EP2527480B1 - Liant NiFe ayant une application universelle - Google Patents

Liant NiFe ayant une application universelle Download PDF

Info

Publication number
EP2527480B1
EP2527480B1 EP11167901.5A EP11167901A EP2527480B1 EP 2527480 B1 EP2527480 B1 EP 2527480B1 EP 11167901 A EP11167901 A EP 11167901A EP 2527480 B1 EP2527480 B1 EP 2527480B1
Authority
EP
European Patent Office
Prior art keywords
weight
binder alloy
alloy
hardness
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11167901.5A
Other languages
German (de)
English (en)
Other versions
EP2527480A1 (fr
Inventor
Dr. Benno Gries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas Germany GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46168477&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2527480(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Priority to ES11167901.5T priority Critical patent/ES2628422T3/es
Priority to EP11167901.5A priority patent/EP2527480B1/fr
Priority to PL11167901T priority patent/PL2527480T3/pl
Priority to RU2013158048A priority patent/RU2623545C2/ru
Priority to PCT/EP2012/059748 priority patent/WO2012163804A1/fr
Priority to US14/122,246 priority patent/US9821372B2/en
Priority to CN201280025581.3A priority patent/CN103562422B/zh
Priority to KR1020137032074A priority patent/KR102079325B1/ko
Priority to JP2014513132A priority patent/JP6124877B2/ja
Publication of EP2527480A1 publication Critical patent/EP2527480A1/fr
Priority to IL229654A priority patent/IL229654B/en
Publication of EP2527480B1 publication Critical patent/EP2527480B1/fr
Application granted granted Critical
Priority to US15/730,747 priority patent/US11207730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Definitions

  • the invention relates to a process for producing a composite material obtainable by sintering a composition containing a hard carrier and a FeCoNi or FeNi based base binder alloy. Moreover, the invention relates to a sintered composite material, which is obtainable according to the method and its use for tools or components, in particular forming or comminution tools.
  • Cemented carbide is a sintered composite of hardeners, such as carbides and a binder alloy.
  • Carbides are used in many different ways and are used, for example, for processing practically all known materials. Carbides may also be used, for example, as a structural component, as a forming or comminution tool or for a variety of other purposes, where it depends particularly on wear resistance, mechanical strength or high temperature resistance.
  • a common field of application is the cutting of metallic materials. Due to machining, forming and friction processes locally limited temperatures up to 800 ° C. In other cases, forming operations of metallic workpieces are performed at high temperatures, such as forging, wire drawing or rolling. The tool is under mechanical stress, which can lead to deformation of the carbide tool.
  • high-temperature creep resistance in practice, the hot hardness is usually determined as a substitute
  • the fracture toughness K 1 C
  • the wear resistance, the hot hardness, the fracture toughness and the related strength can be adjusted by the size of the carbide phase and its proportion of the hard metal composition.
  • the present invention relates to novel hard metals having a FeNi or FeCoNibas striving binder alloy, which in hardness (Vickers hardness according to ISO 3878), fracture toughness (K 1 C, calculated according to the formal of Shetty from the crack lengths and the size of the Vickershärteeindrucks) and hot hardness the properties of those hitherto conventional hard metals correspond to a Co-based binder alloy.
  • base alloy instead of cobalt as the base alloy, other base alloys are used in special hard metals.
  • base binder alloying is meant also pure metals with inevitable impurities, e.g. available as commercially available nickel and cobalt metal powders.
  • Ni metal powders are used as a base alloy for the production of corrosion-resistant, oxidation-resistant or non-magnetisable hard metals.
  • the sintering in the liquid phase leads to the formation of a binding alloy based on Ni.
  • This binder alloy contains elements such as W, Co, Cr, Mo, or others added to the hard metal batch as a metal powder or carbide, for example, and their contents in the pure Ni by alloying in the liquid phase sintering to the resulting Ni-base alloy. These elements lead to a better corrosion resistance compared to pure nickel.
  • Hard metals with Ni as a binder-based alloy are not universally used because of their low hardness values compared to those bound with Co-base alloys.
  • hard metals bonded with Ni-base alloys are characterized by comparatively low thermal hardness. Therefore, they are not used in the machining of metallic materials.
  • FeCoNi-based alloys are known as carbide binders.
  • their disadvantages are their low K 1 C values, which is proportional to the strength according to the Griffith equation up to binder contents of about 12% by weight.
  • the K 1 C values of a hard metal are based on tungsten carbide (average powder diameter: 0.6 ⁇ m) with 7.5% FeCoNi 40/20/40 at values between 8.2 and 9.5 MPa m 1/2 while a cemented carbide having the same volume fraction of cobalt (corresponding to 8 wt% due to the higher density of cobalt compared to FeCoNi 40/20/40) reaches a K 1 C of 9.5 MPa m 1/2 .
  • the hot curing of hard metals with FeCoNi base alloys as binders are usually lower at higher temperatures than those bound with cobalt base alloys.
  • FeNi-based alloys are also known as binders.
  • WO-A1-2002 / 0112896 describes FeNi alloys based on 35 to 65% Ni and 65 to 35% Fe.
  • the strength of the described base alloy FeNi 50/50 at room temperature, however, is comparatively low;
  • a carbide with 7.4% FeNi 50/50 volume fraction of the binder corresponding to 8 wt .-% cobalt due to the lower density of FeNi 50/50
  • hard metals are with a FeNi 50/50 base alloy having a tungsten solubility in the binder alloy of at most 19.4% equivalent to a cobalt base alloy (maximum 20% W in the binder alloy) in terms of the thermal hardness.
  • tungsten carbides with Ni-base alloys are inferior to both of the above with respect to the hot hardness, and therefore are not used for applications where it comes to high hot hardness such as in metal cutting.
  • EP-B1-1 488 020 FeCoNi base alloys with 10 to 75% _Co are known as fcc-structured carbide binders for special machining tasks designed to reduce the adhesive wear that occurs when machining special steels.
  • the hot curing of such hard metals with austenitic FeCoNi base alloys are clearly inferior to those with cobalt-based alloys. It is also believed that, in addition, the strength values of hard metals from these austenitic binder alloys will be lower compared to those hard metals bonded with a cobalt-based alloy.
  • WO-A2-2010 / 046224 describes the use of molybdenum-doped FeCoNi-, Co-, Ni- and Ni-based powdered metal powders alloyed with molybdenum.
  • the hot curing of a WC and 8% Co is not quite reached with 82% of the maximum magnetic saturation ( FIG. 2 of the WO-A2-2010 / 046224 ).
  • the K 1 C is very much dependent on the carbon content of the cemented carbide (Example 4 of the WO-A2-2010 / 046224 ), which tends to fluctuate in industrial sintering practice.
  • the safe achievement of the required properties hardness, K 1 C and hot hardness sensitive depends on the control of the carbon balance, which is not always ensured under industrial conditions.
  • cemented carbide lung In the current production of cemented carbide via powder metallurgical production processes, i. Pressing and sintering of powdered tungsten carbide formulations releases respirable dusts due to the process. If grinding is used in the sintered or pre-sintered state of the hard metal, very fine, breathable dusts (grinding dusts) are also produced.
  • an acute inhalation toxicity may additionally occur during the grinding of pre-sintered hard metals or also sintered hard metals.
  • An object of the present invention was therefore to improve the safety of work, hard metals, i. To provide sintered composites that have a reduced acute toxic effect.
  • base binder alloys comprising 66 to 90% by weight, preferably 70 to 90% by weight of nickel.
  • Base binder alloys having 10 to 34 wt% iron are preferred. Particularly preferred is an iron content in the base binder alloy of 10 to 30 wt .-%.
  • Essentially free in the sense of the present invention means that the element in an amount of less than 0.5 wt .-%, preferably less than 0.1 wt .-%, more preferably less than 0.08 wt .-% and in particular less than 0.02 wt .-% and in particular less than 0.001 wt .-%, for example less than 0.005 wt .-%, each based on the total weight of the base binder alloy, is present.
  • the base binder alloy contains less than 0.1% by weight, preferably less than 0.08% by weight, in particular less than 0.02% by weight, in particular less than 0.01 Wt .-% molybdenum.
  • the hardness carrier is selected from the group consisting of carbides, nitrides, borides and carbonitrides. These particularly preferably contain one or more elements of the 4th, 5th or 6th subgroup of the periodic table.
  • He comprises at least 50% by weight of the binary hardener tungsten carbide, based on the total weight of the hardness carriers, and may also contain further hardeners, such as ternary hardeners, such as tantalum-niobium mixed carbide, titanium carbonitride or tungsten-titanium carbide or even quaternary, such as tungsten-titanium-carbonitride or tungsten-titanium-niobium-tantalum carbide.
  • ternary hardeners such as tantalum-niobium mixed carbide, titanium carbonitride or tungsten-titanium carbide or even quaternary, such as tungsten-titanium-carbonitride or tungsten-titanium-niobium-tantalum carbide.
  • the hardness carriers are preferably in powder form.
  • the powders have an average particle diameter of 0.01 to 150, preferably 0.1 to 100 microns.
  • the average particle diameter is determined according to ASTM B330.
  • the hardness carriers preferably have a hardness above 800 kg / mm 2 , in particular above 1000 kg / mm 2 (measured in accordance with ISO 6507, Part 2).
  • compositions used in the process according to the invention may optionally also contain other components as additives, such as metals, for example selected from the group consisting of rhenium, molybdenum, chromium and aluminum.
  • additives such as metals, for example selected from the group consisting of rhenium, molybdenum, chromium and aluminum.
  • elemental tungsten or elemental carbon may be preferably used since it is suitable for correcting the carbon content of the composite after sintering.
  • intermetallic compounds such as Ni 3 Al or chromium nitride decomposing during sintering can also be added to the compositions to be sintered.
  • additives may constitute up to 20% by weight, preferably up to 10% by weight, the weight data being based on the total weight of the composition.
  • the composition contains 3 to 50 wt .-% of the base binder alloy, preferably 4 to 40 wt .-%, in particular 4 to 30 wt .-% of the base binder alloy, each based on the total weight of the composition.
  • the sintering is preferably carried out at temperatures above 1000 ° C, more preferably above 1100 ° C and in particular at temperatures between 1150 ° C and 1600 ° C.
  • the sintering is in the presence of liquid phase.
  • the base binder alloy is completely or partially present in liquid form during the sintering process.
  • step a) The provision of the dispersion described in step a) is carried out in a preferred embodiment by adding a solvent to a pulverulent composition containing a hardness carrier and base binder alloy powder.
  • Preferred solvents are those which have a boiling point of ⁇ 250 ° C at 1 bar.
  • alcohols in particular aliphatic alcohols, for example ethanol, and water or mixtures thereof, such as mixtures of water and organic Solvents, especially water and alcohols.
  • organic solvents in particular selected from the group consisting of ketones and hydrocarbons, for example acetone and aliphatic hydrocarbons, such as heptane and hexane.
  • the milling of the dispersion prepared in step a) can be carried out using milling tools familiar to the person skilled in the art.
  • the milling of the dispersion is carried out in a ball mill or an attritor, which are particularly preferably equipped with hard metal balls.
  • the dispersion may optionally additionally contain organic auxiliaries, such as waxes, dispersion aids, inhibitors, adhesives or emulsifiers, before the drying step.
  • organic auxiliaries such as waxes, dispersion aids, inhibitors, adhesives or emulsifiers
  • step b) is followed by preparing a powder by drying the dispersion.
  • the dispersion may, for example, be spray-dried or dried under reduced pressure.
  • the solvent low-boiling solvent which can be easily distilled off under reduced pressure.
  • the dried powder from step c) is used to produce compacts or extrudates.
  • the pressing of the dried powder is preferably carried out in suitable tools, or isostatically.
  • step e) the compact or the extrudate is sintered.
  • the sintering is carried out in the presence of a protective gas atmosphere or under reduced pressure.
  • the sintered composites are further densified at elevated pressure in a separate or integrated post-densification step.
  • the pressing and the sintering are carried out simultaneously and preferably by additional application of electric fields or currents. These can provide an elevated temperature during sintering and compression.
  • the composite materials obtained according to the method according to the invention are optionally subsequently ground to the required shape, with tools for metal cutting usually by means of chemical vapor deposition techniques (CVD) or physical vapor deposition (PVD) or combined methods can be further coated.
  • CVD chemical vapor deposition techniques
  • PVD physical vapor deposition
  • the composite materials according to the invention include as binder alloy one or more elements of the group Fe, Ni and optionally Co.
  • the base alloy may already contain such elements. However, the final composition of the binder alloy does not become established until sintering and subsequent cooling of the cemented carbide.
  • the binder alloy may also contain one or more elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, C.
  • These elements have limited solubility both in the FeNi base alloy as well as in other base alloys, and their contents are adjusted during sintering and cooling due to their temperature-dependent solubility in addition to the carbon content according to the principle of solubility of the carbides depending on their thermodynamic stability.
  • the sum of these elements in the binder alloy according to the invention is therefore generally less than 30 wt .-%, based on the total weight of the binder alloy of the sintered composite material.
  • the binder alloy of the sintered composite of the invention comprises up to 30% by weight of one or more elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru , Al, Mn, B, N and C.
  • the selection and contents of the above elements have an influence on the properties of the binder alloy.
  • W, Cr and Mo increase the hot hardness due to their solubilities on the order of not more than 5 to 25% by weight. Therefore, it is desirable in industrial practice to set the carbon of the cemented carbide so low that the contents of these elements in the binder alloy are as high as possible without causing harmful carbon deficiency phases (so-called eta phases).
  • the actual dissolved tungsten content in hard metals with Co base alloys is determined by the magnetic saturation. If the magnetic saturation of the Co content of pure WCCo hard metals is less than 70% that of pure cobalt, eta phases are formed. For industrial reasons, however, a safety margin is kept to this limit for reasons of process safety.
  • carbide parts may also be in a preferred manner but also carbide parts further and arbitrary geometry and application, such as forging tools, forming tools, countersinks, components, knives, peeling plates, rollers, stamping tools, pentagonal drill bits for soldering, mining chisel, milling tools for milling processing of concrete and asphalt , Mechanical seals and any other geometry and application.
  • the sintered composite material according to the invention can be used for forming or comminution tools.
  • the tool is a tool for cutting metallic tools or for forming metallic workpieces at high temperatures, for example a tool for forging, wire drawing or rolling.
  • the ethanol was separated by distillation in vacuo, and pressed the obtained hard metal powder axially at 150 MPa and sintered at 1420 ° C.
  • the plate-shaped hard metal pieces were ground, polished and examined for their properties. Both batches showed no eta phases or carbon precipitates as sinters.
  • the different carbon content after sintering and the consequent different tungsten content in the binder metal alloy is the result of mass transfer during sintering.
  • the binder metal alloy in the base is cobalt, with proportions of tungsten and possibly carbon.
  • the hot hardnesses were determined as before (see results FIG. 1 ).
  • new sintered bodies were made from the existing hard metal approaches.
  • a density of 14.81 g / cm 3 and a magnetic saturation of 54 to 55 Gcm 3 / g was achieved with the "low carbon” variant.
  • Densities between 14.77 and 14.79 g / m 3 and magnetic saturations between 70.5 and 72.5 Gcm 3 / g were achieved with the "high carbon” variant.
  • the limit for the eta phase is below 51 Gcm 3 / g, the limit for carbon excretion at about 75 Gcm 3 / g.
  • the sintered pieces were thus free from eta-phase and carbon precipitations.
  • the two sinter batches were in the middle and in the high, but not in the low range for the carbon content, which would have been conducive to a high hot hardness.
  • the resulting cemented carbides containing neither eta phase nor carbon precipitates had an HV30 between 1626 and 1648.
  • the K 1 C values were for the most part between 8.5 and 8.9 MPa m 1/2 . Only in a very narrow range with high carbon contents at the boundary to the area of carbon precipitation, values of 9.3 to 9.5 for the K 1 C were found.
  • hard metals with a FeCoNi 40/20 / 40A base binding in terms of K 1 C and hot hardness are inferior to those which are bound with cobalt as a base for the binder alloy.
  • carbides with a FeNi 50/50 based alloy have at least equal hot hardness, but show comparatively low K 1 C values, which means carbides bonded in this way can not be used universally ( Fig. 3 ).
  • carbides with this binder-based alloy can be used for turning metal, but not for milling because of their low K 1 C value, since the mechanical shock resistance is insufficient.
  • Table 3 Fe / Ni ratio HV30 K1C density Magnetic saturation (kg / mm 2 ) (MPa m 1/2 ) (g / cm 3 ) (G cm 3 / g) 35/65 * 1618 9.2 14.75 102 25/75 * 1626 9.3 14.67 94.7 15/85 * 1608 9.4 14,74 98.4 10/90 * 1618 11.3 14.84 42.3 5/95 1541 10.7 14.79 38.2 0/100 1478 12.4 14.81 42.7
  • FIGS 2 and 3 illustrate the results of Example 4 and Examples 1 and 4 in comparison.
  • the hardness barely drops from 50% Ni to unexpectedly high Ni contents of 90%.
  • the course of the hardness is surprisingly almost constant up to values of 90% Ni, then drop off abruptly. It can be interpolated that the required hardness level, which results from the lower hardness value of Comparative Example 1, is achieved at Ni contents of up to 93%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (15)

  1. Procédé de fabrication d'un matériau composite comprenant la préparation d'une composition contenant :
    a) 50 à 97 % en poids d'au moins un élément d'alliage favorisant la dureté, comprenant au moins 50 % en poids de carbure de tungstène, par rapport au poids total de l'élément d'alliage favorisant la dureté, et
    b) 50 à 3 % en poids d'un alliage liant de base, comprenant :
    α) 66 à 93 % en poids de nickel,
    β) 34 à 7 % en poids de fer, et
    γ) 0 à 9 % en poids de cobalt,
    l'alliage liant de base présentant un rapport en poids fer:nickel de 1:2 à 1:13, et
    la somme des proportions en poids α), β) et γ) de l'alliage liant de base étant de 100 % en poids, et
    c) jusqu'à 30 % en poids d'un ou de plusieurs des éléments choisis dans le groupe constitué par W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, B, N et C,
    le poids total de l'alliage liant de base, de l'élément d'alliage favorisant la dureté et éventuellement d'additifs présents étant de 100 % en poids,
    et le frittage de cette composition.
  2. Procédé selon la revendication 1, caractérisé en ce que l'alliage liant de base présente un rapport en poids fer:nickel de 1:2,5 à 1:12, de préférence de 1:3 à 1:10, et notamment de 1:3 à 1:9, de manière particulièrement préférée de 1:4 à 1:8, par exemple de 1:4 à 1:7.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'alliage liant de base comprend 66 à 90 % en poids, de préférence 70 à 90 % en poids de nickel.
  4. Procédé selon au moins l'une quelconque des revendications 1 à 3, caractérisé en ce que l'alliage liant de base contient moins de 8 % en poids de cobalt, de préférence moins de 5 % en poids de cobalt.
  5. Procédé selon au moins l'une quelconque des revendications 1 à 4, caractérisé en ce que l'alliage liant de base comprend moins de 0,1 % en poids de molybdène, de préférence moins de 0,08 % en poids, notamment moins de 0,02 % en poids de molybdène.
  6. Procédé selon au moins l'une quelconque des revendications 1 à 5, caractérisé en ce que l'élément d'alliage favorisant la dureté est choisi dans le groupe constitué par les carbures, les nitrures, les borures et les carbonitrures.
  7. Procédé selon au moins l'une quelconque des revendications 1 à 6, caractérisé en ce que l'élément d'alliage favorisant la dureté comprend un ou plusieurs éléments des groupes de transition 4, 5 et 6 du tableau périodique.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alliage liant de base se présente sous la forme d'une poudre d'alliage.
  9. Procédé selon au moins l'une quelconque des revendications précédentes, comprenant les étapes suivantes :
    a) la préparation d'une dispersion comprenant une composition contenant un élément d'alliage favorisant la dureté et une poudre d'alliage liant de base dans un solvant,
    b) le broyage de la dispersion,
    c) la fabrication d'une poudre par séchage de la dispersion,
    d) la fabrication de corps comprimés par compression de la poudre ou par extrusion de la poudre à l'aide d'agents plastifiants, et
    e) le frittage du corps comprimé ou de l'extrudeuse.
  10. Matériau composite fritté contenant au moins un élément d'alliage favorisant la dureté et un alliage liant,
    l'élément d'alliage favorisant la dureté comprenant au moins 50 % en poids de carbure de tungstène, par rapport au poids total de l'élément d'alliage favorisant la dureté,
    l'alliage liant étant constitué par :
    les éléments Fe et Ni et éventuellement Co, et
    jusqu'à 30 % en poids d'un ou de plusieurs des éléments choisis dans le groupe constitué par W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, B, N et C, l'alliage liant pouvant être obtenu à partir d'un alliage liant de base comprenant 66 à 93 % en poids de nickel, 7 à 34 % en poids de fer et 0 à 9 % en poids de cobalt, et présentant un rapport en poids fer:nickel de 1:2 à 1:13.
  11. Matériau composite fritté selon la revendication 10, caractérisé en ce que l'alliage liant de base contient moins de 0,5 % en poids de cobalt.
  12. Matériau composite fritté selon la revendication 10 ou 11, caractérisé en ce que l'alliage liant de base présente un rapport en poids fer:nickel de 1:2,5 à 1:12, de préférence de 1:3 à 1:10, et notamment de 1:3 à 1:9, de manière particulièrement préférée de 1:4 à 1:8, par exemple de 1:4 à 1:7.
  13. Utilisation du matériau composite fritté selon l'une quelconque des revendications 10 à 12 pour des outils ou des composants.
  14. Utilisation selon la revendication 13, caractérisée en ce que les outils sont des outils de déformation ou de broyage.
  15. Utilisation selon la revendication 13 ou 14, caractérisée en ce que l'outil est un outil pour l'usinage d'outils métalliques ou pour la déformation de pièces métalliques à des températures élevées, par exemple un outil pour le forgeage, le tréfilage ou le cylindrage.
EP11167901.5A 2011-05-27 2011-05-27 Liant NiFe ayant une application universelle Active EP2527480B1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES11167901.5T ES2628422T3 (es) 2011-05-27 2011-05-27 Aglutinante de FeNi con aplicabilidad universal
EP11167901.5A EP2527480B1 (fr) 2011-05-27 2011-05-27 Liant NiFe ayant une application universelle
PL11167901T PL2527480T3 (pl) 2011-05-27 2011-05-27 Spoiwo NiFe o uniwersalnym zastosowaniu
CN201280025581.3A CN103562422B (zh) 2011-05-27 2012-05-24 通用型FeNi-粘结剂
PCT/EP2012/059748 WO2012163804A1 (fr) 2011-05-27 2012-05-24 Liants feni ayant une aptitude à la mise en oeuvre universelle
US14/122,246 US9821372B2 (en) 2011-05-27 2012-05-24 FeNi binder having universal usability
RU2013158048A RU2623545C2 (ru) 2011-05-27 2012-05-24 FeNi - СВЯЗУЮЩИЙ АГЕНТ С УНИВЕРСАЛЬНЫМИ ВОЗМОЖНОСТЯМИ ИСПОЛЬЗОВАНИЯ
KR1020137032074A KR102079325B1 (ko) 2011-05-27 2012-05-24 보편적 유용성을 갖는 FeNi 결합제
JP2014513132A JP6124877B2 (ja) 2011-05-27 2012-05-24 汎用性を有するFeNiバインダー
IL229654A IL229654B (en) 2011-05-27 2013-11-27 A universally useful iron-nickel binder
US15/730,747 US11207730B2 (en) 2011-05-27 2017-10-12 FeNi binder having universal usability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11167901.5A EP2527480B1 (fr) 2011-05-27 2011-05-27 Liant NiFe ayant une application universelle

Publications (2)

Publication Number Publication Date
EP2527480A1 EP2527480A1 (fr) 2012-11-28
EP2527480B1 true EP2527480B1 (fr) 2017-05-03

Family

ID=46168477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11167901.5A Active EP2527480B1 (fr) 2011-05-27 2011-05-27 Liant NiFe ayant une application universelle

Country Status (10)

Country Link
US (2) US9821372B2 (fr)
EP (1) EP2527480B1 (fr)
JP (1) JP6124877B2 (fr)
KR (1) KR102079325B1 (fr)
CN (1) CN103562422B (fr)
ES (1) ES2628422T3 (fr)
IL (1) IL229654B (fr)
PL (1) PL2527480T3 (fr)
RU (1) RU2623545C2 (fr)
WO (1) WO2012163804A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2527480T3 (pl) * 2011-05-27 2017-12-29 H.C. Starck Gmbh Spoiwo NiFe o uniwersalnym zastosowaniu
WO2013101561A1 (fr) 2011-12-30 2013-07-04 Scoperta, Inc. Compositions de revêtement
JP6999081B2 (ja) 2015-09-04 2022-01-18 エリコン メテコ(ユーエス)インコーポレイテッド 非クロム及び低クロム耐摩耗性合金
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
CA3016761A1 (fr) 2016-04-20 2017-10-26 Arconic Inc. Materiaux d'aluminium, cobalt fer et nickel a structure fcc et produits fabriques a partir de ceux-ci
US11434549B2 (en) * 2016-11-10 2022-09-06 The United States Of America As Represented By The Secretary Of The Army Cemented carbide containing tungsten carbide and finegrained iron alloy binder
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
CN112313354B (zh) * 2018-06-29 2022-05-10 山特维克科洛曼特公司 具有替代性粘结剂的硬质合金
CN109136610A (zh) * 2018-09-11 2019-01-04 张家港市六福新材料科技有限公司 一种氮化铝基金属陶瓷材料的制备方法
CN113195759B (zh) 2018-10-26 2023-09-19 欧瑞康美科(美国)公司 耐腐蚀和耐磨镍基合金
JP7558169B2 (ja) 2018-12-19 2024-09-30 エリコン メテコ(ユーエス)インコーポレイテッド 仕切弁、ボール弁、弁棒、及び弁座用の高温低摩擦でコバルトを含まないコーティング・システム
CN109439942B (zh) * 2018-12-27 2020-05-22 吉林大学 一种基于内生纳米TiCxNy颗粒的陶铝复合材料的制备方法
EP3962693A1 (fr) 2019-05-03 2022-03-09 Oerlikon Metco (US) Inc. Charge d'alimentation pulvérulente destinée au soudage en vrac résistant à l'usure, conçue pour optimiser la facilité de production
JP7511584B2 (ja) * 2019-05-27 2024-07-05 エービー サンドビック コロマント 被覆切削工具
JP7511583B2 (ja) * 2019-05-27 2024-07-05 エービー サンドビック コロマント 被覆切削工具
CN111876643A (zh) * 2020-08-06 2020-11-03 郑州航空工业管理学院 一种高强韧WC-Fe-Ni硬质合金的制备方法
DE102020213651A1 (de) * 2020-10-29 2022-05-05 Mahle International Gmbh Verschleißfeste, hochwärmeleitfähige Sinterlegierung, insbesondere für Lageranwendungen und Ventilsitzringe
EP4421196A1 (fr) * 2023-02-27 2024-08-28 Hilti Aktiengesellschaft Marteau perforateur avec liant nickel-fer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990612A (fr) 1972-12-29 1974-08-29
US20020112896A1 (en) 2000-12-22 2002-08-22 Olof Kruse Coated cutting tool insert with iron-nickel based binder phase
US6554885B1 (en) 1998-05-20 2003-04-29 H. C. Starck Gmbh Pre-alloyed powder
WO2006119522A1 (fr) 2005-05-13 2006-11-16 Boehlerit Gmbh & Co. Kg. Corps en metal dur presentant une zone de surface dure
CN101560623A (zh) 2009-05-22 2009-10-21 华南理工大学 一种WC-增韧增强Ni3Al硬质合金及其制备方法
US20100239855A1 (en) 2007-10-02 2010-09-23 H.C. Starck Gmbh Tool

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1938074C2 (de) * 1969-07-26 1971-07-08 Deutsche Edelstahlwerke Ag Verwendung einer hochkorrosionsbestaendigen und verschleissfesten Karbidhartmetallegierung fuer fluessigem Natrium ausgesetzte Teile
US3713788A (en) 1970-10-21 1973-01-30 Chromalloy American Corp Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy
JPS522843B1 (fr) * 1971-03-31 1977-01-25
JPS5388608A (en) * 1977-01-17 1978-08-04 Mitsubishi Metal Corp Super hard alloy for ornaments
JPS53108006A (en) * 1977-03-04 1978-09-20 Nippon Shinkinzoku Kk High strength sintered alloy belonging to titanium nitride
GB2143847B (en) * 1983-07-26 1986-09-24 Us Energy Hard material
JPS61261452A (ja) * 1985-05-15 1986-11-19 Hitachi Metals Ltd ワイヤ−ドツトプリンタ−用サ−メツトおよびドツトプリンタ−用ワイヤ−
JPH0726172B2 (ja) * 1986-08-11 1995-03-22 三菱マテリアル株式会社 強靭性サ−メツトおよびその製造法
JPS6381053A (ja) * 1986-09-25 1988-04-11 Hitachi Tool Eng Ltd 表面被覆微粒超硬合金製ドツトワイヤ−
ES2152228T3 (es) 1991-04-10 2001-02-01 Sandvik Ab Metodo de fabricacion de articulos de carburo cementado.
JP2957424B2 (ja) * 1993-10-08 1999-10-04 住友電気工業株式会社 耐食性タングステン基焼結合金
DE4340652C2 (de) * 1993-11-30 2003-10-16 Widia Gmbh Verbundwerkstoff und Verfahren zu seiner Herstellung
JPH08158002A (ja) * 1994-02-24 1996-06-18 Hitachi Metals Ltd 窒化ケイ素質セラミックスと金属の複合材料及びアルミニウム溶湯用部品
JP2872571B2 (ja) * 1994-04-27 1999-03-17 株式会社日本製鋼所 遠心鋳造用炭化タングステン複合ライニング材および炭化タングステン複合ライニング層
JP2840191B2 (ja) * 1994-05-10 1998-12-24 岡野バルブ製造株式会社 コバルトフリーの合金材料を用いた装置
US6170917B1 (en) * 1997-08-27 2001-01-09 Kennametal Inc. Pick-style tool with a cermet insert having a Co-Ni-Fe-binder
EP1309863A1 (fr) 2000-08-08 2003-05-14 Aviva Biosciences Corporation Techniques de manipulations de fragments dans des systemes microfluidiques
US7556668B2 (en) * 2001-12-05 2009-07-07 Baker Hughes Incorporated Consolidated hard materials, methods of manufacture, and applications
DE10213963A1 (de) 2002-03-28 2003-10-09 Widia Gmbh Hartmetall- oder Cermet-Schneidwerkstoff sowie Verfahren zur zerspanenden Bearbeitung von Cr-haltigen Metallwerkstücken
US7438741B1 (en) * 2003-05-20 2008-10-21 Exxonmobil Research And Engineering Company Erosion-corrosion resistant carbide cermets for long term high temperature service
EP1729882A1 (fr) 2004-02-05 2006-12-13 Millipore Corporation Substrats poreux adsorbants ou chromatographiques
CN1960803A (zh) 2004-02-05 2007-05-09 米利波尔公司 多孔的吸附或色谱介质
US8002052B2 (en) * 2005-09-09 2011-08-23 Baker Hughes Incorporated Particle-matrix composite drill bits with hardfacing
DE102006045339B3 (de) * 2006-09-22 2008-04-03 H.C. Starck Gmbh Metallpulver
DE102007004937B4 (de) * 2007-01-26 2008-10-23 H.C. Starck Gmbh Metallformulierungen
CN100469931C (zh) * 2007-07-28 2009-03-18 中国石油化工集团公司 金属陶瓷组合物以及在金属表面制备金属陶瓷涂层的方法
KR20110079901A (ko) * 2008-10-20 2011-07-11 하.체. 스타르크 게엠베하 텅스텐 카바이드를 주성분으로 하는 초경합금 제작용의 몰리브덴 함유 금속 분말
CN102061418A (zh) * 2010-12-20 2011-05-18 中南大学 一种用于输油泵阀座的硬质合金材料及其制备方法
PL2527480T3 (pl) * 2011-05-27 2017-12-29 H.C. Starck Gmbh Spoiwo NiFe o uniwersalnym zastosowaniu
DE102011112435B3 (de) * 2011-09-06 2012-10-25 H.C. Starck Gmbh Cermetpulver, Verfahren zur Herstellung eines Cermetpulvers, Verwendung der Cermetpulver, Verfahren zur Herstellung eines beschichteten Bauteils, Beschichtetes Bauteil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990612A (fr) 1972-12-29 1974-08-29
US6554885B1 (en) 1998-05-20 2003-04-29 H. C. Starck Gmbh Pre-alloyed powder
US20020112896A1 (en) 2000-12-22 2002-08-22 Olof Kruse Coated cutting tool insert with iron-nickel based binder phase
WO2006119522A1 (fr) 2005-05-13 2006-11-16 Boehlerit Gmbh & Co. Kg. Corps en metal dur presentant une zone de surface dure
US20100239855A1 (en) 2007-10-02 2010-09-23 H.C. Starck Gmbh Tool
CN101560623A (zh) 2009-05-22 2009-10-21 华南理工大学 一种WC-增韧增强Ni3Al硬质合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERNANDES ET AL.: "Mechanical characterization of composites prepared from WC powders coated with Ni rich binders", INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, vol. 26, no. 5, 2008, pages 491 - 498, XP022701532

Also Published As

Publication number Publication date
CN103562422B (zh) 2016-02-10
CN103562422A (zh) 2014-02-05
US11207730B2 (en) 2021-12-28
JP2014519553A (ja) 2014-08-14
RU2623545C2 (ru) 2017-06-27
ES2628422T3 (es) 2017-08-02
IL229654A0 (en) 2014-01-30
JP6124877B2 (ja) 2017-05-10
US20180029118A1 (en) 2018-02-01
KR20140032414A (ko) 2014-03-14
RU2013158048A (ru) 2015-07-10
KR102079325B1 (ko) 2020-02-19
IL229654B (en) 2018-12-31
EP2527480A1 (fr) 2012-11-28
WO2012163804A1 (fr) 2012-12-06
US20140086782A1 (en) 2014-03-27
US9821372B2 (en) 2017-11-21
PL2527480T3 (pl) 2017-12-29

Similar Documents

Publication Publication Date Title
EP2527480B1 (fr) Liant NiFe ayant une application universelle
EP2337874B1 (fr) Poudre métallique
EP2066821B1 (fr) Poudre métallique
EP1751320B1 (fr) Piece d'usure constituee d'une matiere composite contenant du diamant
EP0689617B1 (fr) Cermet et son procede de production
DE2407410B2 (de) Karbidhartmetall mit ausscheidungshärtbarer metallischer Matrix
EP3409801B1 (fr) Matière composite contenant des particules dures, fabriquée par métallurgie des poudres, utilisation d'une matière composite et procédé de fabrication d'un composant en matière composite
DE1783134B2 (de) Verfahren zur pulvermetallurgischen Herstellung von Hartlegierungen. Ausscheidung aus: 1533275 Annu Latrobe Steel Co., Latrobe, Pa. (V.StA.)
WO2008125525A1 (fr) Outil
DE2060605C3 (de) Pulvermetallurgisch durch Sintern hergestellte, ausscheidungshärtbare, korrosions- und hochwarmfeste Nickel-Chrom-Legierung
AT517894B1 (de) Rührreibschweißwerkzeug
DE102012015565A1 (de) Gesinterter Hartmetallkörper, Verwendung und Verfahren zur Herstellung des Hartmetallkörpers
EP1647606B1 (fr) Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température
WO2019215025A1 (fr) Pièce constituée d'un matériau en métal dur et son procédé de fabrication
DE1174997B (de) Verwendung von borhaltigen Hartmetallen
DE2157666A1 (de) Verfahren zur Herstellung von Sinter-Hartmetall auf Basis Titancarbid und verschleißfeste Erzeugnisse daraus
DE2435577A1 (de) Schweisszusatzwerkstoff
DE102008052559A1 (de) Metallpulver
DE1279332B (de) Verfahren zum pulvermetallurgischen Herstellen von Genauteilen aus Stelliten oder stellitaehnlichen Legierungen
DE1248952B (fr)
DE2255505B2 (de) Sinterhartmetall
DE102023135181A1 (de) Hartmetall
AT316154B (de) Durch Verfestigen eines Metallpulvers hergestellter Formkörper und Verfahren zu seiner Herstellung
DD283160A5 (de) Hartmetallegierung
DE2537340B2 (de) Verfahren zur herstellung von legierten sinterstahlwerkstuecken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130528

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140131

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890064

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012146

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2628422

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170802

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011012146

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012146

Country of ref document: DE

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE

Free format text: FORMER OWNER: H.C. STARCK GMBH, 38642 GOSLAR, DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE

Free format text: FORMER OWNER: H.C. STARCK GMBH, DE

26 Opposition filed

Opponent name: SANDVIK MACHINING SOLUTIONS AB

Effective date: 20180201

REG Reference to a national code

Ref country code: LU

Ref legal event code: PD

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS

Free format text: FORMER OWNER: H.C. STARCK GMBH

Effective date: 20180209

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS

Effective date: 20180321

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180301 AND 20180307

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE

Effective date: 20180312

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 890064

Country of ref document: AT

Kind code of ref document: T

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE

Effective date: 20180321

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502011012146

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20181001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110527

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240513

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240410

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240404

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240403

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240610

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240424

Year of fee payment: 14

Ref country code: AT

Payment date: 20240425

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240411

Year of fee payment: 14

Ref country code: FR

Payment date: 20240422

Year of fee payment: 14

Ref country code: FI

Payment date: 20240514

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240412

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240410

Year of fee payment: 14