EP2527480B1 - NiFe binder with universal application - Google Patents
NiFe binder with universal application Download PDFInfo
- Publication number
- EP2527480B1 EP2527480B1 EP11167901.5A EP11167901A EP2527480B1 EP 2527480 B1 EP2527480 B1 EP 2527480B1 EP 11167901 A EP11167901 A EP 11167901A EP 2527480 B1 EP2527480 B1 EP 2527480B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- binder alloy
- alloy
- hardness
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011230 binding agent Substances 0.000 title claims description 97
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 title 1
- 229910045601 alloy Inorganic materials 0.000 claims description 122
- 239000000956 alloy Substances 0.000 claims description 122
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 71
- 229910052751 metal Inorganic materials 0.000 claims description 69
- 239000002184 metal Substances 0.000 claims description 69
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 50
- 229910052799 carbon Inorganic materials 0.000 claims description 50
- 238000005245 sintering Methods 0.000 claims description 43
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 37
- 229910017052 cobalt Inorganic materials 0.000 claims description 34
- 239000010941 cobalt Substances 0.000 claims description 34
- 229910052759 nickel Inorganic materials 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 30
- 239000002131 composite material Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 22
- 229910052721 tungsten Inorganic materials 0.000 claims description 19
- 239000006185 dispersion Substances 0.000 claims description 16
- 150000001247 metal acetylides Chemical group 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 238000003801 milling Methods 0.000 claims description 9
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052702 rhenium Inorganic materials 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 238000003754 machining Methods 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000005242 forging Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000005491 wire drawing Methods 0.000 claims description 3
- 229910000967 As alloy Inorganic materials 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 235000019589 hardness Nutrition 0.000 description 62
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 46
- 150000002739 metals Chemical class 0.000 description 45
- 229910002555 FeNi Inorganic materials 0.000 description 24
- 229910002545 FeCoNi Inorganic materials 0.000 description 14
- 239000012071 phase Substances 0.000 description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 11
- 239000010937 tungsten Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 229910001092 metal group alloy Inorganic materials 0.000 description 5
- 239000004848 polyfunctional curative Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- -1 tungsten carbides Chemical class 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical compound [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical group C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002441 CoNi Inorganic materials 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 229910039444 MoC Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATCDNCMWCPJXNQ-UHFFFAOYSA-N [Nb].[Ta].[Ti].[W] Chemical compound [Nb].[Ta].[Ti].[W] ATCDNCMWCPJXNQ-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 231100000921 acute inhalation toxicity Toxicity 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000009768 microwave sintering Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/105—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/005—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/067—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
Definitions
- the invention relates to a process for producing a composite material obtainable by sintering a composition containing a hard carrier and a FeCoNi or FeNi based base binder alloy. Moreover, the invention relates to a sintered composite material, which is obtainable according to the method and its use for tools or components, in particular forming or comminution tools.
- Cemented carbide is a sintered composite of hardeners, such as carbides and a binder alloy.
- Carbides are used in many different ways and are used, for example, for processing practically all known materials. Carbides may also be used, for example, as a structural component, as a forming or comminution tool or for a variety of other purposes, where it depends particularly on wear resistance, mechanical strength or high temperature resistance.
- a common field of application is the cutting of metallic materials. Due to machining, forming and friction processes locally limited temperatures up to 800 ° C. In other cases, forming operations of metallic workpieces are performed at high temperatures, such as forging, wire drawing or rolling. The tool is under mechanical stress, which can lead to deformation of the carbide tool.
- high-temperature creep resistance in practice, the hot hardness is usually determined as a substitute
- the fracture toughness K 1 C
- the wear resistance, the hot hardness, the fracture toughness and the related strength can be adjusted by the size of the carbide phase and its proportion of the hard metal composition.
- the present invention relates to novel hard metals having a FeNi or FeCoNibas striving binder alloy, which in hardness (Vickers hardness according to ISO 3878), fracture toughness (K 1 C, calculated according to the formal of Shetty from the crack lengths and the size of the Vickershärteeindrucks) and hot hardness the properties of those hitherto conventional hard metals correspond to a Co-based binder alloy.
- base alloy instead of cobalt as the base alloy, other base alloys are used in special hard metals.
- base binder alloying is meant also pure metals with inevitable impurities, e.g. available as commercially available nickel and cobalt metal powders.
- Ni metal powders are used as a base alloy for the production of corrosion-resistant, oxidation-resistant or non-magnetisable hard metals.
- the sintering in the liquid phase leads to the formation of a binding alloy based on Ni.
- This binder alloy contains elements such as W, Co, Cr, Mo, or others added to the hard metal batch as a metal powder or carbide, for example, and their contents in the pure Ni by alloying in the liquid phase sintering to the resulting Ni-base alloy. These elements lead to a better corrosion resistance compared to pure nickel.
- Hard metals with Ni as a binder-based alloy are not universally used because of their low hardness values compared to those bound with Co-base alloys.
- hard metals bonded with Ni-base alloys are characterized by comparatively low thermal hardness. Therefore, they are not used in the machining of metallic materials.
- FeCoNi-based alloys are known as carbide binders.
- their disadvantages are their low K 1 C values, which is proportional to the strength according to the Griffith equation up to binder contents of about 12% by weight.
- the K 1 C values of a hard metal are based on tungsten carbide (average powder diameter: 0.6 ⁇ m) with 7.5% FeCoNi 40/20/40 at values between 8.2 and 9.5 MPa m 1/2 while a cemented carbide having the same volume fraction of cobalt (corresponding to 8 wt% due to the higher density of cobalt compared to FeCoNi 40/20/40) reaches a K 1 C of 9.5 MPa m 1/2 .
- the hot curing of hard metals with FeCoNi base alloys as binders are usually lower at higher temperatures than those bound with cobalt base alloys.
- FeNi-based alloys are also known as binders.
- WO-A1-2002 / 0112896 describes FeNi alloys based on 35 to 65% Ni and 65 to 35% Fe.
- the strength of the described base alloy FeNi 50/50 at room temperature, however, is comparatively low;
- a carbide with 7.4% FeNi 50/50 volume fraction of the binder corresponding to 8 wt .-% cobalt due to the lower density of FeNi 50/50
- hard metals are with a FeNi 50/50 base alloy having a tungsten solubility in the binder alloy of at most 19.4% equivalent to a cobalt base alloy (maximum 20% W in the binder alloy) in terms of the thermal hardness.
- tungsten carbides with Ni-base alloys are inferior to both of the above with respect to the hot hardness, and therefore are not used for applications where it comes to high hot hardness such as in metal cutting.
- EP-B1-1 488 020 FeCoNi base alloys with 10 to 75% _Co are known as fcc-structured carbide binders for special machining tasks designed to reduce the adhesive wear that occurs when machining special steels.
- the hot curing of such hard metals with austenitic FeCoNi base alloys are clearly inferior to those with cobalt-based alloys. It is also believed that, in addition, the strength values of hard metals from these austenitic binder alloys will be lower compared to those hard metals bonded with a cobalt-based alloy.
- WO-A2-2010 / 046224 describes the use of molybdenum-doped FeCoNi-, Co-, Ni- and Ni-based powdered metal powders alloyed with molybdenum.
- the hot curing of a WC and 8% Co is not quite reached with 82% of the maximum magnetic saturation ( FIG. 2 of the WO-A2-2010 / 046224 ).
- the K 1 C is very much dependent on the carbon content of the cemented carbide (Example 4 of the WO-A2-2010 / 046224 ), which tends to fluctuate in industrial sintering practice.
- the safe achievement of the required properties hardness, K 1 C and hot hardness sensitive depends on the control of the carbon balance, which is not always ensured under industrial conditions.
- cemented carbide lung In the current production of cemented carbide via powder metallurgical production processes, i. Pressing and sintering of powdered tungsten carbide formulations releases respirable dusts due to the process. If grinding is used in the sintered or pre-sintered state of the hard metal, very fine, breathable dusts (grinding dusts) are also produced.
- an acute inhalation toxicity may additionally occur during the grinding of pre-sintered hard metals or also sintered hard metals.
- An object of the present invention was therefore to improve the safety of work, hard metals, i. To provide sintered composites that have a reduced acute toxic effect.
- base binder alloys comprising 66 to 90% by weight, preferably 70 to 90% by weight of nickel.
- Base binder alloys having 10 to 34 wt% iron are preferred. Particularly preferred is an iron content in the base binder alloy of 10 to 30 wt .-%.
- Essentially free in the sense of the present invention means that the element in an amount of less than 0.5 wt .-%, preferably less than 0.1 wt .-%, more preferably less than 0.08 wt .-% and in particular less than 0.02 wt .-% and in particular less than 0.001 wt .-%, for example less than 0.005 wt .-%, each based on the total weight of the base binder alloy, is present.
- the base binder alloy contains less than 0.1% by weight, preferably less than 0.08% by weight, in particular less than 0.02% by weight, in particular less than 0.01 Wt .-% molybdenum.
- the hardness carrier is selected from the group consisting of carbides, nitrides, borides and carbonitrides. These particularly preferably contain one or more elements of the 4th, 5th or 6th subgroup of the periodic table.
- He comprises at least 50% by weight of the binary hardener tungsten carbide, based on the total weight of the hardness carriers, and may also contain further hardeners, such as ternary hardeners, such as tantalum-niobium mixed carbide, titanium carbonitride or tungsten-titanium carbide or even quaternary, such as tungsten-titanium-carbonitride or tungsten-titanium-niobium-tantalum carbide.
- ternary hardeners such as tantalum-niobium mixed carbide, titanium carbonitride or tungsten-titanium carbide or even quaternary, such as tungsten-titanium-carbonitride or tungsten-titanium-niobium-tantalum carbide.
- the hardness carriers are preferably in powder form.
- the powders have an average particle diameter of 0.01 to 150, preferably 0.1 to 100 microns.
- the average particle diameter is determined according to ASTM B330.
- the hardness carriers preferably have a hardness above 800 kg / mm 2 , in particular above 1000 kg / mm 2 (measured in accordance with ISO 6507, Part 2).
- compositions used in the process according to the invention may optionally also contain other components as additives, such as metals, for example selected from the group consisting of rhenium, molybdenum, chromium and aluminum.
- additives such as metals, for example selected from the group consisting of rhenium, molybdenum, chromium and aluminum.
- elemental tungsten or elemental carbon may be preferably used since it is suitable for correcting the carbon content of the composite after sintering.
- intermetallic compounds such as Ni 3 Al or chromium nitride decomposing during sintering can also be added to the compositions to be sintered.
- additives may constitute up to 20% by weight, preferably up to 10% by weight, the weight data being based on the total weight of the composition.
- the composition contains 3 to 50 wt .-% of the base binder alloy, preferably 4 to 40 wt .-%, in particular 4 to 30 wt .-% of the base binder alloy, each based on the total weight of the composition.
- the sintering is preferably carried out at temperatures above 1000 ° C, more preferably above 1100 ° C and in particular at temperatures between 1150 ° C and 1600 ° C.
- the sintering is in the presence of liquid phase.
- the base binder alloy is completely or partially present in liquid form during the sintering process.
- step a) The provision of the dispersion described in step a) is carried out in a preferred embodiment by adding a solvent to a pulverulent composition containing a hardness carrier and base binder alloy powder.
- Preferred solvents are those which have a boiling point of ⁇ 250 ° C at 1 bar.
- alcohols in particular aliphatic alcohols, for example ethanol, and water or mixtures thereof, such as mixtures of water and organic Solvents, especially water and alcohols.
- organic solvents in particular selected from the group consisting of ketones and hydrocarbons, for example acetone and aliphatic hydrocarbons, such as heptane and hexane.
- the milling of the dispersion prepared in step a) can be carried out using milling tools familiar to the person skilled in the art.
- the milling of the dispersion is carried out in a ball mill or an attritor, which are particularly preferably equipped with hard metal balls.
- the dispersion may optionally additionally contain organic auxiliaries, such as waxes, dispersion aids, inhibitors, adhesives or emulsifiers, before the drying step.
- organic auxiliaries such as waxes, dispersion aids, inhibitors, adhesives or emulsifiers
- step b) is followed by preparing a powder by drying the dispersion.
- the dispersion may, for example, be spray-dried or dried under reduced pressure.
- the solvent low-boiling solvent which can be easily distilled off under reduced pressure.
- the dried powder from step c) is used to produce compacts or extrudates.
- the pressing of the dried powder is preferably carried out in suitable tools, or isostatically.
- step e) the compact or the extrudate is sintered.
- the sintering is carried out in the presence of a protective gas atmosphere or under reduced pressure.
- the sintered composites are further densified at elevated pressure in a separate or integrated post-densification step.
- the pressing and the sintering are carried out simultaneously and preferably by additional application of electric fields or currents. These can provide an elevated temperature during sintering and compression.
- the composite materials obtained according to the method according to the invention are optionally subsequently ground to the required shape, with tools for metal cutting usually by means of chemical vapor deposition techniques (CVD) or physical vapor deposition (PVD) or combined methods can be further coated.
- CVD chemical vapor deposition techniques
- PVD physical vapor deposition
- the composite materials according to the invention include as binder alloy one or more elements of the group Fe, Ni and optionally Co.
- the base alloy may already contain such elements. However, the final composition of the binder alloy does not become established until sintering and subsequent cooling of the cemented carbide.
- the binder alloy may also contain one or more elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, C.
- These elements have limited solubility both in the FeNi base alloy as well as in other base alloys, and their contents are adjusted during sintering and cooling due to their temperature-dependent solubility in addition to the carbon content according to the principle of solubility of the carbides depending on their thermodynamic stability.
- the sum of these elements in the binder alloy according to the invention is therefore generally less than 30 wt .-%, based on the total weight of the binder alloy of the sintered composite material.
- the binder alloy of the sintered composite of the invention comprises up to 30% by weight of one or more elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru , Al, Mn, B, N and C.
- the selection and contents of the above elements have an influence on the properties of the binder alloy.
- W, Cr and Mo increase the hot hardness due to their solubilities on the order of not more than 5 to 25% by weight. Therefore, it is desirable in industrial practice to set the carbon of the cemented carbide so low that the contents of these elements in the binder alloy are as high as possible without causing harmful carbon deficiency phases (so-called eta phases).
- the actual dissolved tungsten content in hard metals with Co base alloys is determined by the magnetic saturation. If the magnetic saturation of the Co content of pure WCCo hard metals is less than 70% that of pure cobalt, eta phases are formed. For industrial reasons, however, a safety margin is kept to this limit for reasons of process safety.
- carbide parts may also be in a preferred manner but also carbide parts further and arbitrary geometry and application, such as forging tools, forming tools, countersinks, components, knives, peeling plates, rollers, stamping tools, pentagonal drill bits for soldering, mining chisel, milling tools for milling processing of concrete and asphalt , Mechanical seals and any other geometry and application.
- the sintered composite material according to the invention can be used for forming or comminution tools.
- the tool is a tool for cutting metallic tools or for forming metallic workpieces at high temperatures, for example a tool for forging, wire drawing or rolling.
- the ethanol was separated by distillation in vacuo, and pressed the obtained hard metal powder axially at 150 MPa and sintered at 1420 ° C.
- the plate-shaped hard metal pieces were ground, polished and examined for their properties. Both batches showed no eta phases or carbon precipitates as sinters.
- the different carbon content after sintering and the consequent different tungsten content in the binder metal alloy is the result of mass transfer during sintering.
- the binder metal alloy in the base is cobalt, with proportions of tungsten and possibly carbon.
- the hot hardnesses were determined as before (see results FIG. 1 ).
- new sintered bodies were made from the existing hard metal approaches.
- a density of 14.81 g / cm 3 and a magnetic saturation of 54 to 55 Gcm 3 / g was achieved with the "low carbon” variant.
- Densities between 14.77 and 14.79 g / m 3 and magnetic saturations between 70.5 and 72.5 Gcm 3 / g were achieved with the "high carbon” variant.
- the limit for the eta phase is below 51 Gcm 3 / g, the limit for carbon excretion at about 75 Gcm 3 / g.
- the sintered pieces were thus free from eta-phase and carbon precipitations.
- the two sinter batches were in the middle and in the high, but not in the low range for the carbon content, which would have been conducive to a high hot hardness.
- the resulting cemented carbides containing neither eta phase nor carbon precipitates had an HV30 between 1626 and 1648.
- the K 1 C values were for the most part between 8.5 and 8.9 MPa m 1/2 . Only in a very narrow range with high carbon contents at the boundary to the area of carbon precipitation, values of 9.3 to 9.5 for the K 1 C were found.
- hard metals with a FeCoNi 40/20 / 40A base binding in terms of K 1 C and hot hardness are inferior to those which are bound with cobalt as a base for the binder alloy.
- carbides with a FeNi 50/50 based alloy have at least equal hot hardness, but show comparatively low K 1 C values, which means carbides bonded in this way can not be used universally ( Fig. 3 ).
- carbides with this binder-based alloy can be used for turning metal, but not for milling because of their low K 1 C value, since the mechanical shock resistance is insufficient.
- Table 3 Fe / Ni ratio HV30 K1C density Magnetic saturation (kg / mm 2 ) (MPa m 1/2 ) (g / cm 3 ) (G cm 3 / g) 35/65 * 1618 9.2 14.75 102 25/75 * 1626 9.3 14.67 94.7 15/85 * 1608 9.4 14,74 98.4 10/90 * 1618 11.3 14.84 42.3 5/95 1541 10.7 14.79 38.2 0/100 1478 12.4 14.81 42.7
- FIGS 2 and 3 illustrate the results of Example 4 and Examples 1 and 4 in comparison.
- the hardness barely drops from 50% Ni to unexpectedly high Ni contents of 90%.
- the course of the hardness is surprisingly almost constant up to values of 90% Ni, then drop off abruptly. It can be interpolated that the required hardness level, which results from the lower hardness value of Comparative Example 1, is achieved at Ni contents of up to 93%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Verbundwerkstoffs, welcher durch Sintern einer Zusammensetzung, enthaltend einen Härteträger und eine Basisbindelegierung auf FeCoNi- oder FeNi-Basis, erhältlich ist. Darüber hinaus betrifft die Erfindung einen gesinterten Verbundwerkstoff, welcher gemäß dem Verfahren erhältlich ist sowie dessen Verwendung für Werkzeuge oder Bauteile, insbesondere Umform- oder Zerkleinerungswerkzeuge.The invention relates to a process for producing a composite material obtainable by sintering a composition containing a hard carrier and a FeCoNi or FeNi based base binder alloy. Moreover, the invention relates to a sintered composite material, which is obtainable according to the method and its use for tools or components, in particular forming or comminution tools.
Hartmetall ist ein gesinterter Verbundwerkstoff aus Härteträgern, wie beispielsweise Carbiden und einer Bindelegierung. Hartmetalle werden sehr vielfältig eingesetzt und werden beispielsweise zur Bearbeitung praktisch aller bekannten Werkstoffe eingesetzt. Hartmetalle können ferner beispielsweise als Konstruktionsbauteil, als Umform- oder Zerkleinerungswerkzeug oder für vielfältige andere Zwecke eingesetzt werden, wo es besonders auf Verschleißfestigkeit, mechanische Festigkeit oder Hochtemperaturfestigkeit ankommt. Ein häufiges Anwendungsgebiet ist die Zerspanung von metallischen Werkstoffen. Dabei entstehen durch Zerspanungs-, Umform- und Reibungsvorgänge örtlich begrenzt Temperaturen bis über 800°C. In anderen Fällen werden Umformvorgänge metallischer Werkstücke bei hohen Temperaturen durchgeführt, wie beim Schmieden, Drahtziehen oder Walzen. Dabei steht das Werkzeug unter mechanischer Spannung, die zur Deformierung des Hartmetallwerkzeugs führen kann. Daher ist Hochtemperatur-Kriechbeständigkeit (in der Praxis wird meistens ersatzweise die Warmhärte bestimmt) eine wichtige Eigenschaft des Hartmetallwerkzeuges. Aber auch die Risszähigkeit (K1C) ist in allen Anwendungen eine wichtige Größe, da sonst das Werkzeug oder Bauteil mechanischen Spitzenbelastungen nicht gewachsen ist und brechen kann. Die Verschleißfestigkeit, die Warmhärte, die Risszähigkeit sowie die hiermit zusammenhängende Festigkeit (letzere meist angegeben als Biegebruchfestigkeit) können über die Größe der Carbidphase und deren Anteil der Hartmetallzusammensetzung eingestellt werden.Cemented carbide is a sintered composite of hardeners, such as carbides and a binder alloy. Carbides are used in many different ways and are used, for example, for processing practically all known materials. Carbides may also be used, for example, as a structural component, as a forming or comminution tool or for a variety of other purposes, where it depends particularly on wear resistance, mechanical strength or high temperature resistance. A common field of application is the cutting of metallic materials. Due to machining, forming and friction processes locally limited temperatures up to 800 ° C. In other cases, forming operations of metallic workpieces are performed at high temperatures, such as forging, wire drawing or rolling. The tool is under mechanical stress, which can lead to deformation of the carbide tool. Therefore, high-temperature creep resistance (in practice, the hot hardness is usually determined as a substitute) is an important property of the carbide tool. But the fracture toughness (K 1 C) is an important factor in all applications, since otherwise the tool or component mechanical peak loads is not up to it and can break. The wear resistance, the hot hardness, the fracture toughness and the related strength (the latter most often expressed as flexural strength) can be adjusted by the size of the carbide phase and its proportion of the hard metal composition.
Daneben hängen die Eigenschaften der Hartmetalle aber auch stark von der verwendeten Bindelegierung ab. Risszähigkeit, Korrosion und Warmhärte werden hauptsächlich durch die Natur der Bindelegierung und deren Basis bestimmt. Die vorliegende Erfindung betrifft neuartige Hartmetalle mit einer FeNi- oder FeCoNibasierten Bindelegierung, die in Härte (Vickershärte nach ISO 3878), Risszähigkeit (K1C, errechnet nach der Formal von Shetty aus den Risslängen und der Größe des Vickershärteeindrucks) sowie Warmhärte den Eigenschaften denjenigen der bisher üblichen Hartmetalle mit einer Co-basierten Bindelegierung entsprechen.In addition, the properties of the hard metals depend strongly on the binding alloy used. Crack resistance, corrosion and hot hardness are mainly determined by the nature of the binder alloy and its basis. The The present invention relates to novel hard metals having a FeNi or FeCoNibasierten binder alloy, which in hardness (Vickers hardness according to ISO 3878), fracture toughness (K 1 C, calculated according to the formal of Shetty from the crack lengths and the size of the Vickershärteeindrucks) and hot hardness the properties of those hitherto conventional hard metals correspond to a Co-based binder alloy.
Aus verschiedenen Gründen werden anstelle von Kobalt als Basislegierung andere Basislegierungen in speziellen Hartmetallen verwendet. Unter "Basisbindelegierung" werden auch reine Metalle mit unvermeidlichen Verunreinigungen verstanden, z.B. erhältlich als marktübliche Ni- und Kobalt-Metallpulver.For various reasons, instead of cobalt as the base alloy, other base alloys are used in special hard metals. By "base binder alloying" is meant also pure metals with inevitable impurities, e.g. available as commercially available nickel and cobalt metal powders.
Beispielsweise werden Ni-Metallpulver als Basislegierung zur Herstellung von in Säuren korrosionsfesten, oxidationsfesten oder nicht magnetisierbaren Hartmetallen eingesetzt. Durch die Sinterung in flüssiger Phase kommt es zur Bildung einer Bindelegierung auf Basis von Ni. Diese Bindelegierung enthält Elemente wie W, Co, Cr, Mo oder andere, die beispielsweise als Metallpulver oder als Carbid dem Hartmetallansatz zugegeben wurden, und deren Gehalt in der aus reinem Ni durch Legieren beim Flüssigphasensintern zu der so entstehenden Ni-Basis-Legierung führen. Diese Elemente führen im Vergleich zum reinen Nickel zu einer besseren Korrosionsfestigkeit. Hartmetalle mit Ni als Binderbasislegierung werden aufgrund ihrer geringen Härtewerte - im Vergleich zu solchen mit Co-Basis-Legierungen gebundenen - nicht universell eingesetzt. Ferner zeichnen sich mit Ni-Basis-Legierungen gebundene Hartmetalle durch vergleichsweise niedrige Warmhärten aus. Daher werden sie bei der Zerspanung von metallischen Werkstoffen auch nicht eingesetzt.For example, Ni metal powders are used as a base alloy for the production of corrosion-resistant, oxidation-resistant or non-magnetisable hard metals. The sintering in the liquid phase leads to the formation of a binding alloy based on Ni. This binder alloy contains elements such as W, Co, Cr, Mo, or others added to the hard metal batch as a metal powder or carbide, for example, and their contents in the pure Ni by alloying in the liquid phase sintering to the resulting Ni-base alloy. These elements lead to a better corrosion resistance compared to pure nickel. Hard metals with Ni as a binder-based alloy are not universally used because of their low hardness values compared to those bound with Co-base alloys. Furthermore, hard metals bonded with Ni-base alloys are characterized by comparatively low thermal hardness. Therefore, they are not used in the machining of metallic materials.
Weiterhin sind FeCoNi-Basis-Legierungen als Hartmetallbinder bekannt. Nachteilig sind jedoch deren niedrige K1C-Werte, die der Festigkeit nach der Griffith-Gleichung bis zu Bindergehalten von ca. 12 Gew.-% proportional ist. So liegen die K1C-Werte eines Hartmetalls aus einem Härteträger auf Wolframcarbid-Basis (mittlerer Pulverdurchmesser: 0,6 µm) mit 7.5% FeCoNi 40/20/40 bei Werten zwischen 8,2 und 9,5 MPa m1/2, während ein Hartmetall mit dem gleichen Volumenanteil an Kobalt (entsprechend 8 Gew.-% aufgrund der höheren Dichte von Kobalt, im Vergleich zu FeCoNi 40/20/40) einen K1C von 9,5 MPa m1/2 erreicht.Furthermore, FeCoNi-based alloys are known as carbide binders. However, their disadvantages are their low K 1 C values, which is proportional to the strength according to the Griffith equation up to binder contents of about 12% by weight. Thus, the K 1 C values of a hard metal are based on tungsten carbide (average powder diameter: 0.6 μm) with 7.5% FeCoNi 40/20/40 at values between 8.2 and 9.5 MPa m 1/2 while a cemented carbide having the same volume fraction of cobalt (corresponding to 8 wt% due to the higher density of cobalt compared to FeCoNi 40/20/40) reaches a K 1 C of 9.5 MPa m 1/2 .
Die Warmhärten von Hartmetallen mit FeCoNi-Basislegierungen als Binder sind bei höheren Temperaturen meistens geringer als solche, die mit Kobalt-Basislegierungen gebunden sind.The hot curing of hard metals with FeCoNi base alloys as binders are usually lower at higher temperatures than those bound with cobalt base alloys.
Es sind ferner FeNi-Basis-Legierungen als Binder bekannt.
Weiterhin sind FeNi-Basis-Legierungen mit 10 bis 50%_Ni, Fe 90 bis 50% aus der Dissertation Wittmann (=TU Wien=) bekannt. Diese weisen beispielsweise bei 15%Ni und 85% Fe sehr hohe K1C -Werte auf (über solchen, die mit Kobalt als Binderbasislegierung erreichbar sind, siehe Ergebnisse von Wittmann, ausgewertet veröffentlicht in=:
Einen Versuch zur Erklärung der Abhängigkeit der Warmhärte von Hartmetallen von der Zusammensetzung der verwendeten FeCoNi-Basislegierungen liefert die maximale Löslichkeit von Wolfram in der Bindemetalllegierung, die sich nach der Hartmetallsinterung einstellen kann (=
Es sind ferner aus
Zusammenfassend kann man sagen, dass weder Ni-, FeNi- noch FeCoNi-Basislegierungen als Hartmetallbinder zu universell und industriell verwendbaren Hartmetallen führen, die gleichzeitig in den Punkten K1C, Härte und Warmhärte mit solchen vergleichbar sind, die Bindelegierungen auf Kobaltbasis gebunden sind. Aus Gründen der Gesundheitsgefährdung durch Kobalt sowie aus Gründen der Ressourcenschonung wäre es jedoch wünschenswert, einen möglichst vollständigen Ersatz von Kobalt als Bindelegierungsbasis durch FeNi oder FeNi mit geringen Kobaltanteilen, möglichst unter 10%, bereitzustellen. Insbesondere führen Gehalte an Eisen in der Bindelegierung und in der Binderbasislegierung zu einer Verringerung oder Vermeidung bei der Erzeugung von Hyperoxid-Radikalen, wie sie bei der Kontaktkorrosion von WC mit Kobalt in Gegenwart von Wasser und Sauerstoff entstehen.In summary, it can be said that neither Ni, FeNi nor FeCoNi base alloys as hard metal binders lead to universally and industrially usable hard metals, which are comparable at the same time in the points K 1 C, hardness and hot hardness with those bonded cobalt-based binders. For reasons of the health risk by cobalt as well as for the sake of the preservation of resources, it would be desirable, if possible complete replacement of cobalt as a binder alloy base by FeNi or FeNi with low cobalt contents, if possible less than 10%. In particular, levels of iron in the binder alloy and in the binder-based alloy result in a reduction or avoidance in the generation of hyperoxide radicals such as are encountered in the contact corrosion of WC with cobalt in the presence of water and oxygen.
Darüber hinaus wurde in der Hartmetallindustrie ein statistisch signifikantes vermehrtes Auftreten von Lungenfibrosen beobachtet, welches in Verbindung mit dem Umgang von staubförmigem Hartmetall beobachtet wird. Das Krankheitsbild wird auch als "Hartmetall-Lunge" bezeichnet. Bei der gängigen Herstellung von Hartmetall über pulvermetallurgische Herstellverfahren, d.h. Pressen und Sintern von pulverförmigen Hartmetallformulierungen, werden verfahrensbedingt atembare Stäube freigesetzt. Falls im gesinterten oder vorgesinterten Zustand des Hartmetalls schleifende Bearbeitung angewendet wird, entstehen ebenfalls sehr feine, atembare Stäube (Schleifstäube). Insbesondere bei vorwiegend kobalthaltigen Hartmetallen kann zudem eine akute Inhalationstoxizität bei der Schleifbearbeitung vorgesinterter Hartmetalle oder auch gesinterter Hartmetalle auftreten. Eine Aufgabe der vorliegenden Erfindung war es daher im Sinne einer Verbesserung des Arbeitsschutzes, Hartmetalle, d.h. gesinterte Verbundwerkstoffe zur Verfügung zu stellen, die eine verringerte akut toxische Wirkung haben.In addition, a statistically significant increase in the incidence of pulmonary fibrosis has been observed in the cemented carbide industry, which is observed in association with the handling of dust-like cemented carbide. The disease is also referred to as "cemented carbide lung". In the current production of cemented carbide via powder metallurgical production processes, i. Pressing and sintering of powdered tungsten carbide formulations releases respirable dusts due to the process. If grinding is used in the sintered or pre-sintered state of the hard metal, very fine, breathable dusts (grinding dusts) are also produced. In particular, in the case of mainly cobalt-containing hard metals, an acute inhalation toxicity may additionally occur during the grinding of pre-sintered hard metals or also sintered hard metals. An object of the present invention was therefore to improve the safety of work, hard metals, i. To provide sintered composites that have a reduced acute toxic effect.
Weiterhin ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines Verbundwerkstoffs zur Verfügung zu stellen, welches zu Hartmetallen führt, die sowohl bezüglich der Warmhärte als auch in Bezug auf Härte und Risszähigkeit zumindest gleichwertig zu solchen Verbundwerkstoffen sind, die eine aus dem Stand der Technik übliche Kobaltbasislegierung aufweisen.Furthermore, it is an object of the present invention to provide a method for producing a composite material, which leads to hard metals, which are at least equivalent to those composite materials, both in terms of hot hardness and in terms of hardness and fracture toughness, one of the prior Technique conventional cobalt-based alloy.
Unerwarteter Weise wurde nunmehr gefunden, dass bestimmte Hartmetalle mit Ni-reichen FeNi-Basisbindelegierungen in Bezug auf Härte, Warmhärte und Risszähigkeit (K1C) vergleichbar sind mit solchen, die mit Kobaltbasisbindelegierungen gebunden sind. Dies ist insofern völlig unerwartet, da diese Ergebnisse nicht aus dem Verhalten von reinem Nickel als Basis einerseits und dem Verhalten des FeNi 50/50 andererseits, linear interpoliert werden kann. Möglicherweise ist dies der Grund dafür, warum bisher keine derartig gebundenen Hartmetalle bekannt geworden sind. Für kubische Härteträger war vereinzelt der Einsatz von Bindelegierungen auf NiCrFe-Basis beschrieben - so etwa in
Es wurde nunmehr überraschend gefunden, dass die sich aus dem Stand der Technik ergebenden Probleme gelöst werden können durch die erfindungsgemäß hergestellten Verbundwerkstoffe.It has now surprisingly been found that the problems arising from the prior art can be solved by the composite materials produced according to the invention.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Verbundwerkstoffs umfassend das Sintern einer Zusammensetzung mit den Merkmalen des Anspruchs 1, insbesondere enthaltend
- a) mindestens einen Härteträger und
- b) einer Basisbindelegierung, umfassend
- α) 66 bis 93 Gew.-% Nickel,
- β) 7 bis 34 Gew.-% Eisen und
- γ) 0 bis 9 Gew.-% Kobalt,
- a) at least one hardness carrier and
- b) a basic binding alloy comprising
- α) from 66 to 93% by weight of nickel,
- β) 7 to 34 wt .-% iron and
- γ) 0 to 9% by weight of cobalt,
Im Rahmen der vorliegenden Erfindung wird der Begriff "Hartmetall" und "gesinterter Verbundwerkstoff" synonym gebraucht.In the context of the present invention, the term "hard metal" and "sintered composite material" is used synonymously.
Gemäß der vorliegenden Erfindung weist die Basisbindelegierung ein Gewichtsverhältnis von Eisen_:_Nickel von 1_:_2 bis 1 :_13, vorzugsweise 1_:_2,5 bis 1_:_12, weiter bevorzugt 1_:_3 bis 1_:_10 und insbesondere 1_:_3 bis 1_:_9, speziell bevorzugt 1_:_4 bis 1_:_8, beispielsweise 1_: 4 bis 1_:_7 auf.According to the present invention, the base binder alloy has a weight ratio of iron: 1: 2 to 1: 1, preferably 1: 2.5 to 1: 12, more preferably 1: 3 to 1: 10, and more preferably 1: 3 to 1: _9, more preferably 1 _: _ 4 to 1 _: _ 8, for example 1_: 4 to 1 _: _ 7 on.
Insbesondere gute Ergebnisse können mit Basisbindelegierungen erhalten werden, die 66 bis 90 Gew.-%, vorzugsweise 70 bis 90 Gew.-% Nickel aufweisen.In particular, good results can be obtained with base binder alloys comprising 66 to 90% by weight, preferably 70 to 90% by weight of nickel.
Basisbindelegierungen, die 10 bis 34 Gew.-% Eisen aufweisen, sind bevorzugt. Insbesondere bevorzugt ist ein Eisengehalt in der Basisbindelegierung von 10 bis 30 Gew.-%.Base binder alloys having 10 to 34 wt% iron are preferred. Particularly preferred is an iron content in the base binder alloy of 10 to 30 wt .-%.
Aufgrund der toxischen Eigenschaften des Kobalts ist es bevorzugt, diesen Gehalt in der Basisbindelegierung möglichst gering zu halten. Bevorzugt enthält die Basisbindelegierung daher weniger als 8 Gew.-%, vorzugsweise weniger als 5 Gew.-%, insbesondere weniger als 1 Gew.-% Kobalt.Due to the toxic properties of the cobalt, it is preferred to keep this content as low as possible in the base binder alloy. The base binder alloy therefore preferably contains less than 8% by weight, preferably less than 5% by weight, in particular less than 1% by weight, of cobalt.
In einer besonders bevorzugten Ausführungsform ist die Basisbindelegierung im Wesentlichen frei von Kobalt. In einer weiter bevorzugten Ausführungsform ist die Basisbindelegierung im Wesentlichen frei von anderen Elementen, insbesondere im Wesentlich frei von anderen Metallen als Nickel und Eisen. Nichtmetalle wie Kohlenstoff, Sauerstoff und Stickstoff können in den Basisbindelegierungen vorliegen und sind akzeptabel, da ihre Gehalte im gesinterten Verbundwerkstoff erwünscht sein können und sich beim Sintern.ganz oder teilweise verflüchtigen können.In a particularly preferred embodiment, the base binder alloy is substantially free of cobalt. In a further preferred embodiment, the base binder alloy is substantially free of other elements, in particular substantially free of metals other than nickel and iron. Non-metals such as carbon, oxygen and nitrogen may be present in the base binder alloys and are acceptable because their contents in the sintered composite may be desirable and may volatilize as they sinter or partially.
Im Wesentlichen frei im Sinne der vorliegenden Erfindung bedeutet, dass das Element in einer Menge von weniger als 0,5 Gew.-%, bevorzugt weniger als 0,1 Gew.-%, weiter bevorzugt weniger als 0,08 Gew.-% und insbesondere weniger als 0,02 Gew.-% und im Speziellen weniger als 0,001 Gew.-%, beispielsweise weniger als 0,005 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Basisbindelegierung, vorliegt.Essentially free in the sense of the present invention means that the element in an amount of less than 0.5 wt .-%, preferably less than 0.1 wt .-%, more preferably less than 0.08 wt .-% and in particular less than 0.02 wt .-% and in particular less than 0.001 wt .-%, for example less than 0.005 wt .-%, each based on the total weight of the base binder alloy, is present.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält die Basisbindelegierung weniger als 0,1 Gew.-%, vorzugsweise weniger als 0,08 Gew.-%, insbesondere weniger als 0,02 Gew.-%, im Speziellen weniger als 0,01 Gew.-% Molybdän.In a further preferred embodiment of the method according to the invention, the base binder alloy contains less than 0.1% by weight, preferably less than 0.08% by weight, in particular less than 0.02% by weight, in particular less than 0.01 Wt .-% molybdenum.
Ein weiterer wesentlicher Bestandteil der Zusammensetzung ist der Härteträger. In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Härteträger ausgewählt aus der Gruppe bestehend aus Carbide, Nitride, Boride und Carbonitride. Diese enthalten besonders bevorzugt eines oder mehrere Elemente der 4., 5. oder 6. Nebengruppe des Periodensystems. Er umfasst wenigstens 50 Gew.-% des binären Härteträgers Wolframcarbid, bezogen auf das Gesamtgewicht der Härteträger, und kann darüber hinaus auch weitere Härteträger enthalten, etwa ternäre Härteträger, wie beispielsweise Tantal-Niob-Mischcarbid, Titancarbonitrid oder Wolfram-Titancarbid oder sogar um quaternäre, wie beispielsweise Wolfram-Titan-Carbonitrid oder Wolfram-Titan-Niob-Tantalcarbid.Another essential component of the composition is the hardness carrier. In a preferred embodiment of the present invention, the hardness carrier is selected from the group consisting of carbides, nitrides, borides and carbonitrides. These particularly preferably contain one or more elements of the 4th, 5th or 6th subgroup of the periodic table. He comprises at least 50% by weight of the binary hardener tungsten carbide, based on the total weight of the hardness carriers, and may also contain further hardeners, such as ternary hardeners, such as tantalum-niobium mixed carbide, titanium carbonitride or tungsten-titanium carbide or even quaternary, such as tungsten-titanium-carbonitride or tungsten-titanium-niobium-tantalum carbide.
In einer besonders bevorzugten Ausführungsform ist der Härteträger ausgewählt aus der Gruppe bestehend Titancarbid, Chromcarbid, Tantalcarbid, Niobcarbid, Vanadiumcarbid, Molybdäncarbid, Tantal-Niob-Mischcarbid, Titancarbonitrid, Wölfram-Titancarbid, Wolfram-Titan-Carbonitrid und enthält auf jeden Fall wenigstens 50 Gew.-% Wolframcarbid.In a particularly preferred embodiment, the hardness carrier is selected from the group consisting of titanium carbide, chromium carbide, tantalum carbide, niobium carbide, vanadium carbide, molybdenum carbide, tantalum-niobium mixed carbide, titanium carbonitride, wolfram titanium carbide, tungsten titanium carbonitride and in any case contains at least 50 wt % Tungsten carbide.
Die Härteträger liegen bevorzugt pulverförmig vor. In einer vorteilhaften Ausführungsform weisen die Pulver einen mittleren Teilchendurchmesser von 0,01 bis 150, vorzugsweise 0,1 bis 100 µm auf.The hardness carriers are preferably in powder form. In an advantageous embodiment, the powders have an average particle diameter of 0.01 to 150, preferably 0.1 to 100 microns.
Der mittlere Teilchendurchmesser wird bestimmt gemäß ASTM B330.The average particle diameter is determined according to ASTM B330.
Die Härteträger weisen bevorzugt eine Härte oberhalb von 800 kg/mm2, insbesondere oberhalb von 1000 kg/mm2 auf (gemessen gemäß ISO 6507, Teil 2).The hardness carriers preferably have a hardness above 800 kg / mm 2 , in particular above 1000 kg / mm 2 (measured in accordance with ISO 6507, Part 2).
Die in dem erfindungsgemäßen Verfahren eingesetzte Zusammensetzung kann bevorzugt verschiedene pulverförmige Komponenten enthalten. Die Binderbasislegierung auf FeNi- oder FeCoNi-Basis kann durch vorlegierte oder aus der Schmelze erhaltene Pulver bereitgestellt werden, aber auch durch Metallpulver, d.h. beispielsweise durch Eisen-, Nickel und gegebenenfalls Kobaltpulver.The composition used in the process of the invention may preferably contain various powdery components. The FeNi or FeCoNi based binder base alloy can be provided by prealloyed or melt-derived powders, but also by metal powders, ie, for example, iron, nickel, and optionally cobalt powders.
In einer bevorzugten Ausführungsform liegt der Härteträger und/oder die Basisbindelegierung pulverförmig vor. In einer besonders bevorzugten Ausführungsform liegt die Basisbindelegierung als Legierungspulver vor.In a preferred embodiment, the hardness carrier and / or the base binder alloy is present in powder form. In a particularly preferred embodiment, the base binder alloy is present as alloy powder.
Die in das erfindungsgemäße Verfahren eingesetzten Zusammensetzungen können gegebenenfalls zudem weitere Komponenten als Zusatzstoffe, wie etwa Metalle, beispielsweise ausgewählt aus der Gruppe bestehend aus Rhenium, Molybdän, Chrom und Aluminium enthalten. Insbesondere elementares Wolfram oder elementarer Kohlenstoff kann bevorzugt eingesetzt werden, da diese zur Korrektur des Kohlenstoffgehalts des Verbundwerkstoffs nach dem Sintern geeignet ist. Es können aber auch intermetallische Verbindungen, wie beispielsweise Ni3Al oder sich bei der Sinterung zersetzendes Chromnitrid den zu sinternden Zusammensetzungen hinzugefügt werden. Diese Zusatzstoffe können bis zu 20 Gew.-%, bevorzugt bis zu 10 Gew.-%, ausmachen, wobei die Gewichtsangaben bezogen sind auf das Gesamtgewicht der Zusammensetzung.The compositions used in the process according to the invention may optionally also contain other components as additives, such as metals, for example selected from the group consisting of rhenium, molybdenum, chromium and aluminum. In particular, elemental tungsten or elemental carbon may be preferably used since it is suitable for correcting the carbon content of the composite after sintering. However, intermetallic compounds such as Ni 3 Al or chromium nitride decomposing during sintering can also be added to the compositions to be sintered. These additives may constitute up to 20% by weight, preferably up to 10% by weight, the weight data being based on the total weight of the composition.
Die in das erfindungsgemäße Verfahren einzusetzende Zusammensetzung enthält 50 Gew.-% bis 97 Gew.-% Härteträger, weiter bevorzugt 60 Gew.-% bis 96 Gew.-%, insbesondere 70 Gew.-% bis 96 Gew.-% Härteträger, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung.The composition to be used in the process according to the invention contains from 50% by weight to 97% by weight of hard carrier, more preferably from 60% by weight to 96% by weight, in particular from 70% by weight to 96% by weight of hard carrier, in each case based on the total weight of the composition.
Ferner enthält die Zusammensetzung 3 bis 50 Gew.-% der Basisbindelegierung, vorzugsweise 4 bis 40 Gew.-%, insbesondere 4 bis 30 Gew.-% der Basisbindelegierung, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung.Further, the composition contains 3 to 50 wt .-% of the base binder alloy, preferably 4 to 40 wt .-%, in particular 4 to 30 wt .-% of the base binder alloy, each based on the total weight of the composition.
Das Gesamtgewicht aus Basisbindelegierung, Härteträger und gegebenenfalls vorhandenen Zusatzstoffen ergänzt sich zu 100 Gew.-%.The total weight of base binder alloy, hardness carrier and optionally present additives is supplemented to 100 wt .-%.
Das Sintern erfolgt vorzugsweise bei Temperaturen oberhalb von 1000°C, besonders bevorzugt oberhalb von 1100°C und insbesondere bei Temperaturen zwischen 1150°C und 1600°C. Vorzugsweise erfolgt das Sintern in Gegenwart von flüssiger Phase. Besonders bevorzugt liegt die Basisbindelegierung während des Sinterungsprozesses ganz oder teilweise in flüssiger Form vor.The sintering is preferably carried out at temperatures above 1000 ° C, more preferably above 1100 ° C and in particular at temperatures between 1150 ° C and 1600 ° C. Preferably, the sintering is in the presence of liquid phase. Particularly preferably, the base binder alloy is completely or partially present in liquid form during the sintering process.
In Abhängigkeit von der Zusammensetzung kann die Sinterungsdauer variieren. Üblicherweise erfolgt das Sintern über einen Zeitraum von mindestens 5 Minuten, bevorzugt mindestens 10 Minuten. Sinterzeit und Sintertemperatur stehen im Zusammenhang, da bei höheren Sintertemperaturen die zur vollständigen Verdichtung notwendige Zeit verkürzt werden kann. Die notwendige Sinterzeit- und insbesondere Temperatur hängt zudem stark vom Gehalt an Bindebasislegierung ab. Während beispielsweise bei einem Gehalt der Basisbindelegierung von 20 Gew.-% die Sintertemperatur auf bis zu 1250°C reduziert werden könnte, sind bei 5 Gew.-% Basisbindelegierung Temperaturen von oberhalb 1400°C wünschenswert. Die realisierbaren Sinterzeiten hängen von der Wärmekapazität der Sinteröfen ab, da diese nicht beliebig schnell auf Sintertemperatur aufgeheizt und abgekühlt werden können. Sehr kurze Sinterzeiten von wenigen Minuten sind jedoch durch Mikrowellensinterung oder das sogenannte SPS-Sintern realisierbar.Depending on the composition, the duration of sintering may vary. Usually sintering takes place over a period of at least 5 minutes, preferably at least 10 minutes. Sintering time and sintering temperature are related because at higher sintering temperatures the time required for complete compaction can be shortened. The necessary Sinterzeit- and in particular temperature also depends heavily on the content of binder base alloy. For example, while at a base binder alloy content of 20% by weight, the sintering temperature could be reduced to as low as 1250 ° C, with 5% by weight base binder alloy, temperatures in excess of 1400 ° C are desirable. The realizable sintering times depend on the heat capacity of the sintering furnaces, since they can not be heated and cooled arbitrarily fast to sintering temperature. However, very short sintering times of a few minutes can be achieved by microwave sintering or so-called SPS sintering.
Das erfindungsgemäße Verfahren umfasst in einer bevorzugten Ausführungsform die folgenden Schritte:
- a) Bereitstellen einer Dispersion, umfassend eine Zusammensetzung, enthaltend Härteträger und Basisbindelegierung, wie zuvor definiert, in einem Lösungsmittel,
- b) Vermahlen der Dispersion,
- c) Herstellen eines Pulvers durch Trocknen der Dispersion,
- d) Herstellung von Presskörpern durch Verpressen des Pulvers, oder durch Extrusion des Pulvers unter Zuhilfenahme von Plastifizierungsmitteln, und
- e) Sintern des Presskörpers beziehungsweise des Extrudates.
- a) providing a dispersion comprising a composition comprising a hardness carrier and a base binder alloy, as defined above, in a solvent,
- b) milling the dispersion,
- c) preparing a powder by drying the dispersion,
- d) production of compacts by compression of the powder, or by extrusion of the powder with the aid of plasticizers, and
- e) sintering of the compact or of the extrudate.
Die in Schritt a) beschriebene Bereitstellung der Dispersion erfolgt in einer bevorzugten Ausführungsform dadurch, dass einer pulverförmigen Zusammensetzung, enthaltend Härteträger und Basisbindelegierungspulver ein Lösungsmittel zugesetzt wird. Bevorzugte Lösungsmittel sind solche, die einen Siedepunkt von < 250°C bei 1 bar aufweisen. Speziell bevorzugt sind Alkohole, insbesondere aliphatische Alkohole, beispielsweise Ethanol, und Wasser oder deren Mischungen, wie beispielsweise Mischungen aus Wasser und organischen Lösungsmitteln, insbesondere Wasser und Alkohole. Bevorzugt sind auch organische Lösungsmittel, insbesondere ausgewählt aus der Gruppe bestehend aus Ketonen und Kohlenwasserstoffen, beispielsweise Aceton und aliphatische Kohlenwasserstoffe, wie Heptan und Hexan.The provision of the dispersion described in step a) is carried out in a preferred embodiment by adding a solvent to a pulverulent composition containing a hardness carrier and base binder alloy powder. Preferred solvents are those which have a boiling point of <250 ° C at 1 bar. Especially preferred are alcohols, in particular aliphatic alcohols, for example ethanol, and water or mixtures thereof, such as mixtures of water and organic Solvents, especially water and alcohols. Also preferred are organic solvents, in particular selected from the group consisting of ketones and hydrocarbons, for example acetone and aliphatic hydrocarbons, such as heptane and hexane.
Das Vermahlen der in Schritt a) hergestellten Dispersion kann mit dem Fachmann geläufigen Mahlwerkzeugen durchgeführt werden. Insbesondere bevorzugt erfolgt das Vermahlen der Dispersion in einer Kugelmühle oder einem Attritor, welche besonders bevorzugt mit Hartmetallkugeln ausgerüstet sind.The milling of the dispersion prepared in step a) can be carried out using milling tools familiar to the person skilled in the art. Particularly preferably, the milling of the dispersion is carried out in a ball mill or an attritor, which are particularly preferably equipped with hard metal balls.
Die Dispersion kann vor dem Trocknungsschritt gegebenenfalls zusätzlich organische Hilfsmittel wie Wachse, Dispersionshilfsmittel, Inhibitoren, Kleber oder Emulgierungsmittel enthalten.The dispersion may optionally additionally contain organic auxiliaries, such as waxes, dispersion aids, inhibitors, adhesives or emulsifiers, before the drying step.
In einer bevorzugten Ausführungsform schließt sich an Schritt b) das Herstellen eines Pulvers durch Trocknen der Dispersion an. Die Dispersion kann beispielsweise sprühgetrocknet oder unter vermindertem Druck getrocknet werden. Hier hat es sich als vorteilhaft erwiesen, als Lösungsmittel niedrig siedende Lösungsmittel zu verwenden, die unter vermindertem Druck leicht abdestilliert werden können.In a preferred embodiment, step b) is followed by preparing a powder by drying the dispersion. The dispersion may, for example, be spray-dried or dried under reduced pressure. Here it has proved to be advantageous to use as the solvent low-boiling solvent which can be easily distilled off under reduced pressure.
In einer weiteren bevorzugten Ausführungsform wird das getrocknete Pulver aus Schritt c) verwendet, um Presskörper oder Extrudat herzustellen. Das Verpressen des getrockneten Pulvers erfolgt bevorzugt in dazu geeigneten Werkzeugen, oder isostatisch.In a further preferred embodiment, the dried powder from step c) is used to produce compacts or extrudates. The pressing of the dried powder is preferably carried out in suitable tools, or isostatically.
Anschließend wird in Schritt e) der Presskörper oder das Extrudat gesintert. In einer bevorzugten Ausführungsform erfolgt das Sintern in Gegenwart einer Schutzgasatmosphäre oder unter vermindertem Druck.Subsequently, in step e), the compact or the extrudate is sintered. In a preferred embodiment, the sintering is carried out in the presence of a protective gas atmosphere or under reduced pressure.
In einer weiteren bevorzugten Ausführungsform werden die gesinterten Verbundwerkstoffe in einem separaten oder integrierten Nachverdichtungsschritt bei erhöhtem Druck weiter verdichtet.In another preferred embodiment, the sintered composites are further densified at elevated pressure in a separate or integrated post-densification step.
In einer weiteren bevorzugten Ausführung erfolgen das Verpressen und das Sintern gleichzeitig und bevorzugt durch zusätzliche Anwendung elektrischer Felder oder Ströme. Diese können für eine erhöhte Temperatur während des Sinterns und Verpressen sorgen.In a further preferred embodiment, the pressing and the sintering are carried out simultaneously and preferably by additional application of electric fields or currents. These can provide an elevated temperature during sintering and compression.
Die gemäß dem erfindungsgemäßen Verfahren erhaltenen Verbundwerkstoffe werden gegebenenfalls nachfolgend auf die benötigte Form geschliffen, wobei Werkzeuge zur Metallzerspanung meistens mittels Chemical Vapor Deposition-Techniken (CVD) oder Physical Vapor Deposition (PVD) oder kombinierten Verfahren weiter beschichtet werden können.The composite materials obtained according to the method according to the invention are optionally subsequently ground to the required shape, with tools for metal cutting usually by means of chemical vapor deposition techniques (CVD) or physical vapor deposition (PVD) or combined methods can be further coated.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein gesinterter Verbundwerkstoff mit den Merkmalen des Anspruch 10, insbesondere ein gesinterter Verbundwerkstoff erhältlich gemäß dem erfindungsgemäßen Verfahren.A further subject of the present invention is a sintered composite material with the features of
Die erfindungsgemäßen Verbundwerkstoffe umfassen als Bindelegierung ein oder mehrere Elemente der Gruppe Fe, Ni sowie gegebenenfalls Co. Neben dieser Basis sind in der Bindelegierung Elemente enthalten, deren Gehalt in der Bindelegierung im Gegensatz zu den vorgenannten nicht frei wählbar ist, sondern das Ergebnis von Löslichkeiten und Gleichgewichtseinstellungen beim Sintern sind. Dies sind insbesondere W, Mo und Cr, aber in geringeren Mengen auch andere carbid-bildende Metalle (beispielsweise V, Ti, Zr, Hf, Ta, Nb=) sowie insbesondere Kohlenstoff, aber auch nicht-carbidbildende Metalle wie Rhenium und Ruthenium. Die im gesinterten= Hartmetall vorliegende Bindelegierung bildet sich also erst beim Sintern aus der Basislegierung und den Gleichgewichtseinstellungen mit den sonstigen Komponenten, die im Hartmetall noch enthalten sind, heraus. Die Basislegierung kann solche Elemente auch bereits enthalten. Die endgültige Zusammensetzung der Bindelegierung stellt sich jedoch erst beim Sintern und dem nachfolgenden Abkühlen des Hartmetalls ein.The composite materials according to the invention include as binder alloy one or more elements of the group Fe, Ni and optionally Co. In addition to this base are in the binder alloy elements whose content in the binder alloy in contrast to the above is not arbitrary, but the result of solubilities and Balance settings during sintering are. These are in particular W, Mo and Cr, but in smaller amounts, other carbide-forming metals (for example V, Ti, Zr, Hf, Ta, Nb =) and in particular carbon, but also non-carbide-forming metals such as rhenium and ruthenium. The present in the sintered = hard metal binder alloy thus forms only during sintering from the base alloy and the balance settings with the other components that are still contained in the carbide out. The base alloy may already contain such elements. However, the final composition of the binder alloy does not become established until sintering and subsequent cooling of the cemented carbide.
Ferner kann die Bindelegierung auch eines oder mehrere Elemente enthalten, ausgewählt aus der Gruppe W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, C. Diese Elemente haben nur eine begrenzte Löslichkeit sowohl in der FeNi-Basislegierung als auch in anderen Basislegierungen, und ihre Gehalte stellen sich beim Sintern und beim Abkühlen aufgrund ihrer temperaturabhängigen Löslichkeit in zusätzlicher Abhängigkeit vom Kohlenstoffgehalt gemäß dem Prinzip des Löslichkeitsproduktes der Carbide je nach deren thermodynamischer Stabilität ein. Die Summe dieser Elemente in der erfindungsgemäßen Bindelegierung liegt daher im Allgemeinen bei unter 30 Gew.-%, bezogen auf das Gesamtgewicht der Bindelegierung des gesinterten Verbundwerkstoffs.Further, the binder alloy may also contain one or more elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, C. These elements have limited solubility both in the FeNi base alloy as well as in other base alloys, and their contents are adjusted during sintering and cooling due to their temperature-dependent solubility in addition to the carbon content according to the principle of solubility of the carbides depending on their thermodynamic stability. The sum of these elements in the binder alloy according to the invention is therefore generally less than 30 wt .-%, based on the total weight of the binder alloy of the sintered composite material.
In einer bevorzugten Ausführungsform weist die Bindelegierung des erfindungsgemäßen gesinterten Verbundwerkstoffs bis zu 30 Gew.-% eines oder mehrerer Elemente, ausgewählt aus der Gruppe bestehend aus W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, B, N und C auf.In a preferred embodiment, the binder alloy of the sintered composite of the invention comprises up to 30% by weight of one or more elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru , Al, Mn, B, N and C.
Die Auswahl und Gehalte der vorstehenden Elemente haben einen Einfluss auf die Eigenschaften der Bindelegierung. So erhöhen beispielsweise W, Cr und Mo aufgrund ihrer Löslichkeiten in der Größenordnung von maximal 5 bis 25 Gew.-% die Warmhärte. Daher ist man in der industriellen Praxis bestrebt, den Kohlenstoff des Hartmetalls so gering einzustellen, dass die Gehalte dieser Elemente in der Bindelegierung möglichst hoch sind, ohne dass es zu schädlichen Kohlenstoff-Mangelphasen kommt (sogenannte eta-Phasen). Der tatsächlich gelöste Wolframgehalt in Hartmetallen mit Co-Basis-Legierungen wird über die magnetische Sättigung bestimmt. Liegt die magnetische Sättigung des Co-Inhaltes von reinen WCCo-Hartmetallen bei weniger als 70% der des reinen Kobalts, so bilden sich eta-Phasen. Industriell wird zu dieser Grenze aus Gründen der Prozess-Sicherheit jedoch ein Sicherheitsabstand gehalten.The selection and contents of the above elements have an influence on the properties of the binder alloy. For example, W, Cr and Mo increase the hot hardness due to their solubilities on the order of not more than 5 to 25% by weight. Therefore, it is desirable in industrial practice to set the carbon of the cemented carbide so low that the contents of these elements in the binder alloy are as high as possible without causing harmful carbon deficiency phases (so-called eta phases). The actual dissolved tungsten content in hard metals with Co base alloys is determined by the magnetic saturation. If the magnetic saturation of the Co content of pure WCCo hard metals is less than 70% that of pure cobalt, eta phases are formed. For industrial reasons, however, a safety margin is kept to this limit for reasons of process safety.
Die erfindungsgemäßen gesinterten Verbundwerkstoffe (Hartmetalle) können geschliffen und beschichtet werden, je nach Erfordernis der vorgesehenen Anwendung. Sie können ferner in Werkzeughalter eingesetzt, gefügt, verlötet oder diffusionsverschweißt werden.The sintered composite materials according to the invention (hard metals) can be ground and coated, depending on the requirement of the intended application. They can also be used in tool holders, joined, soldered or diffusion welded.
Die erfindungsgemäßen Hartmetalle können für alle Anwendungen eingesetzt werden, wo heute Hartmetalle mit einer Bindelegierung auf Kobalt-, Nickel-, CoNi-, FeNi- oder FeCoNi-Basis eingesetzt werden.The cemented carbides according to the invention can be used for all applications where cemented carbides with a cobalt, nickel, CoNi, FeNi or FeCoNi-based cemented carbide are used today.
Das nach dem Sintern und gegebenenfalls nach der schleifenden oder elektroerodierenden Endbearbeitung vorliegende Hartmetallteil hat vorteilhaft eine definierte Geometrie. Diese kann besonders bevorzugt länglich sein (z.B. herausgeschliffen aus einem gesinterten Rundstab), besonders bevorzugt aber auch plattenförmig zur drehenden oder fräsenden Bearbeitung von Werkstoffen wie beispielsweise Metallen, Steinen und Verbundwerkstoffen. In allen Fällen können die Hartmetallwerkzeuge bevorzugt eine oder mehrere Beschichtungen aus den Klassen der Nitride, Boride, Oxide oder der superharten Schichten haben (z.B. Diamant, kubisches Bornitrid). Diese können durch PVD oder CVD-Verfahren oder deren Kombinationen oder Variationen aufgebracht sein und nach dem Aufbringen in ihrem Eigenspannungszustand noch verändert sein. Es kann sich in bevorzugter Weise aber auch um Hartmetallteile weiterer und beliebiger Geometrie und Anwendung handeln, wie Schmiedewerkzeuge, Umformwerkzeuge, Senker, Bauteile, Messer, Schälplatten, Walzen, Stanzwerkzeuge, pentagonale Bohrerspitzen zum Einlöten, Bergbaumeißel, Fräswerkzeuge zur fräsenden Bearbeitung von Beton und Asphalt, Gleitringdichtungen sowie jede weitere beliebige Geometrie und Anwendung.The hard metal part present after sintering and optionally after the grinding or electroerodizing finishing advantageously has a defined geometry. This may most preferably be elongated (for example, ground out of a sintered round rod), but more preferably also plate-shaped for turning or milling of materials such as metals, bricks and composites. In all cases, the cemented carbide tools may preferably have one or more coatings from the classes of nitrides, borides, oxides or superhard layers (e.g., diamond, cubic boron nitride). These can be applied by PVD or CVD methods or their combinations or variations and still be changed after application in their residual stress state. It may also be in a preferred manner but also carbide parts further and arbitrary geometry and application, such as forging tools, forming tools, countersinks, components, knives, peeling plates, rollers, stamping tools, pentagonal drill bits for soldering, mining chisel, milling tools for milling processing of concrete and asphalt , Mechanical seals and any other geometry and application.
Für manche Anwendungen kann das Hartmetall auch noch die beim Sintern entstehende Oberfläche aufweisen, und gegebenenfalls anschließend beschichtet oder unbeschichtet zum Einsatz kommen.For some applications, the carbide may also have the surface resulting from sintering, and optionally subsequently coated or uncoated used.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen gesinterten Verbundwerkstoffs für Werkzeuge oder Bauteile. Insbesondere können die erfindungsgemäßen gesinterten Verbundwerkstoffe für Umform- oder Zerkleinerungswerkzeuge verwendet werden. In einer besonders bevorzugten Ausführungsform ist das Werkzeug ein Werkzeug zur Zerspanung von metallischen Werkzeugen oder zum Umformen metallischer Werkstücke bei hohen Temperaturen, beispielsweise ein Werkzeug zum Schmieden, Drahtziehen oder Walzen.Another object of the present invention is the use of the sintered composite material according to the invention for tools or components. In particular, the sintered composite materials according to the invention can be used for forming or comminution tools. In a particularly preferred embodiment, the tool is a tool for cutting metallic tools or for forming metallic workpieces at high temperatures, for example a tool for forging, wire drawing or rolling.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer Basislegierung, umfassend
- α) 66 bis 93 Gew.-% Nickel,
- β) 7 bis 34 Gew.-% Eisen und
- γ) 0 bis 9 Gew.-% Kobalt,
- α) from 66 to 93% by weight of nickel,
- β) 7 to 34 wt .-% iron and
- γ) 0 to 9% by weight of cobalt,
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne jedoch auf diese beschränkt zu sein.The invention is further illustrated by the following examples, but without being limited thereto.
460 g Wolframcarbid mit 0,6 µm Korngröße nach ASTM B330 (=Typ WC DS60, Hersteller: H.C. Starck GmbH, Goslar, Deutschland=) wurden mit 40 g eines marktüblichen Kobalt-Pulvers (Typ "efp"; Hersteller: Umicore, Belgien) in einer Kugelmühle mit 0,57 Litern 94%igen Ethanol für 14 h bei 63 UpM mischgemahlen. Dabei wurden 5 kg Hartmetallkugeln verwendet. Es wurden 2 Ansätze mit unterschiedlichen Kohlenstoffgehalten ("high carbon" bzw. "low carbon") hergestellt, so dass nach dem Sintern unterschiedliche Kohlenstoffgehalte und damit unterschiedliche magnetische Sättigungen der Hartmetalle bzw. der darin enthaltenen enthaltenen Bindelegierungen auf Kobaltbasis resultieren.460 g of tungsten carbide with a grain size of 0.6 μm in accordance with ASTM B330 (= type WC DS60, manufacturer: HC Starck GmbH, Goslar, Germany =) were mixed with 40 g of a customary cobalt powder (type "efp", manufacturer: Umicore, Belgium). mixed in a ball mill with 0.57 liters of 94% ethanol for 14 h at 63 rpm. In this case, 5 kg of hard metal balls were used. Two batches with different carbon contents ("high carbon" or "low carbon") were produced so that different carbon contents and thus different magnetic saturations of the hard metals or the cobalt-based binder alloys contained therein result after sintering.
Aus der erhaltenen Suspension wurde im Vakuum das Ethanol durch Destillation abgetrennt, und das erhaltene Hartmetallpulver axial bei 150 MPa gepresst und bei 1420°C gesintert. Die plattenförmigen Hartmetallstücke wurden geschliffen, poliert und auf ihre Eigenschaften untersucht. Beide Chargen zeigten als Sinterlinge weder eta-Phasen noch Kohlenstoffausscheidungen. Der unterschiedliche Kohlenstoffgehalt nach dem Sintern und der dadurch bedingte unterschiedliche Wolframgehalt in der Bindemetall-Legierung ist das Ergebnis von Stoffaustauch bei der Sinterung. Somit besteht die Bindemetalllegierung in der Basis aus Kobalt, mit Anteilen von Wolfram und eventuell Kohlenstoff.
Es wurde in beiden Fällen in einer Härteprüfapparatur die Raumtemperaturhärte als Vickershärte HV30 nach ISO 3878 als auch die Warmhärte bei ausgewählten Temperaturen bis 800°C unter Schutzgas gemessen (
Die Risszähigkeit K1C wurde nach der Formel von Shetty bestimmt:
Das Beispiel 1 wurde wiederholt, jedoch bestanden die beiden Ansätze aus 461,5 g Wolframcarbid mit 0,6 µm Korngröße und die Bindemetallbasis aus 38,5 g eines Legierungspulvers mit 15 Gew.-% Fe und 85 Gew.-% Ni. Der Kohlenstoffgehalt dieser Hartmetallansätze wurde durch Rußzugabe so eingestellt (5,55% für die "low carbon"-Variante bzw. 5,65% für die "high carbon"-Variante), dass nach dem Sintern bei 1440°C für 60 min weder eta-Phasen noch Kohlenstoffausscheidungen erhalten werden. Der unterschiedliche Kohlenstoffgehalt nach dem Sintern und der dadurch bedingte unterschiedlich Wolframgehalt in der Bindemetall-Legierung ist das Ergebnis von Stoffaustausch bei der Sinterung. Somit besteht die Bindemetalllegierung in der Basis aus Eisen und Nickel im Gewichtsverhältnis von 1_:_5,7, legiert mit Anteilen von Wolfram und eventuell Kohlenstoff.Example 1 was repeated except that the two batches consisted of 461.5 g tungsten carbide of 0.6 μm grain size and the binder metal base of 38.5 g of an alloy powder containing 15% by weight Fe and 85% by weight Ni. The carbon content of these hard metal batches was adjusted by soot addition (5.55% for the "low carbon" variant or 5.65% for the "high carbon" variant), that after sintering at 1440 ° C. for 60 minutes neither eta-phases are still obtained carbon precipitates. The different carbon content after sintering and the consequent different tungsten content in the binder metal alloy is the result of mass transfer during sintering. Thus, the binder metal alloy in the base consists of iron and nickel in a weight ratio of 1: 5.7, alloyed with proportions of tungsten and possibly carbon.
Die Ergebnisse nach Sinterung bei 1420 °C für 60 min und metallografischer Untersuchung sind in der folgenden Tabelle 2 wiedergegeben:
Die Raumtemperaturhärten liegen etwas niedriger als diejenigen aus dem Beispiel 1, was durch die geringe Härte und höhere Plastizität der austenitischen Basis-Legierung bedingt ist. Allerdings liegen die Risszähigkeiten - selbst unter Berücksichtigung der etwas geringeren Härten - auf mindestens dem gleichen Niveau wie im Beispiel 1. Steigende Kohlenstoffwerte im Sinterling korrelieren mit steigender magnetischer Sättigung und - wegen der niedrigen Dichte von Grafit - mit fallender Dichte.The room temperature hardnesses are slightly lower than those of Example 1, which is due to the low hardness and higher plasticity of the austenitic base alloy. However, the fracture toughness, even taking into account the somewhat lower hardnesses, is at least at the same level as in example 1. Increasing carbon values in the sintered material correlate with increasing magnetic saturation and - due to the low density of graphite - with decreasing density.
Die Warmhärten wurden wie zuvor bestimmt (Ergebnisse siehe
Sichtbar wird auch, dass vorteilhafterweise bei dieser Bindebasislegierung die Eigenschaften K1C und Warmhärte nur gering vom Kohlenstoffgehalt des Hartmetalls abhängen.It is also apparent that, advantageously, in the case of this binder-base alloy, the properties K 1 C and hot hardness depend only slightly on the carbon content of the cemented carbide.
Die Raumtemperaturhärten in der Warmhärtekurve stimmen nicht mit denjenigen aus den obenstehenden Tabellen des Beispiels 1 und 2 überein, da sie mithilfe eines anderen Härteprüfapparats, nämlich des Warmhärteprüfers, bestimmt wurden.The room-temperature hardnesses in the hot-cure curve are not consistent with those in the above Tables of Examples 1 and 2 since they were determined using another hardness tester, the hot-hardness tester.
Analog zum Beispiel 2 wurden verschieden Ansätze aus einem WC (0.6 µm Korngröße und 7,5% eines FeCoNi-Legierungspulvers (Ampersint® MAP A6050, Hersteller: H.C. Starck GmbH, Deutschland, Zusammensetzung: Fe 40%, Co 20%, Ni40%) als Bindemetallbasis hergestellt. Der Volumenanteil der Basisbindelegierung entspricht dem des Beispiels 1.Analogous to Example 2 different approaches (from a toilet (0.6 micron particle size and 7.5% of a FeCoNi alloy powder AMPERSINT ® MAP A6050, manufacturers were: HC Starck GmbH, Germany, composition: Fe 40%, Co 20%, Ni40%) The volume fraction of the base binder alloy corresponds to that of Example 1.
Die erhaltenen Hartmetalle, welche weder eta-Phase noch Kohlenstoffausscheidungen enthielten, wiesen eine HV30 zwischen 1626 und 1648 auf. Die K1C -Werte lagen größtenteils zwischen 8,5 und 8,9 MPa m1/2. Lediglich in einem sehr engen Bereich bei hohen Kohlenstoffgehalten an der Grenze zum Gebiet der Kohlenstoffausscheidung, wurden Werte von 9,3 bis 9,5 für den K1C festgestellt.The resulting cemented carbides containing neither eta phase nor carbon precipitates had an HV30 between 1626 and 1648. The K 1 C values were for the most part between 8.5 and 8.9 MPa m 1/2 . Only in a very narrow range with high carbon contents at the boundary to the area of carbon precipitation, values of 9.3 to 9.5 for the K 1 C were found.
Die Unterlegenheit der FeCoNi-Basislegierung in der Warmhärte wurde in
Zusammenfassend sind Hartmetalle mit einer FeCoNi 40/20/40-Basisbindung in Hinsicht auf K1C und Warmhärte solchen unterlegen, die mit Kobalt als Basis für die Bindelegierung gebunden sind.In summary, hard metals with a FeCoNi 40/20 / 40A base binding in terms of K 1 C and hot hardness are inferior to those which are bound with cobalt as a base for the binder alloy.
Analog zu Beispiel 1 wurden Hartmetalle mit 7.4 Gew.-% eines FeNi 50/50-Legierungspulvers (Ampersint® MAP A5000, Hersteller H.C. Starck GmbH, Deutschland) als Basisbindelegierung hergestellt. Der Volumenanteil der Basisbindelegierung entspricht dem des Beispiels 1. Die erhaltenen Hartmetalle, welche frei von eta-Phasen oder Kohlenstoffausscheidungen waren, wiesen HV30-Werte zwischen 1619 und 1636 auf. Die K1C -Werte lagen zwischen 8,3 und 8,6 MPa m1/2.
Somit weisen Hartmetalle mit einer Bindelegierung auf Basis von FeNi 50/50 zwar mindestens gleiche Warmhärten auf, zeigen aber vergleichsweise geringe K1C -Werte, womit derartig gebundenen Hartmetall nicht universell einsetzbar sind (
Analog zu Beispiel 1 wurden Hartmetalle mit unterschiedlichen Fe/Ni-Verhältnissen zwischen 35/65 bis 0/100 hergestellt. In allen Fällen entsprach der Volumenanteil der Bindebasislegierung dem des Beispiels 1. Die Variation des Fe :_Ni-Verhältnisses in der Bindebasislegierung wurde eingestellt, indem FeNi 50/50 wie im Beispiel 4 (=Fe_:_Ni-Verhältnis 1_:_1) und ein Ni-Pulver (Hersteller=: Vale-Inco, GB, Typ 255) verwendet wurden in derartigen Mengen, dass sich das gewünschte Fe_:_Ni-Verhältnis ergab, und der Volumenanteil des Beispiels 1 erreicht wurde. Durch zusätzliche Variation des Kohlenstoffgehaltes in den Ansätzen wurde sichergestellt, dass alle Hartmetalle nach dem Sintern frei von Kohlenstoffausscheidungen sowie von eta-Phasen waren. Alle Hartmetalle wurden zusammen bei 1420°C für 60 min gesintert.Hard metals with different Fe / Ni ratios between 35/65 and 0/100 were prepared analogously to Example 1. In all cases, the volume fraction of the binder-base alloy was that of Example 1. The variation of the Fe: Ni ratio in the binder-base alloy was adjusted by using
Die folgende Tabelle 3 fasst die so erhaltenen Ergebnisse zusammen:
Deutlich wird, dass die Härte mit steigenden Nickel-Gehalten nur sehr schwach abfällt, während der K1C leicht ansteigt und bei etwa 65% Ni die Werte der Vergleichshartmetalle aus Beispiel 1 erreicht. Dies gilt auch für den K1C, dessen Werte bei Werten über 10 zu größeren Relativ-Fehlern neigen. Die K1C -Werte wurden nach der Formel von Shetty aus den Risslängen berechnet. Da es bei sehr kurzen Risslängen zu großen Relativfehlern beim Ablesen der Risslänge unter dem Mikroskop kommt, andererseits aber kurze Risslängen hohe K1C - Werte ergeben, nimmt der relative Fehler des K1C mit dem Messwert selbst stetig zu, was man an Figur sehr gut erkennen kann.It becomes clear that the hardness decreases only very slightly with increasing nickel contents, while the K 1 C rises slightly and reaches the values of the comparison hard metals from Example 1 at about 65% Ni. This also applies to the K 1 C, whose values tend to larger relative errors at values above 10. The K 1 C values were calculated according to the formula of Shetty from the crack lengths. Since very short crack lengths lead to large relative errors when reading the crack length under the microscope, but on the other hand short crack lengths result in high K 1 C values, the relative error of the K 1 C increases steadily with the measured value itself can recognize well.
Überraschenderweise fällt die Härte aber von 50% Ni bis zu unerwartet hohen Ni-Gehalten von 90% kaum ab. Der Verlauf der Härte ist überraschenderweise bis zu Werten von 90% Ni fast konstant, um dann abbruchartig abzufallen. Man kann interpolieren, dass das erforderliche Härteniveau, welches sich aus dem niedrigeren Härtewert aus Vergleichsbeispiel 1 ergibt, bei Ni-Gehalten von bis zu 93% erreicht wird.Surprisingly, the hardness barely drops from 50% Ni to unexpectedly high Ni contents of 90%. The course of the hardness is surprisingly almost constant up to values of 90% Ni, then drop off abruptly. It can be interpolated that the required hardness level, which results from the lower hardness value of Comparative Example 1, is achieved at Ni contents of up to 93%.
Die Eigenschaftskombination der WCCo-Hartmetalle aus Beispiel 1 werden mit einem Fe/Ni-Verhältnis zwischen etwa 34/66 (=entsprechend etwa 1 : 2=) und 7/93 (=entsprechend etwa 1_: 13) erreicht, darunter fällt der K1C ab, darüber fällt die Härte sehr stark und scharf ab.The combination of properties of the WCCo hard metals from Example 1 are achieved with a Fe / Ni ratio of between about 34/66 (= corresponding to about 1: 2 =) and 7/93 (= corresponding to about 1_: 13), including the K 1 falls C on, the hardness falls off sharply and sharply.
Claims (15)
- Process for producing a composite material, which comprises providing a composition containinga) from 50 to 97% by weight of at least one hardness carrier comprising at least 50% by weight of tungsten carbide, based on the total weight of the hardness carrier,b) from 50 to 3% by weight of a base binder alloy comprisingα) from 66 to 93% by weight of nickel,β) from 34 to 7% by weight of iron andγ) from 0 to 9% by weight of cobalt,where the base binder alloy has a weight ratio of iron:nickel of from 1:2 to 1:13 and the proportions by weight α, β and γ of the base binder alloy add up to 100% by weight, andc) up to 30% by weight of one or more of the elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, B, N and C, where the total weight of base binder alloy, hardness carrier and optionally present additives adds up to 100% by weight, and sintering said composition.
- Process according to Claim 1, characterized in that the base binder alloy has a weight ratio of iron:nickel from 1:2.5 to 1:12, preferably from 1:3 to 1:10 and in particular from 1:3 to 1:9, especially preferably from 1:4 to 1:8, for example from 1:4 to 1:7.
- Process according to Claim 1 or 2, characterized in that the base binder alloy comprises from 66 to 90% by weight, preferably from 70 to 90% by weight, of nickel.
- Process according to at least one of Claims 1 to 3, characterized in that the base binder alloy contains less than 8% by weight of cobalt, preferably less than 5% by weight of cobalt.
- Process according to at least one of Claims 1 to 4, characterized in that the base binder alloy contains less than 0.1% by weight of molybdenum, preferably less than 0.08% by weight, in particular less than 0.02% by weight, of molybdenum.
- Process according to at least one of Claims 1 to 5, characterized in that the hardness carrier is selected from the group consisting of carbides, nitrides, borides and carbonitrides.
- Process according to at least one of Claims 1 to 6, characterized in that the hardness carrier comprises one or more elements of transition groups 4A, 5A and 6A of the Periodic Table.
- Process according to any of the preceding claims, characterized in that the base binder alloy is present as alloy powder.
- Process according to at least one of the preceding claims, which comprises the steps:a) provision of a dispersion comprising a composition containing hardness carrier (s) and base binder alloy powder in a solvent,b) milling of the dispersion,c) production of a powder by drying of the dispersion,d) production of compacts by pressing the powder or by extrusion of the powder with the aid of plasticizing agents ande) sintering of the compact or of the extruder.
- Sintered composite material containing at least one hardness carrier and a binder alloy,
the hardness carrier comprising at least 50% by weight of tungsten carbide, based on the total weight of the hardness carrier, the binder alloy consisting of the elements Fe and Ni and optionally Co and up to 30% by weight of one or more of the elements selected from the group consisting of W, Mo, Cr, V, Ta, Nb, Ti, Zr, Hf, Re, Ru, Al, Mn, B, N and C,
where the binder is obtainable from a base binder alloy comprising from 66 to 93% by weight of nickel, from 7 to 34% by weight of iron and from 0 to 9% by weight of cobalt and has a weight ratio of iron:nickel of from 1:2 to 1:13. - Sintered composite material according to Claim 10, characterized in that the base binder alloy contains less than 0.5% by weight of cobalt.
- Sintered composite material according to Claim 10 or 11, characterized in that the base binder alloy has a weight ratio of iron:nickel from 1:2.5 to 1:12, preferably from 1:3 to 1:10 and in particular from 1:3 to 1:9, especially preferably from 1:4 to 1:8, for example from 1:4 to 1:7.
- Use of the sintered composite material according to any of Claims 10 to 12 for tools or parts.
- Use according to Claim 13, characterized in that the tools are forming or comminution tools.
- Use according to Claim 13 or 14, characterized in that the tool is a tool for the cutting machining of metallic tools or for the forming of metal workpieces at high temperatures, for example a tool for forging, wire drawing or rolling.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES11167901.5T ES2628422T3 (en) | 2011-05-27 | 2011-05-27 | FeNi binder with universal applicability |
EP11167901.5A EP2527480B1 (en) | 2011-05-27 | 2011-05-27 | NiFe binder with universal application |
PL11167901T PL2527480T3 (en) | 2011-05-27 | 2011-05-27 | NiFe binder with universal application |
PCT/EP2012/059748 WO2012163804A1 (en) | 2011-05-27 | 2012-05-24 | Feni binder having universal usability |
RU2013158048A RU2623545C2 (en) | 2011-05-27 | 2012-05-24 | Feni - binding agent with universal opportunities of use |
CN201280025581.3A CN103562422B (en) | 2011-05-27 | 2012-05-24 | Universal FeNi-binding agent |
JP2014513132A JP6124877B2 (en) | 2011-05-27 | 2012-05-24 | FeNi binder with versatility |
KR1020137032074A KR102079325B1 (en) | 2011-05-27 | 2012-05-24 | FeNi BINDER HAVING UNIVERSAL USABILITY |
US14/122,246 US9821372B2 (en) | 2011-05-27 | 2012-05-24 | FeNi binder having universal usability |
IL229654A IL229654B (en) | 2011-05-27 | 2013-11-27 | Feni binder having universal usability |
US15/730,747 US11207730B2 (en) | 2011-05-27 | 2017-10-12 | FeNi binder having universal usability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11167901.5A EP2527480B1 (en) | 2011-05-27 | 2011-05-27 | NiFe binder with universal application |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2527480A1 EP2527480A1 (en) | 2012-11-28 |
EP2527480B1 true EP2527480B1 (en) | 2017-05-03 |
Family
ID=46168477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11167901.5A Active EP2527480B1 (en) | 2011-05-27 | 2011-05-27 | NiFe binder with universal application |
Country Status (10)
Country | Link |
---|---|
US (2) | US9821372B2 (en) |
EP (1) | EP2527480B1 (en) |
JP (1) | JP6124877B2 (en) |
KR (1) | KR102079325B1 (en) |
CN (1) | CN103562422B (en) |
ES (1) | ES2628422T3 (en) |
IL (1) | IL229654B (en) |
PL (1) | PL2527480T3 (en) |
RU (1) | RU2623545C2 (en) |
WO (1) | WO2012163804A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2527480B1 (en) * | 2011-05-27 | 2017-05-03 | H.C. Starck GmbH | NiFe binder with universal application |
CA2861581C (en) | 2011-12-30 | 2021-05-04 | Scoperta, Inc. | Coating compositions |
MX2018002635A (en) | 2015-09-04 | 2019-02-07 | Scoperta Inc | Chromium free and low-chromium wear resistant alloys. |
US10287824B2 (en) | 2016-03-04 | 2019-05-14 | Baker Hughes Incorporated | Methods of forming polycrystalline diamond |
JP2019516011A (en) | 2016-04-20 | 2019-06-13 | アーコニック インコーポレイテッドArconic Inc. | FCC materials of aluminum, cobalt, iron and nickel, and products using the same |
US11434549B2 (en) * | 2016-11-10 | 2022-09-06 | The United States Of America As Represented By The Secretary Of The Army | Cemented carbide containing tungsten carbide and finegrained iron alloy binder |
US11292750B2 (en) | 2017-05-12 | 2022-04-05 | Baker Hughes Holdings Llc | Cutting elements and structures |
US11396688B2 (en) | 2017-05-12 | 2022-07-26 | Baker Hughes Holdings Llc | Cutting elements, and related structures and earth-boring tools |
US11536091B2 (en) | 2018-05-30 | 2022-12-27 | Baker Hughes Holding LLC | Cutting elements, and related earth-boring tools and methods |
JP7384844B2 (en) * | 2018-06-29 | 2023-11-21 | エービー サンドビック コロマント | Cemented carbide with alternative binders |
CN109136610A (en) * | 2018-09-11 | 2019-01-04 | 张家港市六福新材料科技有限公司 | A kind of preparation method of aluminum-nitride-based cermet material |
CN113195759B (en) | 2018-10-26 | 2023-09-19 | 欧瑞康美科(美国)公司 | Corrosion and wear resistant nickel base alloy |
US11644106B2 (en) | 2018-12-19 | 2023-05-09 | Oerlikon Metco (Us) Inc. | High-temperature low-friction cobalt-free coating system for gate valves, ball valves, stems, and seats |
CN109439942B (en) * | 2018-12-27 | 2020-05-22 | 吉林大学 | Preparation method of ceramic-aluminum composite material based on endogenous nano TiCxNy particles |
CA3136967A1 (en) | 2019-05-03 | 2020-11-12 | Oerlikon Metco (Us) Inc. | Powder feedstock for wear resistant bulk welding configured to optimize manufacturability |
BR112021023613A2 (en) * | 2019-05-27 | 2022-01-04 | Sandvik Coromant Ab | A coated cutting tool |
WO2020239747A1 (en) * | 2019-05-27 | 2020-12-03 | Ab Sandvik Coromant | A coated cutting tool |
CN111876643A (en) * | 2020-08-06 | 2020-11-03 | 郑州航空工业管理学院 | Preparation method of high-strength and high-toughness WC-Fe-Ni hard alloy |
DE102020213651A1 (en) * | 2020-10-29 | 2022-05-05 | Mahle International Gmbh | Wear-resistant, highly thermally conductive sintered alloy, especially for bearing applications and valve seat inserts |
EP4421196A1 (en) * | 2023-02-27 | 2024-08-28 | Hilti Aktiengesellschaft | Hammer drill with nickel-iron binder |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4990612A (en) | 1972-12-29 | 1974-08-29 | ||
US20020112896A1 (en) | 2000-12-22 | 2002-08-22 | Olof Kruse | Coated cutting tool insert with iron-nickel based binder phase |
US6554885B1 (en) | 1998-05-20 | 2003-04-29 | H. C. Starck Gmbh | Pre-alloyed powder |
WO2006119522A1 (en) | 2005-05-13 | 2006-11-16 | Boehlerit Gmbh & Co. Kg. | Hard metal body with tough surface region |
CN101560623A (en) | 2009-05-22 | 2009-10-21 | 华南理工大学 | WC toughened and strengthened Ni3Al hard alloy and preparation method thereof |
US20100239855A1 (en) | 2007-10-02 | 2010-09-23 | H.C. Starck Gmbh | Tool |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1938074C2 (en) * | 1969-07-26 | 1971-07-08 | Deutsche Edelstahlwerke Ag | Use of a highly corrosion-resistant and wear-resistant carbide hard metal alloy for parts exposed to liquid sodium |
US3713788A (en) * | 1970-10-21 | 1973-01-30 | Chromalloy American Corp | Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy |
JPS522843B1 (en) * | 1971-03-31 | 1977-01-25 | ||
JPS5388608A (en) * | 1977-01-17 | 1978-08-04 | Mitsubishi Metal Corp | Super hard alloy for ornaments |
JPS53108006A (en) * | 1977-03-04 | 1978-09-20 | Nippon Shinkinzoku Kk | High strength sintered alloy belonging to titanium nitride |
GB2143847B (en) * | 1983-07-26 | 1986-09-24 | Us Energy | Hard material |
JPS61261452A (en) * | 1985-05-15 | 1986-11-19 | Hitachi Metals Ltd | Cermet for wire dot printer and wire for dot printer |
JPH0726172B2 (en) * | 1986-08-11 | 1995-03-22 | 三菱マテリアル株式会社 | Toughness cermet and method for producing the same |
JPS6381053A (en) * | 1986-09-25 | 1988-04-11 | Hitachi Tool Eng Ltd | Surface-coated fine particle cemented carbide alloy dot wire |
WO1992018656A1 (en) | 1991-04-10 | 1992-10-29 | Sandvik Ab | Method of making cemented carbide articles |
JP2957424B2 (en) * | 1993-10-08 | 1999-10-04 | 住友電気工業株式会社 | Corrosion resistant tungsten based sintered alloy |
DE4340652C2 (en) * | 1993-11-30 | 2003-10-16 | Widia Gmbh | Composite and process for its manufacture |
JPH08158002A (en) * | 1994-02-24 | 1996-06-18 | Hitachi Metals Ltd | Silicon nitride ceramic-metal composite material and parts for molten aluminum |
JP2872571B2 (en) * | 1994-04-27 | 1999-03-17 | 株式会社日本製鋼所 | Tungsten carbide composite lining material for centrifugal casting and tungsten carbide composite lining layer |
JP2840191B2 (en) * | 1994-05-10 | 1998-12-24 | 岡野バルブ製造株式会社 | Equipment using cobalt-free alloy material |
US6170917B1 (en) * | 1997-08-27 | 2001-01-09 | Kennametal Inc. | Pick-style tool with a cermet insert having a Co-Ni-Fe-binder |
EP1309863A1 (en) | 2000-08-08 | 2003-05-14 | Aviva Biosciences Corporation | Methods for manipulating moieties in microfluidic systems |
EP1997575B1 (en) * | 2001-12-05 | 2011-07-27 | Baker Hughes Incorporated | Consolidated hard material and applications |
DE10213963A1 (en) | 2002-03-28 | 2003-10-09 | Widia Gmbh | Tungsten carbide or cermet cutting material and method for machining Cr-containing metal workpieces |
US7438741B1 (en) * | 2003-05-20 | 2008-10-21 | Exxonmobil Research And Engineering Company | Erosion-corrosion resistant carbide cermets for long term high temperature service |
CN1960803A (en) | 2004-02-05 | 2007-05-09 | 米利波尔公司 | Porous adsorptive or chromatographic media |
EP2821135A1 (en) | 2004-02-05 | 2015-01-07 | EMD Millipore Corporation | Porous adsorptive or chromatographic media |
US8002052B2 (en) * | 2005-09-09 | 2011-08-23 | Baker Hughes Incorporated | Particle-matrix composite drill bits with hardfacing |
DE102006045339B3 (en) * | 2006-09-22 | 2008-04-03 | H.C. Starck Gmbh | metal powder |
DE102007004937B4 (en) * | 2007-01-26 | 2008-10-23 | H.C. Starck Gmbh | metal formulations |
CN100469931C (en) * | 2007-07-28 | 2009-03-18 | 中国石油化工集团公司 | Cermet composition and method for preparing cermet coat on metal surface |
US20110286877A1 (en) * | 2008-10-20 | 2011-11-24 | Benno Gries | Metal powder |
CN102061418A (en) * | 2010-12-20 | 2011-05-18 | 中南大学 | Hard alloy material for oil delivery pump valve seat and preparation method thereof |
EP2527480B1 (en) * | 2011-05-27 | 2017-05-03 | H.C. Starck GmbH | NiFe binder with universal application |
DE102011112435B3 (en) * | 2011-09-06 | 2012-10-25 | H.C. Starck Gmbh | Cermet powder, process for producing a cermet powder, use of the cermet powder, process for producing a coated part, coated part |
-
2011
- 2011-05-27 EP EP11167901.5A patent/EP2527480B1/en active Active
- 2011-05-27 PL PL11167901T patent/PL2527480T3/en unknown
- 2011-05-27 ES ES11167901.5T patent/ES2628422T3/en active Active
-
2012
- 2012-05-24 KR KR1020137032074A patent/KR102079325B1/en active IP Right Grant
- 2012-05-24 US US14/122,246 patent/US9821372B2/en active Active
- 2012-05-24 WO PCT/EP2012/059748 patent/WO2012163804A1/en active Application Filing
- 2012-05-24 RU RU2013158048A patent/RU2623545C2/en active
- 2012-05-24 CN CN201280025581.3A patent/CN103562422B/en active Active
- 2012-05-24 JP JP2014513132A patent/JP6124877B2/en active Active
-
2013
- 2013-11-27 IL IL229654A patent/IL229654B/en active IP Right Grant
-
2017
- 2017-10-12 US US15/730,747 patent/US11207730B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4990612A (en) | 1972-12-29 | 1974-08-29 | ||
US6554885B1 (en) | 1998-05-20 | 2003-04-29 | H. C. Starck Gmbh | Pre-alloyed powder |
US20020112896A1 (en) | 2000-12-22 | 2002-08-22 | Olof Kruse | Coated cutting tool insert with iron-nickel based binder phase |
WO2006119522A1 (en) | 2005-05-13 | 2006-11-16 | Boehlerit Gmbh & Co. Kg. | Hard metal body with tough surface region |
US20100239855A1 (en) | 2007-10-02 | 2010-09-23 | H.C. Starck Gmbh | Tool |
CN101560623A (en) | 2009-05-22 | 2009-10-21 | 华南理工大学 | WC toughened and strengthened Ni3Al hard alloy and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
FERNANDES ET AL.: "Mechanical characterization of composites prepared from WC powders coated with Ni rich binders", INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, vol. 26, no. 5, 2008, pages 491 - 498, XP022701532 |
Also Published As
Publication number | Publication date |
---|---|
US9821372B2 (en) | 2017-11-21 |
IL229654B (en) | 2018-12-31 |
WO2012163804A1 (en) | 2012-12-06 |
EP2527480A1 (en) | 2012-11-28 |
RU2013158048A (en) | 2015-07-10 |
US11207730B2 (en) | 2021-12-28 |
JP6124877B2 (en) | 2017-05-10 |
PL2527480T3 (en) | 2017-12-29 |
US20140086782A1 (en) | 2014-03-27 |
KR102079325B1 (en) | 2020-02-19 |
US20180029118A1 (en) | 2018-02-01 |
JP2014519553A (en) | 2014-08-14 |
CN103562422B (en) | 2016-02-10 |
RU2623545C2 (en) | 2017-06-27 |
CN103562422A (en) | 2014-02-05 |
IL229654A0 (en) | 2014-01-30 |
ES2628422T3 (en) | 2017-08-02 |
KR20140032414A (en) | 2014-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2527480B1 (en) | NiFe binder with universal application | |
EP2337874B1 (en) | Metal powder containing molybdenum for producing hard metals based on tungstene carbide | |
EP2066821B1 (en) | Metal powder | |
EP1751320B1 (en) | Wearing part consisting of a diamantiferous composite | |
DE1783134C3 (en) | Process for the powder metallurgical production of hard alloys | |
DE2407410B2 (en) | Carbide hard metal with precipitation hardenable metallic matrix | |
EP3409801B1 (en) | Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material | |
WO2008125525A1 (en) | Tool | |
DE2060605C3 (en) | Powder metallurgy produced by sintering, precipitation hardenable, corrosion and high temperature resistant nickel-chromium alloy | |
AT517894B1 (en) | friction stir welding | |
DE102012015565A1 (en) | Sintered cemented carbide body, use and method of making the cemented carbide body | |
EP1647606B1 (en) | High hardness and wear resistant nickel based alloy for use as high temperature tooling | |
WO2019215025A1 (en) | Workpiece of a hard metal material and method for producing same | |
DE1174997B (en) | Use of hard metals containing boron | |
DE2157666A1 (en) | Process for the production of sintered hard metal based on titanium carbide and wear-resistant products made from it | |
DE2435577A1 (en) | WELDING MATERIAL | |
DE102008052559A1 (en) | Use of binder alloy powder containing specific range of molybdenum (in alloyed form), iron, cobalt, and nickel to produce sintered hard metals based on tungsten carbide | |
DE1279332B (en) | Process for the powder-metallurgical production of precision parts from stellite or stellite-like alloys | |
DE1248952B (en) | ||
DE2255505B2 (en) | Cemented carbide | |
DE102023135181A1 (en) | hard metal | |
AT316154B (en) | Moldings produced by solidifying a metal powder and process for its production | |
DD283160A5 (en) | HART METAL ALLOY | |
DE2537340B2 (en) | PROCESS FOR MANUFACTURING ALLOY SINTER STEEL PIECES | |
DD297751A7 (en) | METHOD FOR PRODUCING SEALED HARDMETAL FORMING BODY BASED ON TITANKARBIDE / TITANKARBONITRIDE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130528 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20140131 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161205 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 890064 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011012146 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2628422 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170802 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170804 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170903 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170803 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502011012146 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011012146 Country of ref document: DE Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE Free format text: FORMER OWNER: H.C. STARCK GMBH, 38642 GOSLAR, DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE Free format text: FORMER OWNER: H.C. STARCK GMBH, DE |
|
26 | Opposition filed |
Opponent name: SANDVIK MACHINING SOLUTIONS AB Effective date: 20180201 |
|
REG | Reference to a national code |
Ref country code: LU Ref legal event code: PD Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS Free format text: FORMER OWNER: H.C. STARCK GMBH Effective date: 20180209 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS Effective date: 20180321 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180301 AND 20180307 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE Effective date: 20180312 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 890064 Country of ref document: AT Kind code of ref document: T Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POW, DE Effective date: 20180321 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: H.C. STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PLBD | Termination of opposition procedure: decision despatched |
Free format text: ORIGINAL CODE: EPIDOSNOPC1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 502011012146 Country of ref document: DE |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 20181001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110527 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240513 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240410 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240404 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240403 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240602 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240610 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240424 Year of fee payment: 14 Ref country code: AT Payment date: 20240425 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240411 Year of fee payment: 14 Ref country code: FR Payment date: 20240422 Year of fee payment: 14 Ref country code: FI Payment date: 20240514 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240412 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240410 Year of fee payment: 14 |