EP2551671A2 - Dispositif d'immuno-essai possédant une électrode de référence immunologique - Google Patents

Dispositif d'immuno-essai possédant une électrode de référence immunologique Download PDF

Info

Publication number
EP2551671A2
EP2551671A2 EP12179659A EP12179659A EP2551671A2 EP 2551671 A2 EP2551671 A2 EP 2551671A2 EP 12179659 A EP12179659 A EP 12179659A EP 12179659 A EP12179659 A EP 12179659A EP 2551671 A2 EP2551671 A2 EP 2551671A2
Authority
EP
European Patent Office
Prior art keywords
sample
immunosensor
sensor
blood
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12179659A
Other languages
German (de)
English (en)
Other versions
EP2551671B1 (fr
EP2551671A3 (fr
Inventor
Cary James Miller
John Lewis Emerson Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Point of Care Inc
Original Assignee
Abbott Point of Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Point of Care Inc filed Critical Abbott Point of Care Inc
Publication of EP2551671A2 publication Critical patent/EP2551671A2/fr
Publication of EP2551671A3 publication Critical patent/EP2551671A3/fr
Application granted granted Critical
Publication of EP2551671B1 publication Critical patent/EP2551671B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Definitions

  • US 5,081,063 discloses the use of permselective layers for electrochemical sensors and the use of film-forming latexes for immobilization of bioactive molecules, incorporated here by reference.
  • the use of poly(vinyl alcohol) (PVA) in sensor manufacture is described in US 6,030,827 incorporated here by reference.
  • Vikholm (US 2003/0059954A1 ) teaches antibodies directly attached to a surface with a biomolecule repellant coating, e.g. PVA, the surface in the gaps between antibodies, and Johansson (US 5,656,504 ) teaches a solid phase, e.g. PVA, with antibodies immobilized thereon.
  • US 6,030,827 and 6,379,883 teach methods for patterning poly(vinylalcohol) layers and are incorporated by reference in their entirety
  • sealing element 200 is positioned within a few thousandths of an inch above the surface of the tape gasket 21 of figure 3 .
  • Carboxylate-modified latex microparticles supplied by Bangs Laboratories Inc. or Seradyn Microparticles Inc. coated with anti-cTnI and anti-HSA are both prepared by the same method.
  • the particles are first buffer exchanged by centrifugation, followed by addition of the antibody, which is allowed to passively adsorb onto the particles.
  • the carboxyl groups on the particles are then activated with EDAC in MES buffer at pH 6.2, to form amide bonds to the antibodies. Any bead aggregates are removed by centrifugation and the finished beads are stored frozen.
  • Coated beads were prepared using covalent attachment from a mixture comprising 7 mg of anti-HSA and 100 mg of beads. Using this preparation a droplet of about 0.4 nL, comprising about 1% solids in deionized water, was microdispensed (using the method and apparatus of US 5,554,339 , incorporated here by reference) onto a photo-patterned porous polyvinyl alcohol permselective layer covering sensor 96, and allowed to dry. The dried particles adhered to the porous layer and substantially prevented their dissolution in the blood sample or the washing fluid.
  • HSA anti-human serum albumin
  • the currents associated with oxidation of p-aminophenol at immunosensor 94 and immuno-reference sensor 96 arising from the activity of ALP, are recorded by the analyzer.
  • the potentials at the immunosensor and immuno-reference sensor are poised at the same value with respect to a silver-silver chloride reference electrode.
  • the analyzer subtracts the signal of the immune-reference sensor from that of the immunosensor according to equation (4). Where there is a characteristic constant offset between the two sensors, this also is subtracted.
  • the cartridge design provides dry reagent that yields about 4-5 billion enzyme conjugate molecules dissolved into about a 10 uL blood sample. At the end of the binding and wash steps the number of enzyme molecules at the sensor is about 70,000. In experiments with the preferred embodiment there were, on average, about 200,000 (+/- about 150,000) enzyme molecules on the immunosensor and the reference immunosensor as non-specifically bound background. Using a differential measurement with the immuno-reference sensor, about 65% of the uncertainty was removed, significantly improving the performance of the assay. While other embodiments may have other degrees of improvement, the basis for the overall improvement in assay performance remains.
  • the level of signal at an immunosensor depends on the extent of washing. For example, longer washing with more fluid/air segment transitions can give a lower signal level due to a portion of the specifically bound conjugate being washed away. While this may be a relatively small effect, e.g. less than 5%, correction can improve the overall performance of the assay. Correction may be achieved based on the relative signals at the sensors, or in conjunction with a conductivity sensor located in the conduit adjacent to the sensors, acting as a sensor for detecting and counting the number of air segment/fluid transitions. This provides the input for an algorithmic correction means embedded in the analyzer.
  • the reference immunosensor with an endogenous protein e.g. HSA
  • an immuno-reference sensor coated with antibody to an exogenous protein e.g. bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • the step of dissolving a portion of the BSA in the sample, provided as an additional reagent, prior to contacting the sensors is needed.
  • This dissolution step can be done with BSA as a dry reagent in the sample holding chamber of the cartridge, or in an external collection device, e.g. a BSA-coated syringe.
  • This approach offers certain advantages, for example the protein may be selected for surface charge, specific surface groups, degree of glycosylation and the like. These properties may not necessarily be present in the available selection of endogenous proteins.
  • albumin from the sample rapidly coats the beads as described above. Once they are coated with a layer of native albumin the leukocytes do not recognize the beads as an opsonized surface, resulting in the observed effect of limiting the leukocytes' ability to cause the bias.
  • salt is added to the sample by coating the wall of the sample holding chamber with a mixture of NaCl, lactitol and DEAE dextran at pH 7.4 using Tris at about 5% total solids.
  • Gelatin, cellulose and PVA can also be used as the support matrix, but the dissolution rate is not quite as fast as the lactitol and DEAE mixture.
  • Sample hematocrit values may vary widely between immunoassays performed on whole-blood and this can affect the results. A way to eliminate this effect has been discovered.
  • the reagents that form the immuno-complex dissolve into the plasma fraction only, not into the cells, which are predominantly erythrocytes. Erythrocytes typically occupy about 40% of a blood sample, though this can vary widely between patients.
  • the percentage of the blood sample volume occupied by these cells is called the hematocrit value. For a given volume of blood, the higher the hematocrit value the less plasma volume is available for a given amount of reagent to dissolve in; thus, the effective reagent concentration is higher.
  • the signal generated in the assay increases with increasing hematocrit.
  • This effect can be corrected for by measuring the hematocrit of the sample during the assay.
  • the analyte concentration can then be reported so as to agree with typical laboratory values obtained from spun samples, i.e. serum or plasma samples where hematocrit equals zero.
  • hematocrit is an inverse function of conductivity, assuming a normal concentration of current-carrying ions in the sample.
  • standard curves are created using samples with independently determined analyte concentrations and hematocrit values.
  • an algorithm can be developed and embedded into the analyzer and used for real samples, whereby the conductivity measured at an adjacent sensor in the cartridge is used to estimate hematocrit and correct the signal from the immunosensor. For example, the algorithm may simply subtract a percentage of the signal per hematocrit unit in order to correct the result to a hematocrit of zero, i.e. plasma.
  • a cartridge of the present invention has the advantage that the sample and a second fluid can contact the sensor array at different times during an assay sequence.
  • the sample and second fluid may also be independently amended with other reagents or compounds present initially as dry coatings within the respective conduits. Controlled motion of the liquids within the cartridge further permits more than one substance to be amended into each liquid whenever the sample or fluid is moved to a new region of the conduit. In this way, provision is made for multiple amendments to each fluid, greatly extending the complexity of automated assays that can be performed, and therefore enhancing the utility of the present invention.
  • Restrictions within the conduits serve several purposes in the present invention.
  • a capillary stop located between the sample chamber and first conduit is used to prevent displacement of the sample in the holding chamber until sufficient pressure is applied to overcome the resistance of the capillary stop.
  • a restriction within the second conduit is used to divert wash fluid along an alternative pathway towards the waste chamber when the fluid reaches the constriction. Small holes in the gasket, together with a hydrophobic coating, are provided to prevent flow from the first conduit to the second conduit until sufficient pressure is applied.
  • One embodiment of the invention therefore, provides a single-use cartridge with a sample-holding chamber connected to a first conduit which contains an analyte sensor or array of analyte sensors.
  • a second conduit partly containing a fluid, is connected to the first conduit and air segments can be introduced into the fluid in the second conduit in order to segment it.
  • Pump means are provided to displace the sample within the first conduit, and displaces fluid from the second conduit into the first conduit.
  • the sensor or sensors can be contacted first by a sample and then by a second fluid.
  • the sample is amended with an antibody-enzyme conjugate that binds to the analyte of interest within the sample before the amended sample contacts the sensor. Binding reactions in the sample produce an analyte / antibody-enzyme complex.
  • the sensor comprises an immobilized antibody to the analyte, attached close to an electrode surface. Upon contacting the sensor, the analyte / antibody-enzyme complex binds to the immobilized antibody near the electrode surface.
  • the enzyme of the antibody-enzyme complex is advantageously capable of converting a substrate, provided in the fluid, to produce an electrochemically active species.
  • This active species is produced close to the electrode and provides either a current from a redox reaction at the electrode when a suitable potential is applied (amperometric operation).
  • a suitable potential is applied (amperometric operation).
  • the electroactive species is an ion, it can be measured potentiometrically. In amperometric measurements the potential may either be fixed during the measurement, or varied according to a predetermined waveform.
  • the immunosensor is advantageously microfabricated from a base sensor of an unreactive metal such as gold, platinum or iridium, and a porous permselective layer which is overlaid with a bioactive layer attached to a microparticle, for example latex particles.
  • the microparticles are dispensed onto the porous layer covering the electrode surface, forming an adhered, porous bioactive layer.
  • the bioactive layer has the property of binding specifically to the analyte of interest, or of manifesting a detectable change when the analyte is present, and is most preferably an immobilized antibody directed against the analyte.
  • a second fluid which contains an electroinactive substrate for the enzyme, is used to rinse the immunosensor substantially free of unbound antibody-enzyme conjugate, and the electrical response of the immunosensor electrode is recorded and analyzed for the presence, or amount of, the analyte of interest.
  • the cartridge may contain a plurality of immunosensors and reagents.
  • the assay can be run in a system where the sample and other fluids and reagents are thermostated at a given temperature, e.g. 37oC.
  • the assay may be run at ambient temperature, without any correction, or with correction to a standardized temperature based on measurement of the ambient value.
  • a battery-powered analyzer is used and it is generally desirable to conserve battery life, it may be desirable to heat only the capture location of the assay device or cartridge.
  • the ambient temperature will have an effect on the cooling of the sample if it enters regions adjacent to the capture location.
  • the analyte capture and signal generation steps may have small temperature dependencies and so it is desirable that the net current is corrected to an ambient temperature (ATemp), e.g. 23°C, for example in accordance with equation 6.
  • ATemp ambient temperature
  • the value of the (per degree) coefficient c1 is generally not specific to a given lot of manufactured cartridges, but can be generalized to a given cartridge manufacturing process. It generally has a relatively small value, e.g. 1 to 3%. One skilled in the art will recognize that this can be determined from temperature-dependence experiments.
  • iTCorr iNet * 1 + c ⁇ 1 * ATemp - TempC
  • the conductivity correction function can be determined experimentally, where a whole blood sample is spiked with a known amount of TnI, and manipulated through centrifugation and alteration of the plasma fraction so as to yield an array of standardized samples having the same plasma concentration of analyte but Hct varying from 0 to approximately 65 percent. Performing an immunoassay of these samples in the cartridges affords collection of a set of signals as a function of conductivity. Normalization of this function, so that plasma is associated with a signal generation factor of unity, affords the conductivity correction function. This may take one of several mathematical forms, including four point logistical functions and the quadratic form shown in equation 7.
  • Equation 7 the actual coefficients in Equation 7 will depend on the reagent components and have some sensitivity to the means by which the immunoassay is carried out, e.g. the capture time.
  • the value of fCond is limited by equations 8 and 9.
  • equation 8 if the measured conductivity is below a value expected for a Hct value of for example 15 percent, then the sample is treated as a plasma sample and the correction factor is set to 5.
  • the analyzer may set c6 to zero, whereas other digits may code for different coefficients or select a kinetic model to be used, e.g. an immunoassay model formulated by analogy to the well-known Michaelis-Menton enzyme kinetics, as in equation 11.
  • the cover further comprises two paddles 6, 7, that are moveable relative to the body of the cover, and which are attached to it by flexible hinge regions 5, 10.
  • paddle 6 exerts a force upon an air bladder comprised of cavity 43, which is covered by thin-film gasket 21, to displace fluids within conduits of the cartridge.
  • paddle 7 exerts a force upon the gasket 21, which can deform because of slits 22 cut therein.
  • the cartridge is adapted for insertion into a reading apparatus, and therefore has a plurality of mechanical and electrical connections for this purpose. It should also be apparent that manual operation of the cartridge is possible.
  • thin-film gasket 21 comprises various holes and slits to facilitate transfer of fluid between conduits within the base and the cover, and to allow the gasket to deform under pressure where necessary.
  • hole 24 permits fluid to flow from conduit 11 into waste chamber 44;
  • hole 25 comprises a capillary stop between conduits 34 and 11;
  • hole 26 permits air to flow between recess 18 and conduit 40;
  • hole 27 provides for air movement between recess 17 and conduit 34;
  • hole 28 permits fluid to flow from conduit 19 to waste chamber 44 via optional closeable valve 41.
  • Holes 30 and 33 permit the plurality of electrodes that are housed within cutaways 35 and 37, respectively, to contact fluid within conduit 15.
  • cutaway 37 houses a ground electrode, and/or a counter-reference electrode
  • cutaway 35 houses at least one analyte sensor and, optionally, a conductimetric sensor.
  • This arrangement is therefore one possible embodiment of a metering means for delivering a metered amount of an unmetered sample into the conduits of the cartridge.
  • a waste chamber is provided, 44, for sample and/or fluid that is expelled from the conduit, to prevent contamination of the outside surfaces of the cartridge.
  • a vent connecting the waste chamber to the external atmosphere is also provided, 45.
  • FIG. 5 a schematic diagram of the features of a cartridge and components is provided, wherein 51-57 are portions of the conduits and sample chamber that can optionally be coated with dry reagents to amend a sample or fluid.
  • the sample or fluid is passed at least once over the dry reagent to dissolve it.
  • Reagents used to amend samples or fluid within the cartridge include antibody-enzyme conjugates, or blocking agents that prevent either specific or non-specific binding reactions among assay compounds.
  • a surface coating that is not soluble but helps prevent non-specific adsorption of assay components to the inner surfaces of the cartridges can also be provided.
  • the closeable valve is a mechanical valve.
  • a latex diaphragm is placed in the bottom of the air bladder on top of a specially constructed well.
  • the well contains two openings which fluidically connect the air vent to the sample conduit.
  • the analyzer plunger pushes to the bottom of the air bladder, it presses on this latex diaphragm which is adhesive backed and seals the connection between the two holes. This blocks the sample's air vent, locking the sample in place.
  • pump means 3 includes all methods by which one or more segments are inserted into the second conduit, such as a pneumatic means for displacing air from an air sac, a dry chemical that produces a gas when dissolved, or a plurality of electrolysis electrodes operably connected to a current source.
  • the segment is produced using a mechanical segment generating diaphragm that may have more than one air bladder or chamber.
  • Substrates such as p-aminophenol species, can be chosen such that the E 1 ⁇ 2 of the substrate and product differ substantially.
  • the voltammetric half-wave potential (E 1 ⁇ 2) of the substrate is substantially higher (more positive) than that of the product.
  • the product can be selectively electrochemically measured in the presence of the substrate.
  • the size and spacing of the electrode play an important role in determining the sensitivity and background signal.
  • the important parameters in the grid are the percentage of exposed metal and the spacing between the active electrodes.
  • the position of the electrode can be directly underneath the antibody capture region or offset from the capture region by a controlled distance.
  • the actual amperometric signal of the electrodes depends on the positioning of the sensors relative to the antibody capture site and the motion of the fluid during the analysis. A current at the electrode is recorded that depends upon the amount of electroactive product in the vicinity of the sensor.
  • the detection of alkaline phosphatase activity in this example relies on a measurement of the 4-aminophenol oxidation current. This is achieved at a potential of about +60 mV versus the Ag/AgCl ground chip.
  • the exact form of detection used depends on the sensor configuration, In one version of the sensor, the array of gold micro electrodes is located directly beneath the antibody capture region. When the analysis fluid is pulled over this sensor, enzyme located on the capture site converts the 4-aminophenylphosphate to 4-aminophenol in an enzyme limited reaction.
  • the concentration of the 4-aminophenylphosphate is selected to be in excess, e.g., 10 times the Km value.
  • the enzyme conjugated to an antibody or other analyte-binding molecule is urease, and the substrate is urea.
  • Ammonium ions produced by the hydrolysis of urea are detected in this embodiment by the use of an ammonium sensitive electrode.
  • Ammonium-specific electrodes are well-known to those of skill in the art.
  • a suitable microfabricated ammonium ion-selective electrode is disclosed in U.S. 5,200,051 , incorporated herein by reference.
  • Other enzymes that react with a substrate to produce an ion are known in the art, as are other ion sensors for use therewith. For example, phosphate produced from an alkaline phosphatase substrate can be detected at a phosphate ion-selective electrode.
  • a biolayer means a porous layer comprising on its surface a sufficient amount of a molecule 84 that can either bind to an analyte of interest, or respond to the presence of such analyte by producing a change that is capable of measurement.
  • a permselective screening layer may be interposed between the electrode and the biolayer to screen electrochemical interferents as described in US 5,200,051 .
  • a biolayer is constructed from latex beads of specific diameter in the range of about 0.001 to 50 microns.
  • the beads are modified by covalent attachment of any suitable molecule consistent with the above definition of a biolayer.
  • Many methods of attachment exist in the art, including providing amine reactive N-hydroxysuccinimide ester groups for the facile coupling of lysine or N-terminal amine groups of proteins.
  • the biomolecule is chosen from among ionophores, cofactors, polypeptides, proteins, glycopeptides, enzymes, immunoglobulins, antibodies, antigens, lectins, neurochemical receptors, oligonucleotides, polynucleotides, DNA, RNA, or suitable mixtures.
  • the biomolecule is an antibody selected to bind one or more of human chorionic gonadotrophin, troponin I, troponin T, troponin C, a troponin complex, creatine kinase, creatine kinase subunit M, creatine kinase subunit B, myoglobin, myosin light chain, or modified fragments of these.
  • modified fragments are generated by oxidation, reduction, deletion, addition or modification of at least one amino acid, including chemical modification with a natural moiety or with a synthetic moiety.
  • the biomolecule binds to the analyte specifically and has an affinity constant for binding analyte ligand of about 10 7 to 10 15 M -1 .
  • the present invention also envisages embodiments in which the biolayer is coated upon particles that are mobile.
  • the cartridge can contain mobile microparticles capable of interacting with an analyte, for example magnetic particles that are localized to an amperometric electrode subsequent to a capture step, whereby magnetic forces are used to concentrate the particles at the electrode for measurement.
  • mobile microparticles in the present invention are that their motion in the sample or fluid accelerates binding reactions, making the capture step of the assay faster.
  • a porous filter is used to trap the beads at the electrode.
  • FIG. 9 there is illustrated a mask design for several electrodes upon a single substrate.
  • independent electrodes and leads can be deposited.
  • a plurality of immunosensors, 94 and 96, and conductimetric sensors, 90 and 92 are provided in a compact area at low cost, together with their respective connecting pads, 91, 93, 95, and 97, for effecting electrical connection to the reading apparatus.
  • a very large array of sensors can be assembled in this way, each sensitive to a different analyte or acting as a control sensor or reference immunosensor.
  • immunosensors are prepared as follows. Silicon wafers are thermally oxidized to form approximately a 1 micron insulating oxide layer. A titanium/tungsten layer is sputtered onto the oxide layer to a preferable thickness of between 100-1000 Angstroms, followed by a layer of gold that is most preferably 800 Angstroms thick. Next, a photoresist is spun onto the wafer and is dried and baked appropriately. The surface is then exposed using a contact mask, such as a mask corresponding to that illustrated in FIG. 9 . The latent image is developed, and the wafer is exposed to a gold-etchant.
  • the patterned gold layer is coated with a photodefinable polyimide, suitably baked, exposed using a contact mask, developed, cleaned in an O 2 plasma, and preferably imidized at 350 °C for 5 hours.
  • An optional metallization of the back side of the wafer may be performed to act as a resistive heating element, where the immunosensor is to be used in a thermostatted format.
  • the surface is then printed with antibody-coated particles. Droplets, preferably of about 20 nL volume and containing 1% solid content in deionized water, are deposited onto the sensor region and are dried in place by air drying.
  • an antibody stabilization reagent supplied by SurModica Corp. or AET Ltd
  • the signal at the electrode is augmented by enzymatic regeneration of the electroactive species in the vicinity of the electrode.
  • a phosphorylated ferrocene is used as the substrate for alkaline phosphatase attached to the antibody. Hydrolysis yields a ferrocene product, which is oxidized and detected at the electrode.
  • glucose oxidase enzyme and glucose are used to re-reduce the electrochemically oxidized ferrocene, with a consequent increase in the current and detection sensitivity.
  • an electrode 130 oxidizes or reduces the electroactive product 132 of alkaline phosphatase immobilized as a complex 131 on or close to the electrode surface.
  • the electroactive species 132 is regenerated from the product 133 by the catalytic action of enzyme 134. This cycling reaction increases the concentration of electroactive species 132 in proximity to the electrode surface 130, and thereby increases the current recorded at the electrode.
  • FIG. 11 there is shown dose-response results obtained using HCG and an HCG-responsive amperometric immunosensor. Amounts of HCG equivalent to 0 to 50 miU/mL are allowed to bind to the immobilized antibody attached to the electrode, as in FIG. 10 . Referring now to FIG. 12 , good linearity, and 121, of the response of the peak sensor current with increasing HCG is found. Thus, it is demonstrated that this embodiment can precisely and rapidly quantify HCG in a sample.
  • a pump means applies pressure to air-bladder 43, forcing air through conduit 40, through cutaways 17 and 18 , and into conduit 34 at a predetermined location 27.
  • Capillary stop 25 and location 27 delimit a metered portion of the original sample. While the sample is within sample chamber 34, it is optionally amended with a compound or compounds present initially as a dry coating on the inner surface of the chamber. The metered portion of the sample is then expelled through the capillary stop by air pressure produced within air bladder 43. The sample passes into conduit 15 and into contact with the analyte sensor or sensors located within cutaway 35 .
  • the sample is amended prior to arriving at the sensor by, for example, an enzyme-antibody conjugate.
  • An antibody that binds the analyte of interest is covalently attached to an enzyme that can generate a redox active substance close to an amperometric electrode.
  • the enzyme may be alkaline phosphatase, which hydrolyzes certain organophosphate compounds, such as derivatives of p -aminophenol that liberate redox-active compounds when hydrolyzed.
  • any enzyme capable of producing, destroying, or altering any compound that may be detected by a sensor may be employed in conjunction with a matching sensor.
  • antibody-urease conjugate may be used together with an ammonium sensor.
  • the enzyme-antibody conjugate or conjugates amends the sample and binds to the analyte of interest.
  • the immunosensor can comprise immobilized antibody that binds to an analyte of interest.
  • the analyte of interest binds to the sensor, together with antibody-enzyme conjugate to which it is attached.
  • the sample containing the analyte is optionally passed repeatedly over the sensor in an oscillatory motion.
  • an oscillation frequency of between about 0.2 and 2 Hz is used, most preferably 0.7 Hz.
  • enzyme is brought into close proximity to the amperometric electrode surface in proportion to the amount of analyte present in the sample.
  • the sample is ejected by further pressure applied to air bladder 43, and the sample passes to waste chamber 44.
  • Extraneous material includes any material other than specifically bound analyte or analyte / antibody-enzyme conjugate complex.
  • the rinsing is not sufficiently protracted or vigorous as to promote dissociation of specifically bound analyte or analyte / antibody-enzyme conjugate complex from the sensor.
  • a second advantage of introducing air segments into the fluid is to segment the fluid. For example, after a first segment of the fluid is used to rinse a sensor, a second segment is then placed over the sensor with minimal mixing of the two segments. This feature further reduces background signal from the sensor by more efficiently removing unbound antibody-enzyme conjugate. After the front edge washing, the analysis fluid is pulled slowly until the first air segment is detected at a conductivity sensor. This segment is extremely effective at clearing the sample-contaminated fluid which was mixed in with the first analysis fluid sample.
  • a new portion of fluid is placed over the sensors, and the current or potential, as appropriate to the mode of operation, is recorded as a function of time.
  • time zero 0
  • the cartridge reading device makes electrical contact with the sensors through pads 91, 93, 95, and 97, and performs certain diagnostic tests. Insertion of the cartridge perforates the foil pouch introducing fluid into the second conduit as previously described.
  • the diagnostic tests determine whether fluid or sample is present in the conduits using the conductivity electrodes; determine whether electrical short circuits are present in the electrodes; and ensure that the sensor and ground electrodes are thermally equilibrated to, preferably, 37 °C prior to the analyte determination.
  • a metered portion of the sample preferably between 4 and 200 ⁇ l, more preferably between 4 and 20 ⁇ l, and most preferably 7 ⁇ l, is used to contact the sensor as described in EXAMPLE 2.
  • the edges defining the forward and trailing edges of the sample are reciprocally moved over the sensor region at a frequency that is preferably between 0.2 to 2.0 Hz, and is most preferably 0.7 Hz.
  • the enzyme-antibody conjugate dissolves within the sample, as previously described.
  • the amount of enzyme-antibody conjugate that is coated onto the conduit is selected to yield a concentration when dissolved that is preferably higher than the highest anticipated HCG concentration, and is most preferably six times higher than the highest anticipated HCG concentration in the sample.
  • the sample is moved into the waste chamber via closeable valve 41, wetting the closeable valve and causing it to close as previously described.
  • the seal created by the closing of the valve permits the first pump means to be used to control motion of fluid from conduit 11 to conduit 15.
  • the analyzer plunger retracts from the flexible diaphragm of the pump mean creating a partial vacuum in the sensor conduit. This forces the analysis fluid through the small hole in the tape gasket 31 and into a short transecting conduit in the base, 13, 14. The analysis fluid is pulled further and the front edge of the analysis fluid is oscillated across the surface of the sensor chip in order to shear the sample near the walls of the conduit.
  • the efficiency of the wash is optimally further enhanced by introduction into the fluid of one or more segments that segment the fluid within the conduit as previously described.
  • the air segment may be introduced by either active or passive means.
  • FIG. 14 there is illustrated the construction of a specific means for passively introducing an air segment into said fluid.
  • recess 140 comprising a tapered portion 141 and a cylindrical portion that are connected.
  • the tapered portion is in fluid connection with a hole 142 of similar diameter in the tape gasket ( FIG. 3 ) that separates the base ( FIG. 4 ) and cover ( FIGS 1 and 2 ) of the assembled immunosensor cartridge.
  • the recess contains an absorbent material that, upon contact with fluid, withdraws a small quantity of fluid from a conduit thereby passively introducing an air segment into the conduit.
  • the volume of the recess and the amount and type of material within it may be adjusted to control the size of the air segment introduced.
  • Specific materials include, but are not limited to, glass filter, a laminate comprising a 3 micron Versapor filter bonded by sucrose to a 60% viscose chiffon layer.
  • Fluid is forcibly moved towards sensor chip by the partial vacuum generated by reducing the mechanical pressure exerted upon paddle 6, causing the "T" region of the sensor channel in the vicinity of the transecting conduit to fill with analysis fluid.
  • the T region of the sensor channel optionally has a higher channel height resulting a meniscus with a smaller radius of curvature.
  • the conduit height is optionally smaller.
  • the analysis fluid passively flows from the T region towards this low conduit height region washing the conduit walls. This passive leak allows further effective washing of the T region using a minimal volume of fluid.
  • the fluid located within the second conduit contains a substrate for the enzyme.
  • amendment of the fluid using dried substrate within the second conduit may be used.
  • At least one sensor reading of a sample is made by rapidly placing over the sensor a fresh portion of fluid containing a substrate for the enzyme. Rapid displacement both rinses away product previously formed, and provides now substrate to the electrode. Repetitive signals are averaged to produce a measurement of higher precision, and also to obtain a better statistical average of the baseline, represented by the current immediately following replacement of the solution over the sensor.
  • Cartridge 150 comprises a base and a top portion, preferably constructed of a plastic. The two portions are connected by a thin, adhesive gasket or thin pliable film.
  • the assembled cartridge comprises a sample chamber 151 into which a sample containing an analyte of interest is introduced via a sample inlet 152.
  • the wicking material is preferably a cotton fiber material, a cellulose material, or other hydrophilic material having pores. It is important in the present application that the material is sufficiently absorbent (i.e., possesses sufficient wicking speed) that the valve closes within a time period that is commensurate with the subsequent withdrawal of the sample diaphragm actuating means described below, so that sample is not subsequently drawn back into the region of the sensor chip.
  • a wash conduit (second conduit) 158 connected at one end to a vent 159 and at the other end to the sample conduit at a point 160 of the sample conduit that is located between vent 157 and sensor chip 153.
  • a fluid is introduced into conduit 158.
  • the fluid is present initially within a foil pouch 161 that is punctured by a pin when an actuating means applies pressure upon the pouch.
  • a short conduit 162 that connects the fluid to conduit 154 via a small opening in the gasket 163.
  • a second capillary stop initially prevents the fluid from reaching capillary stop 160, so that the fluid is retained within conduit 158.
  • a suitable film is obtained by withdrawing fluid by operation of the sample diaphragm 156, until the conductimetric sensor located next to the sensor indicates that bulk fluid is no longer present in that region of conduit 154. It has been found that measurement can be performed at very low (nA) currents, the potential drop that results from increased resistance of a thin film between ground chip and sensor chip (compared to bulk fluid), is not significant.
  • the ground chip 165 is preferably silver/silver chloride. It is advantageous, to avoid air segments, which easily form upon the relatively hydrophobic silver chloride surface, to pattern the ground chip as small regions of silver/silver chloride interspersed with more hydrophilic regions, such as a surface of silicon dioxide.
  • a preferred ground electrode configuration comprises an array of silver/silver chloride squares densely arranged and interspersed with silicon dioxide. There is a further advantage in the avoidance of unintentional segments if the regions of silver/silver chloride are somewhat recessed.
  • Regions R1 - R7 represent specific regions of the conduits associated with specific operational functions.
  • R1 represents the sample chamber;
  • R2 the sample conduit whereby a metered portion of the sample is transferred to the capture region, and in which the sample is optionally amended with a substance coated upon the walls of the conduit;
  • R3 represents the capture region, which houses the conductimetric and analyte sensors;
  • R4 and R5 represent portions of the first conduit that are optionally used for further amendment of fluids with substances coated onto the conduit wall, whereby more complex assay schemes are achieved;
  • R6 represents the portion of the second conduit into which fluid is introduced upon insertion of the cartridge into a reading apparatus;
  • R7 comprises a portion of the conduit located between capillary stops 160 and 166, in which further amendment can occur;
  • R8 represents the portion of conduit 154 located between point 160 and vent 157, and which can further be used to amend liquids contained within.
  • a user places a sample into the cartridge, places the cartridge into the analyzer and in 1 to 20 minutes, a quantitative measurement of one or more analytes is performed.
  • a sequence of events that occur during the analysis is a non-limiting example of a sequence of events that occur during the analysis:
  • an electrical signal 170 representing the position of the electric motor actuating the sample diaphragm 156, the response 171 of the conductimetric electrode, and the electrochemical response 172 of a amperometric immunosensor.
  • the motor depresses the diaphragm, which pushes the sample into the capture region and over the conductimetric sensor.
  • the conductivity rises to a steady value representative of sample filling the portion of the conduit containing the conductimetric sensor.
  • the valve is sealed by contact with the sample.
  • the motor position is stepped back in increments 174, creating a periodic fluctuation in pressure, which draws an air-segmented portion of wash fluid over the sensor. During this period, fluctuations 175 in the immunoassay sensor are seen.
  • the conductimetric response indicates that the wash fluid, which contains substrate, covers the conductimetric sensor. As the fluid is drawn slowly over the sensor, a potential is applied (in this example, every five seconds, for 2.5 second periods) to the sensor, resulting in response 176, which indicates the presence of analyte bound to the sensor.
  • the invention described and disclosed herein has numerous benefits and advantages compared to previous devices. These benefits and advantages include, but are not limited to ease of use, the automation of most if not all steps of the analysis, which eliminates user included error in the analysis.
  • each component printed in the sample holding chamber in the base is shown.
  • the components are BSA, glycine, methoxypolyethylene glycol, sucrose and bromophenol blue (used for quality control - may be viewed by some as a helpful "target").
  • the sample holding chamber in the base has to be corona treated in order to print.
  • the base cocktail is very dilute and won't spread without a corona treatment).
  • the cover is not required to be corona treated although it may be so treated in order to simplify operations. In a preferred embodiment there is no special treatment for the cover and no treatment around the orifice.
  • the print cocktail may be made as follows.
  • An aqueous solution of bromophenol blue is prepared (0.05g in 10g of deionized water).
  • a reagent mixture is prepared by dissolving BSA (0.42g), glycine (2.54g), MePEG (0.39g) and sucrose (1.4g) in 250mL of deionized water.
  • the print cocktail used to print into the cartridge components constitutes reagent mixture (1.2g), bromophenol blue solution (0.23g) mixed with deionized water (53.4g).
EP12179659.3A 2003-09-10 2004-09-09 Dispositif d'immuno-essai possédant une électrode de référence immunologique Active EP2551671B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/658,529 US7723099B2 (en) 2003-09-10 2003-09-10 Immunoassay device with immuno-reference electrode
EP04809719.0A EP1668347B1 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possedant une electrode de reference immunologique
PCT/US2004/029498 WO2005026689A2 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possedant une electrode de reference immunologique

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP04809719.0 Division 2004-09-09
EP04809719.0A Division EP1668347B1 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possedant une electrode de reference immunologique
EP04809719.0A Division-Into EP1668347B1 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possedant une electrode de reference immunologique

Publications (3)

Publication Number Publication Date
EP2551671A2 true EP2551671A2 (fr) 2013-01-30
EP2551671A3 EP2551671A3 (fr) 2013-05-15
EP2551671B1 EP2551671B1 (fr) 2019-04-10

Family

ID=34312688

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04809719.0A Active EP1668347B1 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possedant une electrode de reference immunologique
EP12179659.3A Active EP2551671B1 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possédant une électrode de référence immunologique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04809719.0A Active EP1668347B1 (fr) 2003-09-10 2004-09-09 Dispositif d'immuno-essai possedant une electrode de reference immunologique

Country Status (5)

Country Link
US (6) US7723099B2 (fr)
EP (2) EP1668347B1 (fr)
JP (5) JP4891079B2 (fr)
CA (3) CA2973834C (fr)
WO (1) WO2005026689A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500646B2 (en) 2012-01-13 2016-11-22 I-Sens, Inc. Sensor cartridge for detecting component of at least one sample
CN110231336A (zh) * 2019-06-18 2019-09-13 济南大学 一种石墨烯/聚苯胺纳米线阵列免疫传感器的制备方法及应用

Families Citing this family (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2002051438A2 (fr) 2000-12-22 2002-07-04 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Utilisation de rgm et de ses modulateurs
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6896778B2 (en) * 2001-06-04 2005-05-24 Epocal Inc. Electrode module
US7214300B2 (en) * 2001-06-04 2007-05-08 Epocal Inc. Integrated electrokinetic devices and methods of manufacture
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20060134713A1 (en) * 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
US7842234B2 (en) * 2002-12-02 2010-11-30 Epocal Inc. Diagnostic devices incorporating fluidics and methods of manufacture
US7767068B2 (en) * 2002-12-02 2010-08-03 Epocal Inc. Heterogeneous membrane electrodes
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7722817B2 (en) * 2003-08-28 2010-05-25 Epocal Inc. Lateral flow diagnostic devices with instrument controlled fluidics
US7723099B2 (en) 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2005057168A2 (fr) 2003-12-05 2005-06-23 Dexcom, Inc. Techniques d'etalonnage pour un capteur de substances a analyser en continu
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2005057175A2 (fr) 2003-12-09 2005-06-23 Dexcom, Inc. Traitement de signal pour capteur continu d'analyte
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
EP1733226B1 (fr) * 2004-04-07 2015-07-29 Levine, Robert Aaron Chambre jetable pour l'analyse de liquides biologiques
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8624027B2 (en) 2005-05-12 2014-01-07 Abbvie Inc. Combination therapy for treating cancer and diagnostic assays for use therein
US20070231794A1 (en) * 2005-09-21 2007-10-04 Combimatrix Corporation Process to detect binding events on an electrode microarray using enzymes
CN101277974A (zh) 2005-09-30 2008-10-01 阿伯特有限及两合公司 排斥性引导分子(rgm)蛋白质家族的蛋白质的结合结构域及其功能性片段和它们的用途
US7731901B2 (en) 2005-10-19 2010-06-08 Abbott Laboratories Apparatus and method for performing counts within a biologic fluid sample
JP2007240425A (ja) * 2006-03-10 2007-09-20 Kyushu Institute Of Technology 電気化学的抗原検出法とそのための装置並びに検出チップ
WO2008105918A2 (fr) * 2006-08-18 2008-09-04 3M Innovative Properties Company Procédés de détection utilisant des systèmes de détection acousto-mécaniques
US20080220448A1 (en) * 2006-09-01 2008-09-11 Blincko Stuart J Antigenic protein conjugates and process for preparing same
US8865398B2 (en) 2006-09-01 2014-10-21 Abbott Laboratories Combination hepatitis C virus antigen and antibody detection method
GB0617276D0 (en) * 2006-09-04 2006-10-11 Suresensors Device
CA2664528A1 (fr) * 2006-10-04 2008-04-10 Dexcom, Inc. Systeme d'electrode double pour capteur de substances a analyser en continu
EP2097750A2 (fr) * 2006-10-26 2009-09-09 Abbott Laboratories Analyse immunologique d'analytes dans des echantillons contenant des anticorps anti-analytes endogenes
US7776605B2 (en) 2006-10-26 2010-08-17 Abbott Laboratories Assay for cardiac troponin autoantibodies
US20080305512A1 (en) * 2006-10-26 2008-12-11 Mattingly Phillip G Assay for cardiac troponin autoantibodies
US7914999B2 (en) 2006-12-29 2011-03-29 Abbott Laboratories Non-denaturing lysis reagent
WO2008082984A2 (fr) 2006-12-29 2008-07-10 Abbott Laboratories Réactif de lyse non dénaturante destiné à être utilisé en immunoessai de capture en solution
WO2008101196A1 (fr) * 2007-02-15 2008-08-21 Osmetech Molecular Diagnostics Dispositifs fluidiques
US20080280377A1 (en) 2007-05-08 2008-11-13 Abbott Laboratories Human b-type natriuretic peptide assay having reduced cross-reactivity with other peptide forms
US20200037874A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8003060B2 (en) * 2007-05-18 2011-08-23 Axela Inc. Reaction vessel with integrated optical and fluid control elements
CA2685830C (fr) * 2007-05-24 2012-12-18 Abbott Laboratories Immunodosage presentant une interreactivite reduite avec des metabolites d'analyte de medicament hydrophobe
US20080306444A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20090053736A1 (en) * 2007-08-21 2009-02-26 Mattingly Phillip G Homogeneous Chemiluminescent Immunoassay for Analysis of Iron Metalloproteins
US7608361B2 (en) * 2007-08-22 2009-10-27 Stauffer John E Alkali metal battery
WO2009032760A2 (fr) 2007-08-30 2009-03-12 Pepex Biomedical Llc Capteur électrochimique et procédé de fabrication
WO2009051901A2 (fr) 2007-08-30 2009-04-23 Pepex Biomedical, Llc Capteur électrochimique et procédé de fabrication
US20090068635A1 (en) * 2007-09-06 2009-03-12 Muerhoff Anthony S Indirectly labelled assay conjugates and methods of preparing and using same
US20100136520A1 (en) * 2007-09-13 2010-06-03 Abbott Laboratories Detecting hepatitis b virus
US20090098531A1 (en) * 2007-09-13 2009-04-16 Abbott Laboratories Detecting hepatitis b virus
US8138318B2 (en) 2007-09-13 2012-03-20 Abbott Laboratories Hepatitis B pre-S2 nucleic acid
EP2227132B1 (fr) 2007-10-09 2023-03-08 DexCom, Inc. Système d'administration d'insuline intégré avec un capteur de glucose en continu
US20100267055A1 (en) * 2007-10-21 2010-10-21 Abbott Laboratories One-step immunoassays exhibiting increased sensitivity and specificity
US8283124B2 (en) * 2007-10-25 2012-10-09 Abbott Laboratories Compositions for detecting antibodies to Babesia microti and methods of uses thereof
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US20090111117A1 (en) * 2007-10-26 2009-04-30 University Of Washington Device and method for detecting complex formation
JP4956715B2 (ja) * 2007-12-03 2012-06-20 国立大学法人 東京大学 目的物質の測定方法
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
BRPI0722361B8 (pt) 2007-12-19 2021-07-27 Abbott Lab métodos para avaliar a concentração de um fármaco imunossupressor em uma amostra de sangue humano, composição de reagente de extração e kit de teste
CA2710761C (fr) 2007-12-27 2019-01-08 Abbott Laboratories Anticorps anti t. cruzi et procedes d'utilisation
WO2009086411A2 (fr) * 2007-12-27 2009-07-09 Abbott Laboratories Anticorps mimétique négatif utilisé en tant que réactif bloquant dans des immunoessais de bnp
CA2715628A1 (fr) 2008-02-21 2009-08-27 Dexcom, Inc. Systemes et procedes pour traiter, transmettre et afficher des donnees de detecteur
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
US8268981B2 (en) * 2008-03-06 2012-09-18 Abbott Laboratories Plasmodium malariae and plasmodium ovale genes and uses thereof
US8030471B2 (en) * 2008-03-06 2011-10-04 Abbott Laboratories Plasmodium malariae and Plasmodium ovale genes and uses thereof
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
NZ588554A (en) 2008-04-29 2013-03-28 Abbott Lab Dual variable domain immunoglobulins and uses thereof
US20090286329A1 (en) * 2008-05-19 2009-11-19 Abbott Laboratoires Isolated human autoantibodies to natriuretic peptides and methods and kits for detecting human autoantibodies to natriuretic peptides
US20090286256A1 (en) * 2008-05-19 2009-11-19 Abbott Laboratories Isolated human autoantibodies to natriuretic peptides and methods and kits for detecting human autoantibodies to natriuretic peptides
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
CN102112494A (zh) 2008-06-03 2011-06-29 雅培制药有限公司 双重可变结构域免疫球蛋白及其用途
AR072001A1 (es) 2008-06-03 2010-07-28 Abbott Lab Inmunoglobulina con dominio variable dual y usos de la misma
US8741287B2 (en) 2008-06-18 2014-06-03 Abbott Laboratories PlGF-1 assay and kits and components thereof
US20100015655A1 (en) * 2008-07-17 2010-01-21 Abbott Laboratories Methods and Kits for Detecting and Quantifying Damage Caused by a Parasite
US11235323B2 (en) 2008-08-27 2022-02-01 Life Technologies Corporation Apparatus for and method of processing biological samples
WO2010025302A2 (fr) * 2008-08-27 2010-03-04 Life Technologies Corporation Appareil et procédé utilisables pour le traitement d'échantillons biologiques
EP2326957B1 (fr) 2008-09-03 2013-06-12 Abbott Molecular Inc. Dosages et kits pour déterminer un tropisme du vih-1
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100105150A1 (en) * 2008-10-24 2010-04-29 Abbott Laboratories Isolated human autoantibodies to neutrophil gelatinase-associated lipocalin (ngal) and methods and kits for the detection of human autoantibodies to ngal
WO2010056878A2 (fr) 2008-11-14 2010-05-20 Pepex Biomedical, Llc Module détecteur électrochimique
US8506740B2 (en) 2008-11-14 2013-08-13 Pepex Biomedical, Llc Manufacturing electrochemical sensor module
US8951377B2 (en) 2008-11-14 2015-02-10 Pepex Biomedical, Inc. Manufacturing electrochemical sensor module
US8168165B2 (en) * 2008-12-23 2012-05-01 Abbott Laboratories Alkylated interleukin-18 compositions
US8349325B2 (en) 2008-12-23 2013-01-08 Abbott Laboratories Soluble FMS-like tyrosine kinase-1 (sFLT-1) antibody and related composition, kit, methods of using, and materials and method for making
US8445199B2 (en) * 2008-12-31 2013-05-21 Abbott Point Of Care Inc. Method and device for immunoassay using nucleotide conjugates
US8241915B2 (en) * 2009-01-14 2012-08-14 Abbott Laboratories Methods and kits for detecting hemoglobin in test samples
CA2749945A1 (fr) * 2009-01-31 2010-08-05 Abbott Laboratories Marqueurs pour la prediction et le suivi de reaction a une therapie a base d'inhibiteurs des kinases aurora b
CA2751293A1 (fr) 2009-02-11 2010-08-19 Abbott Laboratories Procedes et compositions pour identifier, classer et surveiller un sujet atteint de tumeurs et de cancers resistants aux inhibiteurs de la famille bcl-2
US8030026B2 (en) 2009-02-24 2011-10-04 Abbott Laboratories Antibodies to troponin I and methods of use thereof
JP5836807B2 (ja) 2009-03-05 2015-12-24 アッヴィ・インコーポレイテッド Il−17結合タンパク質
US8283162B2 (en) * 2009-03-10 2012-10-09 Abbott Laboratories Antibodies relating to PIVKAII and uses thereof
US8084272B2 (en) 2009-03-25 2011-12-27 Abbott Point Of Care Inc. Amelioration of heterophile antibody immunosensor interference
US8063193B2 (en) 2009-03-27 2011-11-22 Abbott Laboratories Nucleotide and amino acid sequences encoding an exported protein 1 derived from Plasmodium vivax and uses thereof
WO2010111660A1 (fr) 2009-03-27 2010-09-30 Dexcom, Inc. Procédés et systèmes favorisant la gestion du glucose
GB2473868A (en) 2009-09-28 2011-03-30 Invitrogen Dynal As Apparatus and method of automated processing of biological samples
US20100291709A1 (en) * 2009-05-13 2010-11-18 Abbott Laboratories Human nt-pro b-type natriuretic peptide assay having reduced cross-reactivity with other peptide forms
WO2011001337A1 (fr) * 2009-06-30 2011-01-06 Koninklijke Philips Electronics N. V. Dispositif capteur magnétique, procédé d'utilisation d'un tel dispositif, et échantillon
CA2766798A1 (fr) 2009-06-30 2011-01-06 Abbott Laboratories Marqueurs d'infection par le virus xmrv et utilisations afferentes
US9351677B2 (en) 2009-07-02 2016-05-31 Dexcom, Inc. Analyte sensor with increased reference capacity
WO2011003035A2 (fr) 2009-07-02 2011-01-06 Dexcom, Inc. Capteur d'analytes
US20110024305A1 (en) * 2009-07-29 2011-02-03 Ervin Matthew H Differential Amplifier Sensor Architecture for Increased Sensing Selectivity
CN105131112A (zh) 2009-08-29 2015-12-09 Abbvie公司 治疗用dll4结合蛋白
WO2011026017A1 (fr) 2009-08-31 2011-03-03 Abbott Laboratories Biomarqueurs pour la prédiction d'événements indésirables cardiaques majeurs et utilisations de ceux-ci
JP5311406B2 (ja) * 2009-09-10 2013-10-09 独立行政法人産業技術総合研究所 免疫センサ
EP2482724A2 (fr) 2009-09-30 2012-08-08 Dexcom, Inc. Capteur d'analyte transcutané
US8389293B2 (en) * 2009-11-17 2013-03-05 Abbott Point Of Care Inc. Reducing leukocyte interference in competitive immunoassays
US8377669B2 (en) * 2009-11-17 2013-02-19 Abbott Point Of Care Inc. Reducing leukocyte interference in non-competitive immunoassays
US8455212B2 (en) * 2009-11-21 2013-06-04 Abbott Laboratories Assays for human NT-pro B-type natriuretic peptide, human pro B-type natriuretic peptide and human B-type natriuretic peptide
EP2504466B1 (fr) 2009-11-23 2019-11-20 Proxim Diagnostics Corporation Activation électrochimique commandée d'électrodes à base de carbone
US8652788B2 (en) 2009-12-02 2014-02-18 Abbott Laboratories Assay for diagnosis of cardiac myocyte damage
US8835120B2 (en) * 2009-12-02 2014-09-16 Abbott Laboratories Assay for cardiac troponin-T (cTnT)
US20110136141A1 (en) 2009-12-03 2011-06-09 Abbott Laboratories Peptide reagents and method for inhibiting autoantibody antigen binding
US8183002B2 (en) * 2009-12-03 2012-05-22 Abbott Laboratories Autoantibody enhanced immunoassays and kits
MX2012006560A (es) 2009-12-08 2012-10-05 Abbott Gmbh & Co Kg Anticuerpos monoclonales contra la proteina rgm a para utilizarse en el tratamiento de degeneracion de capa de fibra de nervio retinal.
US9579651B2 (en) 2009-12-18 2017-02-28 Abbott Point Of Care, Inc. Biologic fluid analysis cartridge
JP5609107B2 (ja) * 2009-12-28 2014-10-22 東ソー株式会社 トロポニンiの免疫測定方法
US8101065B2 (en) * 2009-12-30 2012-01-24 Lifescan, Inc. Systems, devices, and methods for improving accuracy of biosensors using fill time
US8877034B2 (en) * 2009-12-30 2014-11-04 Lifescan, Inc. Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity
MY160628A (en) 2010-03-02 2017-03-15 Abbvie Inc Therapeutic DLL4 Binding Proteins
US20110229921A1 (en) * 2010-03-18 2011-09-22 Abbott Laboratories METHODS OF ASSAYING URINARY NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN (uNGAL) IN THE PROGNOSIS OF CADAVERIC KIDNEY TRANSPLANT FUNCTION IN A PATIENT, INCLUDING A PATIENT DIAGNOSED WITH DELAYED GRAFT FUNCTION (DGF), A METHOD OF ASSAYING uNGAL IN THE ASSESSMENT OF RISK OF DGF IN A PATIENT DIAGNOSED WITH EARLY GRAFT FUNCTION (EGF), AND RELATED KITS
US9199233B2 (en) 2010-03-31 2015-12-01 Abbott Point Of Care, Inc. Biologic fluid analysis cartridge with deflecting top panel
WO2011129382A1 (fr) 2010-04-16 2011-10-20 Abbott Japan Co. Ltd. Procédés et réactifs pour diagnostiquer la polyarthrite rhumatoïde
US8476079B2 (en) * 2010-04-30 2013-07-02 Abbott Point Of Care Inc. Reagents for reducing leukocyte interference in immunoassays
PE20130205A1 (es) 2010-05-14 2013-03-24 Abbvie Inc Proteinas de union a il-1
US8394325B2 (en) 2010-06-14 2013-03-12 Abbott Point Of Care Inc. Magnetic beads for reducing leukocyte interference in immunoassays
US9551714B2 (en) 2010-06-25 2017-01-24 Abbott Laboratories Materials and methods for assay of anti-hepatitis C virus (HCV) antibodies
WO2012006500A2 (fr) 2010-07-08 2012-01-12 Abbott Laboratories Anticorps monoclonaux contre la protéine de capside du virus de l'hépatite c
UY33492A (es) 2010-07-09 2012-01-31 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
US9120862B2 (en) 2010-07-26 2015-09-01 Abbott Laboratories Antibodies relating to PIVKA-II and uses thereof
EP3252072A3 (fr) 2010-08-03 2018-03-14 AbbVie Inc. Immunoglobuline à double domaine variable et ses utilisations
US11402375B2 (en) 2010-08-05 2022-08-02 Abbott Point Of Care Inc. Magnetic immunosensor with trench configuration and method of use
EP2601526B1 (fr) 2010-08-05 2016-12-21 Abbott Point Of Care, Inc. Immunocapteur magnétique et son procédé d'utilisation
US9329175B2 (en) 2010-08-05 2016-05-03 Abbott Point Of Care Inc. Oscillating immunoassay method and device
CN103118785B (zh) 2010-08-05 2015-11-25 雅培医护站股份有限公司 使用易感磁微珠捕获的免疫测定方法和装置
WO2012024518A1 (fr) 2010-08-18 2012-02-23 Abbott Laboratories Détection moléculaire d'une infection par le xmrv
US20120058461A1 (en) 2010-08-18 2012-03-08 Abbott Laboratories Molecular detection of xmrv infection
KR20130139884A (ko) 2010-08-26 2013-12-23 애브비 인코포레이티드 이원 가변 도메인 면역글로불린 및 이의 용도
US8617370B2 (en) 2010-09-30 2013-12-31 Cilag Gmbh International Systems and methods of discriminating between a control sample and a test fluid using capacitance
US8932445B2 (en) 2010-09-30 2015-01-13 Cilag Gmbh International Systems and methods for improved stability of electrochemical sensors
US20120115244A1 (en) 2010-11-09 2012-05-10 Abbott Laboratories Materials and methods for immunoassay of pterins
WO2012075258A2 (fr) 2010-12-03 2012-06-07 Abbott Point Of Care Inc. Procédé de dosage immunologique ratiométrique et dispositif d'analyse sanguine
US9050595B2 (en) 2010-12-03 2015-06-09 Abbott Point Of Care Inc. Assay devices with integrated sample dilution and dilution verification and methods of using same
CN103282125B (zh) 2010-12-03 2015-05-20 雅培医护站股份有限公司 具有整合的样品稀释的样品计量装置和测定装置
US9061283B2 (en) 2010-12-03 2015-06-23 Abbott Point Of Care Inc. Sample metering device and assay device with integrated sample dilution
SG191312A1 (en) 2010-12-21 2013-07-31 Abbvie Inc Il-1 -alpha and -beta bispecific dual variable domain immunoglobulins and their use
ES2533839T3 (es) 2010-12-30 2015-04-15 Abbott Point Of Care, Inc. Cartucho de análisis de fluido biológico con porción de manipulación de muestra y porción de cámara de análisis
AU2010366640B2 (en) * 2010-12-31 2016-06-02 Cilag Gmbh International Systems and methods for high accuracy analyte measurement
KR101889100B1 (ko) * 2011-04-12 2018-08-16 엘지전자 주식회사 진단용 카트리지 및 진단용 카트리지 제어 방법
FI20115057L (fi) 2011-01-21 2012-07-22 Wallac Oy Menetelmä ja laite yhden tai useamman näytealueen leikkaamiseksi näytteen kantajasta
DK3575796T3 (da) 2011-04-15 2021-01-18 Dexcom Inc Avanceret analytsensorkalibrering og fejldetektion
JP2014515476A (ja) 2011-05-20 2014-06-30 アボットジャパン株式会社 非特異的結合を減少させるためのイムノアッセイ方法及び試薬
US9504162B2 (en) 2011-05-20 2016-11-22 Pepex Biomedical, Inc. Manufacturing electrochemical sensor modules
WO2012166200A1 (fr) 2011-05-27 2012-12-06 Abbott Point Of Care Inc. Immunoessais de tsh employant des réactifs de piégeage pour la réaction croisée d'analogues d'hormone endocrine glycoprotéique
JP5938471B2 (ja) 2011-05-27 2016-06-22 アボット ポイント オブ ケア インコーポレイテッド Tsh免疫アッセイ及び内在性夾雑物の存在下におけるtsh免疫アッセイを限定的な洗浄フォーマットで実施するための方法
US9199234B2 (en) 2011-05-27 2015-12-01 Abbott Point Of Care Inc. TSH antibodies for point-of-care immunoassay formats
WO2013003711A1 (fr) 2011-06-30 2013-01-03 Abbott Point Of Care Inc. Procédés et dispositifs de correction de signaux de dispositifs de détection
US9201034B2 (en) 2011-06-30 2015-12-01 Abbott Point Of Care Inc. Methods and devices for determining sensing device usability
US9224312B2 (en) 2011-06-30 2015-12-29 Abbott Point Of Care Inc. Methods and devices for determining sensing device usability
WO2013003709A1 (fr) 2011-06-30 2013-01-03 Abbott Point Of Care Inc. Procédés et dispositifs pour déterminer les capacités d'utilisation d'un dispositif de détection
US10641768B2 (en) * 2011-07-08 2020-05-05 Abbott Japan Co. Ltd. Methods and kits for decreasing interferences from leukocytes in specific binding assays
WO2013015822A1 (fr) 2011-07-25 2013-01-31 Mikhail Briman Cartouche pour tests diagnostiques
US9670538B2 (en) 2011-08-05 2017-06-06 Ibis Biosciences, Inc. Nucleic acid sequencing by electrochemical detection
EP2748618A1 (fr) 2011-08-24 2014-07-02 Abbott Point of Care Inc. Cartouche d'analyse d'un échantillon de liquide biologique
AR088514A1 (es) 2011-10-24 2014-06-18 Abbvie Inc Inmunoligantes biespecificos dirigidos contra tnf
UY34411A (es) 2011-10-24 2013-05-31 Abbvie Inc Inmunoenlazantes dirigidos contra esclerostina
AU2012352168C1 (en) 2011-12-14 2018-01-25 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of iron-related disorders
CA2855570A1 (fr) 2011-12-14 2013-06-20 AbbVie Deutschland GmbH & Co. KG Composition et methode pour le diagnostic et le traitement de troubles lies au fer
US9873119B2 (en) 2011-12-28 2018-01-23 Ibis Biosciences, Inc. Multiple- analyte assay device and system
CN104159920A (zh) 2011-12-30 2014-11-19 艾伯维公司 针对il-13和/或il-17的双重可变结构域免疫球蛋白
EP2915818A3 (fr) 2011-12-30 2015-11-11 AbbVie Inc. Immunoglobuline à double domaine variable et ses utilisations
US8993248B2 (en) 2011-12-31 2015-03-31 Abbott Laboratories Truncated human vitamin D binding protein and mutation and fusion thereof and related materials and methods of use
CN109520889B (zh) * 2012-01-16 2022-04-05 仪宝科技公司 用于测量流体物理性能的方法、装置、和系统
RS57603B1 (sr) 2012-01-27 2018-11-30 Abbvie Deutschland Sastav i metod za dijagnozu i tretiranje bolesti povezanih sa degeneracijom neurita
US9081001B2 (en) 2012-05-15 2015-07-14 Wellstat Diagnostics, Llc Diagnostic systems and instruments
US9625465B2 (en) 2012-05-15 2017-04-18 Defined Diagnostics, Llc Clinical diagnostic systems
US9213043B2 (en) 2012-05-15 2015-12-15 Wellstat Diagnostics, Llc Clinical diagnostic system including instrument and cartridge
WO2014011955A2 (fr) 2012-07-12 2014-01-16 Abbvie, Inc. Protéines de liaison à il-1
US8847335B2 (en) 2012-08-28 2014-09-30 Stmicroelectronics Pte Ltd. Membrane structure for electrochemical sensor
KR20180008921A (ko) 2012-11-01 2018-01-24 애브비 인코포레이티드 항-vegf/dll4 이원 가변 도메인 면역글로불린 및 이의 용도
BR112015012958B1 (pt) 2012-12-03 2022-03-15 Pepex Biomedical, Inc Módulo sensor para detectar um analito em uma amostra de sangue
EP2928919A2 (fr) 2012-12-04 2015-10-14 AbbVie Inc. Protéines de liaison à double spécificité pénétrant la barrière hémato-encéphalique (bbb)
JP6369330B2 (ja) * 2012-12-19 2018-08-08 コニカミノルタ株式会社 センサーチップおよびこれを用いたspfs免疫蛍光測定システム
US9671398B2 (en) 2012-12-28 2017-06-06 Abbott Point Of Care Inc. Apparatus and method for identifying a hook effect and expanding the dynamic range in point of care immunoassays
WO2014106001A2 (fr) 2012-12-28 2014-07-03 Abbvie, Inc. Protéines de liaison doublement spécifiques ayant une séquence récepteur
US9856319B2 (en) 2012-12-28 2018-01-02 Abbvie Inc. Monovalent binding proteins
WO2014116846A2 (fr) 2013-01-23 2014-07-31 Abbvie, Inc. Procédés et compositions pour moduler une réponse immunitaire
JP6409574B2 (ja) 2013-01-28 2018-10-24 ソニー株式会社 生体試料用インピーダンス測定装置および生体試料用インピーダンス測定システム
US10545161B2 (en) 2013-03-11 2020-01-28 Cue Health Inc. Systems and methods for detection and quantification of analytes
US9623409B2 (en) 2013-03-11 2017-04-18 Cue Inc. Cartridges, kits, and methods for enhanced mixing for detection and quantification of analytes
KR102094496B1 (ko) 2013-03-11 2020-03-30 큐 헬스 인코퍼레이티드 분석물의 검출 및 정량을 위한 시스템 및 방법
US9651547B2 (en) 2013-03-14 2017-05-16 Abbott Point Of Care Inc. Electrochemical methods and devices for amending urine samples for immunosensor detection
US20140271453A1 (en) 2013-03-14 2014-09-18 Abbott Laboratories Methods for the early detection of lung cancer
WO2014159077A1 (fr) * 2013-03-14 2014-10-02 Bayer Healthcare Llc Déterminations d'étalonnage normalisé de la concentration en analyte
BR112015023355A8 (pt) 2013-03-14 2018-01-30 Abbott Lab antígenos recombinantes ns3 de hcv e mutantes dos mesmos para detecção de anticorpos aprimorada.
MX2015012825A (es) 2013-03-14 2016-06-10 Abbott Lab Anticuerpos monoclonales del dominio de union de lipido del núcleo del virus de la hepatitis c vhc.
CA2906421C (fr) 2013-03-14 2022-08-16 George J. Dawson Dosage de combinaison antigene-anticorps du virus de l'hepatite c et procedes et compositions destines a etre utilises avec celui-ci
WO2014159615A2 (fr) 2013-03-14 2014-10-02 Abbott Point Of Care Inc Système de régulation thermique permettant de réguler la température d'un fluide
US9488663B2 (en) 2013-03-14 2016-11-08 Abbott Point Of Care Inc. Electrochemical methods and devices for amending urine samples for immunosensor detection
US9157910B2 (en) 2013-03-15 2015-10-13 Abbott Laboratories Assay with increased dynamic range
US9562874B2 (en) 2013-03-15 2017-02-07 Abbott Point Of Care Inc. Biosensor with improved interference characteristics
CN105324396A (zh) 2013-03-15 2016-02-10 艾伯维公司 针对IL-1β和/或IL-17的双重特异性结合蛋白
TW201446800A (zh) 2013-03-15 2014-12-16 Abbvie Inc 針對TNFα之雙特異性結合蛋白
US9249450B2 (en) 2013-03-15 2016-02-02 Abbott Point Of Care Inc. Glutamate oxidase mutagenesis for diagnostic testing
US9005901B2 (en) 2013-03-15 2015-04-14 Abbott Laboratories Assay with internal calibration
US10234425B2 (en) 2013-03-15 2019-03-19 Qorvo Us, Inc. Thin film bulk acoustic resonator with signal enhancement
US9469686B2 (en) 2013-03-15 2016-10-18 Abbott Laboratories Anti-GP73 monoclonal antibodies and methods of obtaining the same
CA2908475C (fr) * 2013-04-08 2020-09-08 Helix Biopharma Corp. Utilisation de conjugues anticorps-urease pour applications diagnostiques et therapeutiques
CN110632171B (zh) 2013-05-23 2022-07-22 Qorvo美国公司 传感器、形成传感器的方法和装置
EP3919896A1 (fr) 2013-05-23 2021-12-08 Qorvo Us, Inc. Ensemble en deux parties
WO2015031626A1 (fr) 2013-08-28 2015-03-05 Abbvie Inc. Dosage de cmet soluble
US20150125397A1 (en) 2013-10-06 2015-05-07 Abbvie Inc. Dual specific binding proteins directed against immune cell receptors and autoantigens
US9770207B2 (en) 2013-12-23 2017-09-26 Verily Life Sciences Llc Sensor electrodes in a bio-compatible device
RU2769133C2 (ru) 2013-12-30 2022-03-28 Эпимаб Биотерапьютикс Инк. Иммуноглобулин с тандемным расположением fab-фрагментов и его применение
US10768189B2 (en) 2014-01-27 2020-09-08 Hitachi High-Tech Corporation Automatic analysis apparatus
US9778184B2 (en) 2014-02-25 2017-10-03 Konica Minolta, Inc. Measurement method and measurement device
USD745423S1 (en) 2014-05-12 2015-12-15 Cue Inc. Automated analyzer test cartridge and sample collection device for analyte detection
WO2015187959A1 (fr) 2014-06-04 2015-12-10 Pepex Biomedical, Inc. Capteurs électrochimiques et procédés de fabrication de capteurs électrochimiques faisant appel à une technologie d'impression avancée
WO2015191934A2 (fr) 2014-06-11 2015-12-17 Abbvie Inc. Barrière hémato-encéphalique pénétrant des protéines de liaison spécifiques doubles pour le traitement de maladies cérébrales et neurologiques
PT3158317T (pt) 2014-06-18 2019-12-10 Zoetis Denmark Aps Sistema de deteção microfluídico
JP2017521654A (ja) 2014-06-27 2017-08-03 アボット・ラボラトリーズAbbott Laboratories ヒトペギウイルス2(HPgV−2)を検出するための組成物および方法
US10073091B2 (en) 2014-08-08 2018-09-11 Ortho-Clinical Diagnostics, Inc. Lateral flow assay device
CN104297473B (zh) * 2014-09-26 2015-10-21 济南大学 一种三维结构rGO-MWCNT-Pd无标记猪细小病毒传感器制备方法及应用
CN106999931B (zh) 2014-09-26 2020-08-18 雅培医护站股份有限公司 具有用于测定流体样本中的凝结的微环境传感器的微制造设备
EP3198270A1 (fr) * 2014-09-26 2017-08-02 Abbott Point Of Care, Inc. Dispositif cartouche avec jonctions fluidiques pour mesures de coagulation dans des échantillons de fluide
EP3213083B1 (fr) 2014-10-29 2020-08-19 Abbott Laboratories Analyses consistant à détecter des anticorps anti-vhc selon l'invention en utilisant des peptides de capture ns3
EP3215836A4 (fr) * 2014-11-07 2018-06-20 Proteosense Dispositifs, systèmes et procédés pour détecter des analytes
JP2017533733A (ja) 2014-11-11 2017-11-16 アボツト・モレキユラー・インコーポレイテツド ハイブリダイゼーションプローブおよび方法
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
WO2016160976A2 (fr) 2015-03-30 2016-10-06 Abbvie Inc. Protéines de liaison au tnf monovalentes
TW201710286A (zh) 2015-06-15 2017-03-16 艾伯維有限公司 抗vegf、pdgf及/或其受體之結合蛋白
KR102604091B1 (ko) 2015-07-17 2023-11-22 큐 헬스 인코퍼레이티드 분석물질의 증진된 검출 및 정량을 위한 시스템 및 방법
JP6239562B2 (ja) 2015-09-14 2017-11-29 株式会社東芝 照明デバイスおよびそれを備えるバイオ情報計測装置
JP6318125B2 (ja) * 2015-09-16 2018-04-25 株式会社Lsiメディエンス 電気的分析方法
US20170089905A1 (en) 2015-09-28 2017-03-30 Abbott Japan Co., Ltd. Methods of diagnosing hepatocellular carcinoma and pancreatic cancer
CU24613B1 (es) 2016-02-06 2022-07-08 Epimab Biotherapeutics Inc Proteínas de unión a inmunoglobulinas fabs en tandem (fit-ig) biespecíficas que se unen a cmet y egfr
WO2017218911A1 (fr) 2016-06-17 2017-12-21 Abbott Laboratories Biomarqueurs permettant de prédire une insuffisance cardiaque à fraction d'éjection préservée (ic-fep) d'apparition récente
EP3279667A1 (fr) 2016-08-02 2018-02-07 Abbott Laboratories Troponine i cardiaque copeptine comme biomarqueurs de mortalité à court terme dans l'aggravation aiguë d'une maladie pulmonaire obstructive chronique (aecopd)
JP2018036154A (ja) * 2016-08-31 2018-03-08 国立大学法人大阪大学 標的物質の電気的検出方法、定量方法、検出システム、定量システム及び試薬
JP6949397B2 (ja) * 2016-08-31 2021-10-13 国立大学法人大阪大学 標的物質の電気的定量方法、定量システム及び試薬
US11169089B2 (en) * 2016-09-14 2021-11-09 Konica Minolta, Inc. Surface plasmon resonance measurement method for measuring amount of substance in a specimen including whole blood
JP2019535015A (ja) 2016-10-03 2019-12-05 アボット・ラボラトリーズAbbott Laboratories 患者サンプルにおけるgfap状況を評価する改善された方法
JP2018071995A (ja) * 2016-10-24 2018-05-10 新日本無線株式会社 コルチゾール濃度分析チップおよびそれを用いた測定方法
US11078298B2 (en) 2016-10-28 2021-08-03 Banyan Biomarkers, Inc. Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods
WO2018107013A1 (fr) 2016-12-09 2018-06-14 Abbott Point Of Care Inc. Dispositifs et procédés d'immunodosage de troponine cardiaque à double plage utilisant un immunocapteur et immunocapteur magnétique
US10928388B2 (en) 2016-12-09 2021-02-23 Abbott Point Of Care Inc. Combined immunoassay and magnetic immunoassay methods for extended range of sensitivity
EP3552016A1 (fr) 2016-12-09 2019-10-16 Abbott Point of Care Inc. Dispositifs d'immunoessai à plage étendue à immunocapteur et immunocapteur magnétique
US10871488B2 (en) 2016-12-09 2020-12-22 Abbott Point Of Care Inc. Crossover analytical systems and methods using an immunosensor and magnetic immunosensor
WO2018107016A1 (fr) 2016-12-09 2018-06-14 Abbott Point Of Care Inc. Dispositif de test d'immuno-essai de diaphonie amélioré permettant la détermination d'une concentration d'un analyte
JP7065092B2 (ja) 2016-12-09 2022-05-11 アボット ポイント オブ ケア インコーポレイテッド 感度範囲拡大のためのイムノアッセイと磁気イムノアッセイの複合システムおよび装置
WO2018140540A1 (fr) 2017-01-25 2018-08-02 Cue Health Inc. Systèmes et procédés pour la détection améliorée et la quantification de substances à analyser
JP7346300B2 (ja) 2017-03-23 2023-09-19 アボット・ラボラトリーズ 早期バイオマーカーであるユビキチンカルボキシ末端ヒドロラーゼl1を使用する、ヒト対象における外傷性脳損傷の程度の診断及び決定の一助となるための方法
US10877048B2 (en) 2017-04-15 2020-12-29 Abbott Laboratories Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury in a human subject using early biomarkers
WO2018200823A1 (fr) 2017-04-28 2018-11-01 Abbott Laboratories Méthodes d'aide au diagnostic et à la détermination hyperaigus d'une lésion cérébrale traumatique au moyen de biomarqueurs précoces sur au moins deux échantillons provenant du même sujet humain
AU2018272054A1 (en) 2017-05-25 2019-09-26 Abbott Laboratories Methods for aiding in the determination of whether to perform imaging on a human subject who has sustained or may have sustained an injury to the head using early biomarkers
BR112019025313A2 (pt) 2017-05-30 2020-06-23 Abbott Laboratories Métodos para auxílio no diagnóstico e avaliação de uma lesão cerebral traumática leve em um indivíduo humano usando troponina cardíaca i
CA3068041A1 (fr) 2017-07-03 2019-01-10 Abbott Laboratories Procedes ameliores de mesure de niveaux d'hydrolase a terminaison carboxy d'ubiquitine l1 dans le sang
AU2018354120A1 (en) 2017-10-24 2020-04-23 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US10344328B2 (en) 2017-11-17 2019-07-09 Ultima Genomics, Inc. Methods for biological sample processing and analysis
US11499962B2 (en) 2017-11-17 2022-11-15 Ultima Genomics, Inc. Methods and systems for analyte detection and analysis
CA3067055A1 (fr) 2017-12-09 2019-06-13 Abbott Laboratories Procedes d'aide au diagnostic et a l'evaluation d'un lesion cerebrale traumatique chez un sujet humain au moyen d'une combinaison de gfap et d'uch-l1
CN111094983A (zh) 2017-12-09 2020-05-01 雅培实验室 使用胶质细胞原纤维酸性蛋白(gfap)和/或泛素羧基末端水解酶l1(uch-l1)帮助诊断和评价已遭受骨科损伤并已遭受或可能已遭受头部损伤诸如轻度创伤性脑损伤(tbi)的患者的方法
US11103867B2 (en) 2017-12-13 2021-08-31 International Business Machines Corporation Localized surface modification for microfluidic applications
BR112020010430A2 (pt) 2017-12-29 2020-11-24 Abbott Laboratories biomarcadores e métodos inovadores para diagnosticar e avaliar lesão cerebral traumática
PE20210419A1 (es) 2018-04-30 2021-03-08 Takeda Pharmaceuticals Co Proteinas de union al receptor de cannabinoides tipo 1 (cb1) y usos de las mismas
WO2019213619A1 (fr) 2018-05-04 2019-11-07 Abbott Laboratories Méthodes et produits de diagnostic, de pronostic et de thérapie du vhb
EP3818371A4 (fr) 2018-07-06 2022-03-23 Qorvo Us, Inc. Résonateur à ondes acoustiques de volume à plage dynamique accrue
US10512911B1 (en) 2018-12-07 2019-12-24 Ultima Genomics, Inc. Implementing barriers for controlled environments during sample processing and detection
US11079395B2 (en) 2019-03-01 2021-08-03 Abbott Laboratories Methods for predicting major adverse cardiovascular events in subjects with coronary artery disease
EP3977122A4 (fr) * 2019-05-28 2023-06-21 Brian Kamradt Toxine de filtre et détecteur d'antigène
US20220276256A1 (en) 2019-08-07 2022-09-01 Abbott Laboratories Methods for detecting assay interferents and increasing dynamic range
US11776684B2 (en) 2019-09-26 2023-10-03 Pacesetter, Inc Method and device for managing energy usage by a medical device
CN112675933A (zh) * 2019-10-18 2021-04-20 利多(香港)有限公司 一种用于检测分析物的微流控芯片
CN112986553A (zh) * 2019-12-14 2021-06-18 南京岚煜生物科技有限公司 一种免疫电极的制备方法
EP4136459A1 (fr) 2020-04-13 2023-02-22 Abbott Laboratories Procédés, complexes et kits pour détecter ou déterminer une quantité d'un anticorps anti-ss-coronavirus dans un échantillon
EP3906843B1 (fr) 2020-05-08 2022-12-14 Pacesetter, Inc. Système permettant de vérifier un épisode pathologique à l'aide d'un accéléromètre
US20220043000A1 (en) 2020-08-04 2022-02-10 Abbott Laboratories Methods and kits for detecting sars-cov-2 protein in a sample
EP4193151A1 (fr) 2020-08-04 2023-06-14 Abbott Rapid Diagnostics International Unlimited Company Analyses pour la détection de sars-cov-2
US20220140854A1 (en) 2020-10-30 2022-05-05 Pacesetter, Inc. Implantable medical device and method for managing a physical layer utilized during a wireless connection
WO2023102384A1 (fr) 2021-11-30 2023-06-08 Abbott Laboratories Utilisation d'un ou de plusieurs biomarqueurs pour déterminer un traumatisme crânien (tbi) chez un sujet ayant été soumis à un balayage de tomodensitométrie assistée par ordinateur de la tête ne démontrant par de tbi
CA3198161A1 (fr) 2020-12-01 2022-06-09 Beth MCQUISTON Utilisation d'un ou plusieurs biomarqueurs pour determiner un traumatisme cranien (tbi) chez un sujet soumis a un balayage de tomodensitometrie assistee par ordinateur de la tete a tbi negati
EP4271998A1 (fr) 2020-12-30 2023-11-08 Abbott Laboratories Procédés pour déterminer un antigène sras-cov-2 et anticorps anti-sras-cov-2 dans un échantillon
WO2022147178A1 (fr) 2020-12-30 2022-07-07 Abbott Laboratories Procédés, réactifs et kits améliorés pour l'inactivation à base de détergent de bêta-coronavirus avant et/ou pendant l'évaluation d'un échantillon biologique pour un antigène ou un anticorps du sars-cov-2
CA3216320A1 (fr) 2021-05-18 2022-11-24 Abbott Laboratories Procedes d'evaluation d'une lesion cerebrale chez un sujet en pediatrie
CA3222291A1 (fr) 2021-06-14 2022-12-22 Jaime MARINO Procedes de diagnostic ou d'aide au diagnostic d'une lesion cerebrale provoquee par de l'energie acoustique, de l'energie electromagnetique, une onde de surpression et/ou le souffle d'une explosio
US20220409143A1 (en) 2021-06-28 2022-12-29 Pacesetter, Inc. Method and system for optimizing filter settings of an implantable medical device
WO2023028186A1 (fr) 2021-08-27 2023-03-02 Abbott Laboratories Méthodes de détection d'immunoglobuline g, de sous-classe 4 (igg4), dans un échantillon biologique
AU2022339759A1 (en) 2021-08-31 2024-03-07 Abbott Laboratories Methods and systems of diagnosing brain injury
WO2023044345A1 (fr) * 2021-09-15 2023-03-23 Massachusetts Institute Of Technology Technologie électrochimique microbienne pour détecter et dégrader les pesticides organophosphatés
JP2023048922A (ja) * 2021-09-28 2023-04-07 キヤノン株式会社 マイクロ分析チップ
JP2023048924A (ja) * 2021-09-28 2023-04-07 キヤノン株式会社 マイクロ分析チップ
WO2023056268A1 (fr) 2021-09-30 2023-04-06 Abbott Laboratories Méthodes et systèmes de diagnostic de lésion cérébrale
US20230213536A1 (en) 2021-12-28 2023-07-06 Abbott Laboratories Use of biomarkers to determine sub-acute traumatic brain injury (tbi) in a subject having received a head computerized tomography (ct) scan that is negative for a tbi or no head ct scan
US20230346258A1 (en) 2022-04-28 2023-11-02 Pacesetter, Inc. System for determining change in position of an implanted medical device within an implant pocket
WO2024044288A1 (fr) 2022-08-26 2024-02-29 Abbott Laboratories Utilisation de la troponine cardiaque et de la galectine-3 pour differencier l'infarctus du myocarde de type i et de type ii
WO2024059708A1 (fr) 2022-09-15 2024-03-21 Abbott Laboratories Biomarqueurs et méthodes de différenciation entre une lésion cérébrale traumatique légère et très légère
WO2024059692A1 (fr) 2022-09-15 2024-03-21 Abbott Laboratories Méthodes et produits de diagnostic, de pronostic et de thérapie du vhb

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853467A (en) 1973-08-15 1974-12-10 Gen Electric Method and apparatus for immunological detection of biological particles
US4686479A (en) 1985-07-22 1987-08-11 Young Chung C Apparatus and control kit for analyzing blood sample values including hematocrit
US4830959A (en) 1985-11-11 1989-05-16 Medisense, Inc. Electrochemical enzymic assay procedures
US4997526A (en) 1985-03-19 1991-03-05 Eic Laboratories, Inc. Assaying for a biologically active component
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5081063A (en) 1989-07-20 1992-01-14 Harris Corporation Method of making edge-connected integrated circuit structure
US5096669A (en) 1988-09-15 1992-03-17 I-Stat Corporation Disposable sensing device for real time fluid analysis
US5112455A (en) 1990-07-20 1992-05-12 I Stat Corporation Method for analytically utilizing microfabricated sensors during wet-up
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5208649A (en) 1992-02-20 1993-05-04 University Of Cincinnati Assembly for front face testing
USD337164S (en) 1990-07-19 1993-07-06 I-Stat Corporation Cartridge for a blood monitoring analyzer
US5254315A (en) 1991-07-26 1993-10-19 E. I. Du Pont De Nemours And Company Carrier device
JPH05273212A (ja) 1992-01-10 1993-10-22 Pola Chem Ind Inc プロテインa分子膜により抗体タンパク質を固定化する方法及び抗体固定膜
US5447440A (en) 1993-10-28 1995-09-05 I-Stat Corporation Apparatus for assaying viscosity changes in fluid samples and method of conducting same
JPH07260782A (ja) 1994-03-17 1995-10-13 Shionogi & Co Ltd ヒト血清アルブミンの測定方法
US5638828A (en) 1993-10-28 1997-06-17 I-Stat Corporation Fluid sample collection and introduction device and method
US5656504A (en) 1992-10-26 1997-08-12 Pharmacia Biosensor Ab Method of preventing undesired binding in solid phase assays
US5807752A (en) 1992-09-11 1998-09-15 Boehringer Mannheim Corporation Assay using an unblocked solid phase with immobilized analyte binding partner
US5821399A (en) 1993-07-16 1998-10-13 I-Stat Corporation Automatic test parameters compensation of a real time fluid analysis sensing device
US6030827A (en) 1998-01-23 2000-02-29 I-Stat Corporation Microfabricated aperture-based sensor
US6106778A (en) 1997-09-27 2000-08-22 Horiba, Ltd. Blood cell count/immunoassay apparatus using whole blood
US6395235B1 (en) 1998-08-21 2002-05-28 Argonaut Technologies, Inc. Devices and methods for accessing reaction vessels
US6436699B1 (en) 1997-09-15 2002-08-20 Ab Sangtec Medical Capacity affinity sensor
US20020155033A1 (en) 2000-10-06 2002-10-24 Protasis Corporation Fluid Separate conduit cartridge
US6475372B1 (en) 2000-02-02 2002-11-05 Lifescan, Inc. Electrochemical methods and devices for use in the determination of hematocrit corrected analyte concentrations
US6478938B1 (en) 2000-05-24 2002-11-12 Bio Digit Laboratories Corporation Electrochemical membrane strip biosensor
US20030059954A1 (en) 2001-09-24 2003-03-27 Inger Vikholm Method and biosensor for analysis

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US337164A (en) * 1886-03-02 Device for disinfecting
JPS5558166A (en) 1978-10-26 1980-04-30 Asahi Chemical Ind White corpuscle graduating filter and method of sampling white corpuscle
US4280815A (en) * 1979-06-18 1981-07-28 Technicon Instruments Corporation Electrochemiluminescent immunoassay and apparatus therefor
US5156953A (en) 1979-12-26 1992-10-20 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
JPS56115727A (en) 1980-02-19 1981-09-11 Kuraray Co Ltd Carrier for immobilizing physiologically active substance
JPS58153154A (ja) * 1982-03-09 1983-09-12 Ajinomoto Co Inc 修飾電極
US4454007A (en) * 1983-01-27 1984-06-12 E. I. Du Pont De Nemours And Company Ion-selective layered sensor and methods of making and using the same
US4584130A (en) 1985-03-29 1986-04-22 University Of Maryland Intramolecularly cross-linked hemoglobin and method of preparation
US4722889A (en) * 1985-04-02 1988-02-02 Leeco Diagnostics, Inc. Immunoassays using multiple monoclonal antibodies and scavenger antibodies
EP0266432B1 (fr) * 1986-04-22 1992-01-15 Toray Industries, Inc. Micro-electrode pour analyses electrochimiques
DE3627814A1 (de) 1986-08-16 1988-02-25 Fresenius Ag Vorrichtung zur bestimmung des haematokrit
US4959307A (en) 1986-09-05 1990-09-25 Syntex (U.S.A.) Inc. Immunoseparating strip
US5079142A (en) 1987-01-23 1992-01-07 Synbiotics Corporation Orthogonal flow immunoassays and devices
US5540828A (en) 1987-06-08 1996-07-30 Yacynych; Alexander Method for making electrochemical sensors and biosensors having a polymer modified surface
ZA889546B (en) 1987-12-24 1990-08-29 Igen Inc Chemical sensors employing catalytic antibodies
JP2501860B2 (ja) 1988-03-15 1996-05-29 日立金属株式会社 磁気センサ―及び電流センサ―並びにこれを用いた装置
EP0397424A3 (fr) * 1989-05-08 1991-08-21 Biotrack, Inc. Système d'analyse multiple
CA2003942A1 (fr) 1989-09-26 1991-03-26 Julie Lia Rudolph Support pour dosage en phase solide
US4980065A (en) * 1989-10-18 1990-12-25 Lehigh University Separation of mixtures by aqueous two-phase systems
JPH03179248A (ja) * 1989-12-08 1991-08-05 Nippon Telegr & Teleph Corp <Ntt> 電気化学分析用微小孔アレイ電極およびその製造方法
US5069669A (en) * 1989-12-11 1991-12-03 Design Opportunity Corp. Expandable finger guard for a hypodermic needle cap
JP3067171B2 (ja) 1990-07-11 2000-07-17 日本電気株式会社 表示機能付無線選択呼び出し受信機
IT1243492B (it) * 1990-11-23 1994-06-15 Eniricerche Spa Composizioni acquose gelificabili contenenti polimeri con particolari gruppi funzionali chelanti utili per il recupero del petrolio da un giacimento.
JP3064635B2 (ja) 1992-01-29 2000-07-12 エヌオーケー株式会社 グルコ−スバイオセンサ
JP3648258B2 (ja) * 1992-02-13 2005-05-18 株式会社東芝 核酸鎖検出法
US5512492A (en) * 1993-05-18 1996-04-30 University Of Utah Research Foundation Waveguide immunosensor with coating chemistry providing enhanced sensitivity
ES2107833T3 (es) * 1993-05-29 1997-12-01 Cambridge Life Sciences Sensores basados en transformacion de polimeros.
US5756362A (en) 1993-10-12 1998-05-26 Cornell Research Foundation, Inc. Liposome-enhanced immunoaggregation assay and test device
US5762770A (en) * 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
WO1995029395A1 (fr) * 1994-04-26 1995-11-02 The Regents Of University Of Michigan Cassette de dosage par methode immunoenzymatique en sandwich unitaire, dispositif a cet effet et mode d'utilisation
CA2152756A1 (fr) * 1994-06-28 1995-12-29 Tadakazu Yamauchi Methode et dispositif pour essai de liaison specifique
US5627041A (en) * 1994-09-02 1997-05-06 Biometric Imaging, Inc. Disposable cartridge for an assay of a biological sample
US5639630A (en) * 1995-05-16 1997-06-17 Bayer Corporation Method and reagent composition for performing leukocyte differential counts on fresh and aged whole blood samples, based on intrinsic peroxidase activity of leukocytes
WO1996036878A1 (fr) 1995-05-19 1996-11-21 Universal Healthwatch, Inc. Presentation de dosage rapide et autonome
US5581906A (en) * 1995-06-07 1996-12-10 The Procter & Gamble Company Multiple zone limiting orifice drying of cellulosic fibrous structures apparatus therefor, and cellulosic fibrous structures produced thereby
JP3517031B2 (ja) * 1995-06-09 2004-04-05 日清紡績株式会社 生物学的活性物質の分析法
JP4078460B2 (ja) 1995-06-09 2008-04-23 東洋紡績株式会社 血漿分離フィルター、それを用いる血漿分離方法および血漿分離装置
US6346387B1 (en) * 1995-06-27 2002-02-12 Xanthon, Inc. Detection of binding reactions using labels detected by mediated catalytic electrochemistry
WO1997021090A1 (fr) 1995-12-05 1997-06-12 Gamera Bioscience Dispositifs et procedes d'utilisation de l'acceleration centripete pour commander le deplacement de liquides dans le traitement de laboratoire automatise
DE19602861C2 (de) * 1996-01-28 1997-12-11 Meinhard Prof Dr Knoll Probenahmesystem für in Trägerflüssigkeiten enthaltene Analyte sowie Verfahren zu seiner Herstellung
US5869971A (en) * 1996-05-17 1999-02-09 Sendx Medical, Inc. Method and apparatus for ratiometric measurement of hematocrit
GB2322707B (en) * 1996-06-17 2000-07-12 Mercury Diagnostics Inc Electrochemical test device and related methods
ZA975891B (en) * 1996-07-05 1998-07-23 Combimatrix Corp Electrochemical solid phase synthesis of polymers
DE19628002C1 (de) * 1996-07-11 1997-12-18 Inst Chemo Biosensorik Vorrichtung und Verfahren zur Durchführung von Fluoreszenzimmunotests
US6087088A (en) * 1997-01-31 2000-07-11 Bayer Corporation Binding assays using more than one label for determining analyte in the presence of interfering factors
US6159681A (en) 1997-05-28 2000-12-12 Syntrix Biochip, Inc. Light-mediated method and apparatus for the regional analysis of biologic material
JP3810534B2 (ja) 1997-10-17 2006-08-16 松下電器産業株式会社 ヘマトクリット値測定用素子およびヘマトクリット値の測定方法
US7297312B2 (en) * 1998-03-16 2007-11-20 University Of Cincinnati Simultaneous multianalyte electrochemical assay based on spatial resolution
US6322963B1 (en) * 1998-06-15 2001-11-27 Biosensor Systems Design., Inc. Sensor for analyte detection
US6451610B1 (en) * 1999-04-14 2002-09-17 International Technidyne Corporation Method and apparatus for coagulation based assays
US6180417B1 (en) 1999-04-22 2001-01-30 Bayer Corporation Immunochromatographic assay
US6287451B1 (en) 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
JP2001091512A (ja) 1999-07-16 2001-04-06 Matsushita Electric Ind Co Ltd 血液成分分析装置
JP4119649B2 (ja) 1999-08-25 2008-07-16 カリパー・ライフ・サイエンシズ・インコーポレーテッド 単一真空源を有する高スループットシステムにおける稀釈
US6858185B1 (en) * 1999-08-25 2005-02-22 Caliper Life Sciences, Inc. Dilutions in high throughput systems with a single vacuum source
US7078167B2 (en) * 1999-09-17 2006-07-18 Agilent Technologies, Inc. Arrays having background features and methods for using the same
WO2001038873A2 (fr) 1999-11-24 2001-05-31 Biotronic Technologies, Inc. Dispositifs et procedes de detection d'analytes a l'aide d'un electrocapteur contenant un reactif de capture
JP2001183378A (ja) * 1999-12-27 2001-07-06 Fuji Photo Film Co Ltd 固相担体表面へのdna断片の固定方法及びdnaチップ
US6509196B1 (en) * 2000-01-04 2003-01-21 Response Biomedical Corp. Compensation for non-specific signals in quantitative immunoassays
US6521265B1 (en) * 2000-02-09 2003-02-18 Biolife, L.L.C. Method for applying a blood clotting agent
JP2001318101A (ja) 2000-05-08 2001-11-16 Arkray Inc カートリッジ
JP3963066B2 (ja) 2000-05-09 2007-08-22 ウシオ電機株式会社 オーバランセンサを備えたステージ装置
US6528321B1 (en) * 2000-06-26 2003-03-04 Beckman Coulter, Inc. Opposable-element chromatographic assay device for detection of analytes in whole blood samples
DE60125544T2 (de) * 2000-07-14 2007-10-04 Lifescan, Inc., Milpitas Elektrochemisches verfahren zur messung chemischer reaktionsraten
DE60137338D1 (de) * 2000-07-19 2009-02-26 Ebara Corp Material zur entfernung von ozon und verfahren zu dessen herstellung
GB2365526B (en) * 2000-07-31 2003-12-03 Cambridge Life Sciences Assay apparatus for measuring the amount of an analyte in a biological or environmental sample
JP3771788B2 (ja) * 2000-09-01 2006-04-26 株式会社堀場製作所 テオフィリン測定装置
CA2422856C (fr) * 2000-09-25 2012-02-07 Abbott Laboratories Methodes et trousses permettant de diminuer les interferences des echantillons de tests biologiques contenant du plasma ou du serum dans des tests biologiques specifiques d'immunodetection par polycation etendue
US20020155476A1 (en) * 2000-10-20 2002-10-24 Nader Pourmand Transient electrical signal based methods and devices for characterizing molecular interaction and/or motion in a sample
JP4627912B2 (ja) 2000-11-09 2011-02-09 パナソニック株式会社 バイオセンサ
US7087389B2 (en) * 2001-02-09 2006-08-08 Council Of Scientific & Industrial Research Highly cost-effective analytical device for performing immunoassays with ultra high sensitivity
GB0103516D0 (en) * 2001-02-13 2001-03-28 Cole Polytechnique Federale De Apparatus for dispensing a sample
DE60234821D1 (de) * 2001-03-09 2010-02-04 Mitsubishi Chem Medience Corp Messverfahren für vollblut
DE10111392A1 (de) * 2001-03-09 2002-09-12 Chromeon Gmbh Bioanalytisches Messverfahren unter Verwendung von Oxidasen
DE60236429D1 (en) * 2001-05-30 2010-07-01 I Sens Inc Biosensor
US7531362B2 (en) * 2001-06-07 2009-05-12 Medmira Inc. Rapid diagnostic assay
WO2003008956A1 (fr) 2001-07-18 2003-01-30 Arkray, Inc. Appareil et dispositif pour analyse
US8404096B2 (en) * 2001-08-24 2013-03-26 Sensortec Limited Methods for producing highly sensitive potentiometric sensors
US10539561B1 (en) * 2001-08-30 2020-01-21 Customarray, Inc. Enzyme-amplified redox microarray detection process
DE60212776T2 (de) * 2001-09-14 2007-06-28 Matsushita Electric Industrial Co., Ltd., Kadoma Spezifisches Bindungsanalyseverfahren
JP3654591B2 (ja) * 2001-09-14 2005-06-02 松下電器産業株式会社 特異結合分析方法および特異結合分析デバイス
JP2003107090A (ja) * 2001-09-28 2003-04-09 Nitto Denko Corp 免疫クロマトグラフ用標識複合体組成物
GB0129816D0 (en) * 2001-12-13 2002-01-30 The Technology Partnership Plc Testing device for chemical or biochemical analysis
KR100475634B1 (ko) * 2001-12-24 2005-03-15 주식회사 아이센스 일정 소량의 시료를 빠르게 도입할 수 있는 시료도입부를구비한 바이오 센서
US7049150B2 (en) * 2001-12-28 2006-05-23 Varian, Inc. Binding assay device with non-absorbent carrier material
US7041790B2 (en) * 2002-03-26 2006-05-09 Dyax Corp. Fibrinogen binding moieties
JP3924487B2 (ja) * 2002-03-29 2007-06-06 株式会社テクノメデイカ 電気化学式バイオセンサー
JP2003294860A (ja) 2002-04-04 2003-10-15 Takuwa Corp 簡易型降雨強度計
US7067150B2 (en) * 2002-04-16 2006-06-27 Scepter Holdings, Inc. Delivery systems for functional ingredients
US20040106190A1 (en) * 2002-12-03 2004-06-03 Kimberly-Clark Worldwide, Inc. Flow-through assay devices
US7422903B2 (en) * 2002-12-11 2008-09-09 Instrumentation Laboratory Company Multi-analyte reference solutions
US7722817B2 (en) * 2003-08-28 2010-05-25 Epocal Inc. Lateral flow diagnostic devices with instrument controlled fluidics
US7723099B2 (en) 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
JP5273212B2 (ja) 2011-06-24 2013-08-28 大日本印刷株式会社 固体高分子形燃料電池用ガスケット付き電解質膜−電極接合体の製造方法

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853467A (en) 1973-08-15 1974-12-10 Gen Electric Method and apparatus for immunological detection of biological particles
US4997526A (en) 1985-03-19 1991-03-05 Eic Laboratories, Inc. Assaying for a biologically active component
US4686479A (en) 1985-07-22 1987-08-11 Young Chung C Apparatus and control kit for analyzing blood sample values including hematocrit
US4830959A (en) 1985-11-11 1989-05-16 Medisense, Inc. Electrochemical enzymic assay procedures
US5096669A (en) 1988-09-15 1992-03-17 I-Stat Corporation Disposable sensing device for real time fluid analysis
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5554339A (en) 1988-11-14 1996-09-10 I-Stat Corporation Process for the manufacture of wholly microfabricated biosensors
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5081063A (en) 1989-07-20 1992-01-14 Harris Corporation Method of making edge-connected integrated circuit structure
USD337164S (en) 1990-07-19 1993-07-06 I-Stat Corporation Cartridge for a blood monitoring analyzer
US5112455A (en) 1990-07-20 1992-05-12 I Stat Corporation Method for analytically utilizing microfabricated sensors during wet-up
US5254315A (en) 1991-07-26 1993-10-19 E. I. Du Pont De Nemours And Company Carrier device
JPH05273212A (ja) 1992-01-10 1993-10-22 Pola Chem Ind Inc プロテインa分子膜により抗体タンパク質を固定化する方法及び抗体固定膜
US5208649A (en) 1992-02-20 1993-05-04 University Of Cincinnati Assembly for front face testing
US5807752A (en) 1992-09-11 1998-09-15 Boehringer Mannheim Corporation Assay using an unblocked solid phase with immobilized analyte binding partner
US5656504A (en) 1992-10-26 1997-08-12 Pharmacia Biosensor Ab Method of preventing undesired binding in solid phase assays
US5821399A (en) 1993-07-16 1998-10-13 I-Stat Corporation Automatic test parameters compensation of a real time fluid analysis sensing device
US5628961A (en) 1993-10-28 1997-05-13 I-Stat Corporation Apparatus for assaying viscosity changes in fluid samples and method of conducting same
US5653243A (en) 1993-10-28 1997-08-05 I-Stat Corporation Fluid sample collection and introduction device and method
US5638828A (en) 1993-10-28 1997-06-17 I-Stat Corporation Fluid sample collection and introduction device and method
US5666967A (en) 1993-10-28 1997-09-16 I-Stat Corporation Fluid sample collection and introduction device
US5779650A (en) 1993-10-28 1998-07-14 I-Stat Corporation Fluid sample collection and introduction device and method
US5447440A (en) 1993-10-28 1995-09-05 I-Stat Corporation Apparatus for assaying viscosity changes in fluid samples and method of conducting same
US6010463A (en) 1993-10-28 2000-01-04 I-Stat Fluid sample collection and introduction device and method
JPH07260782A (ja) 1994-03-17 1995-10-13 Shionogi & Co Ltd ヒト血清アルブミンの測定方法
US6436699B1 (en) 1997-09-15 2002-08-20 Ab Sangtec Medical Capacity affinity sensor
US6106778A (en) 1997-09-27 2000-08-22 Horiba, Ltd. Blood cell count/immunoassay apparatus using whole blood
US6379883B2 (en) 1998-01-23 2002-04-30 I-Stat Corporation Microfabricated aperture-based sensor
US6030827A (en) 1998-01-23 2000-02-29 I-Stat Corporation Microfabricated aperture-based sensor
US6395235B1 (en) 1998-08-21 2002-05-28 Argonaut Technologies, Inc. Devices and methods for accessing reaction vessels
US6475372B1 (en) 2000-02-02 2002-11-05 Lifescan, Inc. Electrochemical methods and devices for use in the determination of hematocrit corrected analyte concentrations
US6478938B1 (en) 2000-05-24 2002-11-12 Bio Digit Laboratories Corporation Electrochemical membrane strip biosensor
US20020155033A1 (en) 2000-10-06 2002-10-24 Protasis Corporation Fluid Separate conduit cartridge
US20030059954A1 (en) 2001-09-24 2003-03-27 Inger Vikholm Method and biosensor for analysis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EDDOWES, BIOSENSORS, vol. 3, 1987, pages 1 - 15
LAURELL ET AL.: "Methods in Enzymology", vol. 73, 1981, ACADEMIC PRESS, article "Electroimmunoassay", pages: 339,340, - 348
M. J. GREEN, PHILOS. TRANS. R. SOC, LOND. B. BIOL. SCI., vol. 316, 1987, pages 135 - 142

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500646B2 (en) 2012-01-13 2016-11-22 I-Sens, Inc. Sensor cartridge for detecting component of at least one sample
CN110231336A (zh) * 2019-06-18 2019-09-13 济南大学 一种石墨烯/聚苯胺纳米线阵列免疫传感器的制备方法及应用
CN110231336B (zh) * 2019-06-18 2021-09-28 济南大学 一种石墨烯/聚苯胺纳米线阵列免疫传感器的制备方法

Also Published As

Publication number Publication date
JP2011027745A (ja) 2011-02-10
EP2551671B1 (fr) 2019-04-10
US20060160164A1 (en) 2006-07-20
EP1668347A4 (fr) 2008-11-26
US20100167308A1 (en) 2010-07-01
JP5250007B2 (ja) 2013-07-31
WO2005026689A2 (fr) 2005-03-24
WO2005026689A3 (fr) 2005-08-04
EP2551671A3 (fr) 2013-05-15
US8460922B2 (en) 2013-06-11
CA2878648C (fr) 2017-08-29
US20100203550A1 (en) 2010-08-12
JP5142338B2 (ja) 2013-02-13
CA2973834C (fr) 2021-01-05
US7723099B2 (en) 2010-05-25
WO2005026689A9 (fr) 2005-10-13
JP2011039070A (ja) 2011-02-24
US20100167312A1 (en) 2010-07-01
EP1668347B1 (fr) 2015-07-15
CA2878648A1 (fr) 2005-03-24
JP2007505319A (ja) 2007-03-08
US8808626B2 (en) 2014-08-19
JP2011002468A (ja) 2011-01-06
US8168439B2 (en) 2012-05-01
US20100167386A1 (en) 2010-07-01
JP4891079B2 (ja) 2012-03-07
CA2538826C (fr) 2015-02-24
US20100173396A1 (en) 2010-07-08
CA2973834A1 (fr) 2005-03-24
JP2010281840A (ja) 2010-12-16
CA2538826A1 (fr) 2005-03-24
JP5232207B2 (ja) 2013-07-10
US8309364B2 (en) 2012-11-13
EP1668347A2 (fr) 2006-06-14
US7910352B2 (en) 2011-03-22
JP5361834B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
EP1668347B1 (fr) Dispositif d&#39;immuno-essai possedant une electrode de reference immunologique
US8377392B2 (en) Immunoassay device with improved sample closure
US20110201312A1 (en) Method for distributing contact information between applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1668347

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 33/543 20060101AFI20130405BHEP

17P Request for examination filed

Effective date: 20131115

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20140610

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1668347

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1119420

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004053880

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1119420

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004053880

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040909

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230810

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230807

Year of fee payment: 20

Ref country code: DE

Payment date: 20230808

Year of fee payment: 20