JPH0848586A - Laminated ceramic sintered compact and member for molten iron-based alloy - Google Patents

Laminated ceramic sintered compact and member for molten iron-based alloy

Info

Publication number
JPH0848586A
JPH0848586A JP6187344A JP18734494A JPH0848586A JP H0848586 A JPH0848586 A JP H0848586A JP 6187344 A JP6187344 A JP 6187344A JP 18734494 A JP18734494 A JP 18734494A JP H0848586 A JPH0848586 A JP H0848586A
Authority
JP
Japan
Prior art keywords
molten metal
sintered body
resistance
boron nitride
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6187344A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Yasuo Sawano
泰夫 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6187344A priority Critical patent/JPH0848586A/en
Publication of JPH0848586A publication Critical patent/JPH0848586A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00887Ferrous metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce laminated ceramic sintered compact excellent in thermal shock resistance and excellent also in erosion resistance and hardly sticking property to a molten metal. CONSTITUTION:This laminated ceramic sintered compact has a surface layer of magnesium oxide on the surface of the substrate consisting of 35-80wt.% aluminum nitride, 10-60wt.% boron nitride and 0.5-20wt.% one or more kinds of oxides of rare earth elements including Y.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な複合セラミックス
焼結体に関し、実用上十分な耐熱衝撃性を備え、かつ溶
融金属に対する耐溶損性および難付着性に優れた複合セ
ラミックス焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel composite ceramics sintered body, and more particularly to a composite ceramics sintered body which has a practically sufficient thermal shock resistance, and is excellent in melting loss resistance and difficult adhesion to molten metal.

【0002】[0002]

【従来の技術】耐熱衝撃性に優れるセラミックスとして
は窒化硼素、窒化珪素、サイアロン焼結体が知られてい
る。しかし、窒化硼素は耐熱衝撃性に優れ、溶融金属に
対する耐溶損性に優れるが機械的強度や耐摩耗性に劣
り、窒化珪素やサイアロン焼結体は耐熱衝撃性、機械的
強度及び耐摩耗性に優れるが溶鋼に対する耐溶損性に劣
るという欠点を有していた。
2. Description of the Related Art Boron nitride, silicon nitride and sialon sintered bodies are known as ceramics having excellent thermal shock resistance. However, boron nitride is excellent in thermal shock resistance and excellent in melting resistance against molten metal, but inferior in mechanical strength and wear resistance, and silicon nitride and sialon sintered bodies are excellent in thermal shock resistance, mechanical strength and wear resistance. Although it was excellent, it had a drawback that it was inferior in melt damage resistance to molten steel.

【0003】このため窒化硼素と窒化珪素あるいは窒化
硼素とサイアロンを複合化し両者の欠点を補う努力がな
されている。窒化硼素と窒化珪素からなる複合セラミッ
クスとしては、特開昭56−120575号公報、特開
平1−131062号公報、特開平4−294846号
公報および特開平5−70234号公報が提案されてい
る。また、サイアロンと窒化硼素からなる複合セラミッ
クスとしては、特開昭60−145963号公報、特開
平2−255247号公報、特開平2−255248号
公報および特開平3−153573号公報が提案されて
いる。しかし、窒化硼素と窒化珪素あるいは窒化硼素と
サイアロンからなる複合セラミックスは、Si成分が複
合セラミックス中に存在するので、溶融金属の内、特に
溶鉄と接した場合、鉄とSiが選択的に反応し最終的に
溶損に至るという問題が残されていた。
For this reason, efforts have been made to compound boron nitride and silicon nitride, or to compound boron nitride and sialon to compensate for the drawbacks of both. As composite ceramics composed of boron nitride and silicon nitride, Japanese Patent Application Laid-Open No. 56-120575, Japanese Patent Application Laid-Open No. 1-1131062, Japanese Patent Application Laid-Open No. 4-294846 and Japanese Patent Application Laid-Open No. 5-70234 have been proposed. Further, as composite ceramics composed of sialon and boron nitride, JP-A-60-145963, JP-A-2-255247, JP-A-2-255248 and JP-A-3-153573 have been proposed. . However, in the composite ceramics composed of boron nitride and silicon nitride or boron nitride and sialon, since the Si component is present in the composite ceramics, iron and Si selectively react with each other in the molten metal, especially when contacted with molten iron. There was a problem that it eventually melted.

【0004】そこで、溶融金属中でも溶鋼に対し化学的
に安定な窒化アルミニウムを加えることにより耐溶損性
を改善した複合セラミックスが提案されている。例え
ば、窒化硼素と窒化アルミニウムと窒化珪素からなる複
合セラミックスとして特開昭56−129666号公報
および特開昭60−51669号公報が提案されてい
る。しかしながらこれらも10wt%以上の窒化珪素を
含んでいるため充分な耐溶損性は得られていない。
Therefore, there has been proposed a composite ceramics which has improved corrosion resistance by adding aluminum nitride which is chemically stable to molten steel even in molten metal. For example, Japanese Patent Application Laid-Open Nos. 56-129666 and 60-51669 have been proposed as composite ceramics composed of boron nitride, aluminum nitride and silicon nitride. However, since these also contain 10 wt% or more of silicon nitride, sufficient erosion resistance is not obtained.

【0005】そこで最近では、窒化珪素を含まず窒化硼
素と窒化アルミニウムからなる複合セラミックスが提案
されている。例えば、窒化硼素と窒化アルミニウムから
なる複合セラミックスとして特開平1−131069号
公報が、あるいは窒化硼素と窒化アルミニウムとCa系
化合物からなる複合セラミックスとして特開平1−26
1279号公報が、窒化硼素と窒化アルミニウムとCa
及びY系化合物からなる複合セラミックスとして特開平
1−252584号公報、特開平1−305862号公
報が、窒化アルミニウムと窒化硼素と3CaO・Al2
3からなる複合セラミックスとして特開平3−252
367号公報が提案されている。また、鉄基合金溶湯用
セラミックスとして特開平4−332831号公報や特
公平5−8141号公報に提案されるような窒化硼素と
窒化アルミニウムと酸化イットリウムからなる複合セラ
ミックスがある。
Therefore, recently, a composite ceramic made of boron nitride and aluminum nitride without containing silicon nitride has been proposed. For example, Japanese Patent Application Laid-Open No. 1-131069 discloses a composite ceramic composed of boron nitride and aluminum nitride, or Japanese Patent Application Laid-Open No. 1-26 discloses a composite ceramic composed of boron nitride, aluminum nitride and a Ca compound.
1279 discloses boron nitride, aluminum nitride and Ca.
And Japanese Patent Laid-Open Nos. 1-252584 and 1-305862 disclose composite ceramics composed of a Y compound and aluminum nitride, boron nitride and 3CaO.Al 2.
O 3 Hei a composite ceramic composed of 3-252
Japanese Patent No. 367 has been proposed. Further, as a ceramic for molten iron-based alloy, there is a composite ceramic composed of boron nitride, aluminum nitride and yttrium oxide as proposed in JP-A-4-332831 and JP-B-5-8141.

【0006】窒化アルミニウムは高熱伝導性材料として
良く知られているが、構造材料としてもアルミナと同程
度の硬さを持ち耐摩耗性に優れ、溶融金属に対する耐溶
損性が優れるため、窒化硼素と複合化することにより、
耐熱衝撃性、耐摩耗性に優れ、溶融金属に対する耐溶損
性が良好な材料となる。
Aluminum nitride is well known as a material having high thermal conductivity, but as a structural material, it has the same hardness as alumina, has excellent wear resistance, and has excellent corrosion resistance against molten metal. By compounding,
It is a material that has excellent thermal shock resistance and wear resistance, and has good resistance to melting damage to molten metal.

【0007】[0007]

【発明が解決しようとする課題】しかし、窒化硼素と窒
化アルミニウムからなる複合セラミックスは窒化硼素中
に含まれる酸化硼素や酸化イットリウム等の希土類酸化
物を焼結助剤として使用しているため溶融金属中に長時
間浸漬させると溶融金属とそれらの酸化物からなる複合
酸化物が濡れ、そこから溶融金属が浸食し溶損に至る
か、あるいは溶融金属中からセラミックスを取り出した
際、金属がセラミックスと付着し、その金属を剥離する
とセラミックスの方が破壊されるという問題をかかえて
いた。
However, since the composite ceramics composed of boron nitride and aluminum nitride uses a rare earth oxide such as boron oxide or yttrium oxide contained in boron nitride as a sintering aid, it is a molten metal. If it is immersed in the molten metal for a long time, the molten metal and the complex oxide consisting of these oxides get wet, and the molten metal erodes from it, leading to melting loss, or when the ceramic is taken out from the molten metal, the metal becomes the ceramic. The problem was that if the metal adhered and the metal was peeled off, the ceramic would be destroyed.

【0008】そこで溶融金属用構造部材として用いる場
合は耐溶損性に優れるだけでは十分ではなく、溶融金属
に対し難付着性が必要であり、付着しなければ溶損する
こともなくなり、特に溶融金属中へ浸漬して使用される
部材では有効である。溶融金属に対する難付着性とは、
セラミックスを溶融金属中に浸漬させた後、取り出した
時にセラミックス上に金属が付着していないこと、付着
していたとしてもセラミックスを破壊することなく容易
に剥離できることである。易付着性の場合や剥離が困難
な場合は、セラミックスが溶損するか、セラミックスが
破壊され、そのセラミックスが溶融金属中に混入し金属
の特性が劣化したり、セラミックスの繰り返し使用が困
難になるという問題がある。
Therefore, when it is used as a structural member for molten metal, it is not enough to have excellent melting resistance, and it is necessary to have a poor adhesion property to the molten metal. It is effective for members used by being immersed in What is difficult adhesion to molten metal?
After the ceramic is dipped in the molten metal and then taken out, the metal is not adhered to the ceramic, and even if the metal is adhered, the ceramic can be easily peeled without breaking. In the case of easy adhesion or when peeling is difficult, the ceramic may be melted or destroyed, and the ceramic may mix into the molten metal to deteriorate the characteristics of the metal, or the repeated use of the ceramic becomes difficult. There's a problem.

【0009】そこで、耐熱衝撃性および単に溶融金属に
対する耐溶損性に優れるだけでなく溶融金属に対し優れ
た難付着性を示す複合セラミックス焼結体の開発が強く
望まれていた。したがって、本発明は実用上十分な耐熱
衝撃性を備え、かつ溶融金属に対する耐溶損性および難
付着性に優れる複合セラミックス焼結体を提供すること
を目的とするものである。
Therefore, there has been a strong demand for the development of a composite ceramics sintered body which is excellent not only in thermal shock resistance and erosion resistance to molten metal but also in excellent adhesion to molten metal. Therefore, it is an object of the present invention to provide a composite ceramics sintered body which has practically sufficient thermal shock resistance and is excellent in melting resistance and difficult adhesion to molten metal.

【0010】[0010]

【問題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意検討の結果、窒化アルミニウムと窒
化硼素と希土類酸化物および/またはアルカリ土類酸化
物からなる母材の表面にマグネシウム酸化物層を形成す
ることにより、金属溶湯中で用いてもクラックや割れが
発生せず実用上十分な耐熱衝撃性を備え、かつ溶融金属
に対する耐溶損性および難付着性に優れた複合セラミッ
クス焼結体が得られることを見い出した。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that the surface of a base material composed of aluminum nitride, boron nitride, a rare earth oxide and / or an alkaline earth oxide is By forming a magnesium oxide layer, a composite ceramic that does not generate cracks or cracks even when used in molten metal, has practically sufficient thermal shock resistance, and is excellent in erosion resistance and difficult adhesion to molten metal. It was found that a sintered body was obtained.

【0011】したがって、本発明は、窒化アルミニウム
35〜80wt%と窒化ホウ素10〜60wt%とYを
含む希土類金属およびアルカリ土類金属の酸化物のうち
一種または二種以上を0.5〜20wt%とからなる母
材の表面にマグネシウム酸化物からなる表面層を有する
複合セラミックス焼結体である。Yを含む希土類金属お
よびアルカリ土類金属の酸化物のうち一種または二種以
上のうち、酸化ディスプロシウムがより好ましい。ま
た、前記焼結体において酸化アルミニウムを25wt%
以下含む焼結体としてもよい。
Therefore, according to the present invention, 0.5 to 20 wt% of one or more oxides of rare earth metal and alkaline earth metal containing 35 to 80 wt% of aluminum nitride, 10 to 60 wt% of boron nitride and Y is contained. A composite ceramic sintered body having a surface layer made of magnesium oxide on the surface of a base material made of. Among the oxides of rare earth metals and alkaline earth metals containing Y, dysprosium oxide is more preferred among one or more oxides. Further, 25 wt% of aluminum oxide is contained in the sintered body.
It may be a sintered body containing the following.

【0012】本発明の複合セラミックス焼結体は、融点
1000℃以上の金属溶湯用部材として用いることがで
きる。金属溶湯用部材としては、測温用保護管、ブレー
クリング、浸漬ノズル等に適用することができる。ま
た、金属溶湯の中でも特に鉄系溶湯に対する難付着性に
優れるので鉄基合金溶湯用部材として用いることが望ま
しいが、Ni基合金、Co基合金等の溶鋼用部材として
も用いることができる。
The composite ceramics sintered body of the present invention can be used as a member for molten metal having a melting point of 1000 ° C. or higher. The metal melt member can be applied to a temperature measuring protective tube, a break ring, an immersion nozzle, or the like. Further, among metal melts, it is particularly preferable to use as a member for iron-based alloy melts because it has excellent adhesion to iron-based melts, but it can also be used as a member for molten steel such as Ni-base alloys and Co-base alloys.

【0013】本発明の複合セラミックス焼結体の製造方
法は、従来から公知の方法でよく、例えば原料粉末をエ
タノールを分散媒としてボールミルにて混合し、得られ
たスラリーをスプレイドライヤーにて造粒し、その造粒
粉をCIPあるいは一軸加圧による金型プレス等にて成
形し、窒素、アルゴン等の雰囲気中、1600℃〜20
00℃で0.5〜10時間焼結することにより得ること
ができる。焼結は、常圧焼結、加圧焼結(ホットプレ
ス、HIP等)のいづれでもよい。得られた焼結体は、
マグネシウム酸化物を分散させたスラリー中に浸漬する
かあるいはスラリーを塗布し、N2あるいはAr雰囲気
中1400〜2000℃で0.5〜1時間焼結する。ま
た、成形体にマグネシウム酸化物層を形成した後、一体
焼結してもよい。
The method for producing the composite ceramics sintered body of the present invention may be a conventionally known method. For example, raw material powders are mixed in a ball mill with ethanol as a dispersion medium, and the resulting slurry is granulated by a spray dryer. Then, the granulated powder is molded by a die press or the like by CIP or uniaxial pressurization, in an atmosphere of nitrogen, argon or the like, 1600 ° C to 20 ° C.
It can be obtained by sintering at 00 ° C. for 0.5 to 10 hours. The sintering may be either normal pressure sintering or pressure sintering (hot pressing, HIP, etc.). The obtained sintered body is
It is dipped in a slurry in which magnesium oxide is dispersed or coated with the slurry and sintered in an N 2 or Ar atmosphere at 1400 to 2000 ° C. for 0.5 to 1 hour. Alternatively, the magnesium oxide layer may be formed on the compact and then integrally sintered.

【0014】[0014]

【作用】本発明は、窒化アルミニウムと窒化硼素と希土
類酸化物および/またはアルカリ土類酸化物からなる母
材により、耐熱衝撃性および溶融金属に対し優れた耐溶
損性を備え、かつ表面にマグネシウム酸化物層を形成す
ることにより、溶融金属に対し優れた難付着性を示す複
合セラミックス焼結体である。
The present invention uses a base material composed of aluminum nitride, boron nitride, a rare earth oxide and / or an alkaline earth oxide, and has excellent thermal shock resistance and excellent erosion resistance against molten metal, and magnesium surface. By forming an oxide layer, it is a composite ceramic sintered body that exhibits excellent adhesion to molten metal.

【0015】本発明において、マグネシウム酸化物層は
溶融金属に対する難付着性を得るために形成する。マネ
シウム酸化物としては、例えばMgOやMgAl24
が含まれる。マグネシウム酸化物層は、1〜200μm
の範囲で形成するのが望ましい。マグネシウム酸化物層
が1μm未満であると十分な難付着性が得られない。ま
た200μmを越えると緻密なマグネシウム酸化物層が
得られず、溶融金属が母材中に差し込み付着するとうい
う現象が生じる。
In the present invention, the magnesium oxide layer is formed in order to obtain poor adhesion to molten metal. Examples of the manesium oxide include MgO and MgAl 2 O 4 . The magnesium oxide layer has a thickness of 1 to 200 μm.
It is desirable to form within the range. If the magnesium oxide layer is less than 1 μm, sufficient adhesion cannot be obtained. On the other hand, if it exceeds 200 μm, a dense magnesium oxide layer cannot be obtained, and a phenomenon that molten metal is inserted into the base material and adheres occurs.

【0016】本発明複合セラミックス焼結体は、焼結体
表面のMgAl24の存在によって、溶融金属に対する
難付着性を実現すると推測される。したがって、マグネ
シウム酸化物としてMgAl24を用いることができ
る。また、マグネシウム酸化物としてMgOを用いた場
合、焼結過程にAl23と反応しMgAl24が形成さ
れる。
It is presumed that the composite ceramics sintered body of the present invention realizes difficult adhesion to molten metal due to the presence of MgAl 2 O 4 on the surface of the sintered body. Therefore, MgAl 2 O 4 can be used as the magnesium oxide. When MgO is used as the magnesium oxide, it reacts with Al 2 O 3 during the sintering process to form MgAl 2 O 4 .

【0017】本発明の母材となる焼結体の組成限定理由
を以下に述べる。窒化アルミニウムは耐摩耗性及び耐溶
損性を得るために添加される。窒化アルミニウムが35
wt%より少ないと耐摩耗性、耐溶損性が充分でなく、
80wt%を越えると充分な耐熱衝撃性が得られない。
したがって、窒化アルミニウムは35〜80wt%とす
る。また、窒化アルミニウムが40wt%以上であると
より耐摩耗性に優れる。さらに、60wt%以下である
とより耐熱衝撃性に優れる。そのため40〜60wt%
の範囲で添加するのが最も望ましい。
The reasons for limiting the composition of the sintered body as the base material of the present invention will be described below. Aluminum nitride is added to obtain wear resistance and erosion resistance. 35 aluminum nitride
If it is less than wt%, the wear resistance and melt resistance are not sufficient,
If it exceeds 80 wt%, sufficient thermal shock resistance cannot be obtained.
Therefore, the aluminum nitride content is 35-80 wt%. Further, when the aluminum nitride content is 40 wt% or more, the wear resistance is more excellent. Further, when it is 60 wt% or less, the thermal shock resistance is more excellent. Therefore, 40-60 wt%
It is most desirable to add in the range of.

【0018】窒化硼素は耐熱衝撃性向上のために添加さ
れる。窒化硼素が10wt%より少ないと充分な耐熱衝
撃性が得られず、さらには保護管のような内部が中空で
熱衝撃温度差が大きくなるような場合にはより充分な耐
熱衝撃性を得るために20wt%以上の方がよい。60
wt%を越えると窒化硼素が溶融金属と濡れ易くなり耐
溶損性が低下し、さらには特に耐摩耗性や強度が必要な
場合には40wt%以下の方が良い。従って、窒化硼素
は10〜60wt%とし、さらに耐熱衝撃性を必要とす
る場合20〜60wt%、耐摩耗性や強度が必要な場合
10〜40wt%し、最も望ましいのは20〜40wt
%である。なお、窒化硼素は炭化硼素にて添加し、窒素
中雰囲気等の焼結により焼結体中に窒化硼素を形成させ
てもよい。また、窒化硼素中に微量の酸化硼素が含まれ
ていても、MgAl24が存在しない場合に比し、Mg
Al24が存在する場合の方が溶融金属に対する難付着
性が優れる。
Boron nitride is added to improve thermal shock resistance. If the content of boron nitride is less than 10 wt%, sufficient thermal shock resistance cannot be obtained. Further, in the case where the inside of a protective tube is hollow and the thermal shock temperature difference becomes large, in order to obtain sufficient thermal shock resistance. It is better to be 20 wt% or more. 60
When the content is more than wt%, boron nitride is easily wetted with the molten metal to lower the melting resistance, and when the wear resistance and the strength are particularly required, the content is preferably 40 wt% or less. Therefore, the content of boron nitride is 10 to 60 wt%, 20 to 60 wt% when heat shock resistance is required, and 10 to 40 wt% when wear resistance and strength are required, and most preferably 20 to 40 wt%.
%. It should be noted that boron nitride may be added as boron carbide, and boron nitride may be formed in the sintered body by sintering in a nitrogen atmosphere or the like. Even if a small amount of boron oxide is contained in the boron nitride, the amount of Mg is less than that in the case where MgAl 2 O 4 is not present.
When Al 2 O 4 is present, it is more difficult to adhere to molten metal.

【0019】前記複合セラミックス焼結体にYを含む希
土類酸化物のうち一種または二種以上を0.5〜20w
t%を添加した複合セラミックス焼結体としてもよい。
Yを含む希土類酸化物は焼結助剤であり、特に常圧焼結
する場合の緻密化に効果がある。0.5wt%では常圧
焼結により緻密な焼結体を得ることは困難で20wt%
を越えると溶融金属と濡れ易くなり、難付着性が低下す
る。5wt%以上添加すれば常圧焼結による緻密化が更
に容易になる。また、難付着性低下を防止するために
は、添加量を15wt%以下とすることが望ましい。
0.5-20 w of one or more rare earth oxides containing Y is added to the composite ceramic sintered body.
A composite ceramics sintered body to which t% is added may be used.
The rare earth oxide containing Y is a sintering aid, and is particularly effective for densification when pressureless sintering is performed. At 0.5 wt%, it is difficult to obtain a dense sintered body by pressureless sintering, and 20 wt%
If it exceeds the range, it becomes easy to wet with the molten metal and the poor adhesion is deteriorated. If 5 wt% or more is added, densification by normal pressure sintering becomes easier. Further, in order to prevent the deterioration of the hard-to-adhere property, it is desirable that the addition amount be 15 wt% or less.

【0020】Yを含む希土類酸化物としては焼結性、難
付着性の点から酸化ディスプロシウムが好ましい。ま
た、希土類酸化物の存在下においても、MgAl24
存在しない場合に比し、MgAl24が存在する場合の
方が溶融金属に対する難付着性が優れる。
As the rare earth oxide containing Y, dysprosium oxide is preferable from the viewpoints of sinterability and poor adhesion. Further, even in the presence of a rare earth oxide, compared to the case where MgAl 2 O 4 does not exist, towards the case of MgAl 2 O 4 are present excellent flame adhesion to the molten metal.

【0021】本発明複合セラミックス焼結体は、酸化ア
ルミニウムを25wt%以下添加することができる。酸
化アルミニウムは、焼結過程においてMgOと反応して
MgAl24を生成する役割を果たすと共に、焼結助剤
としての役割を果たすが、25wt%を越えて添加する
と耐熱衝撃性を低下させる。また酸化アルミニウムの添
加量を10wt%以下とすれば、さらに良好な耐熱衝撃
性が得られる。酸化アルミニウムは窒化アルミニウムの
原料粉中に不可避的に含まれる酸素によってももたらさ
れる。焼結過程において酸素と窒化アルミニウムとから
生成された酸化アルミニウムは、添加した酸化アルミニ
ウムと同様の働きをしMgAl24を生成するととも
に、焼結助剤としても働く。
Aluminum oxide can be added to the composite ceramics sintered body of the present invention in an amount of 25 wt% or less. Aluminum oxide plays a role of reacting with MgO to form MgAl 2 O 4 in the sintering process and also plays a role of a sintering aid, but if added in excess of 25 wt%, the thermal shock resistance is lowered. Further, if the amount of aluminum oxide added is 10 wt% or less, even better thermal shock resistance can be obtained. Aluminum oxide is also provided by oxygen inevitably contained in the raw material powder of aluminum nitride. Aluminum oxide produced from oxygen and aluminum nitride in the sintering process acts like added aluminum oxide to produce MgAl 2 O 4 and also acts as a sintering aid.

【0022】[0022]

【実施例】本発明を実施例をあげてさらに具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。 (実施例1)粒径0.2〜5μmの窒化アルミニウム6
0wt%と粒径0.2〜10μmの窒化ホウ素32wt
%と粒径0.2〜5μmの酸化ディスプロシウム8wt
%を配合した原料粉末を、エタノールを分散媒としてボ
ールミルで混合し、スプレードライヤーにて作製した造
粒粉を一軸加圧プレスにて1ton/cm2で成形し、
得られた成形体にマグネシウム酸化物層を塗布した後、
焼結し、15 (幅)×100(長さ)×5(厚さ)m
mの複合セラミックス焼結体を得た。焼結は窒素雰囲気
中、1800℃×3hにて常圧焼結を行った。得られた
焼結体の耐熱衝撃性、耐溶損性および溶融金属に対する
難付着性について評価した。評価結果をマグネシウム酸
化物層の厚さと共に表1に示す。
EXAMPLES The present invention will be described more specifically by way of examples, but the present invention is not limited to these examples. (Example 1) Aluminum nitride 6 having a particle size of 0.2 to 5 μm
Boron nitride 32 wt% with 0 wt% and particle size 0.2-10 μm
% And dysprosium oxide with a particle size of 0.2-5 μm 8 wt
% Of the raw material powder mixed with ethanol as a dispersion medium in a ball mill, and the granulated powder produced by a spray dryer is molded at 1 ton / cm 2 by a uniaxial pressure press,
After applying a magnesium oxide layer to the obtained molded body,
Sintered, 15 (width) x 100 (length) x 5 (thickness) m
A composite ceramics sintered body of m was obtained. Sintering was carried out in a nitrogen atmosphere at 1800 ° C. for 3 hours under normal pressure. The resulting sintered body was evaluated for thermal shock resistance, melting resistance, and resistance to adhesion to molten metal. The evaluation results are shown in Table 1 together with the thickness of the magnesium oxide layer.

【0023】耐熱衝撃性は、SKH51鋼を高周波溶解
炉中で溶解して1520℃の溶湯とした中に、作製した
焼結体を予熱無しにて直接浸漬し、10分間浸漬後に取
りだした試料のクラックや破損の状況により評価した。
クラックや破損が無い試料が耐熱衝撃性に優れることを
示し、表には○と記す。
Regarding the thermal shock resistance, the SKH51 steel was melted in a high-frequency melting furnace into a molten metal at 1520 ° C., and the produced sintered body was directly dipped without preheating, and after 10 minutes of dipping, a sample was taken out. It was evaluated based on the condition of cracks and damage.
Samples without cracks or damage show excellent thermal shock resistance, and are marked with "○" in the table.

【0024】次に耐熱衝撃性評価においてクラックや破
損の無かった試料(耐熱衝撃性評価が○の試料)につい
て、耐溶損性および溶融金属に対する難付着性を評価し
た。高周波溶解炉中で溶解したSKH51鋼を1520
℃に保持し、その溶湯中に試料を60分間浸漬後に取り
出し、溶鉄やノロの付着を浸漬部分単位面積あたりの付
着量(mg/cm2)で評価することにより溶融金属に対する
難付着性を評価し、浸漬部分の浸漬前の体積に対する浸
漬後の溶損体積率(vol.%)を測定し耐溶損性を評価し
た。また、銅溶湯に対する難付着性を評価した。銅溶湯
中に試料を60分間浸漬後に取り出し、銅の付着を浸漬
部分単位面積あたりの付着量(mg/cm2)を測定した。表
1において、難付着性は値の小さい試料が難付着性に優
れることを示し、耐溶損性は溶損率の小さい試料が耐溶
損性にすぐれることを示す。SKH51鋼に対する難付
着性を評価した試験片のうちNo.3、6について試験
後の外観を図1(a)、(b)に示す。
Next, the samples that were not cracked or damaged in the thermal shock resistance evaluation (samples with a thermal shock resistance evaluation of ◯) were evaluated for melt damage resistance and poor adhesion to molten metal. 1520 SKH51 steel melted in a high frequency melting furnace
The sample is immersed in the molten metal for 60 minutes after being held at ℃, and the adhesion of molten iron or slag is evaluated by the adhesion amount per unit area of the immersion part (mg / cm 2 ) to evaluate the difficulty adhesion to molten metal. Then, the erosion resistance was evaluated by measuring the erosion volume ratio (vol.%) After the immersing part with respect to the volume before immersing. Further, the difficulty of adhering to the molten copper was evaluated. After the sample was immersed in the molten copper for 60 minutes, the sample was taken out, and the adhesion of copper was measured for the adhesion amount (mg / cm 2 ) per unit area of the immersed part. In Table 1, the sample having a small value of the poor adhesion property is excellent in the poor adhesion property, and the resistance to erosion is that the sample of the small erosion rate is excellent in the erosion resistance. No. out of the test pieces evaluated for poor adhesion to SKH51 steel. Appearances of the test pieces Nos. 3 and 6 after the test are shown in FIGS.

【0025】[0025]

【表1】 [Table 1]

【0026】表1より、本発明例および従来例共に耐熱
衝撃性に優れるが、従来例は付着量が本発明より多く、
また溶損率が大きくなっている。一方、本発明例である
試料NO.1〜4は付着量が少なく、また溶損率も0vo
l.%と溶損しておらず、溶融金属に対する難付着性およ
び耐溶損性に優れることがわかる。また、No.2の試
料をX線回折したところ、MgAl4が表面層に
形成されていることが確認された。
From Table 1, both the present invention example and the conventional example are excellent in thermal shock resistance, but the conventional example has a larger amount of adhesion than the present invention.
Also, the erosion rate is high. On the other hand, sample NO. 1 to 4 has a small amount of adhesion, and the melting loss rate is 0 vo
It can be seen that it is not melted as l.% and has excellent adhesion resistance to molten metal and excellent melt damage resistance. In addition, No. When the sample No. 2 was subjected to X-ray diffraction, it was confirmed that MgAl 2 O 4 was formed in the surface layer.

【0027】(実施例2)粒径0.2〜5μmの窒化ア
ルミニウムと粒径0.2〜10μmの窒化ホウ素と粒径
0.2〜5μmの酸化ディスプロシウム(表2中にはRE
Oと記載)を配合した原料粉末を、エタノールを分散媒
としてボールミルで混合し、スプレードライヤーにて作
製した造粒粉を一軸加圧プレスにて1ton/cm2
成形後、焼結し、15 (幅)×100(長さ)×5
(厚さ)mmの複合セラミックス焼結体を得た。焼結は
窒素雰囲気中、1800℃×3hにて常圧焼結を行っ
た。得られた焼結体の表面に粒径0.2〜10μmのM
gO・Al23ののスラリーを塗布して1600℃×1
時間で焼結して厚さ100μmの表面層を有する複合セ
ラミックス焼結体を得、耐熱衝撃性、耐溶損性および溶
融金属に対する難付着性について実施例1と同様の方法
で評価した。評価結果を表2に示す。
Example 2 Aluminum nitride having a particle size of 0.2 to 5 μm, boron nitride having a particle size of 0.2 to 10 μm, and dysprosium oxide having a particle size of 0.2 to 5 μm (in Table 2, RE
O)) was mixed with a ball mill using ethanol as a dispersion medium, and the granulated powder produced with a spray dryer was molded at 1 ton / cm 2 with a uniaxial pressure press and then sintered, 15 (Width) x 100 (length) x 5
A composite ceramics sintered body having a thickness of mm was obtained. Sintering was carried out in a nitrogen atmosphere at 1800 ° C. for 3 hours under normal pressure. On the surface of the obtained sintered body, M having a particle size of 0.2 to 10 μm
Apply a slurry of gO ・ Al 2 O 3 and apply 1600 ℃ × 1
A composite ceramics sintered body having a surface layer with a thickness of 100 μm was obtained by sintering for a period of time, and evaluated in the same manner as in Example 1 with respect to thermal shock resistance, erosion resistance and difficulty in adhering to molten metal. Table 2 shows the evaluation results.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例3)本発明複合セラミックス焼結
体を用いて図2に示す外寸120×120×20mm、
内寸100×100×20mmのブレークリングを作製
した。本発明複合セラミックス焼結体は、34wt.%窒化
ホウ素(粒径0.5〜10μm)と7wt.%酸化ディスプ
ロシウム(粒径0.2〜5μm)と59wt.%窒化アルミ
ニウム(粒径0.2〜5μm)とを配合した原料粉末
を、エタノールを分散媒としてボールミルで混合し、ス
プレードライヤーにて作製した造粒粉を静水圧プレスに
て1ton/cm2で 成形し、酸化マグネシウムを分散
させたスラリー中に浸漬した後、焼結した。焼結は窒素
雰囲気中、1800℃×3hにて常圧焼結を行った。ま
た、表面層は30μm形成した。得られたブレークリン
グを図3に示す水平連続鋳造機に適用し、1回90分の
使用でSKH51鋼の連続鋳造を行った。その結果、ブ
レークリングは鉄の付着もなく、得られた鋳片も良好で
あった。なお、図3は従来から一般的に用いられている
水平連続鋳造機の横断面図である。
(Embodiment 3) Using the composite ceramic sintered body of the present invention, the outer dimensions shown in FIG. 2 are 120 × 120 × 20 mm,
A break ring having an inner size of 100 × 100 × 20 mm was produced. The composite ceramics sintered body of the present invention comprises 34 wt.% Boron nitride (particle size 0.5 to 10 μm), 7 wt.% Dysprosium oxide (particle size 0.2 to 5 μm), and 59 wt.% Aluminum nitride (particle size 0 2 to 5 μm) was mixed in a ball mill with ethanol as a dispersion medium, and a granulated powder produced by a spray dryer was molded at 1 ton / cm 2 by a hydrostatic press to disperse magnesium oxide. After being dipped in the prepared slurry, it was sintered. Sintering was carried out in a nitrogen atmosphere at 1800 ° C. for 3 hours under normal pressure. Further, the surface layer was formed with a thickness of 30 μm. The obtained break ring was applied to the horizontal continuous casting machine shown in FIG. 3, and continuous casting of SKH51 steel was performed by using it once for 90 minutes. As a result, the break ring was free of iron adhesion and the obtained slab was good. It should be noted that FIG. 3 is a cross-sectional view of a horizontal continuous casting machine which has been generally used conventionally.

【0030】[0030]

【発明の効果】本発明により、実用上十分な耐熱衝撃性
を備え、かつ溶融金属に対する耐溶損性および難付着性
に優れる複合セラミックス焼結体が得られ、金属溶湯用
部材、特に鉄基合金溶湯用部材として最適な複合セラミ
ックス焼結体が得られた。
EFFECTS OF THE INVENTION According to the present invention, a composite ceramics sintered body having practically sufficient thermal shock resistance, and excellent in melt damage resistance and poor adhesion to molten metal can be obtained. A composite ceramics sintered body most suitable as a member for molten metal was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明複合セラミックス焼結体の浸漬試
験後の外観図である。 (b)従来の複合セラミックス焼結体の浸漬試験後の外
観図である。
FIG. 1 (a) is an external view of a composite ceramics sintered body of the present invention after an immersion test. (B) It is an external view of a conventional composite ceramics sintered body after an immersion test.

【図2】本発明複合セラミックス焼結体を用いたブレー
クリングの外観図である。
FIG. 2 is an external view of a break ring using the composite ceramics sintered body of the present invention.

【図3】一般的な水平連続鋳造機を示す横断面図であ
る。
FIG. 3 is a cross-sectional view showing a general horizontal continuous casting machine.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/583 35/581 F27D 1/00 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C04B 35/583 35/581 F27D 1/00 N

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム35〜80wt%と窒
化ホウ素10〜60wt%とYを含む希土類酸化物のう
ち一種または二種以上を0.5〜20wt%とからなる
母材の表面にマグネシウム酸化物からなる表面層を有す
ることを特徴とする複合セラミックス焼結体。
1. Magnesium oxide on the surface of a base material composed of 35-80 wt% aluminum nitride, 10-60 wt% boron nitride, and 0.5-20 wt% of one or more rare earth oxides containing Y. A composite ceramics sintered body having a surface layer made of
【請求項2】 母材が酸化アルミニウムを25wt%以
下含む請求項1に記載の複合セラミックス焼結体。
2. The composite ceramics sintered body according to claim 1, wherein the base material contains 25 wt% or less of aluminum oxide.
【請求項3】 窒化アルミニウム35〜80wt%と窒
化ホウ素10〜60wt%とYを含む希土類酸化物のう
ち一種または二種以上を0.5〜20wt%とからなる
母材の表面にマグネシウム酸化物からなる表面層を有す
る複合セラミックス焼結体を用いたことを特徴とする鉄
基合金溶湯用部材。
3. A magnesium oxide is formed on the surface of a base material comprising 35 to 80 wt% of aluminum nitride, 10 to 60 wt% of boron nitride, and 0.5 to 20 wt% of one or more rare earth oxides containing Y. A member for molten iron-based alloy characterized by using a composite ceramics sintered body having a surface layer made of.
JP6187344A 1994-08-09 1994-08-09 Laminated ceramic sintered compact and member for molten iron-based alloy Pending JPH0848586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6187344A JPH0848586A (en) 1994-08-09 1994-08-09 Laminated ceramic sintered compact and member for molten iron-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6187344A JPH0848586A (en) 1994-08-09 1994-08-09 Laminated ceramic sintered compact and member for molten iron-based alloy

Publications (1)

Publication Number Publication Date
JPH0848586A true JPH0848586A (en) 1996-02-20

Family

ID=16204360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6187344A Pending JPH0848586A (en) 1994-08-09 1994-08-09 Laminated ceramic sintered compact and member for molten iron-based alloy

Country Status (1)

Country Link
JP (1) JPH0848586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248054A (en) * 2008-10-23 2010-11-04 Ngk Insulators Ltd Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248054A (en) * 2008-10-23 2010-11-04 Ngk Insulators Ltd Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US5457075A (en) Sintered ceramic composite and molten metal contact member produced therefrom
JP2009007648A (en) Powder for infiltration
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
CN1045281C (en) Silicon nitride combined with silicon carbide refractory material for pouring ladle gate
EP1493515B1 (en) Ceramic plate as side dam for twin drum type thin-sheet continuous casting
JPH0848586A (en) Laminated ceramic sintered compact and member for molten iron-based alloy
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JPH07277830A (en) Combined ceramic sintered compact and member for molten iron-based alloy using the same
JPH0873286A (en) Silicon nitride sintered compact and its production and member for molten metal using the same
JP2000064060A (en) Member for nonferrous molten metal
CN104669719A (en) Ceramic-metal complex and preparation method thereof
JPH08108265A (en) Erosion resistance ceramic, its production and member for molten metal with using erosion resistance ceramic
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying
JP3587493B2 (en) Composite sintered body of boron nitride and spinel
JPH08158002A (en) Silicon nitride ceramic-metal composite material and parts for molten aluminum
JPH06321641A (en) Composite ceramics
JP3415705B2 (en) Sialon-BN composite sintered body and method of manufacturing the same
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH06322457A (en) Silicon nitride parts for melting and casting of aluminum and melting and casting equipment using the same
JPH09174217A (en) Cylinder sleeve for aluminum die casting
USH1861H (en) Composite production with continuous metal and ceramic phases
JPS593083A (en) Graphite crucible
JPH07206524A (en) Complex ceramics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041001