EP3022545A1 - Durchflusseinrichtung für ein spektrometersystem und verfahren zum betreiben einer solchen - Google Patents

Durchflusseinrichtung für ein spektrometersystem und verfahren zum betreiben einer solchen

Info

Publication number
EP3022545A1
EP3022545A1 EP14781832.2A EP14781832A EP3022545A1 EP 3022545 A1 EP3022545 A1 EP 3022545A1 EP 14781832 A EP14781832 A EP 14781832A EP 3022545 A1 EP3022545 A1 EP 3022545A1
Authority
EP
European Patent Office
Prior art keywords
flow
liquid
distance
optical element
measuring gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14781832.2A
Other languages
English (en)
French (fr)
Inventor
Gerit Ebelsberger
Artur Jan PASTUSIAK
Remigiusz Pastusiak
Kerstin Wiesner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3022545A1 publication Critical patent/EP3022545A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • G01N2021/115Washing; Purging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/025Mechanical control of operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Definitions

  • the invention relates to a flow-through device for a spectrometer system according to the preamble of patent claim 1 and a method for operating such a flow-through device.
  • Spectroscopy is a nondestructive material analysis method that uses light, typically between 1 and 500,000 nm wavelength. Spectroscopy is used primarily for the quantitative determination of known substances, their identification, for process control and monitoring and quality assurance.
  • a spectroscopic measurement setup includes a spectrometer for separating and measuring the various light components and a measuring head for optical coupling to the sample. Depending on the measurement method, a light source is also required.
  • measurements of the ingredients or properties of liquid samples usually employ either immersion probes or flow cells.
  • a flow-through device for a spectrometer system has a first, to a spectrometer op- table couplable optical element and a second, to a
  • Light source couplable optical element which are arranged spaced from one another in the region of a measuring gap through which a liquid can flow, wherein in the region of this
  • Messspaltes emerging from the second optical element and in the first optical element reaching light beam is at least partially absorbable by the liquid.
  • a flow rate of the liquid through the measuring gap can be influenced by changing the distance between the two optical elements.
  • the distance of the optical elements can be changed both by moving one of the two or by moving both optical elements.
  • the distance of the two optical element is controllable.
  • the size of the measurement gap can be controlled during a measurement, so that a best light efficiency can be set from a spectroscopic point of view.
  • the flow-through device can in particular also be adapted to inhomogeneities in the sample substance.
  • the distance between the two optical elements can be controlled with a micrometer screw or hydraulically. This has the advantage that the distance can be set very accurately and thus the different Properties of different sample liquids in fine gradations can be well taken into account.
  • a control device is provided, with which the distance between the two optical elements can be automatically increased or reduced in dependence on a light intensity, which can be measured by a measuring device optically coupled to the first optical element.
  • a measuring device optically coupled to the first optical element.
  • a by-pass system is part of the flow-through device, by means of which a further liquid as a reference liquid can be introduced into the measuring gap.
  • a reference spectrum which is basically required for each position or each distance of the optical elements for the evaluation of data, does not have to be read from a database, but can be measured in each case in situ.
  • a new reference spectrum can be recorded for each new position of the optical elements, in which, after a change in the size of the measuring gap, firstly said reference liquid is examined.
  • the by-pass system is designed to automatically introduce a cleaning fluid during operation and then, in consequence, to introduce the reference fluid into the measurement gap.
  • the reference spectrum can be recorded particularly reliably, because it is ruled out that residues of other liquids falsify the reference spectrum.
  • the flow-through device is substantially tubular.
  • it may take the form of a capillary.
  • the flow-through device can easily be connected to existing superstructures and is easy to clean.
  • a pump or the like may possibly be dispensed with. It is here that an adaptation of the size of the measuring gap to sample properties is advantageous, since in this way the respective different properties of different samples with respect to the capillary effect can be taken into account.
  • At least one expandable membrane in particular a very extensible and / or deformable membrane, is arranged between the associated optical element and an inner wall region of the flow-through device.
  • the membrane deforms in a change in the distance between the two optical elements so that it forms a bottleneck with the optical elements, so the measuring gap.
  • the selection of the material from which the membrane is to be produced is free here except for the requirements of ductility and / or ductility and can be chosen to be process-specific, in particular as a polymer membrane or as a mixed-matrix membrane.
  • the material of the membrane is preferably selected so that it is able to withstand the liquids to be examined or individual components of these liquids, so in particular by this, as well as by any cleaning agents used, is not chemically attacked.
  • This has the advantage that with the membrane a possible collection of solid particles, as they occur in inhomogeneous liquids, can be prevented at the optical elements in the flow device.
  • the cleaning of the flow-through device, ie the flow cell, is also considerably simplified by the use of the membrane.
  • the membrane seals the system of leaks, on the other hand, it is so stretchable that at the maximum distance of the optical elements a strong
  • Measurement gap realized bottleneck in the liquid flow is reduced and the flow of the process liquids remains laminar in a wider range.
  • Also part of the invention is a method for operating such a flow device for a spectrometer system, wherein a flow rate of the liquid is influenced by the measuring gap by changing the distance of the two optical elements.
  • FIG. 1 shows a schematic representation of an exemplary
  • FIG. 2 shows a schematic representation of another exemplary flow-through device in an embodiment of the invention
  • FIG. 3 shows a schematic representation of an additional exemplary flow-through device in an embodiment of the invention.
  • FIG. 4 shows a schematic representation of the membrane shown in FIG.
  • FIG. 1 shows a flow device 1 is shown.
  • a liquid 8 flows along a plurality of wall regions 12 and through a measuring gap 6 which is arranged through two optical elements 2, 3 which are arranged at a distance 10 from one another.
  • swirling occurs in two regions 9 near the measuring gap.
  • the optical elements 2, 3 are movable here parallel to the drawing plane, so that they can be changed in their distance 10.
  • the size of the measuring gap 6 is variable, and the amount of liquid 8, which can flow in a predetermined time through the measuring gap 6 is thus changed by a change in the distance 10 of the two optical elements 2, 3.
  • the liquid 8 now flows through the measuring gap 6 and at least partially absorbs light which emerges from the second optical element 3. Thus, only a certain proportion of the light emerging from the second optical element 3, which has a reduced spectrum, enters the first optical element 2
  • Flow device 1 are used for another liquid 8, so in the measuring gap 6 at the set distance for the preceding liquid 8 may either be too much or too little light absorbed. If too much light is absorbed, that is to say if it is a substantially darker liquid, the distance 10 must be reduced so that it is still possible to draw conclusions about the properties of the liquid 8 from the light reaching the first optical element 2. If, however, it is a very fluid, largely transparent liquid 8, for example, the measuring gap 6 must be increased so that the amount of liquid 8 between the two optical elements 2, 3 is sufficient, for example, to produce a measurable absorption of light. Other properties, such as the viscosity of the liquid 8, can thus be taken into account by adjusting the measuring gap 6.
  • FIG. 2 shows a flow-through device 1 in which, very similar to the flow-through device 1 shown in FIG. 1, a liquid 8 flows between wall regions 12 and two optical elements 2, 3 through a measuring gap 6.
  • the two regions 9, in which Verwirbe- take place significantly smaller than in the example shown in FIG 1.
  • the membranes 11 are fastened between edges of the measuring gap 6 and inner edges of the wall regions 12 of the flow-through device 1.
  • the membranes 11 adapt to the changed geometry of the wall regions 12 and the two optical elements 2, 3 due to their flexibility.
  • the membrane 11 in the example shown, even less acute angles occur at the corner regions of the wall regions 12 and the optical elements 2, 3. This is the cause of the already mentioned advantageous reduction of the areas 9, in which the liquid 8 swirls.
  • FIG. 3 shows a flow-through device 1 in a built-in state in a spectrometer system.
  • Two displaceable cylinders 13 receive here the two Optikele- elements 2, 3 and form here a mechanical guide.
  • the distance 10 between the two optical elements 2, 3 is adjustable, for example via a micrometer screw.
  • a light source 5 for example a halogen lamp or an LED element
  • a light beam 7 passes first into the second optical element 3, then into the measuring gap 6, and finally via the first optical element 2 into a spectrometer 4.
  • a Liquid 8 are the spectral parts of the light beam 7 absorbed.
  • the liquid 8 is in the example shown via two tubes 16, which via the membrane 11 with the
  • Measuring gap 6 are connected, passed through the measuring gap 6. If an excessively high or too low brightness is detected in the spectrometer 4, the measuring gap 6 can be adjusted in the example shown by displacing the cylinders 13. If too much light enters the spectrometer 4, the measuring gap 6 will be increased, but if too little light enters the spectrometer 4, the measuring gap 6 will be reduced so as to ensure the best possible measurement result, ie for different sample substances.
  • the system can, for example, additionally be equipped with a by-pass system, which is set up in such a way that, after changing the distance 10 of the two optical elements 2, 3, it first automatically ensures that the measuring gap 6 is flushed with a cleaning fluid Follow a reference liquid to introduce into the measuring gap 6, so that the spectrometer 4 can be adjusted or calibrated based on the reference liquid for the now used distance 10. After the adjustment process, the liquid 8 to be analyzed is again introduced into the measuring gap 6 via the two tubes 16.
  • a fully automated analysis of a wide variety of substances can be carried out or, for example, carried out. also the process flow can be varied.
  • FIG. 4 shows a schematic representation of the membrane 11 used in the example shown in FIG. 3.
  • the two openings 15, which in the present case are the larger of the openings 14, 15, are intended to seal the flow-through device 1 in the region of the two optical elements 2, 3 with the associated cylinders 13.
  • the two smaller openings 14 accommodate two tubes 16 and thus seal the throughflow device 1 in the direction of the supply and discharge of the liquid 8 to be examined. Since the mem- ran 11 is highly elastic or highly flexible, it can simultaneously adapt to a changed geometry by moving the cylinder 13 with the optical elements 2, 3 and get their sealing function. In addition, edges that can be used to collect residues of the sample or other liquids and substances are avoided constructively by the round shapes used.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung betrifft eine Durchflusseinrichtung (1) für ein Spektrometersystem, mit einem ersten, an ein Spektrometer (4) optisch koppelbaren Optikelement (2), und mit einem zweiten, an eine Lichtquelle (5) optisch koppelbaren Optikelement (3), welche im Bereich eines von einer Flüssigkeit (8) durchströmbaren Messspaltes (6) voneinander beabstandet angeordnet sind, in dessen Bereich ein aus dem zweiten Optikelement (3) austretender und in das erste Optikelement (2) gelangender Lichtstrahl (7) zumindest teilweise absorbierbar ist, wobei durch eine Veränderung des Abstandes (10) der beiden Optikelemente (2, 3) eine Durchflussmenge der Flüssigkeit (8) durch den Messspalt (6) beeinflussbar ist, um das Spektrometersystem mit einer Vielzahl verschiedener Proben einsetzen zu können. Die Erfindung betrifft auch ein Verfahren zum Betreiben einer solchen Durchflusseinrichtung (1).

Description

Beschreibung
Durchflusseinrichtung für ein SpektrometerSystem und Verfahren zum Betreiben einer solchen
Die Erfindung betrifft eine Durchflusseinrichtung für ein Spektrometersystem gemäß dem Oberbegriff von Patentanspruch 1 und ein Verfahren zum Betreiben einer solchen Durchflusseinrichtung .
Spektroskopie ist ein zerstörungsfreies Verfahren zur Materialanalyse, das mit Licht, typischerweise zwischen 1 und 500.000 nm Wellenlänge, arbeitet. Die Spektroskopie wird vor allem zur quantitativen Bestimmung von bekannten Substanzen, deren Identifikation, zur Prozesssteuerung und -Überwachung und Qualitätssicherung angewendet. Ein spektroskopischer Messaufbau beinhaltet ein Spektrometer zur Auftrennung und Messung der verschiedenen Lichtkomponenten sowie einen Messkopf zur optischen Ankopplung an die Probe. Je nach Messmethode wird außerdem eine Lichtquelle benötigt. Heutzutage werden in Chemielaboratorien oder in Industrieprozessen bei den Messungen der Inhaltsstoffe oder Eigenschaften von flüssigen Proben zumeist entweder Tauchsonden oder Durchflusszellen eingesetzt .
Es ist Aufgabe der vorliegenden Erfindung, es zu ermöglichen, dass ein und dasselbe Spektrometersystem für eine Vielzahl verschiedener Proben mit unterschiedlichen optischen und mechanischen Eigenschaften eingesetzt werden kann.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung und durch ein Verfahren gemäß den unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den abhängigen Patentansprüchen, der Beschreibung und den Figu- ren.
Eine erfindungsgemäße Durchflusseinrichtung für ein Spektrometersystem verfügt über ein erstes, an ein Spektrometer op- tisch koppelbares Optikelement und ein zweites, an eine
Lichtquelle koppelbares Optikelement, welche im Bereich eines von einer Flüssigkeit durchströmbaren Messspaltes voneinander beabstandet angeordnet sind, wobei im Bereich dieses
Messspaltes ein aus dem zweiten Optikelement austretender und in das erste Optikelement gelangender Lichtstrahl zumindest teilweise durch die Flüssigkeit absorbierbar ist. Um ein mit einer erfindungsgemäßen Durchflusseinrichtung ausgestattetes Spektrometersystem mit einer Vielzahl verschiedener Proben einsetzen zu können, ist durch eine Veränderung des Abstands der beiden Optikelemente eine Durchflussmenge der Flüssigkeit durch den Messspalt beeinflussbar. Insbesondere kann der Abstand der Optikelemente sowohl durch ein Bewegen eines der beiden oder ein Bewegen beider Optikelemente verändert wer- den.
Das hat den Vorteil, dass eine Anpassung des Messspaltes an die aus spektroskopischer Sicht beste Lichteffizienz ermöglicht wird. Es können sowohl dunkle und zähflüssige Substanzen wie Schmieröl, Schiffsdiesel oder Emulsionen wie Milch als auch dünnflüssige und helle Proben und sonstige Prozesslösungen mit ein und demselben System gemessen werden.
In einer vorteilhaften Ausführungsform ist vorgesehen, dass zum Anpassen des Abstandes der beiden Optikelemente in einem laufenden Betrieb der Abstand der beiden Optikelement steuerbar ist. Es kann also während einer Messung die Größe des Messspalts gesteuert werden, so dass eine aus spektroskopischer Sicht beste Lichteffizienz eingestellt werden kann. Das hat den Vorteil, dass die bereits erwähnten verschiedenen Substanzen ohne Prozessunterbrechung gemessen werden können. Somit kann die Durchflusseinrichtung insbesondere auch an Inhomogenitäten in der Probensubstanz angepasst werden.
Es ist insbesondere vorgesehen, dass der Abstand der beiden Optikelemente mit einer Mikrometerschraube oder hydraulisch steuerbar ist. Das hat den Vorteil, dass der Abstand sehr genau eingestellt werden kann und damit die unterschiedlichen Eigenschaften verschiedener Probeflüssigkeiten in feinen Abstufungen gut berücksichtigt werden können.
In einer weiteren Ausführungsform ist vorgesehen, dass eine Steuereinrichtung vorhanden ist, mit welcher in Abhängigkeit einer Lichtintensität, welche von einer mit dem ersten Optikelement optisch gekoppelten Messeinrichtung messbar ist, der Abstand der beiden Optikelemente automatisch vergrößerbar oder verkleinerbar ist. Es wird also je nach Lichtintensität, die, insbesondere am Spektrometer, gemessen wird, die Engstelle, also der Messspalt, in der Durchflusseinrichtung automatisch verengt oder erweitert. Das hat den Vorteil, dass unterschiedliche Flüssigkeiten nicht nur ohne Prozessunterbrechung mit ein und demselben System gemessen werden können, sondern dass die Durchflusseinrichtung auch gegenüber gewünschten Prozessschwankungen messtechnisch flexibel bleibt.
In einer bevorzugten Ausgestaltung ist vorgesehen, dass ein By-Pass System Teil der Durchflusseinrichtung ist, mittels welchem eine weitere Flüssigkeit als Referenzflüssigkeit in den Messspalt einbringbar ist. Das hat den Vorteil, dass ein Referenzspektrum, welches grundsätzlich für jede Position bzw. jeden Abstand der Optikelemente zur Auswertung von Daten erforderlich ist, nicht aus einer Datenbank abgelesen werden muss, sondern jeweils in situ gemessen werden kann. Es kann also für jede neue Position der Optikelemente ein neues Referenzspektrum aufgenommen werden, in dem nach einer Veränderung der Größe des Messspaltes zunächst besagte Referenzflüssigkeit untersucht wird.
Hier kann es weiterhin vorgesehen sein, dass das By-Pass System ausgelegt ist, während des Betriebs automatisch zunächst eine Reinigungsflüssigkeit und dann, also in Folge, die Referenzflüssigkeit in den Messspalt einzubringen. Das hat den Vorteil, dass das Referenzspektrum besonders zuverlässig aufgenommen werden kann, da ausgeschlossen ist, dass Reste von anderen Flüssigkeiten das Referenzspektrum verfälschen. In einer weiteren Ausführungsform ist vorgesehen, dass die Durchflusseinrichtung im Wesentlichen rohrförmig gebildet ist. Insbesondere kann sie die Form einer Kapillare annehmen. Das hat den Vorteil, dass die Durchflusseinrichtung an beste- hende Aufbauten leicht anschließbar ist und gut zu reinigen ist. Insbesondere kann bei einer Ausformung als Kapillare dank der Kapillarwirkung gegebenenfalls auf eine Pumpe oder dergleichen verzichtet werden. Gerade hier ist dann eine Anpassung der Größe des Messspaltes an Probeneigenschaften vor- teilhaft, da so die jeweils unterschiedlichen Eigenschaften verschiedener Proben in Bezug auf den Kapillareffekt berücksichtigt werden können.
In einer besonders vorteilhaften Ausführungsform ist vorgese- hen, dass wenigstens eine dehnbare Membran, insbesondere eine sehr stark dehnbare und/oder verformbare Membran, zwischen dem zugeordneten Optikelement und einem innenliegenden Wandbereich der Durchflusseinrichtung angeordnet ist. Hierbei verformt sich die Membran bei einer Veränderung des Abstandes der beiden Optikelemente so, dass sie mit den Optikelementen, also dem Messspalt, eine Engstelle bildet. Die Auswahl des Materials, aus dem die Membran hergestellt werden soll, ist hier bis auf die Anforderungen an die Dehnbarkeit und/oder Verformbarkeit frei und kann prozessspezifisch gewählt wer- den, insbesondere als Polymermembran oder als Mixed-Matrix- Membran. Hierbei wird das Material der Membran bevorzugt so gewählt, dass es gegenüber den zu untersuchenden Flüssigkeiten oder einzelnen Bestandteilen dieser Flüssigkeiten bestandsfähig ist, also insbesondere durch diese, wie auch durch gegebenenfalls verwendete Reinigungsmittel, nicht chemisch angegriffen wird. Das hat den Vorteil, dass mit der Membran ein eventuelles Sammeln von festen Partikeln, wie sie in inhomogenen Flüssigkeiten vorkommen, an den optischen Elementen in der Durchflusseinrichtung verhindert werden kann. Auch die Reinigung der Durchflusseinrichtung, also der Durchflusszelle, wird durch die Anwendung der Membran deutlich vereinfacht. Einerseits dichtet nämlich die Membran das System von Leckagen ab, andererseits ist sie so dehnbar, dass bei dem maximalen Abstand der Optikelemente ein starker
Durchfluss der Flüssigkeit durch den Messspalt und damit die Durchflusszelle möglich ist. Damit entfällt eine problematische Reinigung von Kanten, die sich im Inneren der Standarddurchflusszellen befinden. Außerdem wird durch die Verwendung der Membran die Bildung von Wirbeln an der durch den
Messspalt realisierten Engstelle im Flüssigkeitsstrom verringert und die Strömung der Prozessflüssigkeiten bleibt dadurch in einem größeren Bereich laminar.
Ebenfalls Teil der Erfindung ist ein Verfahren zum Betreiben einer solchen Durchflusseinrichtung für ein Spektrometer- system, wobei hier durch ein Verändern des Abstands der beiden Optikelemente eine Durchflussmenge der Flüssigkeit durch den Messspalt beeinflusst wird. Das führt zu den beschriebenen Vorteilen.
Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung bevorzugter Ausführungsbeispiele der Erfindung, sowie anhand der Figuren. Dabei zeigen:
FIG 1 eine schematische Darstellung einer beispielhaften
Durchflusseinrichtung gemäß einer Ausführungsform der Erfindung;
FIG 2 eine schematische Darstellung einer weiteren beispielhaften Durchflusseinrichtung in einer Ausführungsform der Erfindung;
FIG 3 eine schematische Darstellung einer zusätzlichen beispielhaften Durchflusseinrichtung in einer Ausführungsform der Erfindung; und
FIG 4 eine schematische Darstellung der in FIG 3 gezeigten Membran.
In den FIG werden gleiche oder funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen. In FIG 1 ist eine Durchflusseinrichtung 1 dargestellt. Eine Flüssigkeit 8 strömt hier entlang mehrere Wandbereiche 12 und durch einen Messspalt 6, welcher durch zwei Optikelemente 2, 3, welche in einem Abstand 10 zueinander angeordnet sind. Dabei bilden sich in zwei Bereichen 9 nahe des Messspaltes Ver- wirbelungen. Die Optikelemente 2, 3 sind hier parallel zur Zeichenebene beweglich, so dass sie in ihrem Abstand 10 verändert werden können. Dadurch ist die Größe des Messspalts 6 veränderbar, und die Menge der Flüssigkeit 8, welche in einer vorgegebenen Zeit durch den Messspalt 6 strömen kann ist somit durch eine Veränderung des Abstands 10 der beiden Optikelemente 2, 3 veränderbar. Im Betrieb der Durchflusseinrichtung strömt nun die Flüssigkeit 8 durch den Messspalt 6 und absorbiert dort zumindest teilweise Licht, welches aus dem zweiten Optikelement 3 austritt. Damit gelangt nur ein bestimmter, in seinem Spektrum reduzierter Anteil des aus dem zweiten Optikelement 3 austre- tenden Lichts in das erste Optikelement 2. Soll nun die
Durchflusseinrichtung 1 für eine andere Flüssigkeit 8 verwendet werden, so wird im Messspalt 6 bei dem für die vorhergehende Flüssigkeit 8 eingestellten Abstand 10 möglicherweise entweder zu viel oder zu wenig Licht absorbiert. Wird zu viel Licht absorbiert, sprich, handelt es sich z.B. um eine wesentlich dunklere Flüssigkeit, so muss der Abstand 10 verringert werden, damit aus dem in das erste Optikelement 2 gelangenden Licht noch Rückschlüsse auf Eigenschaften der Flüssigkeit 8 gezogen werden können. Handelt es sich jedoch bei- spielsweise um eine sehr dünnflüssige, weitgehend transparente Flüssigkeit 8, muss der Messspalt 6 vergrößert werden, damit die Menge der Flüssigkeit 8 zwischen den beiden Optikelementen 2, 3 ausreicht, um z.B. überhaupt eine messbare Absorption von Licht hervorzurufen. Auch andere Eigenschaften, wie beispielsweise die Viskosität der Flüssigkeit 8, können so über ein Einstellen des Messspalts 6 berücksichtigt werden . In FIG 2 ist eine Durchflusseinrichtung 1 dargestellt, bei welcher sehr ähnlich zu der in FIG 1 dargestellten Durchflusseinrichtung 1 eine Flüssigkeit 8 zwischen Wandbereichen 12 und zwei Optikelementen 2, 3 durch einen Messspalt 6 strömt. Hier sind die beiden Bereiche 9, in denen Verwirbe- lungen stattfinden, deutlich kleiner als in dem in FIG 1 gezeigten Beispiel. Das ist auf mehrere hochflexible Membranen 11, welche zwischen den Wandbereichen 12 und den Optikelementen 2, 3 angeordnet sind zurückzuführen. Im gezeigten Bei- spiel sind die Membranen 11 zwischen Kanten des Messspalts 6 und innenliegenden Kanten der Wandbereiche 12 der Durchflusseinrichtung 1 befestigt. Diese Membranen 11 dichten also einen Innenraum, welcher von der Flüssigkeit 8 durchströmt wird, nach außen, also z.B. in Richtung einer Mechanik, wel- che die Optikelemente 2, 3 bewegt, ab. Werden die beiden Optikelemente 2, 3 in ihrem Abstand 10 nun verändert, zum Beispiel aufgrund geänderter Eigenschaften der Flüssigkeit 8, so passen sich die Membrane 11 aufgrund ihrer Flexibilität an die geänderte Geometrie der Wandbereiche 12 und der beiden Optikelemente 2, 3 an. Durch die Verwendung der Membrane 11 treten im gezeigten Beispiel auch weniger spitze Winkel an den Eckbereichen der Wandbereiche 12 und der Optikelemente 2, 3 auf. Das ist die Ursache für die bereits erwähnte vorteilhafte Verkleinerung der Bereiche 9, in denen sich die Flüs- sigkeit 8 verwirbelt.
In FIG 3 ist eine Durchflusseinrichtung 1 in einem eingebauten Zustand in einem Spektrometersystem dargestellt. Zwei verschiebbare Zylinder 13 nehmen hier die beiden Optikele- mente 2, 3 auf und bilden hier eine mechanische Führung. Über diese mechanische Führung ist der Abstand 10 zwischen den beiden Optikelementen 2, 3 einstellbar, zum Beispiel über eine Mikrometerschraube. Aus einer Lichtquelle 5, beispielsweise einer Halogenlampe oder einem LED-Element, gelangt ein Lichtstrahl 7 zunächst in das zweite Optikelement 3, dann in den Messspalt 6, und schließlich über das erste Optikelement 2 in ein Spektrometer 4. Im Messspalt 6 kann sich wieder eine Flüssigkeit 8 befinden, die spektrale Teile des Lichtstrahls 7 absorbiert. Die Flüssigkeit 8 wird im gezeigten Beispiel über zwei Rohre 16, welche über die Membran 11 mit dem
Messspalt 6 verbunden werden, durch den Messspalt 6 geleitet. Wird im Spektrometer 4 eine zu große oder zu geringe Hellig- keit detektiert, kann im gezeigten Beispiel der Messspalt 6 über ein Verschieben der Zylinder 13 angepasst werden. Gelangt zu viel Licht in das Spektrometer 4, wird der Messspalt 6 vergrößert werden, gelangt hingegen zu wenig Licht in das Spektrometer 4, wird der Messspalt 6 verkleinert werden, um so stets, also für unterschiedliche Probesubstanzen, ein bestmögliches Messergebnis zu gewährleisten. Das System kann beispielsweise zusätzlich mit einem By-Pass System ausgestattet werden, welches derart eingerichtet ist, dass es automatisch nach einem Verändern des Abstands 10 der beiden Optik- elemente 2, 3 zunächst für ein Durchspülen des Messspalts 6 mit einer Reinigungsflüssigkeit sorgt, um in Folge eine Referenzflüssigkeit in den Messspalt 6 einzubringen, so dass das Spektrometer 4 auf Grundlage der Referenzflüssigkeit für den nunmehr verwendeten Abstand 10 justiert bzw. geeicht werden kann. Nach dem Justiervorgang wird wieder die zu analysierende Flüssigkeit 8 über die beiden Rohre 16 in den Messspalt 6 eingebracht. Somit kann im laufenden Betrieb ohne einen weiteren Eingriff von Nutzerseite vollautomatisch eine Analyse unterschiedlichster Substanzen durchgeführt werden oder z.B. auch der Prozessablauf variiert werden.
FIG 4 zeigt eine schematische Darstellung der im in FIG 3 dargestellten Beispiel verwendeten Membran 11. Deutlich zu erkennen sind hier vier Öffnungen 14, 15, wobei jeweils zwei Öffnungen 14 und zwei Öffnungen 15 an gegenüberliegenden Seiten der Membran 11 angeordnet sind. Die beiden Öffnungen 15, welche im vorliegenden Fall die größeren der Öffnungen 14, 15 sind, sind dafür vorgesehen, die Durchflusseinrichtung 1 im Bereich der beiden Optikelemente 2, 3 mit den zugeordneten Zylindern 13 abzudichten. Die beiden kleineren Öffnungen 14 nehmen wie in FIG 3 gezeigt zwei Rohre 16 auf und dichten somit die Durchflusseinrichtung 1 in Richtung der Zu- und Ableitung der zu untersuchenden Flüssigkeit 8 ab. Da die Memb- ran 11 stark dehnbar bzw. hoch flexibel ist, kann sie sich gleichzeitig einer geänderten Geometrie durch ein Verschieben der Zylinder 13 mit den Optikelementen 2, 3 anpassen und ihre Abdichtfunktion erhalten. Zudem werden hier über die verwen- deten runden Formen Kanten, an denen sich Reste der Probe oder sonstiger Flüssigkeiten und Stoffe ansammeln können, konstruktiv vermieden.

Claims

Patentansprüche
1. Durchflusseinrichtung (1) für ein SpektrometerSystem, mit einem ersten, an ein Spektrometer (4) optisch koppelbaren Op- tikelement (2), und mit einem zweiten, an eine Lichtquelle
(5) optisch koppelbaren Optikelement (3) , welche im Bereich eines von einer Flüssigkeit (8) durchströmbaren Messspaltes
(6) voneinander beabstandet angeordnet sind, in dessen Bereich ein aus dem zweiten Optikelement (3) austretender und in das erste Optikelement (2) gelangender Lichtstrahl (7) zumindest teilweise absorbierbar ist, dadurch gekennzeichnet, dass durch eine Veränderung des Abstandes (10) der beiden Optikelemente (2, 3) eine Durchflussmenge der Flüssigkeit (8) durch den Messspalt (6) beeinflussbar ist.
2. Durchflusseinrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass zum Anpassen des Abstandes (10) der beiden Optikelemente (2, 3) in einem laufendem Betrieb der Abstand (10) der beiden Optikelemente (2, 3) steuerbar ist.
3. Durchflusseinrichtung (1) nach Anspruch 2, dadurch gekennzeichnet, dass der Abstand (10) der beiden Optikelemente (2, 3) mit einer Mikrometerschraube oder hydraulisch steuerbar ist .
4. Durchflusseinrichtung (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass eine Steuereinrichtung vorhanden ist, mit welcher in Abhängigkeit einer Lichtintensität, welche von einer mit dem ersten Optikelement (2) optisch gekoppelten Messeinrichtung messbar ist, der Abstand (10) der beiden Optikelemente (2, 3) automatisch vergrößerbar oder verkleinerbar ist.
5. Durchflusseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein By-Pass System
Teil der Durchflusseinrichtung (1) ist, mittels welchem eine weitere Flüssigkeit als Referenzflüssigkeit in den Messspalt (6) einbringbar ist.
6. Durchflusseinrichtung (1) nach Anspruch 5, dadurch gekennzeichnet, dass das By-Pass System ausgelegt ist während des Betriebs automatisch zunächst eine Reinigungsflüssigkeit und dann die Referenzflüssigkeit in den Messspalt (6) einzubringen .
7. Durchflusseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Durchflussein- richtung (1) im Wesentlichen rohrförmig gebildet ist.
8. Durchflusseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine dehnbare Membran (11) zwischen dem zugeordneten Optikelement (2, 3) und einem innenliegenden Wandbereich (12) der Durchflusseinrichtung (1) angeordnet ist.
9. Verfahren zum Betreiben einer Durchflusseinrichtung (1) für ein Spektrometersystem, wobei die Durchflusseinrichtung (1) ein erstes, an ein Spektrometer (4) optisch koppelbares Optikelement (2), und ein zweites an eine Lichtquelle (5) optisch koppelbares Optikelement (3) hat, welche im Bereich eines von einer Flüssigkeit (8) durchströmbaren Messspaltes (6) voneinander beabstandet angeordnet sind, wobei in den Be- reich des Messspaltes (6) ein aus dem zweiten Optikelement
(3) austretender und in das erste Optikelement (2) gelangender Lichtstrahl (7) zumindest teilweise absorbiert wird, dadurch gekennzeichnet, dass durch ein Verändern des Abstan- des (10) der beiden Optikelemente (2, 3) eine Durchflussmenge der Flüssigkeit (8) durch den Messspalt (6) beeinflusst wird.
EP14781832.2A 2013-09-27 2014-09-24 Durchflusseinrichtung für ein spektrometersystem und verfahren zum betreiben einer solchen Withdrawn EP3022545A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310219544 DE102013219544A1 (de) 2013-09-27 2013-09-27 Durchflusseinrichtung für ein Spektrometersystem und Verfahren zum Betreiben einer solchen
PCT/EP2014/070290 WO2015044157A1 (de) 2013-09-27 2014-09-24 Durchflusseinrichtung für ein spektrometersystem und verfahren zum betreiben einer solchen

Publications (1)

Publication Number Publication Date
EP3022545A1 true EP3022545A1 (de) 2016-05-25

Family

ID=51688030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14781832.2A Withdrawn EP3022545A1 (de) 2013-09-27 2014-09-24 Durchflusseinrichtung für ein spektrometersystem und verfahren zum betreiben einer solchen

Country Status (7)

Country Link
US (1) US20160209321A1 (de)
EP (1) EP3022545A1 (de)
KR (1) KR20160065918A (de)
CN (1) CN105556281A (de)
DE (1) DE102013219544A1 (de)
SG (1) SG11201601930QA (de)
WO (1) WO2015044157A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327996B (zh) * 2019-09-03 2019-12-24 中国科学院上海高等研究院 微流控芯片、微流控系统及红外微流控分析方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1054813A (en) * 1964-01-16 1967-01-11 Apparatus for the spectral examination of liquids
CN85200040U (zh) * 1985-04-01 1985-12-20 清华大学 池厚连续可调加温高压红外流动池
JPS61231435A (ja) * 1985-04-08 1986-10-15 Hitachi Ltd フロ−セル
DE3861563D1 (de) * 1987-07-22 1991-02-21 Ciba Geigy Ag Prozesskuevette.
US5351120A (en) * 1993-07-12 1994-09-27 American Air Liquide Spectroscopic cell design
DK173073B1 (da) * 1996-11-01 1999-12-20 Foss Electric As Fremgangsmåde og flowsystem til spektrometri og en kuvette til flowsystemet
JP3615438B2 (ja) * 1999-11-04 2005-02-02 住江織物株式会社 自動調色検定装置及び染液の自動調液システム
US6974938B1 (en) * 2000-03-08 2005-12-13 Tibotec Bvba Microscope having a stable autofocusing apparatus
US7027147B2 (en) * 2001-03-19 2006-04-11 E. I. Dupont De Nemours And Company Method and apparatus for measuring the color properties of fluids
US6762832B2 (en) * 2001-07-18 2004-07-13 Air Liquide America, L.P. Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy
ITMI20021192A1 (it) * 2002-05-31 2003-12-01 Loris Bellini S P A Macchina di tintura con controllo automatico in linea dell'esaurimento del bagno
DE102005052752A1 (de) * 2005-11-04 2007-05-10 Clondiag Chip Technologies Gmbh Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen
US8303894B2 (en) * 2005-10-13 2012-11-06 Accuri Cytometers, Inc. Detection and fluidic system of a flow cytometer
FR2903775B1 (fr) * 2006-07-12 2009-01-16 Tethys Instr Soc Par Actions S Dispositif d'ecoulement d'un fluide et appareillage de mesure optique utilisant un tel dispositif.
US7593101B2 (en) * 2007-04-10 2009-09-22 Schlumberger Technology Corporation High-pressure cross-polar microscopy cells having adjustable fluid passage and methods of use
DE102009037240A1 (de) * 2009-08-12 2011-02-17 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung chemischer und/oder physikalischer Eigenschaften von Betriebsstoffen in einer Maschinenanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2015044157A1 *

Also Published As

Publication number Publication date
WO2015044157A1 (de) 2015-04-02
US20160209321A1 (en) 2016-07-21
DE102013219544A1 (de) 2015-04-02
SG11201601930QA (en) 2016-04-28
CN105556281A (zh) 2016-05-04
KR20160065918A (ko) 2016-06-09

Similar Documents

Publication Publication Date Title
EP1721139B1 (de) Fahrzeug mit anordnung zur spektroskopischen bestimmung der bestandteile und konzentrationen pumpfähiger organischer verbindungen und verfahren
DE102012223874B3 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
EP2003441A1 (de) ATR-Sensor
EP2284518A1 (de) Verfahren zur Bestimmung eines Parameters, insbesondere des chemischen Sauerstoffbedarfs (CSB), des organischen Gesamtkohlenstoffgehalts (TOC) oder der Konzentration eines oder mehrerer Inhaltsstoffe, einer Flüssigkeitsprobe
EP2009438B1 (de) Verfahren und Einrichtung zur Bestimmung des Wassergehalts in Mineralölen und ähnlichen Flüssigkeiten
EP2284517A1 (de) Vorrichtung und Verfahren zur spektrometrischen Analyse eines Getränks
DE112017005875B4 (de) System zur prozessintegrierten optischen Analyse fließfähiger Medien
DE102007056682A1 (de) Vorrichtung und Messanordnung zur Ermittlung der Partikelkonzentration, der Partikelgröße, der mittleren Partikelgröße und der Partikelgrößenverteilung der Partikeln einer dispersen Phase innerhalb eines dispersen Systems sowie dessen Trübung
DE102006033663B4 (de) Verfahren zur Ermittlung eines charakteristischen Parameters einer Probe aus CFK
DE2649190A1 (de) Infrarot-analysator
WO2000067547A2 (de) Verfahren zur detektion von serum und zur erfassung seiner qualität und anordnungen hierzu
EP3022545A1 (de) Durchflusseinrichtung für ein spektrometersystem und verfahren zum betreiben einer solchen
DE3736027A1 (de) Verfahren zur ermittlung der zu einem bestimmten zeitpunkt vorliegenden form von zellen und einrichtung zur durchfuehrung des verfahrens
EP0403034B1 (de) Verfahren und Vorrichtung zur Analyse der Partikelgrössenverteilung in einem flüssigen Produktstrom
DE2430011C3 (de) Zweistrahl-Photometer mit Interferenzfilter
EP3182093A1 (de) Werkzeug zur rheologiemessung
DE10024490C2 (de) Vertikale Rotationsscheibe für die dynamische Alterungsprüfung von Kautschuk und Elastomeren
DE102009051220A1 (de) Echtzeit-Analysevorrichtung für Flüssigkeiten von Maschinen
DE19960586B4 (de) Verfahren und Einrichtung zur Messung von Kenngrössen einer Probe durch Spektralanalyse
DE4125228C2 (de) Vorrichtung zur in-line-Probenahme und zur optischen Messung von Materialeigenschaften eines strömenden Fluids
DE102005001850A1 (de) Messeinrichtung
DE102009041967A1 (de) Vorrichtung zur Analyse von Körperflüssigkeiten
AT523541B1 (de) Messzelle zur Absorptionsspektroskopie von Flüssigkeiten
DE102017009147A1 (de) Filtrationsvorrichtung, Verfahren zum Zusammenfügen einer modularen Filtrationsvorrichtung sowie Verfahren zur Charakterisierung eines Filtermediums und/oder zu filtrierenden Mediums
EP3047899A1 (de) Verfahren zur überprüfung der funktionsfähigkeit eines membranfiltrationsmoduls und filtrationsanlage zum durchführen des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

18D Application deemed to be withdrawn

Effective date: 20170401