31 AU AU2014344308A patent/AU2014344308B2/en active Active
- 2014-10-31 US US15/033,227 patent/US20160279303A1/en not_active Abandoned
- 2014-10-31 AU AU2014344307A patent/AU2014344307B2/en active Active
- 2014-10-31 EP EP14857514.5A patent/EP3064232B1/de active Active
- 2014-10-31 CN CN201480056254.3A patent/CN105636618B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
AU2014344307B2 (en) | 2018-07-12 |
AU2014344308A1 (en) | 2016-06-02 |
WO2015062546A1 (zh) | 2015-05-07 |
JP2016534807A (ja) | 2016-11-10 |
US20160263287A1 (en) | 2016-09-15 |
KR102202431B1 (ko) | 2021-01-12 |
EP3064233A4 (de) | 2017-07-19 |
CN104587534A (zh) | 2015-05-06 |
EP3064233B1 (de) | 2020-12-09 |
CN105636617A (zh) | 2016-06-01 |
KR102201025B1 (ko) | 2021-01-08 |
CN105636618A (zh) | 2016-06-01 |
WO2015062547A1 (zh) | 2015-05-07 |
EP3064232B1 (de) | 2020-12-09 |
US10058639B2 (en) | 2018-08-28 |
AU2014344307A1 (en) | 2016-06-02 |
CN105636618B (zh) | 2018-09-28 |
NZ720002A (en) | 2021-07-30 |
CN109010930B (zh) | 2021-06-11 |
JP2016534797A (ja) | 2016-11-10 |
KR20160094376A (ko) | 2016-08-09 |
AU2014344308B2 (en) | 2018-07-12 |
EP3064232A4 (de) | 2017-07-19 |
NZ720013A (en) | 2021-07-30 |
US20160279303A1 (en) | 2016-09-29 |
KR20160094375A (ko) | 2016-08-09 |
EP3064232A1 (de) | 2016-09-07 |
CN109010930A (zh) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3064233B1 (de) | Bioresorbierbarer stent aus einer legierung auf eisenbasis | |
EP3366325B1 (de) | Resorbierbare implantierbare medizinische vorrichtung aus eisenbasierter legierung | |
CN106806938A (zh) | 可吸收铁基合金植入医疗器械 | |
US11819591B2 (en) | Iron-based alloy absorbable and implantable medical device for internal fixation | |
EP3733220A1 (de) | Resorbierbarer metallstent | |
EP3241572A1 (de) | Abbaubarer eisenbasierter legierungsträger | |
CN114767950B (zh) | 一种镁合金支架用的防腐与载药复合涂层及其制备方法 | |
US20140030310A1 (en) | Implant and method for manufacturing same | |
EP2329853A2 (de) | Beschichtete Eisenbasislegierung für medizinische Implantate | |
US20240207075A1 (en) | Absorbable Iron-Based Instrument | |
JP2022509122A (ja) | 植え込み型吸収可能な機器 | |
EP3650053A1 (de) | Implantierbare vorrichtung | |
US20230142931A1 (en) | Zinc-Containing Medical Instrument | |
DE102012201249A1 (de) | Hybrider Stent mit einer wirkstofffreisetzenden polymeren Matrix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160524 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170620 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61L 31/10 20060101AFI20170612BHEP Ipc: A61F 2/82 20130101ALI20170612BHEP Ipc: A61L 31/02 20060101ALI20170612BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BIOTYX MEDICAL (SHENZHEN) CO., LTD. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61F 2/915 20130101ALI20200429BHEP Ipc: A61L 31/10 20060101AFI20200429BHEP Ipc: A61F 2/82 20130101ALI20200429BHEP Ipc: A61L 31/02 20060101ALI20200429BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200528 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1342723 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014073280 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1342723 Country of ref document: AT Kind code of ref document: T Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210309 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210409 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014073280 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210409 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
26N | No opposition filed |
Effective date: 20210910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210409 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141031 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 10 Ref country code: DE Payment date: 20231018 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |