EP2808309B1 - Glass tube cleaning and cutting device and method for same - Google Patents

Glass tube cleaning and cutting device and method for same Download PDF

Info

Publication number
EP2808309B1
EP2808309B1 EP12866874.6A EP12866874A EP2808309B1 EP 2808309 B1 EP2808309 B1 EP 2808309B1 EP 12866874 A EP12866874 A EP 12866874A EP 2808309 B1 EP2808309 B1 EP 2808309B1
Authority
EP
European Patent Office
Prior art keywords
glass tube
end portion
cutting
glass
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12866874.6A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2808309A4 (en
EP2808309A1 (en
Inventor
Kenichi HOSHIBA
Masahiro Ichikawa
Toru Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of EP2808309A1 publication Critical patent/EP2808309A1/en
Publication of EP2808309A4 publication Critical patent/EP2808309A4/en
Application granted granted Critical
Publication of EP2808309B1 publication Critical patent/EP2808309B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/095Tubes, rods or hollow products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/04Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area from a small area, e.g. a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/16Cutting rods or tubes transversely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/18Means for removing cut-out material or waste
    • B26D7/1845Means for removing cut-out material or waste by non mechanical means
    • B26D7/1854Means for removing cut-out material or waste by non mechanical means by air under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/18Means for removing cut-out material or waste
    • B26D7/1845Means for removing cut-out material or waste by non mechanical means
    • B26D7/1863Means for removing cut-out material or waste by non mechanical means by suction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/06Cutting or splitting glass tubes, rods, or hollow products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/26Transporting of glass tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/70Cleaning, e.g. for reuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0448With subsequent handling [i.e., of product]
    • Y10T83/0453By fluid application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2066By fluid current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2066By fluid current
    • Y10T83/207By suction means

Definitions

  • the present invention relates to a glass tube cutting device for cutting an end portion of a glass tube having a predetermined length and a glass tube cutting method.
  • glass tubes used for luminescent lamps for luminescent lamps
  • medicinal containers such as ampoules and vials
  • back light for liquid crystal panels are generally produced by the processes mentioned below.
  • a rough cutting process to obtain a plurality of glass tubes G1 is carried out by cutting a continuous glass tube G0 formed by pulling the tube using, for example, a Danner method for each predetermined length by a rough cutting device 200 while pulling with a tube puller 100.
  • respective glass tubes G1 are fed in a parallel state by a conveyor 300.
  • a re-cutting process to re-cut both ends of respective glass tubes G1 is re-cut by a re-cutting device 400 to produce finished goods of glass tubes G1.
  • the glass tubes G1 are conveyed to a delivery process by a conveyor 500.
  • a cutting device applied to a glass tube ends forming device described in Japanese Unexamined Patent Application Publication No. 54-43005 A is known as a re-cutting device 400 to re-cut ends of a glass tube.
  • the cutting device comprises: a conveyor 410 configured to convey a plurality of glass tubes G1 each having a predetermined length in a direction orthogonal to a tube axis of the glass tube while the cutting device rotates the plurality of glass tubes about tube axes of the glass tubes; a pair of preheat burners 420 provided on both sides of a conveyance route of the conveyor 410, the pair of preheat burners 420 being configured to preheat both ends of portions of the respective glass tubes G1 to be cut; a pair of cutting blades 430 provided on a more downstream side of the respective conveying glass tubes G1 than respective preheat burners 420, the pair of cutting blades 430 being configured to re-cut both ends of the respective glass tubes G1; and a pair of glazing burners 440 provided on a more downstream side of the respective conveying glass tubes G1 than respective cutting blades 430, the pair of glazing burners 440 being configured to glaze an end portion of the respective re-cut glass tubes G1.
  • the cutting device is configured to impose thermal shock and scratches on almost all circumferences of the outer circumference surface of the respective glass tubes G1 by contacting the cutting blades 430 with the outer circumference surface of both ends of the respective glass tubes G1 rotating about the tube axes of the glass tubes.
  • the thermal shock creates cracks resulting from the scratches on the outer circumference of the respective glass tubes G1 and re-cuts the ends of the respective glass tubes G1 at a right angle relative to the tube axes of the glass tubes.
  • US 2011/0100401 A1 relates to a method and a device for removing fragments and/or particles from containers, such as in particular glass tubes, which provides means for adjusting the electrostatic force in the tubes and means for removing of the fragments.
  • the means for removing can comprise a jet of fluid, of measured speed, put in the containers by a nozzle, whereas the means for adjusting the electrostatic force comprises an element for putting an electrically conducting fluid with a measured resistivity in the containers.
  • the fluid for example ionized air, acts in order to reduce and/or eliminate the electrostatic charge, and therefore the electrostatic force, between the fragments and the surface of the containers, assisting the removal by means of jets of fluid or by suction means.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 54-43005 A
  • a pair of suction devices 450 configured to suck surrounding air of end portions of respective glass tubes G1 are provided near respective cutting blades 43 0 and are configured to suck and remove finely-crushed glass P generated when cutting.
  • the present invention has made in view of the aforementioned disadvantage of the conventional glass tube cutting device. It is an object of the present invention to provide a glass tube cleaning and cutting device and a method for same to reliably prevent deterioration of purity of the glass tube caused by the adhesion of finely-crushed glass to the inner surface of the glass tube.
  • a glass tube cleaning and cutting device having the features of claim 1.
  • a glass tube cleaning and cutting device having the features of claim 2.
  • At least one suction device configured to suck surrounding air of an end portion of the glass tube is provided near the at least one cutting blade.
  • the blower includes a blowing nozzle having a flat-shaped nozzle port located along a conveyance route of the glass tube.
  • a method for cleaning and cutting a glass tube which has the features of claim 5.
  • the cutting step includes sucking surrounding air of an end portion of the glass tube.
  • the method further comprises the step of blowing air into an opening located in an end portion of the glass tube over a period after the cutting step.
  • the glass tube cleaning and cutting device and the method for cleaning and cutting a glass tube of the present invention when one side of end portions of the glass tube is cut by a cutting blade, it is possible to blow air from an opening located in an end portion of the glass tube located at an opposite side of the glass tube by a blower. This makes it possible to reliably blow off finely-crushed glass generated at the time of cutting to the outside of the glass tube, resulting in preventing the finely-crushed glass from being adhered to an inner surface of the glass tube and deterioration in purity of the glass tube.
  • the glass tube cleaning and cutting device and the method for cleaning and cutting a glass tube of the present invention includes the steps of: blowing air into an opening located on a first end portion side of the glass tube by use of a first blower to clean and cut a second end portion side of the glass tube by use of a first cutting blade; an blowing air into an opening located on the second end portion side of the glass tube by use of a second blower to clean and cut the second end portion side by use of a second cutting blade; and then cutting alternately both ends of the glass tube.
  • the glass tube cleaning and cutting device and the method for cleaning and cutting a glass tube in which at least one suction device configured to suck surrounding air of an end portion of the glass tube is provided near the at least one cutting blade, it is possible to rapidly remove by sucking finely-crushed glass generated at the time of cutting to the outside of the device, which leads to prevent the finely-crushed glass from being re-adhered to the glass tube.
  • sucking by such a suction device makes it possible to promote the blowing out of air from the end portion of the glass tube.
  • At least one blower includes a blowing nozzle having a flat-shaped nozzle port located along a conveyance route of the glass tube, it is possible to inject horizontally long belt-like air located along the conveyance route from the nozzle port and to reliably blow air into an opening of each glass tube moved by a conveyor.
  • the method for cleaning and cutting a glass tube including the step of blowing air into an opening of each glass tube over a period after the cutting step by use of a cutting blade, it is possible to cause air to come out of the cut-off end portion after cutting each glass tube and to reliably blow off finely-crushed glass generated at the time of cutting to the outside of each glass tube.
  • the conveyor 1 is composed of a pair of endless roller chain complexes 11 for winding between a sprocket (not shown) provided in parallel and conveys the respective glass tubes G1 that have bridged over such a pair of roller chain complexes 11 in a direction orthogonal to tube axes of the glass tubes.
  • each roller chain complex 11 comprises: a pair of endless roller chains 13 for each travelling on a guide rail 12; a plurality of disk-shaped carrier disks 14 dependent-rotatably supported by a plurality of roller axes of the pair of endless roller chains 13 arranged between the endless roller chains 13; a plurality of sprockets 15 concentrically fixed to respective carrier disks 14; and an endless driving chain 16 engaged with all of the plurality of sprockets 15 travelling in circle.
  • the respective carrier disks 14 have diameters greater than pitches of the roller chains 13 and are alternately disposed in a zigzag manner so as to overlap each outer peripheral part from a lateral view. As a result, recesses are formed between adjacent carrier disks 14 and then the glass tubes G1 are stably put on the recesses. And the respective carrier disks 14 are caused to travel by causing the roller chains 13 to travel in circle by use of a driving source not shown and convey the respective glass tubes G1 in a direction orthogonal to the tube axes of the glass tubes (an arrow D1 shown in FIG. 3 ).
  • the driving chain 16 is caused to travel in circle by the driving source not shown to rotate the respective carrier disks 14 via the sprockets 15.
  • the respective glass tubes G1 are rotated about the shaft center of the glass tubes (an arrow D2 shown in FIG. 3 ).
  • the conveyor 1 continuously conveys the plurality of glass tubes G1 arranged in parallel in the direction orthogonal to the tube axes of the glass tubes while the conveyor 1 continuously rotates the glass tubes G1 about the tube axes of the glass tubes.
  • preheat burners are each composed of a gas burner with a plurality of flame holes arranged along the conveyance route of the conveyor 1 and heat the portions to be cut in the end portions of the respective glass tubes G1 for a predetermined time from downward that move while being rotated about the tube axes of the glass tubes.
  • the glass tube cleaning and cutting device includes a first preheat burner 21 and a second preheat burner 22 to heat both ends of the portions to be cut in the respective glass tubes G1.
  • the second preheat burner 22 configured to heat a first end portion E1 side of a glass tube G1 is located at an opposite side of the first preheat burner 21 configured to heat a second end portion E2 side of the glass tube G1 and is provided on a more downstream side of the conveying glass tube G1 (hereinafter simply referred to as "a downstream side of a conveying glass tube”) than the first preheat burner 21.
  • blowers (31, 32) each have a predetermined length along the conveyance route of the conveyor 1 and are configured to blow air into openings located in end portions of the respective glass tubes G1 moved by the conveyor 1 for a predetermined time.
  • a first blower 31 and a second blower 32 configured to blow respective air (A1, A2) into openings located at both ends of the respective glass tubes G1.
  • the first blower 31 configured to blow air A1 into openings of the first end portion E1 side of the respective glass tubes G1 is located at the opposite side of the aforementioned first preheat burner 21 interposing the conveyance route of the conveyor 1 therebetween.
  • the first blower 31 is provided on a more downstream side of the conveying glass tubes than the first preheat burner 21 and is provided on a more upstream side of the conveying glass tubes than the second preheat burner 22.
  • the second blower 32 configured to blow air A2 into openings of the second end portion E2 side of the respective glass tubes G1 is located at the opposite side of the second preheat burner 22 interposing the conveyance route of the conveyor 1 therebetween and is provided on a more downstream side of the conveying glass tube than the second preheat burner 22.
  • the blowers (31, 32) being an embodiment of the present invention each include a blowing nozzle 34 having a flat-shaped nozzle port 33 along the conveyance route of the respective glass tubes G1 and inject purified air supplied from a supply source not shown from the nozzle port 33 in a horizontally long belt manner.
  • Horizontally long belt-like air A1 located along the conveyance route is injected from the nozzle port 33 to be reliably blown into the openings of the respective glass tubes G1 to be moved by the conveyor 1.
  • cutting blades (41, 42) are each composed of a disk-shaped cutter for continuously rotating about a horizontal axis by use of a driving source not shown, in which a lower part of the cutter is soaked into cooled water 44 in a water tank 43. Both ends of the portions of the respective glass tubes G1 rotating about the tube axes of the glass tubes by use of the conveyor 1 to be cut are preheated by the aforementioned preheat burners (21, 22) and are caused to contact with the cutting blades (41, 42) to impose thermal shock and scratches on almost all circumferences of the outer circumference surface of the respective glass tubes G1 so as to cut end portions of the respective glass tubes G1 at right angles relative to tube axes thereof.
  • the glass tube cleaning and cutting device 10 includes a first cutting blade 41 and a second cutting blade 42 for each cutting both ends of the respective glass tubes G1.
  • the first cutting blade 41 for cutting the second end portion E2 side of the respective glass tubes G1 is provided on a more downstream side of the conveying glass tubes than the first preheat burner 21 and is provided on a more upstream side of the conveying glass tubes than the second preheat burner 22 on the same side of the preheat burner 21 relative to the conveyance route of the conveyor 1.
  • the second cutting blade 42 for cutting the first end portion E1 side of the respective glass tubes G1 is provided on a more downstream side of the conveying glass tubes than the second preheat burner 22 on the same side of the second preheat burner 22 relative to the conveyance route of the conveyor 1.
  • suction devices (51, 52) each comprise: a hood 53 for surrounding an end portion of a glass tube G1; and a suction duct 54 coupled to the hood 53. And the suction devices (51, 52) remove by sucking finely-crushed glass generated at the time of cutting the glass tube G1 through the suction duct 54 by a suction source not shown. Cut pieces cut by the cutting blades (41, 42) are each guided by a guide 55 provided on the side of the cutting blades (41, 42), resulting in gravity-fall to be collected.
  • the glass tube cleaning and cutting device 10 includes a first suction device 51 and a second suction device 52 each configured to suck surrounding air of both ends of respective glass tubes G1.
  • the first suction device 51 configured to suck surrounding air of a second end portion E2 side of the respective glass tubes G1 is provided on a more downstream side of the conveying glass tubes than the first preheat burner 21 and is provided on a more upstream side of the conveying glass tubes than the second preheat burner 22 on the same side of the first preheat burner 21 relative to the conveyance route of a conveyor 1.
  • the second suction device 52 configured to suck surrounding air of a first end portion E1 side of the respective glass tubes G1 is provided on a more downstream side of the conveying glass tubes than the second preheat burner 22 on the same side of the second preheat burner 22 relative to the conveyance route of the conveyor 1.
  • the glazing burners are each composed of a gas burner where a plurality of flame holes are aligned along the conveyance route of the conveyor 1 and glaze cut-off end portions of the respective glass tubes G1 for moving while rotating about the tube axes of the respective glass tubes for a predetermined time by heating from below.
  • the glass tube cleaning and cutting device 10 includes a first glazing burner 61 and a second glazing burner 62 configured to heat both ends of the respective glass tubes G1 after cutting.
  • the second glazing burner 62 configured to heat a first end portion E1 side of the respective glass tubes G1 after cutting is provided on a more downstream side of the conveying glass tubes on the same side of the second cutting blade 42 relative to the conveyance route of the conveyor 1.
  • the first glazing burner 61 configured to heat a second end portion E2 side of the respective glass tubes G1 is provided on a downstream side of the conveying second blower 32 on the same side of the first cutting blade 41 relative to the conveyance route of the conveyor 1.
  • the first glazing burner 61 may be provided on a downstream side of the conveying first cutting blade 41 and may be provided on an upstream side of the conveying second blower 32 on the same side of the first cutting blade 41 relative to the conveyance route of the conveyor 1 as well.
  • FIG. 1 there is shown below a method for cleaning and cutting a glass tube G1 by use of the glass tube cleaning and cutting device 10 being an embodiment of the present invention.
  • the glass tube cleaning and cutting device 10 in this embodiment of the present invention cleans and cuts both ends of respective glass tubes G1 while continuously conveying a plurality of glass tubes G1 by use of the conveyor 1.
  • Any of respective components of the preheat burners (21, 22), the blowers (31, 32), the cutting blades (41, 42), the suction devices (51, 52), and the glazing burners (61, 62) operate continuously to perform each step below by causing the respective glass tubes G1 to pass through respective components.
  • a first heating step is performed for respective glass tubes G1 during transport. Specifically, portions to be cut on the second end portion E2 side of the respective glass tubes G1 are preheated by the first preheat burner 21.
  • a first blowing step for the respective glass tubes G1 is performed. Specifically, air A1 is blown into openings of the first end portion E1 side of the respective glass tubes G1 by the first blower 31 to cause air A1 to come out of openings of the second end portion E2 side of the respective glass tubes G1 as shown in FIG. 4 .
  • a first cutting step is performed for the respective glass tubes G1 into which air A1 has been blown by the first blowing step. Specifically, the second end portion E2 side of the respective glass tubes G1 is cut by the first cutting blade 41. At this time, as shown in FIG. 6 , air A1 comes out of an opening of a second end portion E2 side of each glass tube G1. As a result, finely-crushed glass P generated at the time of cutting is blown off to the outside of each glass tube G1, so that there is no possibility of finely-crushed glass P being adhered to an inner surface of each glass tube G1.
  • surrounding air of a second end portion E2 side of each glass tube G1 is sucked by the first suction device 51 when cutting each glass tube G1. This makes it possible to remove finely-crushed glass P that has been blown off by air A1 to the outside of the glass tube cleaning and cutting device and prevent the finely-crushed glass P from being adhered again to each glass tube G1.
  • air A1 is blown into an opening of a first end portion E1 side of each glass tube G1 by the first blower 31 to cause air A1 to come out of an opening of a second end portion E2 side of each glass tube G1 from the stage before cutting each glass tube G1 by use of the first cutting blade 41.
  • air A1 may come out of the second end portion E2 side of each glass tube G1 when cutting or after cutting each glass tube G1. It is the same with a cutting step by the second cutting blade 42 mentioned below.
  • blowing air A1 into the opening of the first end portion E1 side of each glass tube G1 is continued even after cutting each glass tube G1 by use of the first cutting blade 41 and the blowing off of the finely-crushed glass P is also continued even after cutting an end portion of each glass tube G1.
  • a second heating step for each glass tube G1 where the second end portion E2 side of each glass tube G1 has been cut by the first cutting step is performed. More specifically, as shown in FIG. 1 , portions to be cut on the first end portion E1 side of each glass tube G1 are preheated by the second preheat burner 22.
  • a second blowing step for each glass tube G1 is performed. Specifically, air A2 is blown into the openings of the second end portion E2 side of the respective glass tubes G1 by the second blower 32 to cause air A2 to come out of the openings of the first end portion E1 side of the respective glass tubes G1.
  • a second cutting step for each glass tube G1 into which air A2 has been blown by the second blowing step More specifically, each first end portion E1 side of each glass tube G1 is cut by the second cutting blade 42. At this time, air A2 comes out of an opening of each first end portion E1 side of each glass tube G1. As a result, finely-crushed glass P generated when cutting is blown off to the outside of each glass tube G1 and therefore, there is no possibility of the finely-crushed glass P being adhered to an inner surface of each glass tube G1.
  • each first end portion E1 side of each glass tube G1 is sucked by the second suction device 52 when cutting each glass tube G1. This removes finely-crushed glass P that has been blown off to the outside of the glass tube cleaning and cutting device by air A2 to prevent the finely-crushed glass P from being adhered again to each glass tube G1.
  • glazing treatment is simultaneously performed for both sides of cut-off end portions of the respective glass tubes G1 by the first glazing burner 61 and the second glazing burner 62.
  • cleaning and cutting of both ends of the respective glass tubes G1 by use of the glass tube cleaning and cutting device 10 in one embodiment of the present invention is completed.
  • the glass tube cleaning and cutting device 10 when cutting one side of an end portion of each glass tube G1 by use of the cutting blades (41, 42), it is possible to cause air (A1, A2) to come out of an end portion to be cut by blowing air (A1, A2) into an opening located in an end portion of the opposite side to each glass tube G1 by use of the blowers (31, 32).
  • air (A1, A2) to come out of an end portion to be cut by blowing air (A1, A2) into an opening located in an end portion of the opposite side to each glass tube G1 by use of the blowers (31, 32).
  • This makes it possible to reliably blow off finely-crushed glass P generated when cutting to the outside of each glass tube G1 and prevent the finely-crushed glass P from being adhered to an inner surface of each glass tube G1, resulting in prevention of deterioration in purity.
  • air A1 is blown into an opening located in a first end portion E1 side of each glass tube G1 by the first blower 31 to clean and cut a second end portion E2 side of each glass tube G1 by the first cutting blade 41.
  • air A2 is blown into an opening of the second end portion E2 side of each glass tube G1 by the second blower 32 to clean and cut the second end portion E2 side of each glass tube G1 by use of the second cutting blade 42, resulting in alternately cut of both ends of each glass tube G1.
  • the suction devices (51, 52) configured to each suck surrounding air of an end portion of each glass tube G1 are provided near the cutting blades (41, 42), it is possible to rapidly remove by sucking finely-crushed glass P generated when cutting and prevent finely-crushed glass P from being adhered again to each glass tube G1.
  • the blowers (31, 32) each include a blowing nozzle 34 having a flat-shaped nozzle port 33 along the conveyance route of each glass tube G1 in the conveyor 1, so that it is possible to inject air (A1, A2) located along the conveyance route of each glass tube G1 from the nozzle port 33.
  • This makes it possible to reliably blow air (A1, A2) into an opening of each glass tube G1 that is caused to travel by the conveyor 1.
  • air (A1, A2) which comes out of the nozzle port 33 and flows outside each glass tube G1.
  • blowers (31, 32) each include a blowing nozzle 34 having a flat-shaped nozzle port 33 along the conveyance route of respective glass tubes G1
  • the present invention is not limited to this but a large number of blowing nozzles having circle hole-shaped nozzle ports may be aligned along the conveyance route of respective glass tubes G1 to inject horizontally long belt-like air (A1, A2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
EP12866874.6A 2012-01-23 2012-11-20 Glass tube cleaning and cutting device and method for same Active EP2808309B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010865A JP5861469B2 (ja) 2012-01-23 2012-01-23 ガラス管の清浄切断装置と清浄切断方法
PCT/JP2012/080061 WO2013111432A1 (ja) 2012-01-23 2012-11-20 ガラス管の清浄切断装置と清浄切断方法

Publications (3)

Publication Number Publication Date
EP2808309A1 EP2808309A1 (en) 2014-12-03
EP2808309A4 EP2808309A4 (en) 2015-12-09
EP2808309B1 true EP2808309B1 (en) 2018-01-10

Family

ID=48873173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12866874.6A Active EP2808309B1 (en) 2012-01-23 2012-11-20 Glass tube cleaning and cutting device and method for same

Country Status (5)

Country Link
US (1) US9708209B2 (ja)
EP (1) EP2808309B1 (ja)
JP (1) JP5861469B2 (ja)
CN (1) CN104039721B (ja)
WO (1) WO2013111432A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183441B1 (ko) * 2012-05-09 2012-09-14 경기대학교 산학협력단 폐형광등 엔드커팅장치
CN105000796B (zh) * 2013-10-21 2018-05-29 深圳市元泰丰光电有限公司 一种改进的卤素灯灯管切割机
JP6303532B2 (ja) * 2014-01-22 2018-04-04 日本電気硝子株式会社 管ガラスの搬送装置、管ガラスの搬送方法、管ガラスの口焼装置、及び管ガラスの口焼き方法
CN104926085B (zh) * 2015-01-08 2020-09-01 浙江冠炯智能科技有限公司 玻璃珠生产方法
WO2016171197A1 (ja) * 2015-04-24 2016-10-27 ニプロ株式会社 医療用ガラス容器の製造方法及び回転装置を備えたファイアブラスト装置
JP6432448B2 (ja) * 2015-05-29 2018-12-05 日本電気硝子株式会社 ガラス管の検査方法
JP2017014026A (ja) * 2015-06-26 2017-01-19 日本電気硝子株式会社 ガラス管切断方法及びガラス管切断装置
JP2017014028A (ja) * 2015-06-26 2017-01-19 日本電気硝子株式会社 ガラス管切断方法及びガラス管切断装置
JP6757491B2 (ja) * 2015-10-20 2020-09-23 日本電気硝子株式会社 管ガラスの切断方法及び切断装置、並びに管ガラス製品の製造方法
JP2017081804A (ja) * 2015-10-30 2017-05-18 日本電気硝子株式会社 管ガラスの切断方法及び切断装置、並びに管ガラス製品の製造方法
JP6668959B2 (ja) * 2016-06-07 2020-03-18 日本電気硝子株式会社 管ガラス用検査装置、管ガラスの検査方法、管ガラスの加工装置、及び管ガラスの製造方法
KR101704450B1 (ko) * 2016-06-10 2017-02-08 주식회사 에이코글로벌 자동차 벌브용 유리관 레이저 컷팅장치
JP6801289B2 (ja) 2016-08-16 2020-12-16 日本電気硝子株式会社 ガラス管の製造方法
CN106348582A (zh) * 2016-08-30 2017-01-25 江苏潮华玻璃制品有限公司 玻管切割工艺
JP2018080083A (ja) * 2016-11-16 2018-05-24 日本電気硝子株式会社 ガラス管の製造方法
CN106738400A (zh) * 2016-12-12 2017-05-31 惠科股份有限公司 玻璃碎屑清洁结构及搬运机
CN108212932A (zh) * 2017-12-25 2018-06-29 鲍英浩 一种妇科用器械包除尘设备
KR102076195B1 (ko) * 2018-05-14 2020-02-12 주식회사 테스코 튜브 절단 장치
CN108450626B (zh) * 2018-05-16 2024-01-30 泉州市嗣家名茶发展有限公司 一种用于制作金秋葵保健茶粉的自动化预处理装置
CN110937792B (zh) * 2019-12-12 2022-06-14 湖北瑞信养生用品科技有限公司 一种环形容器口切割装置
CN111018324B (zh) * 2020-03-04 2020-07-24 江苏琳琅玻璃制品有限公司 一种用于玻璃管的切割装置
EP3967408B1 (en) * 2020-09-11 2024-01-17 Schott Ag Nozzle head, cleaning system, method for cleaning and glass element
CN112976092A (zh) * 2021-01-22 2021-06-18 朱传粉 一种mpp电缆保护管切割清洁一体机
WO2023170037A1 (en) * 2022-03-10 2023-09-14 Schott Ag Method for separating a glass element from a glass strand, glass element and bundle of glass elements

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2416121A (en) * 1943-02-03 1947-02-18 Owens Illinois Glass Co Burn-off machine
US2534547A (en) * 1950-01-31 1950-12-19 Eisler Charles Machine for cracking and flaring blanks
US3071497A (en) * 1959-08-28 1963-01-01 Kimble Glass Co Method and apparatus for cleaning small glass containers
JPS4731082Y1 (ja) * 1967-02-27 1972-09-18
JPS5443005B1 (ja) * 1968-12-11 1979-12-18
JPS5443005A (en) 1977-09-12 1979-04-05 Olympus Optical Co Ltd Method and apparatus for automatic focus controlling
DE2757890C2 (de) * 1977-12-24 1981-10-15 Fa. Karl Lutz, 6980 Wertheim Verfahren und Vorrichtung zum Herstellen von Behältnissen aus Röhrenglas, insbesondere Ampullen
DE3507498A1 (de) * 1985-03-02 1986-09-04 Sorg-GmbH & Co KG, 8770 Lohr Verfahren und vorrichtung zum herstellen von hohlglaesern mit einem glatten, abgerundeten rand
DE4229699C2 (de) * 1992-09-05 1995-09-21 Heidelberger Druckmasch Ag Vorrichtung zur kontrollierten Beseitigung von Abfall-Stücken von Bedruckstoffen
JPH0967136A (ja) * 1995-08-25 1997-03-11 Nippon Electric Glass Co Ltd ガラス管の切断装置
FR2772655B1 (fr) * 1997-12-19 2000-01-14 Creica Dispositif aspirateur de poussieres
DE10016822C2 (de) * 2000-04-06 2002-08-01 Koenig & Bauer Ag Vorrichtung zum Entstauben einer Warenbahn
AT411738B (de) * 2000-12-05 2004-05-25 Evg Entwicklung Verwert Ges Vorrichtung zum schweissen einer drahtgittermatte
JP2002241142A (ja) * 2001-02-08 2002-08-28 Matsushita Electric Ind Co Ltd ガラス管カット方法
US6756564B2 (en) * 2001-12-31 2004-06-29 Andrx Pharmaceuticals Llc System and method for removing particulate created from a drilled or cut surface
JP4249950B2 (ja) * 2002-06-28 2009-04-08 富士フイルム株式会社 紙管切断装置及び紙管切断方法
CN1408660A (zh) * 2002-09-03 2003-04-09 飞达机械股份有限公司 管体截断的加工方法及其装置
DE102004060849B3 (de) * 2004-12-17 2006-04-06 Hildebrand Systeme Gmbh Vorrichtung zur Entfernung von Bearbeitungsstaub, insbesondere Schnittstaub
GB2426757B (en) 2005-06-03 2008-02-27 Crt Heaven Ltd Apparatus and method for cutting a cathode ray tube
DE102006039969B4 (de) * 2006-08-25 2022-06-02 Robert Bosch Gmbh Staubabsaugsystem
PL2119512T3 (pl) 2008-05-14 2018-02-28 Gerresheimer Glas Gmbh Sposób i urządzenie do usuwania cząstek zanieczyszczeń z pojemników w automatycznym systemie wytwarzania
CN201316835Y (zh) * 2008-12-15 2009-09-30 颖霖机械工业股份有限公司 切管装置
TW201335187A (zh) * 2012-01-18 2013-09-01 Genentech Inc 抗lrp5抗體及使用方法
US9388068B2 (en) * 2012-01-23 2016-07-12 Nippon Electric Glass Co., Ltd. Glass tube cleaning and cutting device and method for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013111432A1 (ja) 2013-08-01
CN104039721B (zh) 2016-06-15
WO2013111432A8 (ja) 2013-10-10
CN104039721A (zh) 2014-09-10
US9708209B2 (en) 2017-07-18
EP2808309A4 (en) 2015-12-09
JP5861469B2 (ja) 2016-02-16
US20150020659A1 (en) 2015-01-22
JP2013147405A (ja) 2013-08-01
EP2808309A1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
EP2808309B1 (en) Glass tube cleaning and cutting device and method for same
TWI504575B (zh) 玻璃膜的製造方法
TWI601701B (zh) 板玻璃的製造方法以及製造裝置
US20180215649A1 (en) Method and device for cutting tubular glass, and method for manufacturing tubular glass
WO2014002666A1 (ja) ガラス管の清浄装置及び清浄切断装置
US11479496B2 (en) Method for manufacturing glass roll
JP6738043B2 (ja) ガラスフィルムの製造方法
TWI634086B (zh) Glass plate manufacturing method and manufacturing device
EP2808308B1 (en) Glass tube cleaning and cutting device and method for the same
US10889519B2 (en) Method for manufacturing glass roll
US9556056B2 (en) Separation apparatuses for separating sheets of brittle material and methods for separating sheets of brittle material
JP2018123041A (ja) ガラス管製造方法及びガラス管製造装置
KR100649941B1 (ko) 취성재료 기판의 반송 시스템
CN108349668A (zh) 薄板状体的搬运方法、装置、及玻璃薄板状体产品的制造方法
CN215906101U (zh) 传送带用的碎屑清理装置以及玻璃基板掰断系统
JP6380068B2 (ja) 長尺物の搬送装置および長尺物の製造方法
JP2016117007A (ja) 異物除去装置
JP2015140275A (ja) 線状ガラス物品の成形方法および線状ガラス物品成形装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151106

RIC1 Information provided on ipc code assigned before grant

Ipc: C03C 25/70 20060101ALI20151102BHEP

Ipc: C03B 35/26 20060101ALI20151102BHEP

Ipc: B08B 15/04 20060101ALI20151102BHEP

Ipc: B26D 3/16 20060101ALI20151102BHEP

Ipc: C03B 33/06 20060101ALI20151102BHEP

Ipc: C03B 33/095 20060101AFI20151102BHEP

Ipc: B08B 5/02 20060101ALI20151102BHEP

Ipc: B26D 7/18 20060101ALI20151102BHEP

17Q First examination report despatched

Effective date: 20170203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012042051

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 962195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012042051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231010

Year of fee payment: 12

Ref country code: DE

Payment date: 20230929

Year of fee payment: 12