EP2539693A1 - Verfahren zur bestimmung von kohlenstoff in gusseisen - Google Patents

Verfahren zur bestimmung von kohlenstoff in gusseisen

Info

Publication number
EP2539693A1
EP2539693A1 EP11708185A EP11708185A EP2539693A1 EP 2539693 A1 EP2539693 A1 EP 2539693A1 EP 11708185 A EP11708185 A EP 11708185A EP 11708185 A EP11708185 A EP 11708185A EP 2539693 A1 EP2539693 A1 EP 2539693A1
Authority
EP
European Patent Office
Prior art keywords
carbon
phase
signal
sample
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11708185A
Other languages
English (en)
French (fr)
Inventor
Roland Van Driel
Bruno Van Stuijvenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectro Analytical Instruments GmbH and Co KG
Original Assignee
Spectro Analytical Instruments GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectro Analytical Instruments GmbH and Co KG filed Critical Spectro Analytical Instruments GmbH and Co KG
Publication of EP2539693A1 publication Critical patent/EP2539693A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Definitions

  • the present invention relates to a method for the determination of carbon in cast iron, in particular spheroidal graphite cast iron with the aid of sparking spectrometry on a solid sample.
  • Spark spectrometry is a method for the chemical analysis of metals. An electrical discharge is generated which vaporizes a portion of the sample and generates a plasma. In this plasma, the sample atoms are excited and produce emission lines that are characteristic of the elements contained in the sample. Such analyzes are routinely used in the steel industry to control alloys. This measuring method achieves a very high measuring accuracy. However, it has long been known that spark spectrometry in alloys can accurately measure the carbon content only when carbon is present in completely dissolved form in the alloy. Elementary precipitated carbon, such as is present in ductile iron (GGG), regularly leads to a falsification of the measurement. The carbon content of such alloys is measured too low.
  • GGGG ductile iron
  • spark spectrometry In spark spectrometry, a metallic sample is first exposed to sparks under a protective atmosphere. In this
  • the sample surface is homogenized with sparks of high energy at a frequency of 200 to 800 Hz. Each spark melts the area of the sample surface around its point of incidence in the radius of a few tens of microns. After the pre-radio phase, this homogenized sample surface is then exposed to the actual measuring sparks which generate the signal to be analyzed.
  • the precursors preferentially attack the grain boundaries of these precipitates. In the case of carbon, this results in the elemental carbon being sublimated and removed from the sample.
  • the homogenized by Vorfunken parts of the sample surface thus contain less carbon than the original alloy.
  • the carbon signal is measured at a wavelength of 148.176 nm.
  • the pre-radio phase is preferably carried out over a period of 8 to 15 seconds and in particular of 12 seconds. A particularly good control of this method is possible if during the pre-radio phase, the iron signal is detected. With the aid of the iron signal, it can be determined when a stable signal, which is also meaningful for the sublimating carbon, will be present in the pre-radio phase. In this case, the iron line is preferably measured at 149 nm.
  • FIG. 1 shows the intensity distribution in the pre-radio phase for samples with completely dissolved carbon content
  • FIG. 2 shows the intensity distribution of the precursor phase for the iron content of the sample from FIG. 1;
  • FIG. 3 shows the intensity distribution of a sample with elemental carbon during the pre-radio phase
  • Figure 4 the iron signal of the sample of Figure 3;
  • FIG. 5 shows an intensity distribution of the signal according to FIG. 3 as a bar graph
  • FIG. 6 shows a flow chart for the various method steps the measuring method according to the invention.
  • FIG. 7 a microscopic representation of samples with globally precipitated elementary carbon.
  • FIG. 1 shows the intensity profile over time, which is measured in the pre-radio phase on the carbon line 148.176 nm.
  • the number of the measurement interval is specified on the X axis, beginning at 0.
  • Each measurement interval corresponds to approximately 0.025 sec.
  • the sampling frequency is corresponding to 40 Hz.
  • the diagram depicts a pre-radio phase of approximately 12 sec.
  • the intensity of the radiation is approximately proportional to the number of measured photons in arbitrary units.
  • the intensity varies from about 50,000 per measurement interval to about 200,000 per measurement interval.
  • the first measurement intervals deliver a signal of only about 50,000 units.
  • Einfunkphase the plasma is formed. Their length varies greatly and is e.g.
  • FIG. 1 relates only to the usual pre-radio phase, in which the sample is first homogenized in a spark spectrometer. This pre-radio phase is not evaluated in the known measuring methods.
  • the data of the pre-radio phase according to FIG. 1 are processed.
  • the signals lying below a threshold value 1 are discarded.
  • the mean value of intensity from point 2 is used to calculate the carbon content from the pre-radio phase.
  • FIG. 2 shows the corresponding iron signal at the line 149.653 nm. It can also be seen in FIG. 2 that in the first 60 measuring intervals the intensity is around 5,000 units per measuring interval. After that, the intensity increases very steeply and exceeds at one point 3 is a lower limit 4. From point 3, the average value of the pulses per measurement interval is about 75,000 units. Also for the iron signal, the plasma is unstable up to the point 3 of the pre-radio phase. These measurements are discarded. From point 3, the signal of the pre-spark phase is evaluated. Here, an upper limit value 5 is additionally defined, wherein in the evaluation individual measuring intervals are dropped, which fall below the lower limit value 4 or exceed the upper limit value 5. From the intensities between the limits, the signal for iron can be calculated.
  • FIGS. 1 and 2 represent only the preliminary radio phase which is also provided in conventional methods and which is intended to homogenize the sample. This phase is followed both in the prior art and in a preferred embodiment of the invention, the actual measurement phase. However, the signals shown in FIGS. 1 and 2 are already so stable from points 2 and 3 that the measurement range for the concentration calculation of the element carbon can be obtained therefrom.
  • the sample shown in FIGS. 1 and 2 is a sample without precipitated elemental carbon.
  • the readings are stable over time. It may be expected that in such an ideal sample the carbon signal will be measured correctly during the actual measurement phase.
  • FIGS. 3 and 4 A non-ideal sample with globally precipitated carbon has been measured in FIGS. 3 and 4.
  • Figure 3 again shows the time course of the intensity of the carbon line at 148.2 nm as in Figure 1.
  • the other measurement parameters are the same.
  • the length of the measuring range shown is also about 12 sec.
  • the intensities are initially about 50,000 units, then rise rapidly thereafter.
  • a lower limit of about 150,000 units is labeled 6.
  • the lower limit value 6 is exceeded at the measuring interval number 25 in point 7, for example.
  • the measuring points before the point 7 represent the unstable plasma Point 7, the measured values are evaluated.
  • the intensities initially rise to about 300,000 units per measuring interval and then drop approximately exponentially to a nearly constant intensity of 200,000 units per measuring interval. Approximately up to the measuring interval 200, which is denoted by 8, takes place over the later continuous signal, an increase in the intensities.
  • This elevation is attributed to the subliming carbon that exits the sample and is first measured in the sublimation phase, but then lost to the measurement.
  • the elevation between points 7 and 8 in FIG. 3 thus represents the lost carbon content due to the homogeneity of the sample.
  • FIG. 4 shows the iron signal at the line 149.7 nm recorded on the sample of FIG.
  • the iron signal is stable from about point 9. Before the point 9 is here the Einfunkphase. From the point 9, that is approximately from the measuring interval 45, the signal can be recorded and evaluated.
  • FIG. 5 schematically shows the frequency distribution of the individual intensities as a bar chart.
  • the intensities are shown, which have been recorded in Figure 3 for each individual measuring point.
  • the Y-axis shows the number of measurement intervals in which the corresponding intensity was measured.
  • the shape of this representation corresponds approximately to a Gaussian function with the maximum at 200,000 units per measurement interval, as is expected from FIG. However, from an intensity of about 230,000, which is designated by the point 10, a tail is observed towards higher intensities. This spur extends from about 240,000 to over 300,000 units per measurement interval.
  • the upper limit is marked with the number 11.
  • the high intensity values between the points 10 and 11 correspond to the elevation of the measured values from FIG. 3 between the points 7 and 8. These measurements should be used to determine the elemental carbon.
  • the measuring method itself is described in a preferred embodiment in FIG.
  • the flowchart of FIG. 6 initially foresees the start of the measurement at 12.
  • carbon is measured at 148.2 nm and iron at 149.7 nm in the first measurement phase. In total, about 500 measurement intervals are recorded.
  • method step 14 the unstable plasma phase for carbon and iron is calculated, which lies in front of the point 2 in Figure 1, in Figure 2 before the point 3, in Figure 3 before the point 7 and in Figure 4 before the point 9. Die previous measured values are discarded.
  • parameters of the overshoot of the carbon signal are determined, ie in FIGS. 3 the period between points 7 and 8 is evaluated or in FIG. 5 the intensity distribution between points 10 and 11.
  • a method step 17 it is determined which measurement intervals are used for obtaining a carbon and an iron sum intensity.
  • the carbon concentration of the sample is then calculated from the sum intensities, including the undissolved graphitic fraction, which is determined on the basis of FIG.
  • Measured value overshoot can be calculated.
  • the pre-radio phase of the measurement is completed. This is followed by the actual measurement, which is carried out as in the prior art.
  • the further elements are measured, for example silicon, chromium, nickel, magnesium and also carbon.
  • the concentration in the sample is calculated.
  • the carbon concentration is then calculated in a conventional manner from the stable signal of the measurement, wherein the undissolved graphitic carbon content is not included in the calculation. in the
  • Step 22 calculates the undissolved graphitic carbon fraction by calculating the difference between the total carbon content present after step 18 and the dissolved carbon fraction determined after step 21. substance content is formed.
  • the measurement result is output. In the output both the total carbon content can be specified as well as a separate measured value for the dissolved and the undissolved carbon content are output. The evaluation of the elevation of the carbon signal in the pre-radio phase between points 7 and 8 or 10 and 11 thus makes it possible to take account of the undissolved carbon in the measurement.
  • FIG. 7 shows micrographs at 100 ⁇ magnification, which show the spherical graphite part in nodular cast iron. This spherical graphite part can be detected by the method according to the invention.
  • Table 1 compares the result of a sample as shown in FIG. 7 with conventional spark spectrometry, the new method and the combustion analysis with CO 2 determination. The percentages are by weight carbon. It can be seen that at carbon contents of about 3.6% to 3.7%, depending on the nature of the sample, the deviation from the conventional spark spectrometry method to the combustion analysis is between 0.08% and 0.50% absolute, whereas for the same samples with the new ones Method a deviation between 0.004% and 0.14% is achieved absolutely. The deviation of the conventional method from the combustion analysis systematically leads to lower carbon contents, whereas the deviations of the new method compared to the combustion analysis statistically result in partly higher and partly lower measured values. A systematic deviation is not recognizable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung des Kohlenstoffgehaltes einer Eisenlegierung mit folgenden Schritten : a) Start der Messung (13) einer Probe der Eisenlegierung in einem Funkenspektrometer, b) Ausbildung eines Plasmas in einer Vorfunkphase, c) Erfassen (13) und Aufzeichnen (14) eines Intensitätssignal des Kohlenstoffs bereits während der Vorfunkphase, d) Berechnen und Ausblenden (15) einer instabilen Plasmaphase zu Beginn der Vorfunkphase, e) Berechnen einer Überhöhung des Kohlenstoffsignals (16, 17) und Berechnen des Gehaltes an gelöstem und ungelöstem Kohlenstoff (18).

Description

Verfahren zur Bestimmung von Kohlenstoff in Gusseisen
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von Kohlenstoff in Gusseisen, insbesondere in Sphäroguss mit Hilfe der Fun- kenspektrometrie an einer festen Probe.
Die Funkenspektrometrie ist ein Verfahren zur chemischen Analyse von Metallen. Es wird eine elektrische Entladung erzeugt, die einen Teil der Probe verdampft und ein Plasma erzeugt. In diesem Plasma sind die Probenatome angeregt und produzieren Emissionslinien, die für die in der Probe enthaltenen Elemente charakteristisch sind. Routinemäßig werden solche Analysen in der Stahlindustrie zur Kontrolle von Legierungen eingesetzt. Dieses Messverfahren erreicht eine sehr hohe Messgenauigkeit. Es ist allerdings seit langem bekannt, dass die Funkenspektrometrie bei Legierungen den Kohlenstoffanteil nur dann präzise messen kann, wenn Kohlenstoff in vollständig gelöster Form in der Legierung vorliegt. Elementar ausgeschiedener Kohlenstoff, wie er beispielsweise beim Sphäroguss (GGG) vorliegt, führt regelmäßig zu einer Verfälschung der Messung. Der Kohlenstoffanteil solcher Legierungen wird zu niedrig gemessen.
Bei der Funkenspektrometrie wird eine metallische Probe unter einer Schutzatmosphäre zunächst mit Funken beaufschlagt. In dieser soge-
BESTÄTIGUNGSKOPIE nannten Vorfunkphase wird die Probenoberfläche mit Funken hoher Energie bei einer Frequenz von 200 bis 800 Hz homogenisiert. Dabei schmilzt jeder Funke den Bereich der Probenoberfläche um seinen Auftreffpunkt im Radius einiger 10 Mikrometer um. Nach der Vorfunkphase wird dann diese homogenisierte Probenoberfläche den eigentlichen Messfunken ausgesetzt, die das zu analysierende Signal erzeugen. Wenn ausgeschiedener, elementarer Kohlenstoff oder andere ausgeschiedene Elemente oder Verbindungen wie Al203 vorliegen, greifen die Vorfunken bevorzugt an den Korngrenzen dieser Ausscheidungen an. Im Falle des Kohlenstoffs führt dies dazu, dass der elementare Kohlenstoff sublimiert und aus der Probe entfernt wird. Die durch Vorfunken homogenisierten Teile der Probenoberfläche enthalten also weniger Kohlenstoff als die ursprüngliche Legierung.
Dieses Problem wird in der Praxis dadurch vermieden, dass die entnom- mene flüssige Probe möglichst schnell abgekühlt wird. So wird der vorhandene Kohlenstoff nicht elementar ausgeschieden. Dieses Verfahren ist in der Praxis nicht gut reproduzierbar. Es führt dazu, dass Proben mit unterschiedlicher Abkühlrate und damit einem unterschiedlichen Gehalt an elementarem Kohlenstoff vorliegen. Deshalb lässt es sich bei höheren Anforderungen an die Analysenrichtigkeit nicht vermeiden, andere Analysenverfahren zur Kohlenstoffbestimmung zu verwenden. Eine gebräuchliche alternative Analysenmethode besteht darin, eine Probe zu zerspanen und kontrolliert zu verbrennen. Das dabei entstehende Kohlendioxid wird gemessen und daraus der Gesamtkohlenstoffgehalt der Probe bestimmt. Dieses Verfahren ist sehr aufwändig, denn es erfordert Zeit und zusätzlichen apparativen Aufwand.
Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben, mit dem der Kohlenstoffgehalt von Legierungen mittels Fun- kenspektrometrie auch dann präzise gemessen werden kann, wenn Koh- lenstoff in elementarer Form vorliegt.
Diese Aufgabe wird von einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Weil bereits in der Vorfunkphase das Intensitätssignal des Kohlenstoffs aufgezeichnet wird, kann der durch Sublimation auf der Legierung entfernte Kohlenstoffanteil berücksichtigt werden. Wenn nach der Vorfunkphase die Konzentration des Kohlenstoffs in konventioneller Weise ge- messen wird und die zuvor bestimmte Menge an sublimiertem Kohlenstoff berücksichtigt wird, wird der Messwert auf diese Weise um den sub- limierten Kohlenstoffanteil korrigiert und es wird das richtige Ergebnis für den Kohlenstoffanteil der Probe ermittelt.
Dabei ist vorteilhaft, wenn in der ersten Messphase das Kohlenstoffsignal bei einer Wellenlänge von 148,176 nm gemessen wird. Die Vorfunkphase wird vorzugsweise über eine Zeitdauer von 8 bis 15 sec. und insbesondere von 12 sec. durchgeführt. Eine besonders gute Kontrolle dieses Verfahrens wird möglich, wenn während der Vorfunkphase auch das Eisensignal erfasst wird. Anhand des Eisensignals kann ermittelt werden, ab wann ein stabiles, auch für den sublimierenden Kohlenstoff aussagekräftiges Signal in der Vorfunkphase vorliegt. Dabei wird vorzugsweise die Eisenlinie bei 149 nm gemessen.
Nachfolgend wird die vorliegende Erfindung anhand der Zeichnungen näher beschrieben. Es zeigen : Figur 1 : die Intensitätsverteilung in der Vorfunkphase für Proben mit vollständig gelöstem Kohlenstoffanteil;
Figur 2: die Intensitätsverteilung der Vorfunkphase für den Eisenanteil der Probe aus Figur 1;
Figur 3: die Intensitätsverteilung einer Probe mit elementarem Kohlenstoff während der Vorfunkphase;
Figur 4: das Eisensignal der Probe aus Figur 3;
Figur 5: eine Intensitätsverteilung des Signals nach Figur 3 als Balkendiagramm;
Figur 6: einen Ablaufplan für die verschiedenen Verfahrensschritte des erfindungsgemäßen Messverfahrens; sowie
Figur 7: eine mikroskopische Darstellung von Proben mit kugelförmig ausgeschiedenem elementarem Kohlenstoff.
In der Figur 1 ist der Intensitätsverlauf über die Zeit dargestellt, der in der Vorfunkphase auf der Kohlenstofflinie 148,176 nm gemessen wird. Im Einzelnen ist auf der X-Achse die Nummer des Messintervalls angegeben, beginnend bei 0. Jedes Messintervall entspricht etwa 0,025 sec. Die Abtastfrequenz beträgt entsprechend 40 Hz. Das Diagramm bildet eine Vorfunkphase von etwa 12 sec. ab. In der Y-Achse ist die Intensität der Strahlung annähernd proportional zur Anzahl von gemessenen Photonen in beliebigen Einheiten wiedergegeben. Im Beispiel Fig. 1 variiert die Intensität von etwa 50.000 pro Messintervall zu rund 200.000 pro Messintervall. Die ersten Messintervalle liefern ein Signal von nur circa 50.000 Einheiten. Während dieser so genannten Einfunkphase bildet sich das Plasma aus. Ihre Länge variiert stark und ist z.B. von Verunreinigungen der Probenoberfläche abhängig. Danach steigt das Signal auf etwa 200.000 Einheiten an. Die gesamte Darstellung der Figur 1 betriff nur die übliche Vorfunkphase, in der in einem Funkenspektrometer die Probe zunächst homogenisiert wird. Diese Vorfunkphase wird bei den bekannten Messverfahren nicht ausgewertet.
Im vorliegenden Verfahren werden die Daten der Vorfunkphase gemäß Figur 1 verarbeitet. Dazu werden die unterhalb eines Schwellwerts 1 liegenden Signale verworfen. Konkret bedeutet dies für die Figur 1, dass die ersten etwa 60 Messintervalle verworfen werden, bis in einem Anstieg etwa bei dem Punkt 2 der Grenzwert 1 überschritten wird. Der Mittelwert der Intensität ab dem Punkt 2 wird zur Berechnung des Kohlenstoffgehalts aus der Vorfunkphase herangezogen.
Die Figur 2 zeigt das korrespondierende Eisensignal bei der Linie 149,653 nm. Auch in der Figur 2 ist erkennbar, dass in den ersten 60 Messinter- vallen die Intensität bei rund 5.000 Einheiten pro Messintervall liegt. Danach steigt die Intensität sehr steil an und überschreitet bei einem Punkt 3 einen unteren Grenzwert 4. Ab dem Punkt 3 liegt der Mittelwert der Impulse pro Messintervall bei etwa 75.000 Einheiten. Auch für das Eisensignal ist bis zu dem Punkt 3 der Vorfunkphase das Plasma instabil. Diese Messwerte werden verworfen. Ab dem Punkt 3 wird das Signal der Vor- funkphase ausgewertet. Hier ist zusätzlich ein oberer Grenzwert 5 definiert, wobei in der Auswertung einzelne Messintervalle verworfen werden, die den unteren Grenzwert 4 unterschreiten oder den oberen Grenzwert 5 überschreiten. Aus den Intensitäten zwischen den Grenzwerten kann das Signal für Eisen berechnet werden. Es ist zu erwähnen, dass die Figuren 1 und 2 nur die auch bei herkömmlichen Verfahren vorgesehene Vorfunkphase darstellen, die zur Homogenisierung der Probe dienen soll. An diese Phase schließt sich sowohl im Stand der Technik als auch bei einer bevorzugten Ausführungsform der Erfindung die eigentliche Messphase an. Die in den Figuren 1 und 2 dar- gestellten Signale sind jedoch ab den Punkten 2 und 3 bereits so stabil, dass daraus Messweite für die Konzentrationsberechnung des Elementes Kohlenstoff gewonnen werden werden können.
Die in den Figuren 1 und 2 dargestellte Probe ist eine Probe ohne ausgeschiedenen elementaren Kohlenstoff. Hier sind die Messwerte über die Zeit stabil. Es darf erwartet werden, dass bei einer solchen idealen Probe das Kohlenstoffsignal während der eigentlichen Messphase richtig gemessen wird.
Eine nicht ideale Probe mit kugelförmig ausgeschiedenem Kohlenstoff ist in den Figuren 3 und 4 gemessen worden. Im Einzelnen zeigt die Figur 3 wiederum den zeitlichen Verlauf der Intensität der Kohlenstofflinie bei 148,2 nm wie in der Figur 1. Die sonstigen Messparameter sind gleich. Die Länge des dargestellten Messbereichs beträgt ebenfalls rund 12 sec. Die Intensitäten betragen zunächst circa 50.000 Einheiten, um danach rapide anzusteigen. Ein unterer Grenzwert von etwa 150.000 Einheiten ist mit 6 gekennzeichnet. Der untere Grenzwert 6 wird etwa bei der Messintervallnummer 25 in Punkt 7 überschritten. Die zeitlich vor dem Punkt 7 liegende Messpunkte stellen das instabile Plasma dar. Ab dem Punkt 7 werden die Messwerte ausgewertet.
In der Figur 3 ist ersichtlich, dass die Intensitäten zunächst bis auf etwa 300.000 Einheiten pro Messintervall ansteigen und dann etwa exponen- tiell bis zu einer nahezu konstanten Intensität von 200.000 Einheiten pro Messintervall abfallen. Etwa bis zu dem Messintervall 200, das mit 8 bezeichnet ist, erfolgt gegenüber dem späteren kontinuierlichen Signal eine Überhöhung der Intensitäten. Diese Überhöhung wird zurückgeführt auf den sublimierenden Kohlenstoff, der aus der Probe austritt und zunächst in der Sublimationsphase gemessen wird, danach aber für die Messung verloren ist. Die Überhöhung zwischen den Punkten 7 und 8 in der Figur 3 repräsentiert also den verlorenen Kohlenstoffanteil aufgrund der Homogenität der Probe.
Die Figur 4 zeigt schließlich das Eisensignal bei der Linie 149,7 nm, das zu der Probe aus Figur 3 aufgezeichnet wird. Das Eisensignal ist etwa ab dem Punkt 9 stabil. Vor dem Punkt 9 liegt auch hier die Einfunkphase. Ab dem Punkt 9, also etwa ab dem Messintervall 45, kann das Signal aufgezeichnet und ausgewertet werden.
Die Figur 5 zeigt schematisch die Häufigkeitsverteilung der einzelnen Intensitäten als Balkendiagramm. In der X-Achse sind die Intensitäten dargestellt, die in der Figur 3 zu jedem einzelnen Messpunkt erfasst worden sind. In der Y-Achse ist die Anzahl der Messintervalle aufgeführt, in denen die entsprechende Intensität gemessen wurde. Die Form dieser Darstellung entspricht etwa einer Gaussfunktion mit dem Maximum bei 200.000 Einheiten pro Messintervall, wie dies aus der Figur 3 erwartet wird. Ab einer Intensität von etwa 230.000, die mit dem Punkt 10 bezeichnet wird, ist jedoch ein Ausläufer zu höheren Intensitäten hin zu beobachten. Dieser Ausläufer erstreckt sich von etwa 240.000 bis über 300.000 Einheiten pro Messintervall. Die Obergrenze ist mit der Ziffer 11 gekennzeichnet. Die hohen Intensitätswerte zwischen den Punkten 10 und 11 entsprechen der Überhöhung der Messwerte aus Figur 3 zwischen den Punkten 7 und 8. Diese Messwerte sollen zur Bestimmung des elementaren Kohlenstoffs herangezogen werden.
Das Messverfahren selbst wird in einer bevorzugten Ausführungsform in der Figur 6 beschrieben. Der Ablaufplan nach Figur 6 sieht bei 12 zu- nächst den Start der Messung vor. Bei 13 wird in der ersten Messphase Kohlenstoff bei 148,2 nm und Eisen bei 149,7 nm gemessen. Insgesamt werden ca. 500 Messintervalle aufgezeichnet. Dies ist mit dem Verfahrensschritt 14 dargestellt. In dem Verfahrensschritt 15 wird die instabile Plasmaphase für Kohlenstoff und Eisen berechnet, die in Figur 1 vor dem Punkt 2 liegt, in der Figur 2 vor dem Punkt 3, in Figur 3 vor dem Punkt 7 und in Figur 4 vor dem Punkt 9. Die davor liegenden Messwerte werden verworfen. Im Verfahrensschritt 16 werden Kenngrößen der Überhöhung des Kohlenstoffsignals ermittelt, also in den Figuren 3 der Zeitraum zwischen den Punkten 7 und 8 ausgewertet oder in der Figur 5 die Intensi- tätsverteilung zwischen den Punkten 10 und 11.
In einem Verfahrensschritt 17 wird festgelegt, welche Messintervalle für die Gewinnung einer Kohlenstoff und einer Eisen Summenintensität herangezogen werden. Im Verfahrensschritt 18 wird dann aus der Summenintensitäten die Kohlenstoffkonzentration der Probe berechnet und zwar einschließlich des ungelösten graphitischen Anteils, der aufgrund der
Messwertüberhöhung berechnet werden kann. Mit dem Verfahrensschritt 18 ist die Vorfunkphase der Messung abgeschlossen. Daran schließt die eigentliche Messung an, die wie im Stand der Technik durchgeführt wird. In einem summarisch mit 19 bezeichneten Verfahrensschritt werden die weiteren Elemente gemessen, beispielsweise Silizium, Chrom, Nickel, Magnesium und auch Kohlenstoff. Im Schritt 20 wird für die Elemente außer für Kohlenstoff die Konzentration in der Probe berechnet. In einem Verfahrensschritt 21 wird dann die Kohlenstoffkonzentration in herkömmlicher Weise aus dem stabilen Signal der Messung berechnet, wobei der ungelöste graphitische Kohlenstoffanteil nicht mitberechnet wird. Im
Schritt 22 wird dann der ungelöste graphitische Kohlenstoffanteil berechnet, indem die Differenz aus dem nach Schritt 18 vorliegendem Gesamt- kohlenstoffgehalt und dem nach Schritt 21 ermittelten gelösten Kohlen- stoffgehalt gebildet wird. Im Schritt 23 wird schließlich das Messergebnis ausgegeben. Bei der Ausgabe kann sowohl der Gesamtkohlenstoffgehalt angegeben werden wie auch je ein separater Messwert für den gelösten und den ungelösten Kohlenstoffanteil ausgegeben werden. Die Auswertung der Überhöhung des Kohlenstoffsignals in der Vorfunk- phase zwischen den Punkten 7 und 8 bzw. 10 und 11 ermöglicht also die Berücksichtigung des nichtgelösten Kohlenstoffs bei der Messung.
Zur Veranschaulichung der Struktur der in den Figuren 3 und 4 verwendeten Probe ist als Beispiel die Figur 7 beigefügt. In der Figur 7 sind mik- roskopische Aufnahmen mit 100-facher Vergrößerung abgebildet, die den kugelförmigen Graphitanteil bei Sphäroguss zeigen. Dieser kugelförmige Graphitanteil kann mit dem erfindungsgemäßen Verfahren erfasst werden.
In der Tabelle 1 wird nachfolgend noch das Ergebnis bei einer Probe, wie sie in der Figur 7 dargestellt wird, mit herkömmlicher Funkenspektro- metrie, dem neuen Verfahren und der Verbrennungsanalyse mit C02 Bestimmung verglichen. Die Prozentangaben sind Gewichtsprozente Kohlenstoff. Es zeigt sich, dass bei Kohlenstoffgehalten von etwa 3,6 % bis 3,7 % je nach Probenbeschaffenheit die Abweichung des herkömmlichen Funkenspektrometrieverfahrens zu der Verbrennungsanalyse zwischen 0,08 % und 0,50 % absolut liegt, während für die gleichen Proben mit den neuen Verfahren eine Abweichung zwischen 0,004 % und 0,14 % absolut erzielt wird. Die Abweichung des herkömmlichen Verfahrens gegenüber der Verbrennungsanalyse ist systematisch zu niedrigeren Koh- lenstoffgehalten hin, während die Abweichungen des neuen Verfahrens gegenüber der Verbrennungsanalyse statistisch teilweise höhere und teilweise niedrigere Messwerte ergeben. Eine systematische Abweichung ist nicht erkennbar.
Dies zeigt, dass nach dem herkömmlichen Verfahren der elementare oder ungelöste Kohlenstoff systematisch nicht erfasst werden konnte, während das neue Verfahren auch diesen Kohlenstoffanteil berücksichtig. Bezugszeichenliste
1. Schwellwert
2. Punkt
3. Punkt
4. unterer Grenzwert
5. oberer Grenzwert
6. unterer Grenzwert
7. Punkt
8. Messintervall
9. Punkt
10. Punkt
11. Obergrenze
12. Start
13. erste Messphase
14. Verfahrensschritt
15. Verfahrensschritt
16. Verfahrensschritt
17. Verfahrensschritt
18. Verfahrensschritt
19. Verfahrensschritt
20. Verfahrensschritt
21. Verfahrensschritt
22. Verfahrensschritt
23. Verfahrensschritt

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Bestimmung des Kohlenstoffgehaltes einer Eisenlegierung mit folgenden Schritten:
a) Start der Messung (13) einer Probe in einem Funkenspektrome- ter,
b) Ausbildung eines Plasmas in einer Vorfunkphase,
c) Erfassen (13) und Aufzeichnen (14) eines Intensitätssignals des Kohlenstoffs,
d) Berechnen und Ausblenden (15) einer instabilen Plasmaphase, e) Berechnen einer Überhöhung des Kohlenstoffsignals (16, 17) und Berechnen des Gehaltes an gelöstem und ungelöstem Kohlenstoff (18).
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass nach einem der Schritte c), d) oder e) die Konzentration des Kohlenstoffs in einem Schritt f) in konventioneller Weise (19) gemessen wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass nach einem der Schritte c), d) oder e) weitere Elemente in konventioneller Weise gemessen werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Ergebnis des Schritts f) als die Konzentration des gelösten Kohlenstoffanteils ausgegeben wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass in der ersten Messphase (13) das Kohlenstoffsignal bei einer Wellenlänge von 148,176 nm gemessen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Vorfunk- phase über eine Zeitdauer von 8 sec. bis 15 sec. durchgeführt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass während der Vorfunkphase auch das Eisensignal erfasst und aufgezeichnet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass eine Eisen- Emissionslinie bei 149,653 nm gemessen wird.
EP11708185A 2010-02-22 2011-02-17 Verfahren zur bestimmung von kohlenstoff in gusseisen Withdrawn EP2539693A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010008839.0A DE102010008839B4 (de) 2010-02-22 2010-02-22 Verfahren zur Bestimmung von Kohlenstoff in Gusseisen
PCT/EP2011/000768 WO2011101143A1 (de) 2010-02-22 2011-02-17 Verfahren zur bestimmung von kohlenstoff in gusseisen

Publications (1)

Publication Number Publication Date
EP2539693A1 true EP2539693A1 (de) 2013-01-02

Family

ID=44070665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11708185A Withdrawn EP2539693A1 (de) 2010-02-22 2011-02-17 Verfahren zur bestimmung von kohlenstoff in gusseisen

Country Status (4)

Country Link
US (1) US8976350B2 (de)
EP (1) EP2539693A1 (de)
DE (1) DE102010008839B4 (de)
WO (1) WO2011101143A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063653A (zh) * 2012-12-29 2013-04-24 大冶特殊钢股份有限公司 灰口铸铁中元素含量的检测方法
DE102014112723A1 (de) * 2014-09-04 2016-03-10 Eaton Industries Austria Gmbh Verfahren zur Unterscheidung eines Lichtbogens von einem leuchtenden Gas enthaltend zumindest Metalldampf

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE423436C (de) * 1924-06-27 1925-12-30 Felten & Guilleaume Carlswerk Verfahren zur spektroskopischen Pruefung des Metallbades in Schmelz- und Frisch-, vorzugsweise Elektrooefen
FR1332618A (fr) * 1962-06-04 1963-07-19 Siderurgie Fse Inst Rech Perfectionnements à l'analyse spectrale des échantillons métalliques à l'air libre
HU165570B (de) * 1972-03-25 1974-09-28
JPS57141540A (en) 1981-02-25 1982-09-01 Kawasaki Steel Corp Method for emission spectrochemical analysis of iron material
DE8210473U1 (de) * 1982-04-14 1982-09-23 Klöckner-Werke AG, 4100 Duisburg Pruefkopf fuer ein spektrometer zur spektralanalytischen untersuchung von werkstuecken aus eisen- und stahllegierungen
US4641968A (en) 1984-12-17 1987-02-10 Baird Corporation Mobile spectrometric apparatus
US4666516A (en) * 1986-01-21 1987-05-19 Elkem Metals Company Gray cast iron inoculant
DD265507A1 (de) * 1987-10-05 1989-03-01 Karl Marx Stadt Tech Hochschul Verfahren und vorrichtung zur vakuumbogengestuetzten verdampfung elektrisch leitender materialien
FI79560B (fi) * 1988-02-22 1989-09-29 Outokumpu Oy Smaeltugn och foerfarande foer chargering av det material, som behandlas, in i den.
DE3916833A1 (de) * 1989-05-19 1990-11-22 Oblf Ges Fuer Elektronik Und F Verfahren und vorrichtung fuer die optische funkenemissionsspektrometrie
US5141314A (en) 1991-03-01 1992-08-25 Thermo Jarrell Ash Corporation Spectroanalytical system
DE4113404A1 (de) * 1991-04-22 1992-10-29 Lucht Hartmut Dr Funkenemissionsspektrometer fuer loesungen
US6149709A (en) * 1997-09-01 2000-11-21 Kabushiki Kaisha Kobe Seiko Sho Method of making iron and steel
DE10320036B4 (de) * 2003-05-06 2011-06-22 Ab Skf Verfahren zur Bestimmung des Diffusionskoeffizienten von Kohlenstoff in Stählen
DE102004037623A1 (de) * 2004-08-02 2006-03-16 Spectro Analytical Instruments Gmbh & Co. Kg Vorrichtung und Verfahren zur spektroskopischen Bestimmung von Kohlenstoff
EP1985683B1 (de) * 2006-02-02 2013-08-28 Mitsubishi Chemical Corporation Komplexer oxynitrid-leuchtstoff, davon gebrauch machende lichtemittierende vorrichtung, bilddisplayvorrichtung, beleuchtungsvorrichtung, leuchtstoffhaltige zusammensetzung und komplexes oxynitrid
US7430273B2 (en) * 2007-02-23 2008-09-30 Thermo Fisher Scientific Inc. Instrument having X-ray fluorescence and spark emission spectroscopy analysis capabilities
DE102008027167A1 (de) * 2008-06-06 2009-12-10 Daimler Ag Schweißnaht zur Verbindung von Eisenwerkstoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011101143A1 *

Also Published As

Publication number Publication date
WO2011101143A1 (de) 2011-08-25
US8976350B2 (en) 2015-03-10
DE102010008839A1 (de) 2011-08-25
US20120300204A1 (en) 2012-11-29
DE102010008839B4 (de) 2016-04-21

Similar Documents

Publication Publication Date Title
EP2661613B1 (de) Messgerät zur messung von partikelkonzentrationen mittels streulicht und verfahren zur überwachung des messgerätes
EP2095868A2 (de) Vorrichtung für die Zufuhr von Gasen zu einer Analyseeinrichtung
WO1995030140A1 (de) Verfahren und vorrichtung zur bestimmung von elementzusammensetzungen und -konzentrationen
DE3218102A1 (de) Optisches geraet zur strahlungs-absorptionsmessung
DE4344196C2 (de) Verfahren zur Bestimmung von Kenngrößen einer elektrochemisch umsetzbaren Substanz in einer Gasprobe
DE102010008839B4 (de) Verfahren zur Bestimmung von Kohlenstoff in Gusseisen
DE2201507C2 (de) Vorrichtung zur Bestimmung der Größe der dispersen Elemente eines fluiden, nicht mischbaren Zweistoffsystems
DE10207733A1 (de) Spektroskopieverfahren
DE2839315A1 (de) Verfahren zur steuerung der stahlherstellung
EP0708976B1 (de) Verfahren zum betreiben eines flugzeit-sekundärionen-massenspektrometers
DE102012217676B4 (de) Verfahren zur Identifikation der Zusammensetzung einer Probe
DE69835857T2 (de) Verfahren zur analytischen Feststellung von Sauerstoff für jede Oxidform
DE1296418C2 (de) Vorrichtung zur Gewinnung einer elektrischen Spannung als Mass fuer das Verhaeltnis Masse zu Ladung von Ionen
EP0563447A1 (de) Verfahren zur Bestimmung der Konzentration eines Gases in einer Metallschmelze
AT503539A1 (de) Tauchsonde für lips-vorrichtungen
EP2759831A1 (de) Verfahren zur Durchführung einer Differenz-Thermo-Analyse
DE102022101886A1 (de) Verfahren sowie Vorrichtung zum Kalibrieren einer Gasdetektionsvorrichtung
EP4127655A1 (de) Verfahren und aerosol-messgerät zum bestimmen der partikelgeschwindigkeit eines aerosols
DE2127041A1 (de) Verfahren und Vorrichtung zur Be Stimmung von Spurenelementen in festen Proben mittels optischer Emissions Spek trometne
DE1936744C3 (de) 20.07.68 Japan 51273-68 Verfahren zum Bestimmen des Umgriffe in einem Ellektrophoresebeschichtungsbad und Vorrichtung zu dessen Durchführung
DE102005002292A1 (de) Verfahren zum Betrieb eines optischen Emissionsspektrometers
DE19523599A1 (de) Verfahren und Vorrichtung zum Erfassen des Massenstromverlaufs mindestens einer Emissionskomponente eines Verbrennungsabgases
DE102007033980B3 (de) Verfahren zur Erfassung einer Werkstoffschädigung
DE3442826A1 (de) Verfahren und vorrichtung zur spektroskopischen analyse
DE102014218440A1 (de) Verfahren zur Reduzierung der Bildung von Fluorcarbonen bei einer Schmelzflusselektrolyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170901