JPH08158002A - Silicon nitride ceramic-metal composite material and parts for molten aluminum - Google Patents

Silicon nitride ceramic-metal composite material and parts for molten aluminum

Info

Publication number
JPH08158002A
JPH08158002A JP3532295A JP3532295A JPH08158002A JP H08158002 A JPH08158002 A JP H08158002A JP 3532295 A JP3532295 A JP 3532295A JP 3532295 A JP3532295 A JP 3532295A JP H08158002 A JPH08158002 A JP H08158002A
Authority
JP
Japan
Prior art keywords
silicon nitride
composite material
nitride ceramic
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3532295A
Other languages
Japanese (ja)
Inventor
Masahisa Sofue
昌久 祖父江
Hirohisa Suwabe
博久 諏訪部
Norio Kumagai
則雄 熊谷
Shigeyuki Hamayoshi
繁幸 濱吉
Toshio Okitsu
俊夫 沖津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3532295A priority Critical patent/JPH08158002A/en
Publication of JPH08158002A publication Critical patent/JPH08158002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a composite material maintaining required wear resistance and excellent in corrosion and damage resistances to a molten metal such as a molten Al alloy. CONSTITUTION: Silicon nitride ceramic particles are dispersed by 30-80vol.% in 20-70vol.% Fe-Ni alloy matrix to obtain the objective silicon nitride ceramic- metal composite material. The silicon nitride ceramic particles are preferably spherical particles of <=1,000μm particle size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金等の
溶融金属と接触して使用される、ヒータチューブ、スト
ーク、熱電対保護管、脱ガス用ロータ、鋳型、堰入れ子
等の鋳造用治具や、ダイカストスリーブ又はプランジャ
ーチップ等のアルミニウム溶湯用部品に最適な材料に関
するもので、必要とする耐摩耗性を維持すると共に、特
に高温の溶融金属に対して優れた耐食性と耐破損性を備
えた複合材料に関する。
FIELD OF THE INVENTION The present invention relates to a jig for casting a heater tube, a stalk, a thermocouple protection tube, a degassing rotor, a mold, a weir, etc., which is used in contact with a molten metal such as an aluminum alloy. Also, it relates to the most suitable material for molten aluminum parts such as die casting sleeves and plunger chips, which maintains the required wear resistance and has excellent corrosion resistance and damage resistance especially for high temperature molten metal. Regarding composite materials.

【0002】[0002]

【従来の技術】アルミニウム合金の溶解・鋳造工程で用
いる、ヒータチューブ、鋳型、堰入れ子等の構成部材に
は、従来より鋳鉄や熱間ダイス鋼が広く使用されてき
た。近年は、これら鉄系金属製部材に代わり、Ni、M
oからなる結合相に、Ni、Mo、W系の複硼化物を分
散させた硬質合金(例えば、特開平2−19441号公
報、特開平5−104231号公報参照)や、窒化ケイ
素等のエンジニアリングセラミックス等の材料を適用す
るものが提案されている(例えば、特開昭63−288
983号公報、特開平5−77022号公報参照)。
2. Description of the Related Art Cast iron and hot die steel have been widely used conventionally as constituent members such as heater tubes, molds and weir nests used in the melting and casting process of aluminum alloys. Recently, instead of these iron-based metal members, Ni, M
Engineering such as a hard alloy in which Ni, Mo, W-based compound boride is dispersed in a binder phase composed of o (see, for example, JP-A-2-19441 and JP-A-5-104231) and silicon nitride. It has been proposed to apply materials such as ceramics (for example, JP-A-63-288).
983, Japanese Patent Laid-Open No. 5-77022).

【0003】[0003]

【発明が解決しようとする課題】従来の鋳鉄や熱間ダイ
ス鋼等の鉄系金属製部材は、700〜800℃程度で溶
解された溶融アルミニウム合金と濡れ易く、溶損してア
ルミニウム溶融浴を汚染するという問題があった。即
ち、溶損により部材の耐用寿命が短く、交換頻度が高く
なり生産性が低下するばかりでなく、汚染により鋳造製
品の品質を確保することも困難であった。
The conventional iron-based metal members such as cast iron and hot die steel are easily wet with the molten aluminum alloy melted at about 700 to 800 ° C. and are melted to contaminate the aluminum molten bath. There was a problem of doing. That is, not only is the service life of the member shortened due to melting damage, the replacement frequency is increased and the productivity is reduced, but it is also difficult to ensure the quality of the cast product due to contamination.

【0004】一方、セラミックス材料は一般に溶融アル
ミニウムと濡れにくく、特に窒化ケイ素(Si34)及
びサイアロン(Si-Al-O-N系セラミックス)は、
溶融アルミニウムと濡れにくく、溶損しにくい性質があ
る。しかし、窒化ケイ素及びサイアロン(以下、これら
を合わせて窒化ケイ素質セラミックスと称する)は、鉄
系金属材料と比べて靭性が低いため、使用時の機械的衝
撃により破損し易いという問題がある。
On the other hand, ceramic materials are generally hard to wet with molten aluminum, and particularly silicon nitride (Si 3 N 4 ) and sialon (Si-Al-O-N ceramics) are
It has the property of being hard to get wet with molten aluminum and less likely to melt. However, since silicon nitride and sialon (hereinafter collectively referred to as silicon nitride ceramics) have lower toughness than iron-based metal materials, there is a problem that they are easily damaged by mechanical impact during use.

【0005】従って、本発明の目的は、必要とする耐摩
耗性を維持すると共に、アルミニウム合金等の溶融溶湯
に対して耐食性、耐破損性に優れた材料を提供すること
である。
Therefore, an object of the present invention is to provide a material which maintains the required wear resistance and is excellent in corrosion resistance and breakage resistance against a molten metal such as an aluminum alloy.

【0006】[0006]

【課題を解決するための手段】本発明は、窒化ケイ素質
セラミックス粒子30〜80体積%を、20〜70体積
%のFe−Ni系合金の基地に分散したことを特徴とす
る窒化ケイ素質セラミックスと金属の複合材料である。
The present invention is characterized in that 30 to 80% by volume of silicon nitride ceramic particles are dispersed in a matrix of 20 to 70% by volume of an Fe-Ni-based alloy. And a metal composite material.

【0007】本発明において、窒化ケイ素質セラミック
ス粒子は粒子寸法が1000μm以下が好ましく、さら
に好ましくは300μm以下である。また、窒化ケイ素
質セラミックス粒子の形状は球状であることが望まし
い。窒化ケイ素質セラミックス粒子に周期律表の4a
族、5a族又は6a族の元素の炭化物、ホウ化物又は窒
化物からなる非酸化物系導電材を30〜70体積%含有
させてもよい。また、Ti及び/又はAlをFe−Ni
系合金に0.5〜10重量%含有すること、Fe−Ni
系合金の表面に酸化被膜を設けること等が望ましい。
In the present invention, the particle size of the silicon nitride ceramic particles is preferably 1000 μm or less, more preferably 300 μm or less. Further, it is desirable that the silicon nitride ceramic particles have a spherical shape. 4a of the periodic table on silicon nitride ceramic particles
A non-oxide conductive material composed of a carbide, boride or nitride of a group 5a group or a group 6a element may be contained in an amount of 30 to 70% by volume. Further, Ti and / or Al are replaced with Fe-Ni.
0.5 to 10% by weight in a Fe-based alloy, Fe-Ni
It is desirable to provide an oxide film on the surface of the system alloy.

【0008】次の発明は、本発明の複合材料を別の金属
体に接合した複合部材であり、さらに次の発明は、本発
明の複合材料を用いて構成したアルミニウム溶湯用部品
である。
The following invention is a composite member in which the composite material of the present invention is joined to another metal body, and the next invention is a part for molten aluminum formed by using the composite material of the present invention.

【0009】[0009]

【作用】本発明者らは、窒化ケイ素質セラミックスが溶
融アルミニウムと濡れにくい性質に着目し、このセラミ
ックスの粒子と金属とを複合化することにより、溶融ア
ルミニウムと濡れにくく、かつ使用時の破損の恐れがな
い材料の開発を検討した。窒化ケイ素質セラミックスの
粒子寸法及び添加率、合金の種類を、試験的に種々変化
させた材料を作製して、溶融アルミニウム合金浴中に浸
漬する実験を行い、耐食性(耐溶損性)と耐破損性に優
れた複合材料を見いだした。
The present inventors pay attention to the property that silicon nitride ceramics are difficult to wet with molten aluminum, and by combining the particles of the ceramics with a metal, it is difficult to wet the molten aluminum and the damage during use is prevented. We considered the development of a fearless material. We made experimental materials by changing the particle size and addition rate of silicon nitride ceramics, and the kind of alloys experimentally and immersing them in a molten aluminum alloy bath to perform corrosion resistance (melting resistance) and damage resistance. We have found a composite material with excellent properties.

【0010】まず、基地となる合金については、Fe−
Ni系合金を用いることにより、窒化ケイ素質セラミッ
クス粒子と化学的に結合できる。ここでいう化学的結合
とは、機械的結合以外の反応相生成等による原子的な各
種結合を意味する。Fe−Ni系合金は窒化ケイ素質セ
ラミックス粒子との化学的結合に有効であり、Niを5
〜95重量%含有することが望ましい。
First, regarding the alloy serving as the base, Fe-
By using the Ni-based alloy, it is possible to chemically bond with the silicon nitride ceramic particles. The term "chemical bond" as used herein means various atomic bonds other than mechanical bond due to reaction phase formation and the like. The Fe-Ni based alloy is effective for chemical bonding with silicon nitride ceramic particles, and Ni is added to
It is desirable that the content is ˜95% by weight.

【0011】このFe−Ni系合金において、Niの含
有量が5重量%未満或いは95重量%を超える場合も、
窒化ケイ素質セラミックス粒子は基地となる合金にとり
囲まれるようにして機械的に結合一体化し、窒化ケイ素
質セラミックス粒子が脱落することはない。この場合
は、化学結合する場合に比べて強度が小さくなるので、
高い強度を必要としない部材に十分適用することができ
る。
In this Fe-Ni alloy, when the Ni content is less than 5% by weight or more than 95% by weight,
The silicon nitride ceramic particles are mechanically bonded and integrated so as to be surrounded by the base alloy, and the silicon nitride ceramic particles do not fall off. In this case, the strength is smaller than that in the case of chemical bonding,
It can be sufficiently applied to members that do not require high strength.

【0012】また、Fe−Ni系合金に、Cr、Mo、
Co、C、Si及び不純物元素等の通常Fe或いはNi
に添加又は含有される合金元素を含有することができ
る。
[0012] In addition, Fe, Ni-based alloy, Cr, Mo,
Ordinary Fe or Ni such as Co, C, Si and impurity elements
The alloying element added to or contained in can be contained.

【0013】更に、Fe−Ni系合金にTi及び/又は
Alを添加してもよく、むしろ添加したほうが望まし
い。Ti及び/又はAlの含有量はFe−Ni系合金の
0.5〜10重量%が好ましく、窒化ケイ素質セラミッ
クス粒子と基地の金属との結合を強化することができ
る。Ti及び/又はAlの添加量は0.5重量%未満で
は効果が小さく、10重量%を超えて添加しても効果は
それ以上に大きくならない。
Further, Ti and / or Al may be added to the Fe-Ni type alloy, and it is more preferable to add them. The content of Ti and / or Al is preferably 0.5 to 10% by weight of the Fe-Ni alloy, and can strengthen the bond between the silicon nitride ceramic particles and the matrix metal. If the amount of Ti and / or Al added is less than 0.5% by weight, the effect is small, and even if it is added in excess of 10% by weight, the effect does not increase further.

【0014】基地となる前記Fe−Ni系合金中に分散
する窒化ケイ素質セラミックス粒子の添加量は30体積
%以上が望ましい。30体積%未満ではアルミニウム合
金と濡れて溶損し易くなる。窒化ケイ素質セラミックス
粒子の添加量が多いほど耐溶損性は良くなるが、80体
積%を超えて添加することは困難であり、仮に得られた
としても脆くなり、耐破損性が低下すると考えられる。
The amount of silicon nitride ceramic particles dispersed in the Fe-Ni-based alloy serving as a base is preferably 30% by volume or more. If it is less than 30% by volume, it is easily wet with the aluminum alloy and melts easily. The larger the amount of silicon nitride ceramic particles added, the better the erosion resistance, but it is difficult to add more than 80% by volume, and even if it is obtained, it becomes brittle and the damage resistance is considered to be reduced. .

【0015】窒化ケイ素質セラミックス粒子の寸法は1
000μm以下が望ましい。1000μmより大きい粒
子を含有すると、基地の金属との熱膨張係数差により、
製造時の焼結工程で窒化ケイ素質セラミックス粒子にク
ラックを生じ易くなる。さらに、窒化ケイ素質セラミッ
クス粒子はその数の90%以上が寸法10〜300μm
の範囲内であることがより好ましい。寸法300μmを
超えた粒子が少ないことで強度がより高くなり、10μ
m未満の粒子が少ないことで溶融アルミニウム合金に対
する耐溶損性を高めることができる。
The size of the silicon nitride ceramic particles is 1
It is preferably 000 μm or less. When particles containing more than 1000 μm are contained, due to the difference in coefficient of thermal expansion from the base metal,
Cracks are easily generated in the silicon nitride ceramic particles during the sintering process during manufacturing. Further, 90% or more of the silicon nitride ceramic particles have a size of 10 to 300 μm.
Is more preferably within the range. The strength is higher due to the small number of particles exceeding the size of 300 μm,
By reducing the number of particles of less than m, it is possible to enhance the melt damage resistance to the molten aluminum alloy.

【0016】窒化ケイ素質セラミックス粒子の形状は、
角ばった形状でも差し支えないが、球状の粒子を用いれ
ば強度上の切欠き効果が小さくなり、より高い強度が得
られる。
The shape of the silicon nitride ceramic particles is
Although the shape may be angular, if spherical particles are used, the notch effect in strength is reduced and higher strength can be obtained.

【0017】窒化ケイ素質セラミックス粒子に周期律表
の4a族、5a族又は6a族の元素の炭化物、ホウ化物
又は窒化物からなる非酸化物系導電材を含有させること
により、放電加工が容易にできるようになる。非酸化物
系導電材の含有量が30体積%未満では放電加工性が十
分でなく、70体積%を超えると窒化ケイ素質セラミッ
クスの本来の性質が失われる。
By making the silicon nitride ceramic particles contain a non-oxide type conductive material composed of a carbide, boride or nitride of an element of the 4a group, 5a group or 6a group of the periodic table, the electric discharge machining is facilitated. become able to. If the content of the non-oxide conductive material is less than 30% by volume, the electric discharge machinability is not sufficient, and if it exceeds 70% by volume, the original properties of the silicon nitride ceramics are lost.

【0018】本発明の窒化ケイ素質セラミックスと金属
の複合材料は、表面を酸化して基地のFe−Ni系合金
の表面に酸化被膜を設けることにより、部材の表面から
完全に金属部分を除去できるため、溶融アルミニウム合
金に対してより優れた耐溶損性を付与することができ
る。窒化ケイ素質セラミックスも酸化するような条件で
酸化を行なうと、表面全体が酸化被膜で覆われるように
できる。この場合には一層優れた耐溶損性を付与するこ
とができる。
The composite material of the silicon nitride ceramics and metal of the present invention can completely remove the metal portion from the surface of the member by oxidizing the surface to form an oxide film on the surface of the base Fe-Ni alloy. Therefore, it is possible to impart more excellent erosion resistance to the molten aluminum alloy. If the silicon nitride ceramics is also oxidized under such conditions, the entire surface can be covered with an oxide film. In this case, more excellent melting resistance can be imparted.

【0019】本発明の窒化ケイ素質セラミックスと金属
の複合材料は、基地が金属であるため、金属部分が接合
面となり、別の金属部材と容易に接合できる。接合法と
しては、ろう付け法、拡散接合法、ホットプレスや熱間
等方圧プレス(HIP)を利用した一体焼結法等が適用
できる。
In the composite material of silicon nitride ceramics and metal of the present invention, since the matrix is a metal, the metal portion serves as a bonding surface and can be easily bonded to another metal member. As a joining method, a brazing method, a diffusion joining method, an integral sintering method using a hot press or a hot isostatic press (HIP), etc. can be applied.

【0020】[0020]

【実施例】【Example】

(実施例1)窒化ケイ素質セラミックス粒子としてサイ
アロン及びSi34を準備した。スプレードライ法によ
り顆粒を作成した後、窒素ガス中にて焼結することによ
り球状の粒子を得た。これ以外にサイアロンについては
焼結ブロックを破砕して角状の粒子も作成した。これら
の窒化ケイ素質セラミックス粒子をふるいを通して29
5μm以下及び一部は1000μm以下、1200μm
以下に調整した。一方、Fe−Ni系合金として7種類
の組成の異なる平均粒径30μmの球状粒子を準備し
た。これらの窒化ケイ素質セラミックス粒子とFe−N
i系合金とを、窒化ケイ素質セラミックス粒子20〜8
0体積%、これに対応してFe−Ni系合金を80〜2
0体積%の比率で混合した。得られた混合粉を軟鋼製の
円筒状容器に充填し、真空脱気した後、1200℃、1
00MPa、4時間の条件でHIP処理した。冷却後各
試料を切断して断面を光学顕微鏡で観察したところ、窒
化ケイ素質セラミックス粒子とFe−Ni系合金との界
面には隙間がなく、緻密な焼結体が得られた。
Example 1 Sialon and Si 3 N 4 were prepared as silicon nitride ceramic particles. Spherical particles were obtained by producing granules by a spray dry method and sintering the granules in nitrogen gas. In addition to this, for Sialon, crushed sintered blocks were also used to create angular particles. These silicon nitride ceramic particles are passed through a sieve to
5 μm or less and partly 1000 μm or less, 1200 μm
Adjusted below. On the other hand, spherical particles having an average particle diameter of 30 μm and having 7 different compositions were prepared as Fe—Ni based alloys. These silicon nitride ceramic particles and Fe-N
i-based alloy and silicon nitride ceramic particles 20 to 8
0% by volume, and 80 to 2% Fe-Ni based alloy correspondingly
Mixed at a ratio of 0% by volume. The obtained mixed powder was filled in a cylindrical container made of mild steel, deaerated under vacuum, and then 1200 ° C, 1
HIP treatment was performed under the conditions of 00 MPa and 4 hours. After cooling, each sample was cut and the cross section was observed with an optical microscope. As a result, there was no gap at the interface between the silicon nitride ceramic particles and the Fe—Ni alloy, and a dense sintered body was obtained.

【0021】これらの焼結体から10×10×70mm
の試験片を切出し、800℃に加熱溶融したJIS A
DC12アルミニウム合金浴中に24時間浸漬した後、
浴中から引上げた。試験片に付着したアルミニウム合金
を酸で溶解除去した後、試験片の寸法を測定して溶損厚
さを測定した。また、焼結体から15×15×厚さ5m
mの試験片を切出し、この試験片を鋼板上に置き、直径
20mmの鋼球を3mの高さから自然落下して衝突さ
せ、亀裂の発生の有無を調査した。更に、焼結体から3
×4×40mmの試験片を切出し、JIS法に準拠して
4点曲げ強度を測定した。
10 × 10 × 70 mm from these sintered bodies
JIS A that was cut out from the test piece and heated and melted at 800 ° C
After soaking in a DC12 aluminum alloy bath for 24 hours,
I pulled it up from the bath. After the aluminum alloy attached to the test piece was dissolved and removed with an acid, the dimensions of the test piece were measured to measure the melt loss thickness. Also, 15 x 15 x 5 m thick from the sintered body
A test piece of m was cut out, the test piece was placed on a steel plate, and a steel ball having a diameter of 20 mm was naturally dropped from a height of 3 m to collide with the steel ball, and the presence or absence of cracks was investigated. Furthermore, from the sintered body 3
A 4 × 40 mm test piece was cut out and the 4-point bending strength was measured according to the JIS method.

【0022】上記以外に、従来材である鋳鉄(片状黒鉛
鋳鉄)、熱間ダイス鋼(SKD61)及びサイアロンを
準備し、比較のため同様の試験をおこなった。
In addition to the above, conventional materials such as cast iron (flake graphite cast iron), hot die steel (SKD61) and sialon were prepared and the same test was conducted for comparison.

【0023】表1及び表2に上記に述べた各試験片の作
製条件を示す。表3及び表4にそれら各試験片の試験結
果を示す。以下にその内容について説明する。No.1
〜3の実施例は、粒子寸法295μm以下の球状サイア
ロン粒子を30、55及び80体積%、これに対してF
e−Ni系合金として平均粒径30μmの53%Fe−
30%Ni−17%Co合金をそれぞれ70、45及び
20体積%添加混合しHIP焼結した材料である。これ
らの材料ではサイアロン添加量の多いものほど溶損厚さ
が小さく良好であるが、いずれもNo.17、18の比
較材である鋳鉄及び熱間ダイス鋼に比較して約35%以
下の溶損厚さを示し、優れた耐溶損性が得られた。
Tables 1 and 2 show the conditions for producing the test pieces described above. Tables 3 and 4 show the test results of the test pieces. The contents will be described below. No. 1
Examples 3 to 3 contain 30, 55 and 80% by volume of spherical sialon particles having a particle size of 295 μm or less, in contrast to F
53% Fe-with an average particle size of 30 μm as an e-Ni alloy
It is a material obtained by adding and mixing 30% Ni-17% Co alloys at 70, 45 and 20% by volume, and HIP sintering. Among these materials, the larger the amount of sialon added, the smaller the melt loss thickness and the better. Compared with cast iron and hot die steel, which are comparative materials of Nos. 17 and 18, the melt loss thickness was about 35% or less, and excellent melt loss resistance was obtained.

【0024】No.4〜5の実施例は、粒子寸法100
0m以下の球状サイアロン粒子の添加量を30体積%と
し、Fe−Ni系合金として各々95%Fe−5%N
i、5%Fe−95%Ni合金を70体積%添加混合し
HIP焼結した材料である。No.6〜9の実施例は、
粒子寸法295μm以下の球状サイアロン粒子の添加量
を55体積%一定とし、Fe−Ni系合金としてFe−
Ni−Cr、Fe−Ni−Ti、Fe−Ni−Co−T
i、Fe−Ni−Co−Ti−Alの各合金をそれぞれ
45体積%添加混合しHIP焼結した材料である。これ
らの材料はいずれも溶損厚さが小さく良好で、No.1
7、18の鋳鉄及び熱間ダイス鋼に比較して約17%以
下の溶損厚さを示し、優れた耐溶損性が得られた。
No. 4-5 examples have a particle size of 100
The spherical sialon particles of 0 m or less were added in an amount of 30% by volume, and Fe-Ni alloys were each 95% Fe-5% N.
i is a material obtained by adding and mixing 70% by volume of 5% Fe-95% Ni alloy and HIP sintering. No. Examples 6-9 are:
The amount of spherical sialon particles having a particle size of 295 μm or less was fixed at 55% by volume, and Fe—Ni-based alloy was used as Fe—
Ni-Cr, Fe-Ni-Ti, Fe-Ni-Co-T
It is a material obtained by adding and mixing 45% by volume of each alloy of i and Fe-Ni-Co-Ti-Al and HIP sintering. All of these materials have a small melt loss thickness and are good. 1
Compared to the cast iron and hot die steel Nos. 7 and 18, the melt loss thickness was about 17% or less, and excellent melt loss resistance was obtained.

【0025】No.10の実施例は、粒子寸法295μ
m以下の角状サイアロン粒子の添加量を55体積%と
し、Fe−Ni系合金として53%Fe−30%Ni−
17%Co合金を45体積%添加混合しHIP焼結した
材料である。この材料は比較材であるNo.17、18
の鋳鉄及び熱間ダイス鋼に比較して約14%の溶損厚さ
を示し、優れた耐溶損性が得られた。
No. 10 examples have a particle size of 295μ
The amount of square sialon particles having a particle size of m or less is set to 55% by volume, and as an Fe-Ni alloy, 53% Fe-30% Ni-
It is a material obtained by adding and mixing 45% by volume of 17% Co alloy and HIP sintering. This material is a comparative material No. 17, 18
In comparison with the cast iron and hot die steel, the erosion resistance was about 14%, and excellent erosion resistance was obtained.

【0026】No.11の実施例は、粒子寸法295μ
m以下の球状Si34粒子の添加量を55体積%とし、
Fe−Ni系合金として53%Fe−30%Ni−17
%Co合金を45体積%添加混合しHIP焼結した材料
である。この材料は比較材であるNo.17、18の鋳
鉄及び熱間ダイス鋼に比較して約12%の溶損厚さを示
し、優れた耐溶損性が得られた。
No. Eleven examples have a particle size of 295μ
The amount of spherical Si 3 N 4 particles of m or less is set to 55% by volume,
53% Fe-30% Ni-17 as Fe-Ni alloy
% Co alloy is added and mixed in an amount of 45% by volume and HIP sintered. This material is a comparative material No. Compared with the cast iron and hot die steel Nos. 17 and 18, the melt loss thickness was about 12%, and excellent melt loss resistance was obtained.

【0027】No.12、13及び14の実施例は、そ
れぞれNo.1、2及び3の実施例と同様にHIP処理
した後、切り出した試験片を大気中にて900℃、1時
間加熱して表面を酸化した材料である。これらの材料は
溶損が認められず高い耐溶損性を示した。図3に、N
o.12試験片の表面に酸化被膜を設けた模式断面図を
示す。図3において、表面3に形成された酸化被膜4
は、基地5(Fe−Ni系合金)とサイアロン粒子6の
間に楔状に入り込み、表面3から剥離、脱落しにくい。
No. The examples of Nos. 12, 13 and 14 are Nos. After HIP treatment in the same manner as in Examples 1, 2, and 3, the cut test piece was heated in the atmosphere at 900 ° C. for 1 hour to oxidize the surface. No melt damage was observed in these materials, and high melt damage resistance was exhibited. In FIG. 3, N
o. The schematic cross section which provided the oxide film on the surface of the 12 test piece is shown. In FIG. 3, oxide film 4 formed on surface 3
Is wedge-shaped between the matrix 5 (Fe-Ni alloy) and the sialon particles 6, and is unlikely to peel off from the surface 3.

【0028】以上、No.1〜14の各実施例ではいず
れも溶損厚さが小さく耐溶損性が良好であること以外
に、鋼球落下試験でも亀裂が生じることなく、No.1
9の比較材のサイアロンが亀裂を生じたのに対して良好
であった。No.1〜14の実施例での材料の曲げ強度
は190MPa以上あった。これは比較例No.17の
鋳鉄と同等以上の強度であり、実用上充分な強度が得ら
れた。曲げ強度は窒化ケイ素質セラミックス粒子の添加
量が少ない材料ほど高い値を示した。またFe−Ni系
合金にTi或いはAlを添加した材料で、より高い曲げ
強度が得られた。
As described above, No. In each of Examples 1 to 14, the No. 1 has no melt-thickness and a good melt-loss resistance, and cracks did not occur even in the steel ball drop test. 1
Sialon of Comparative Material No. 9 was good in comparison with cracking. No. The bending strengths of the materials in Examples 1 to 14 were 190 MPa or more. This is a comparative example No. The strength was equal to or higher than that of the cast iron No. 17, and practically sufficient strength was obtained. The bending strength showed a higher value as the material containing less silicon nitride ceramic particles was added. Further, higher bending strength was obtained with a material in which Ti or Al was added to the Fe-Ni based alloy.

【0029】No.15の比較例では、サイアロン粒子
の寸法が1200μmまでの大きな粒子を含有したた
め、焼結体中のサイアロン粒子及びFe−Ni系合金に
亀裂を生じ、このため曲げ強度が108MPaと低い値
しか得られなかった。
No. In Comparative Example No. 15, since the size of the sialon particles contained large particles up to 1200 μm, cracks occurred in the sialon particles and the Fe—Ni-based alloy in the sintered body, so that the bending strength was as low as 108 MPa. There wasn't.

【0030】No.16の比較例では、サイアロン粒子
の添加量が20体積%と少なく、このため溶損厚さが
1.2mmと大きく、比較材No.17、18の鋳鉄あ
るいは熱間ダイス鋼と同程度の耐溶損性しか得られなか
った。
No. In the comparative example of No. 16, the addition amount of sialon particles was as small as 20% by volume, and therefore the melt loss thickness was as large as 1.2 mm. Only the same erosion resistance as that of cast iron 17 or 18 or hot die steel was obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】(実施例2)次に、前記の窒化ケイ素質セ
ラミックスと金属の複合材料を別の金属体に接合した実
施例について述べる。図1に一実施例である中空円筒複
合部材を示す。この中空円筒では、内側材1は本発明の
窒化ケイ素質セラミックスと金属の複合材料、外側材2
は鋼等で形成され、両者の界面は化学結合されている。
この複合体は円筒面を有する内側材1が耐溶損性に優
れ、外側材2がより高い強度及び靭性をもつため、より
広範な各種治具・部品・装置類の用途に適用できる特徴
がある。
(Embodiment 2) Next, an embodiment in which the above-mentioned composite material of silicon nitride ceramics and metal is joined to another metal body will be described. FIG. 1 shows a hollow cylindrical composite member as an example. In this hollow cylinder, the inner material 1 is the composite material of the silicon nitride ceramics of the present invention and a metal, and the outer material 2
Is formed of steel or the like, and the interface between the two is chemically bonded.
This composite is characterized in that it can be applied to a wider range of jigs, parts, and devices because the inner material 1 having a cylindrical surface has excellent erosion resistance and the outer material 2 has higher strength and toughness. .

【0036】この中空円筒複合部材はつぎの方法で作製
した。即ち、外側材2のJIS STKM(0.25%
C炭素鋼)製円筒容器のなかに、表面に離型剤を塗布し
たJIS SUS304ステンレス鋼製丸棒を中心にセ
ットし、両者の隙間に表1の実施例No.2に示す粒子
寸法295μm以下の球状のサイアロン粒子55体積%
と、組成が53%Fe−30%Ni−17%Co合金の
平均粒子径10μmの金属粒子45体積%からなる内側
材1の混合粉末を充填し、円筒容器を真空脱気したのち
気密封止し、1150℃、100MPa、2時間の条件
でHIPした。冷却後円柱体の両端部を切断し、中心に
セットしたステンレス鋼製丸棒を引き抜いた。これによ
り、図1に示す内側材1と外側材2からなる複合部材を
作製できた。図2に、この複合部材の内側材1と外側材
2の接合界面の金属組織写真を示す。
This hollow cylindrical composite member was produced by the following method. That is, JIS STKM (0.25% of outer material 2
(C carbon steel) A cylindrical container made of JIS SUS304 stainless steel, the surface of which was coated with a release agent, was set in the center of the cylindrical container, and the space between them was filled with Example No. 1 in Table 1. 55% by volume of spherical sialon particles having a particle size of 295 μm or less shown in 2
And a mixed powder of the inner material 1 consisting of 45% by volume of metal particles having a composition of 53% Fe-30% Ni-17% Co alloy and having an average particle diameter of 10 μm, and the airtight sealing after vacuum deaeration of the cylindrical container. Then, HIP was performed under the conditions of 1150 ° C., 100 MPa, and 2 hours. After cooling, both ends of the cylindrical body were cut, and the stainless steel round bar set at the center was pulled out. As a result, a composite member including the inner member 1 and the outer member 2 shown in FIG. 1 could be manufactured. FIG. 2 shows a photograph of the metallographic structure of the joint interface between the inner member 1 and the outer member 2 of this composite member.

【0037】(実施例3)図4は、本発明の一実施例で
ある窒化ケイ素質セラミックスと金属の複合材料からな
る鋳造用堰入れ子の縦断面図を示す。サイアロンにTi
Nを40体積%添加した粒子寸法295μm以下の球状
の導電性サイアロン粒子を50体積%と、平均粒径30
μmの74%Fe−8%Ni−18%Cr合金を50体
積%添加混合した材料をHIP焼結した。この焼結体を
放電加工により、図4に示すように外径Aが65mm、
高さBが50mm、中空部の内径C、Dがそれぞれ45
mm、37mmの堰入れ子7の形状に加工した。そし
て、この焼結体を大気中にて900℃、1時間加熱して
表面を酸化させた。
(Embodiment 3) FIG. 4 is a vertical cross-sectional view of a casting weir insert made of a composite material of silicon nitride ceramics and a metal, which is an embodiment of the present invention. Ti with sialon
50% by volume of spherical conductive sialon particles having a particle size of 295 μm or less containing 40% by volume of N and having an average particle size of 30
A material obtained by adding and mixing 50% by volume of 74% Fe-8% Ni-18% Cr alloy of μm was HIP sintered. By subjecting this sintered body to electric discharge machining, the outer diameter A is 65 mm, as shown in FIG.
Height B is 50 mm, hollow inner diameters C and D are 45 each
It processed into the shape of the weir insert 7 of 37 mm and 37 mm. Then, this sintered body was heated in the atmosphere at 900 ° C. for 1 hour to oxidize the surface.

【0038】また、本発明の他の実施例の鋳造用堰入れ
子として、実施例2で述べたように窒化ケイ素質セラミ
ックスと金属の複合材料を別の金属体に接合した構造に
してもよい。すなわち図5に示すように、溶湯と直接接
触する内側材8を本発明の窒化ケイ素質セラミックスと
金属の複合材料、外側材9を粗鋼等で形成してもよい。
Further, as a casting weir of another embodiment of the present invention, a structure in which a composite material of silicon nitride ceramics and a metal is joined to another metal body may be used as described in the second embodiment. That is, as shown in FIG. 5, the inner material 8 that directly contacts the molten metal may be formed of a composite material of the silicon nitride ceramics of the present invention and a metal, and the outer material 9 may be formed of crude steel or the like.

【0039】上記のように構成した堰入れ子7を金型
(図示せず)内に嵌着して、アルミニウム合金溶湯によ
る低圧鋳造を行ったところ、従来の熱間ダイス鋼製の堰
入れ子では200〜300ショットの使用で溶損のため
交換を要していたのに比べ、本発明の堰入れ子は500
0ショット以上の連続使用が可能になり、約20倍以上
の耐溶損性を確認できた。
When the weir insert 7 constructed as described above was fitted in a mold (not shown) and low pressure casting was carried out with a molten aluminum alloy, it was 200 in the case of a conventional hot die steel weir insert. The weir insert of the present invention is 500 times as compared with the case where replacement is required due to melting damage after using ~ 300 shots.
It was possible to continuously use 0 shots or more, and it was possible to confirm about 20 times or more melting resistance.

【0040】(実施例4)図6は、本発明の一実施例で
ある窒化ケイ素質セラミックスと金属の複合材料からな
るダイカストスリーブの縦断面図を示す。図6におい
て、ダイカストスリーブ10は、金属製の外筒11(外
径130mm、内径90mm、長さ400mm)内に、
本発明の複合材料からなる内筒12(外径90mm、内
径60mm、長さ400mm)を、550〜600℃の
温度で焼嵌め固着した。13は、ダイカストスリーブ1
0の端部近傍に開口した溶湯注入口である。内筒12
は、サイアロンにTiNを40体積%添加した粒子寸法
295μm以下の導電性サイアロン粒子を50体積%
と、平均粒径10μmの53%Fe−30%Ni−17
%Co合金を50体積%添加混合した材料をHIP焼結
した後、仕上加工を施した。また、本発明のダイカスト
スリーブは、実施例2で述べたように、本発明の複合材
料からなる内筒12と、金属等からなる外筒11を、H
IP焼結により一体接合してもよい。
(Embodiment 4) FIG. 6 is a vertical cross-sectional view of a die casting sleeve made of a composite material of silicon nitride ceramics and a metal, which is an embodiment of the present invention. In FIG. 6, a die casting sleeve 10 is provided in a metal outer cylinder 11 (outer diameter 130 mm, inner diameter 90 mm, length 400 mm).
An inner cylinder 12 (outer diameter 90 mm, inner diameter 60 mm, length 400 mm) made of the composite material of the present invention was shrink-fitted and fixed at a temperature of 550 to 600 ° C. 13 is die casting sleeve 1
It is a molten metal injection port opened near the end of No. 0. Inner cylinder 12
Is 50 volume% of conductive sialon particles having a particle size of 295 μm or less obtained by adding 40 volume% of TiN to sialon.
And 53% Fe-30% Ni-17 having an average particle size of 10 μm
A material obtained by adding and mixing 50% by volume of a% Co alloy was HIP-sintered and then subjected to finishing processing. Further, as described in the second embodiment, the die-casting sleeve of the present invention includes the inner cylinder 12 made of the composite material of the present invention and the outer cylinder 11 made of metal or the like,
They may be integrally joined by IP sintering.

【0041】上記のように構成したダイカストスリーブ
を型締力350tonの横型ダイカストマシンの射出装
置に装着して、アルミニウム合金のダイカストに使用し
た。結果、従来の熱間ダイス鋼製のダイカストスリーブ
では約10000ショットの射出で溶損のため交換を要
していたのに比べ、本発明のダイカストスリーブは10
0000ショット以上の安定した射出を行なうことがで
き、約10倍以上の耐溶損性を確認できた。
The die-casting sleeve configured as described above was mounted on an injection device of a horizontal die-casting machine having a mold clamping force of 350 ton and used for die-casting of aluminum alloy. As a result, compared with the conventional die-casting sleeve made of hot die steel, it was necessary to replace the die-casting sleeve of the present invention due to melting damage at injection of about 10,000 shots.
Stable injection of 0000 shots or more was able to be performed, and about 10 times or more of melt damage resistance could be confirmed.

【0042】[0042]

【発明の効果】以上詳述したように、本発明によれば従
来不十分であった材料の耐溶損性と耐破損性を大幅に向
上できるため、溶融アルミニウム合金と接触して使用さ
れる各種部品の寿命及び信頼性を大幅に高めることがで
きる。
As described above in detail, according to the present invention, it is possible to greatly improve the erosion resistance and the breakage resistance of the materials which have hitherto been insufficient. Therefore, various materials used in contact with a molten aluminum alloy are used. The life and reliability of parts can be significantly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の中空円筒複合部材の縦断面図で
ある。
FIG. 1 is a vertical sectional view of a hollow cylindrical composite member according to an embodiment of the present invention.

【図2】本発明実施例の中空円筒複合部材の接合界面の
金属組織写真である。
FIG. 2 is a photograph of the metallographic structure of the joint interface of the hollow cylindrical composite member of the example of the present invention.

【図3】本発明の複合材料の表面に酸化被膜を設けた模
式断面図である。
FIG. 3 is a schematic cross-sectional view in which an oxide film is provided on the surface of the composite material of the present invention.

【図4】本発明実施例の鋳造用堰入れ子の縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view of a casting dam according to an embodiment of the present invention.

【図5】本発明の他の実施例の鋳造用堰入れ子の縦断面
図である。
FIG. 5 is a vertical sectional view of a casting dam according to another embodiment of the present invention.

【図6】本発明実施例のダイカストスリーブの縦断面図
である。
FIG. 6 is a vertical sectional view of a die casting sleeve according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 内側材、 2 外側材、 3 表面、 4 酸化被
膜、 5 基地、6 サイアロン粒子、 7 堰入れ
子、 8 内側材、 9 外側材、10 ダイカストス
リーブ、 11 外筒、 12 内筒、13 溶湯注入
1 inner material, 2 outer material, 3 surface, 4 oxide film, 5 base, 6 sialon particles, 7 weir nest, 8 inner material, 9 outer material, 10 die casting sleeve, 11 outer cylinder, 12 inner cylinder, 13 molten metal injection port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱吉 繁幸 北九州市若松区北浜一丁目9番1号 日立 金属株式会社若松工場内 (72)発明者 沖津 俊夫 北九州市若松区北浜一丁目9番1号 日立 金属株式会社若松工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeyuki Hamayoshi 1-9-1 Kitahama, Wakamatsu-ku, Kitakyushu City Hitachi Metals Co., Ltd. Wakamatsu Factory (72) Inventor Toshio Okitsu 1-9-1, Kitahama, Wakamatsu-ku, Kitakyushu Hitachi Metals Co., Ltd. Wakamatsu Factory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 窒化ケイ素質セラミックス粒子30〜8
0体積%を、20〜70体積%のFe−Ni系合金の基
地に分散したことを特徴とする窒化ケイ素質セラミック
スと金属の複合材料。
1. Silicon nitride ceramic particles 30 to 8
A composite material of silicon nitride ceramics and a metal, characterized in that 0% by volume is dispersed in a matrix of an Fe-Ni alloy of 20 to 70% by volume.
【請求項2】 窒化ケイ素質セラミックス粒子が粒子寸
法1000μm以下であることを特徴とする請求項1に
記載の窒化ケイ素質セラミックスと金属の複合材料。
2. The composite material of silicon nitride ceramics and a metal according to claim 1, wherein the silicon nitride ceramic particles have a particle size of 1000 μm or less.
【請求項3】 窒化ケイ素質セラミックス粒子が粒子寸
法300μm以下であることを特徴とする請求項1に記
載の窒化ケイ素質セラミックスと金属の複合材料。
3. The composite material of silicon nitride ceramics and a metal according to claim 1, wherein the silicon nitride ceramic particles have a particle size of 300 μm or less.
【請求項4】 窒化ケイ素質セラミックス粒子が球状で
あることを特徴とする請求項1乃至3のいずれか1項に
記載の窒化ケイ素質セラミックスと金属の複合材料。
4. The composite material of silicon nitride ceramics and metal according to claim 1, wherein the silicon nitride ceramic particles are spherical.
【請求項5】 窒化ケイ素質セラミックス粒子に周期律
表の4a族、5a族又は6a族の元素の炭化物、ホウ化
物又は窒化物からなる非酸化物系導電材を含有させるこ
とを特徴とする請求項1乃至4のいずれか1項に記載の
窒化ケイ素質セラミックスと金属の複合材料。
5. A non-oxide conductive material made of a carbide, boride or nitride of an element of 4a group, 5a group or 6a group of the periodic table in silicon nitride ceramic particles. Item 7. A composite material of the silicon nitride ceramics and a metal according to any one of Items 1 to 4.
【請求項6】 窒化ケイ素質セラミックス粒子に非酸化
物系導電材を30〜70体積%含有させることを特徴と
する請求項1乃至5のいずれか1項に記載の窒化ケイ素
質セラミックスと金属の複合材料。
6. The silicon nitride ceramic and the metal according to claim 1, wherein the silicon nitride ceramic particles contain a non-oxide conductive material in an amount of 30 to 70% by volume. Composite material.
【請求項7】 Ti及び/又はAlをFe−Ni系合金
に0.5〜10重量%含有することを特徴とする請求項
1乃至6のいずれか1項に記載の窒化ケイ素質セラミッ
クスと金属の複合材料。
7. The silicon nitride ceramics and metal according to any one of claims 1 to 6, characterized in that Ti and / or Al is contained in an Fe-Ni based alloy in an amount of 0.5 to 10% by weight. Composite material.
【請求項8】 Fe−Ni系合金の表面に酸化被膜を設
けたことを特徴とする請求項1乃至7のいずれか1項に
記載の窒化ケイ素質セラミックスと金属の複合材料。
8. The composite material of silicon nitride ceramics and a metal according to claim 1, wherein an oxide film is provided on the surface of the Fe—Ni alloy.
【請求項9】 請求項1乃至8のいずれか1項に記載の
複合材料を別の金属体に接合したことを特徴とする複合
部材。
9. A composite member, characterized in that the composite material according to any one of claims 1 to 8 is bonded to another metal body.
【請求項10】 請求項1乃至9のいずれか1項に記載
の複合材料を構成部材にしたことを特徴とするアルミニ
ウム溶湯用部品。
10. A component for molten aluminum, comprising the composite material according to any one of claims 1 to 9 as a constituent member.
JP3532295A 1994-02-24 1995-02-23 Silicon nitride ceramic-metal composite material and parts for molten aluminum Pending JPH08158002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3532295A JPH08158002A (en) 1994-02-24 1995-02-23 Silicon nitride ceramic-metal composite material and parts for molten aluminum

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2643394 1994-02-24
JP6-229486 1994-09-26
JP6-26433 1994-09-26
JP22948694 1994-09-26
JP3532295A JPH08158002A (en) 1994-02-24 1995-02-23 Silicon nitride ceramic-metal composite material and parts for molten aluminum

Publications (1)

Publication Number Publication Date
JPH08158002A true JPH08158002A (en) 1996-06-18

Family

ID=27285399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3532295A Pending JPH08158002A (en) 1994-02-24 1995-02-23 Silicon nitride ceramic-metal composite material and parts for molten aluminum

Country Status (1)

Country Link
JP (1) JPH08158002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057434A (en) * 2011-09-07 2013-03-28 Denso Corp Method of manufacturing micro-channel heat exchanger
US20140086782A1 (en) * 2011-05-27 2014-03-27 H.C. Starck Gmbh Feni binder having universal usability
CN104139185A (en) * 2014-08-25 2014-11-12 南通高欣耐磨科技股份有限公司 Preparation method for wear-resisting metal ceramic composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086782A1 (en) * 2011-05-27 2014-03-27 H.C. Starck Gmbh Feni binder having universal usability
US9821372B2 (en) * 2011-05-27 2017-11-21 H. C. Starck Gmbh FeNi binder having universal usability
US20180029118A1 (en) * 2011-05-27 2018-02-01 H.C. Starck Gmbh Feni binder having universal usability
US11207730B2 (en) * 2011-05-27 2021-12-28 Höganäs Germany GmbH FeNi binder having universal usability
JP2013057434A (en) * 2011-09-07 2013-03-28 Denso Corp Method of manufacturing micro-channel heat exchanger
CN104139185A (en) * 2014-08-25 2014-11-12 南通高欣耐磨科技股份有限公司 Preparation method for wear-resisting metal ceramic composite material

Similar Documents

Publication Publication Date Title
KR19990013664A (en) Cemented Carbide Alloys and Composites
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP2007131886A (en) Method for producing fiber-reinforced metal superior in abrasion resistance
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JPH08158002A (en) Silicon nitride ceramic-metal composite material and parts for molten aluminum
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
JPH1034311A (en) Member for molten metal and manufacture thereof
JP2003055729A (en) Sintered alloy material with excellent corrosion resistance and wear resistance, its manufacturing method, and member for machine structure using them
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
WO2018193982A1 (en) Spray coating, laminated pipe, and method for manufacturing spray coating
JP2569614B2 (en) Energizing roll
JP4178070B2 (en) Method for canning sintered preform and method for producing sintered material thereby
JPH0873286A (en) Silicon nitride sintered compact and its production and member for molten metal using the same
JP2001262290A (en) Sintered hard alloy excellent in thermal shock resistance as well as corrosion resistance to molten metal, and member for molten metal using the alloy
JPH0693379A (en) Erosion-corrosion resistant material against aluminum
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH04247801A (en) Injecting parts for die casting machine
JPH0873964A (en) Production of high-toughness sintered hard alloy and composite sintered hard alloy roll
JP2002192301A (en) Method for producing aluminum-silicon alloy
JP2001025855A (en) Plunger sleeve for die casting machine and manufacture thereof
JPH04247804A (en) Injecting parts for die casting machine
JPH0848586A (en) Laminated ceramic sintered compact and member for molten iron-based alloy
JPH05140689A (en) High corrosion resistant and high wear resistant boride tungsten base alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD05 Notification of revocation of power of attorney

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061106