JP2000064060A - Member for nonferrous molten metal - Google Patents

Member for nonferrous molten metal

Info

Publication number
JP2000064060A
JP2000064060A JP10263880A JP26388098A JP2000064060A JP 2000064060 A JP2000064060 A JP 2000064060A JP 10263880 A JP10263880 A JP 10263880A JP 26388098 A JP26388098 A JP 26388098A JP 2000064060 A JP2000064060 A JP 2000064060A
Authority
JP
Japan
Prior art keywords
layer
alloy
ceramic
molten metal
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10263880A
Other languages
Japanese (ja)
Inventor
Shigehiro Matsuno
茂弘 松野
Shoichi Takahashi
昭一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKAMATSU NETSUREN KK
Original Assignee
WAKAMATSU NETSUREN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKAMATSU NETSUREN KK filed Critical WAKAMATSU NETSUREN KK
Priority to JP10263880A priority Critical patent/JP2000064060A/en
Publication of JP2000064060A publication Critical patent/JP2000064060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for nonferrous molten metal having erosion resistance even in the case of being immersed in or repeatedly brought into contact with nonferrous molten metal and safely usable by using a ferrous material as a base material. SOLUTION: On the surface of a ferrous base material 1, an intermediate layer 2 of an Al-Fe alloy metallically bonded to the ferrous base material surface is formed, and, moreover, the surface of the intermediate layer 2 of the Al-Fe alloy is coated with a ceramic layer 3. The ceramic layer 3 contains flat ceramic powder, is bonded with fused glass or bonded with a ceramic bonding material essentially consisting of silicate or phosphate and is fused to cover on the Al-Fe alloy layer as the substrate. The flat ceramic powder is composed of the powder of one or >= two kinds among silicon carbide flat alumina and mica and is contained by 20 to 70 wt.% in the ceramic layer. As the nonferrous molten metal, mainly, the molten metal of an aluminum alloy, a zinc alloy, a copper alloy or the like is used as the object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非鉄金属製品を製造
するための溶解又は鋳造設備の耐溶損性溶湯用部材に関
し、非鉄金属のなかでも、特にアルミニウム合金、亜鉛
合金、銅合金等の溶湯に対して好適な溶湯用部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melt-resistant member for melting or casting equipment for producing non-ferrous metal products, and particularly to non-ferrous metals such as aluminum alloys, zinc alloys and copper alloys. On the other hand, it relates to a suitable member for molten metal.

【0002】[0002]

【従来の技術】非鉄金属の溶湯用部材には、溶湯に浸漬
して接触する部材と、浸漬しないで溶湯に繰返し接触す
る部材とがある。例えば、溶湯に浸漬する部材として熱
電対保護管やストーク、溶湯と繰返し接触する部材とし
てラドルや樋等がある。従来、これらの部品には、表面
に塗型材を塗布した鋳鉄材料を用いるのが一般的であっ
た。近年はこれに代わって、サイアロンセラミックの適
用が拡がりつつある。
2. Description of the Related Art There are two types of non-ferrous metal members for molten metal which are in contact with the molten metal and which are in contact with the molten metal without being immersed. For example, there are a thermocouple protection tube and a stalk as a member to be dipped in the molten metal, and a ladle and a gutter as a member to be repeatedly in contact with the molten metal. Conventionally, cast iron materials having a surface coated with a mold coating material have been generally used for these parts. In recent years, the application of sialon ceramics has been expanding instead of this.

【0003】また、表面に被覆層を形成した本発明と同
一用途の溶湯用部材の例として、特開昭49−5422
9号公報には、CrとAlを含む鉄系材料の表面に複合
酸化物被膜を形成した鋳造工具が記載されている。ま
た、用途を特定していないが、特公平7−5392号公
報には、鉄系材料の酸化被膜と珪酸塩が反応した結合層
を形成した上に、微粒子状金属酸化物又は有機金属結合
剤を焼固することにより、酸化鉄拡散防止層を形成し
た、高温の腐食性排気ガスに曝される用途等を示唆する
セラミック・鉄製部材接合体が記載されている。
Further, as an example of a molten metal member having a coating layer formed on the surface for the same purpose as that of the present invention, JP-A-49-5422 is used.
Japanese Patent Publication 9 describes a casting tool in which a complex oxide film is formed on the surface of an iron-based material containing Cr and Al. In addition, although the use is not specified, in Japanese Patent Publication No. 7-5392, a fine particle metal oxide or an organic metal binder is formed on a bonding layer formed by reacting an oxide film of an iron-based material with a silicate. A ceramic / iron member joined body is described, which has an iron oxide diffusion-preventing layer formed by quenching and is suggested to be used for exposure to high temperature corrosive exhaust gas.

【0004】[0004]

【発明が解決しようとする課題】従来の塗型材を塗布し
た鋳鉄材料を用いた溶湯用部材は、塗型材の剥離した部
分が溶湯と反応して、少しづつ侵食されて溶損するばか
りでなく、主成分であるFeが溶湯中に溶け込み、鋳造
製品の機械的性質を劣化させる等の欠点がある。近年適
用が拡がりつつあるサイアロンセラミックは、溶湯と反
応しないので、溶湯用部材に適している。そして、従来
のセラミックに比べて、ある程度の強靱性を有している
ので、用途によっては十分満足した結果が得られてい
る。しかし、本質的にセラミック材質の域を越えず、金
属材料よりも脆弱なため、破損しやすく、取扱が難しい
という欠点がある。また、高価なため、安易に適用でき
るものではない。
The molten metal member using the conventional cast iron material coated with the mold coating material is not only not only corroded little by little by the peeled portion of the mold coating material reacting with the molten metal, but also melted and damaged. Fe, which is the main component, melts into the molten metal and deteriorates the mechanical properties of the cast product. Sialon ceramics, which have been widely applied in recent years, do not react with the molten metal and are therefore suitable as members for molten metal. Since it has a certain degree of toughness as compared with conventional ceramics, satisfactory results are obtained depending on the application. However, since it does not essentially exceed the range of ceramic materials and is weaker than metal materials, it has a drawback that it is easily damaged and difficult to handle. In addition, since it is expensive, it cannot be applied easily.

【0005】上記問題点を解決するため、前記特開昭4
9−54229号公報、特公平7−5392号公報以外
にも、鉄系材料の表面に被覆層を形成した種々の耐熱、
耐食、耐溶損部材が提供されている。本発明において
も、上記問題点を解決するため、同様に鉄系材料を用
い、非鉄金属溶湯に浸漬接触或いは繰返し接触しても耐
用性があり、安全に使用できる溶湯用部材の提供を目的
とする。
In order to solve the above problems, the above-mentioned JP-A-4
In addition to 9-54229 and Japanese Patent Publication No. 7-5392, various heat resistances in which a coating layer is formed on the surface of an iron-based material,
Corrosion- and corrosion-resistant members are provided. Also in the present invention, in order to solve the above problems, similarly using an iron-based material, durable even after immersion contact or repeated contact with a non-ferrous metal molten metal, and to provide a member for molten metal that can be used safely To do.

【0006】[0006]

【課題を解決するための手段】本発明の第1発明は、図
1の本発明溶湯用部材表層部の模式断面図にて示すよう
に、鉄系材料基材1の表面に、鉄系材料基材1と金属的
に結合したAl−Fe合金層2を形成し、さらにAl−
Fe合金層2の表面にセラミック層3を被覆した構造に
てなり、セラミック層3は扁平状セラミック粉末を含
み、溶融ガラスにより結合して、Al−Fe合金層2に
融着してなる非鉄金属溶湯用部材である。
The first invention of the present invention is, as shown in the schematic cross-sectional view of the surface layer portion of the molten metal member of the present invention of FIG. 1, the iron-based material on the surface of the iron-based material substrate 1. An Al-Fe alloy layer 2 that is metallically bonded to the base material 1 is formed, and further Al-
The non-ferrous metal has a structure in which the surface of the Fe alloy layer 2 is covered with the ceramic layer 3, and the ceramic layer 3 contains flat ceramic powder, is bonded by molten glass, and is fused to the Al-Fe alloy layer 2. It is a member for molten metal.

【0007】本発明を完成するための研究において、セ
ラミック層の密着性を確保するには、Al−Fe合金の
中間層を介在させることが有効であると判明した。Al
−Fe合金層を形成するためには、下地基材はFe源と
なる鉄系材料を用いる必要がある。Al−Fe合金層自
体は、金属であると共に下地鉄系材料基材と金属的に結
合しているので、亀裂や剥離が発生し難い。そして、A
l−Fe合金層に含まれるFe成分が、Al−Fe合金
層の表面に被覆するセラミック層の密着性を得るのに有
効のようである。さらに、セラミック層に含まれる扁平
状セラミック粉末は、層状に積層して、扁平面方向に広
がった形態をしているので、各粒子が自由方向を向いて
混在することにより結合性が向上する。
In the research for completing the present invention, it has been found that interposing an intermediate layer of Al--Fe alloy is effective for securing the adhesion of the ceramic layer. Al
In order to form the —Fe alloy layer, it is necessary to use an iron-based material as an Fe source for the base material. Since the Al—Fe alloy layer itself is a metal and is metallically bonded to the base iron-based material substrate, cracks and peeling are unlikely to occur. And A
The Fe component contained in the l-Fe alloy layer seems to be effective in obtaining the adhesion of the ceramic layer coating the surface of the Al-Fe alloy layer. Further, the flat ceramic powder contained in the ceramic layer is laminated in a layered form and spreads in the direction of the flat surface, so that the particles are mixed in the free direction, so that the bonding property is improved.

【0008】一般に金属溶湯用部材が溶損するときは、
金属溶湯との浸漬接触又は繰返し接触による熱的負荷を
受けて、被覆層に微細な亀裂や剥離が発生し、この亀裂
部や剥離部に溶湯が浸入して下地を侵食し始め、最終的
に大きな溶損に至ると考えられる。本発明の非鉄金属溶
湯用部材は、このような事態に遭遇しても、上記諸作用
により亀裂や剥離が発生し難い。そして、溶湯の侵入に
よる鉄系材料基材の溶損が起こり難く、安全に使用でき
る非鉄金属溶湯用部材となる。
Generally, when a member for molten metal melts,
Under the thermal load of immersion contact or repeated contact with the molten metal, fine cracks and peeling occur in the coating layer, the molten metal enters the cracks and peeling parts and begins to erode the base, and finally It is thought to cause a large amount of erosion. Even when such a situation is encountered, the non-ferrous metal melt member of the present invention is unlikely to cause cracks or peeling due to the above-described actions. Then, the non-ferrous metal melt member is less likely to be melt-damaged by the intrusion of the melt, and can be safely used.

【0009】第2及び第3発明は、第1発明のセラミッ
ク層に含まれる扁平状セラミック粉末を、炭化珪素、扁
平状アルミナ、雲母のなかの1種又は2種以上の粉末に
より構成し、この扁平状セラミック粉末をセラミック層
の20〜70重量%とする。そして、最表面層として被
覆するセラミック層のなかの扁平状セラミックを適切な
成分と量に規定することで、より一層効果的な溶湯用部
材となる。
In the second and third inventions, the flat ceramic powder contained in the ceramic layer of the first invention is composed of one or more powders of silicon carbide, flat alumina, and mica. The flat ceramic powder is 20 to 70% by weight of the ceramic layer. Then, by defining the flat ceramic in the ceramic layer to be coated as the outermost surface layer in an appropriate component and amount, a more effective molten metal member can be obtained.

【0010】第4発明は、図1の模式断面図にて示す鉄
系材料基材1の表面に、鉄系材料基材1の表面と金属的
に結合したAl−Fe合金層2を形成し、さらにAl−
Fe合金層2の表面を、扁平状セラミック粉末を含むセ
ラミック層3で被覆した、第1発明と同様の構造であ
る。但し、セラミック層は珪酸塩又は燐酸塩を主成分と
するセラミック結合材により結合して、Al−Fe合金
層2に融着してなる非鉄金属溶湯用部材である。そし
て、扁平状セラミック粉末を含むセラミック層3を溶融
ガラスにより結合する第1発明と同等の効果を得る。
In a fourth aspect of the invention, an Al-Fe alloy layer 2 that is metallically bonded to the surface of the iron-based material base material 1 is formed on the surface of the iron-based material base material 1 shown in the schematic cross-sectional view of FIG. , And Al-
The structure is the same as that of the first invention in which the surface of the Fe alloy layer 2 is covered with the ceramic layer 3 containing the flat ceramic powder. However, the ceramic layer is a member for molten non-ferrous metal, which is bonded to the Al—Fe alloy layer 2 by being bonded by a ceramic binder containing silicate or phosphate as a main component. Then, an effect equivalent to that of the first invention in which the ceramic layer 3 containing the flat ceramic powder is bonded by the molten glass is obtained.

【0011】第5及び第6発明は、第4発明のセラミッ
ク層のなかの扁平状セラミック粉末の成分と量を規定す
る。第2及び第3発明と同様の規定であり、第4発明を
より一層効果的にする。
The fifth and sixth inventions specify the components and amounts of the flattened ceramic powder in the ceramic layer of the fourth invention. The same definition as the second and third inventions makes the fourth invention more effective.

【0012】第7乃至第9発明は、第1乃至第6発明に
おける適用非鉄金属溶湯の材質を、アルミニウム合金、
亜鉛合金、銅合金に特定するものである。
In the seventh to ninth inventions, the material of the applied non-ferrous metal melt in the first to sixth inventions is aluminum alloy,
It is specific to zinc alloys and copper alloys.

【0013】[0013]

【発明の実施の形態】本発明溶湯用部材の基材は、Al
−Fe合金層を形成するためのFe源となる普通炭素
鋼、合金鋼、普通鋳鉄、合金鋳鉄等の鉄系材料に限ら
れ、その材質全般を用いることができるが、材質詳細は
特定しない。これら鉄系材料基材にAl−Fe合金層を
形成するには、溶融アルミニウムめっき法、アルミニウ
ム浸透法等により行う。溶融アルミニウムめっき法の場
合は、アルミニウムめっき層をAl−Fe合金にするた
め、例えば760〜800℃に1〜3時間加熱して、鉄
系材料基材からFe成分をアルミニウムめっき層へ拡散
させ、Al−Fe合金層にする。アルミニウム浸透法の
場合は、アルミニウムの浸透した領域自体がAl−Fe
合金層になっているので、アルミニウムを拡散させる加
熱は不要である。以上により調製するAl−Fe合金層
は、厚み50〜200μm、Fe30〜70重量%であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The base material of the molten metal member of the present invention is Al
-It is limited to iron-based materials such as ordinary carbon steel, alloy steel, ordinary cast iron, and alloy cast iron that serve as an Fe source for forming the Fe alloy layer, and the entire material can be used, but the material details are not specified. The Al—Fe alloy layer is formed on these iron-based material substrates by a hot dip aluminum plating method, an aluminum infiltration method, or the like. In the case of the molten aluminum plating method, in order to make the aluminum plating layer an Al-Fe alloy, for example, it is heated to 760 to 800 ° C for 1 to 3 hours to diffuse the Fe component from the iron-based material base material to the aluminum plating layer, It is an Al-Fe alloy layer. In the case of the aluminum infiltration method, the area infiltrated with aluminum itself is Al-Fe.
Since it is an alloy layer, heating for diffusing aluminum is unnecessary. The Al—Fe alloy layer prepared as described above has a thickness of 50 to 200 μm and Fe of 30 to 70% by weight.

【0014】扁平状セラミック粉末としては、炭化珪
素、扁平状アルミナ、雲母等の粉末を用いることができ
る。扁平状セラミック粉末の量はセラミック層のなかに
20〜70重量%含むのが好ましく、大きさは長軸が2
〜100μm、長軸と厚みとの比が5以上が好ましい。
炭化珪素と雲母は粉末自体が本質的に扁平状で、殆んど
の粉末が上記大きさの範囲内にあり、そのまま使用でき
る。アルミナは上記大きさの範囲内の粉末に調製する必
要がある。
As the flat ceramic powder, powders of silicon carbide, flat alumina, mica and the like can be used. The amount of the flat ceramic powder is preferably 20 to 70% by weight in the ceramic layer, and the size is such that the major axis is 2
˜100 μm, and the ratio of major axis to thickness is preferably 5 or more.
The powder itself of silicon carbide and mica is essentially flat, and most of the powders are in the size range described above, and can be used as they are. Alumina must be prepared as a powder within the above size range.

【0015】セラミック層のなかの結合材は、高温溶融
ガラス形成材、或いは珪酸塩溶液又は燐酸塩溶液を用い
る。珪酸塩溶液には珪酸ナトリウム、珪酸カリウム、珪
酸リチウム水溶液の1種又は2種以上の混合溶液が、燐
酸塩溶液には燐酸アルミニウム水溶液が使用できる。珪
酸塩溶液又は燐酸塩溶液には、硬化剤としてMgO、Z
nO等の酸化物を適宜添加してもよい。セラミック層の
なかの結合材は10〜80重量%[但し、水分は除く]
含むのが好ましい。セラミック層において、扁平状セラ
ミック粉末と結合材との合計量の残部は通常のアルミ
ナ、ジルコニア、シリカ等の酸化物、炭化珪素等の炭化
物、窒化珪素等の窒化物と、不可避的不純物である。
As the binder in the ceramic layer, a high temperature molten glass forming material, or a silicate solution or a phosphate solution is used. As the silicate solution, one or a mixture of two or more of sodium silicate, potassium silicate, and lithium silicate aqueous solution can be used, and as the phosphate solution, aluminum phosphate aqueous solution can be used. For the silicate solution or phosphate solution, MgO, Z as a curing agent
You may add oxides, such as nO, suitably. The binder in the ceramic layer is 10 to 80% by weight [excluding water]
It is preferable to include. In the ceramic layer, the balance of the total amount of the flat ceramic powder and the binder is usual oxides such as alumina, zirconia, and silica, carbides such as silicon carbide, nitrides such as silicon nitride, and unavoidable impurities.

【0016】セラミック層を被覆するときは、扁平状セ
ラミック粉末と結合材との混合スラリーを下地のAl−
Fe合金層の表面に塗布して乾燥する。結合材に高温溶
融ガラス形成材を用いるときは、水等の溶媒に混合して
スラリー化する。塗布及び乾燥の後は、そのガラスの溶
融温度まで加熱して、下地に融着させる。結合材に珪酸
塩溶液又は燐酸塩溶液を用いるときは、塗布及び乾燥の
後、少なくとも結晶水が消滅する温度以上、即ち概略5
00℃以上に加熱して融着させる。このようにして形成
するセラミック層の厚みは100〜500μmが好まし
い。厚みが100μm未満では溶湯に対する耐溶損効果
が少なく、500μmを越えると熱衝撃等により剥離し
やすくなる。
When coating the ceramic layer, a mixed slurry of the flat ceramic powder and the binder is used as the base Al-
It is applied to the surface of the Fe alloy layer and dried. When a high temperature molten glass forming material is used as the binder, it is mixed with a solvent such as water to form a slurry. After coating and drying, the glass is heated to the melting temperature and fused to the base. When a silicate solution or a phosphate solution is used as the binder, at least the temperature at which water of crystallization disappears after coating and drying, that is, about 5
Heat to 00 ° C. or higher to fuse. The thickness of the ceramic layer thus formed is preferably 100 to 500 μm. If the thickness is less than 100 μm, the melting loss resistance against the molten metal is small, and if it exceeds 500 μm, peeling easily occurs due to thermal shock or the like.

【0017】[0017]

【実施例】実施例1 表1の各種の鉄系材料基材の試験片について、アルミニ
ウム合金溶湯に対する耐溶損性を調べた。先ず、直径2
0mm、長さ200mmの丸棒試験片素材に溶融アルミ
ニウムめっきを施し、厚み50μmのアルミニウム被覆
層を形成した。この被覆層を有する試験片素材を、76
0℃にて3時間拡散処理の加熱をして、アルミニウム被
覆層をAl−Fe合金層にした。別に、粒度10μmの
炭化珪素粉末30重量%、粒度80μmの扁平状アルミ
ナ10重量%、溶融ガラス形成材60重量%を混合し
て、水によりスラリー化したセラミック層形成材を準備
した。溶融ガラス形成材の組成はSiO30重量%、
25重量%、CaO20重量%、NaO13
重量%、KO12重量%である。このスラリーの中へ
Al−Fe合金層被覆した丸棒試験片素材を浸漬して、
全面にスラリーを塗布した。常温乾燥、さらに110℃
乾燥の後、650℃にて1時間加熱して溶融ガラス形成
材を溶融し、下地のAl−Fe合金層へ融着させること
により、セラミック層を被覆形成した。この被覆セラミ
ック層はねずみ色をし、厚みは概略200〜300μm
であった。
Example 1 The test pieces of various iron-based material substrates shown in Table 1 were examined for erosion resistance to molten aluminum alloy. First, the diameter 2
A round bar test piece material having a length of 0 mm and a length of 200 mm was subjected to hot-dip aluminum plating to form an aluminum coating layer having a thickness of 50 μm. The test piece material having this coating layer is
The aluminum coating layer was turned into an Al-Fe alloy layer by heating the aluminum coating layer for 3 hours at 0 ° C. Separately, 30% by weight of silicon carbide powder having a particle size of 10 μm, 10% by weight of flat alumina having a particle size of 80 μm, and 60% by weight of a molten glass forming material were mixed to prepare a ceramic layer forming material slurried with water. The composition of the molten glass forming material is 30% by weight of SiO 2 ,
B 2 O 3 25% by weight, CaO 20% by weight, Na 2 O13
% By weight and K 2 O 12% by weight. A round bar test piece material coated with an Al-Fe alloy layer was immersed in this slurry,
The slurry was applied to the entire surface. Room temperature drying, 110 ℃
After drying, the molten glass forming material was melted by heating at 650 ° C. for 1 hour, and was fused to the underlying Al—Fe alloy layer to form a coating on the ceramic layer. This coated ceramic layer has a gray color and a thickness of approximately 200 to 300 μm.
Met.

【0018】表1の4種類の鉄系基材材料の本発明被覆
の試験片、並びに被覆せずに比較のために作製した従来
の塗型のみ施した試験片の合計8個を、図2の溶損試験
装置を用いて試験した。各試験片4は、例示の1個のよ
うに、先端から80mmまでの部分がアルミニウム合金
溶湯5へ浸漬するようにして、直径200mmの円形の
試験片保持板6の周囲8箇所に取り付けた。750℃に
保持したアルミニウム合金[ADC12]溶湯5に10
時間浸漬して各試験片の溶損状況を調べた。各試験片の
状況を表1に示す。表中の数値は溶損により試験片の直
径が減少した値である。この結果から、本発明の被覆は
アルミニウム合金溶湯に対する耐溶損性が優れているこ
と明らかである。
A total of 8 pieces of the test pieces coated with the present invention of the four types of iron-based base materials shown in Table 1 and the conventional test pieces prepared only for coating, which were prepared for comparison, are shown in FIG. It tested using the melt-dissipation test apparatus. Each of the test pieces 4 was attached to eight places around a circular test piece holding plate 6 having a diameter of 200 mm so that the portion from the tip to 80 mm was immersed in the molten aluminum alloy 5 as one example. Aluminum alloy [ADC12] molten metal 5 kept at 750 ° C
The test piece was immersed for a period of time to examine the melting damage state of each test piece. Table 1 shows the condition of each test piece. The numerical values in the table are values in which the diameter of the test piece decreased due to melting damage. From this result, it is clear that the coating of the present invention has excellent erosion resistance to the molten aluminum alloy.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 実施例1と同一鉄系材料基材の同一寸法の試験片につい
て、亜鉛合金溶湯に対する耐溶損性を調べた。先ず、ア
ルミニウム浸透法により各丸棒試験片素材の表面に厚み
100μmのAl−Fe合金層を被覆形成した。別に、
粒度10μmの炭化珪素粉末30重量%、雲母20重量
%、濃度30重量%の珪酸ナトリウム水溶液50重量%
を混合し、スラリー化したセラミック層形成材を準備し
た。このスラリーの中へAl−Fe合金層を被覆形成し
た丸棒試験片素材を浸漬して、全面にスラリーを塗布し
た。常温乾燥、さらに350℃乾燥の後、650℃に加
熱して、下地のAl−Fe合金層へ融着させることによ
り、セラミック層を被覆形成した。この被覆セラミック
層の厚みは概略300μmであった。
Example 2 With respect to a test piece having the same size as the base material of the same iron-based material as in Example 1, the corrosion resistance to molten zinc alloy was examined. First, an Al—Fe alloy layer having a thickness of 100 μm was formed on the surface of each round bar test piece material by the aluminum infiltration method. Apart from
30% by weight of silicon carbide powder having a particle size of 10 μm, 20% by weight of mica, 50% by weight of an aqueous sodium silicate solution having a concentration of 30% by weight
Was mixed to prepare a slurry-forming ceramic layer forming material. A round bar test piece material coated with an Al-Fe alloy layer was immersed in this slurry to apply the slurry to the entire surface. After drying at room temperature and further at 350 ° C., it was heated to 650 ° C. and fused to the underlying Al—Fe alloy layer to form a ceramic layer as a coating. The thickness of the coated ceramic layer was approximately 300 μm.

【0021】実施例1と同じ4種類の鉄系基材材料の本
発明被覆の試験片、並びに被覆せずに比較のために作製
した従来の塗型のみ施した試験片の合計8個を、実施例
1と同様に、図2の溶損試験装置に取り付けて試験し
た。650℃に保持した亜鉛合金[ZDC1]溶湯5に
20時間浸漬して各試験片の溶損状況を調べた。各試験
片の状況を表2に示す。表中の数値は溶損により試験片
の直径が減少した値である。この結果から、本発明の被
覆は亜鉛合金溶湯に対して耐溶損効果のあることが明ら
かである。
A total of 8 pieces of the test pieces coated with the present invention of the same four types of iron-based base materials as in Example 1 and the conventional test pieces prepared only for coating, which were prepared for comparison, were prepared. As in Example 1, the test was carried out by mounting on the melting test apparatus of FIG. The zinc alloy [ZDC1] molten metal 5 kept at 650 ° C. was immersed in the molten metal 5 for 20 hours, and the erosion state of each test piece was examined. Table 2 shows the condition of each test piece. The numerical values in the table are values in which the diameter of the test piece decreased due to melting damage. From this result, it is clear that the coating of the present invention has a melt damage resistance effect on the molten zinc alloy.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例3 表3に示すステンレス鋼基材の試験片について、銅合金
[黄銅]溶湯に対する耐溶損性を調べた。先ず、直径2
0mm、長さ200mmの丸棒試験片素材に溶融アルミ
ニウムめっきを施し、厚み50μmのアルミニウム被覆
層を形成した。この被覆層を有する試験片素材を、80
0℃にて1時間拡散処理の加熱をして、アルミニウム被
覆層をAl−Fe合金層にした。さらにこの表面に被覆
するセラミック層は、実施例1と同一組成で、同一処理
により形成した。この被覆セラミック層の厚みは概略3
00μmであった。
Example 3 The test pieces of the stainless steel base material shown in Table 3 were examined for erosion resistance to molten copper alloy [brass]. First, the diameter 2
A round bar test piece material having a length of 0 mm and a length of 200 mm was subjected to hot-dip aluminum plating to form an aluminum coating layer having a thickness of 50 μm. The test piece material having this coating layer is
The aluminum coating layer was changed to an Al—Fe alloy layer by heating the diffusion treatment at 0 ° C. for 1 hour. Further, the ceramic layer covering the surface was formed by the same treatment with the same composition as in Example 1. The thickness of this coated ceramic layer is approximately 3
It was 00 μm.

【0024】上記作製のステンレス鋼の本発明被覆試験
片、並びに被覆せずに比較のために作製した従来の塗型
のみ施した試験片について試験した。各試験片は、先端
から80mmまでの部分を、1100℃に保持した黄銅
[YBsC3]溶湯に2時間浸漬して溶損状況を調べ
た。その状況を表3に示す。本発明の被覆は銅合金溶湯
に対しても耐溶損効果のあることが明らかである。
The above-prepared stainless steel coated test pieces of the present invention and the conventional uncoated test pieces prepared for comparison without comparison were tested. Each test piece was immersed in a molten brass [YBsC3] held at 1100 ° C. for 2 hours at a portion from the tip to 80 mm, and the melt damage state was examined. The situation is shown in Table 3. It is clear that the coating of the present invention also has a melt loss resistance effect on the molten copper alloy.

【0025】[0025]

【表3】 [Table 3]

【0026】実施例4 アルミニウム合金ダイカスト設備のラドルに本発明被覆
を試験適用した。容量2kg用の普通鋳鉄[FC20
0]製のラドル素材に溶融アルミニウムめっきを施し、
厚み50μmのアルミニウム被覆層を形成し、さらに7
60℃にて3時間加熱して、アルミニウム被覆層をAl
−Fe合金層にした。別に、粒度10μmの炭化珪素粉
末22重量%、粒度80μmの扁平状アルミナ38重量
%、溶融ガラス形成材40重量%を混合し、スラリー化
したセラミック層形成材を準備した。溶融ガラス形成材
の組成はSiO30重量%、B25重量%、C
aO20重量%、NaO13重量%、KO12重量
%である。このスラリーの中へAl−Fe合金層被覆し
たラドル素材を浸漬して、全面にスラリーを塗布した。
常温乾燥、さらに350℃乾燥の後、650℃に加熱し
て溶融ガラス形成材を溶融し、下地のAl−Fe合金層
へ融着させることにより、セラミック層を被覆形成し
た。この被覆セラミック層の厚みは概略300μmであ
った。
Example 4 A coating of the present invention was applied to a ladle of an aluminum alloy die casting facility by test. Normal cast iron for a capacity of 2 kg [FC20
0] ladle material is subjected to hot dip aluminum plating,
Form an aluminum coating layer with a thickness of 50 μm, and
The aluminum coating layer is heated to 60 ° C. for 3 hours to form an Al layer.
-Fe alloy layer. Separately, 22% by weight of silicon carbide powder having a particle size of 10 μm, 38% by weight of flat alumina having a particle size of 80 μm, and 40% by weight of a molten glass forming material were mixed to prepare a slurry-forming ceramic layer forming material. The composition of the molten glass forming material is SiO 2 30% by weight, B 2 O 3 25% by weight, C
aO20 wt%, Na 2 O13 wt%, a K 2 O12 wt%. A ladle material coated with an Al—Fe alloy layer was dipped in this slurry to apply the slurry to the entire surface.
After being dried at room temperature and further dried at 350 ° C., it was heated to 650 ° C. to melt the molten glass forming material and fuse it to the underlying Al—Fe alloy layer to form a ceramic layer as a coating. The thickness of the coated ceramic layer was approximately 300 μm.

【0027】上記作製の本発明被覆のラドルを、概略7
50℃のアルミニウム合金[ADC12]溶湯の汲み上
げ用に、連続して60日間使用した。この使用により、
溶湯と延べ35000回繰返し接触して加熱冷却された
が、下地素材に溶損がないことは勿論、溶湯接触面にも
亀裂や剥離の発生がなく、健全であった。また、溶湯接
触面は比較的滑らかでノロの付着が少なく、付着したノ
ロも容易に取り除くことができた。一方、被覆処理をし
ていない従来から使用の塗型のみを施した普通鋳鉄製ラ
ドルは、手入れと塗型を毎日なされていたが、それでも
毎日少しづつ溶損があったと思われ、1週間も使用する
と、その注湯口付近の内面に片肉1mm程度の溶損が起
こっていた。このことから、本発明被覆のラドルは顕著
な耐溶損効果があり、且つ溶損がないので、Fe成分の
溶湯への溶け込みがなく、アルミニウム合金ダイカスト
製品の品質を向上させること明らかである。
The ladle coated with the present invention prepared as described above was roughly
It was continuously used for 60 days for drawing up the molten aluminum alloy [ADC12] at 50 ° C. With this use
After being repeatedly contacted with the molten metal for a total of 35,000 times and heated and cooled, the base material was sound, with no melting loss and no cracking or peeling on the molten metal contact surface. In addition, the molten metal contact surface was relatively smooth and there was little adhesion of slag, and the slag that adhered could be easily removed. On the other hand, a conventional cast iron ladle that has not been coated and has been used only for the conventional coating type has been maintained and coated daily, but it seems that there was a little erosion every day, even for a week. When it was used, melting damage of about 1 mm per piece had occurred on the inner surface near the pouring port. From this, it is clear that the ladle coated with the present invention has a remarkable erosion resistance effect and has no erosion loss, so that the Fe component does not melt into the molten metal and the quality of the aluminum alloy die cast product is improved.

【0028】実施例5 アルミニウム合金低圧鋳造設備のストークに本発明被覆
を試験適用した。外径135mm、内径100mm、長
さ800mmの普通鋳鉄[FC200]製ストーク素材
の表面に、アルミニウム浸透法により、厚み100μm
のAl−Fe合金層を被覆形成した。別に、粒度10μ
mの炭化珪素粉末30重量%、粒度80μmの扁平状ア
ルミナ20重量%、濃度30重量%の珪酸ナトリウム水
溶液50重量%を混合し、スラリー化したセラミック層
形成材を準備した。このスラリーのなかへAl−Fe合
金層を被覆したストーク素材を浸漬して、全面にスラリ
ーを塗布した。常温乾燥、さらに350℃乾燥の後、6
50℃に加熱して、下地のAl−Fe合金層へ融着させ
ることにより、セラミック層を被覆形成した。この被覆
セラミック層の厚みは概略400μmであった。
Example 5 The coating of the present invention was applied to the stalk of an aluminum alloy low pressure casting facility. 100 μm thick on the surface of stalk material made of ordinary cast iron [FC200] with an outer diameter of 135 mm, an inner diameter of 100 mm and a length of 800 mm, by an aluminum infiltration method.
The Al-Fe alloy layer of was formed by coating. Separately, particle size 10μ
30% by weight of silicon carbide powder of m, 20% by weight of flat alumina having a particle size of 80 μm, and 50% by weight of an aqueous sodium silicate solution having a concentration of 30% by weight were mixed to prepare a slurry-forming ceramic layer forming material. The Stoke material coated with the Al—Fe alloy layer was dipped in this slurry to apply the slurry to the entire surface. After drying at room temperature and 350 ° C, 6
The ceramic layer was coated and formed by heating at 50 ° C. and fusing to the underlying Al—Fe alloy layer. The thickness of this coated ceramic layer was approximately 400 μm.

【0029】上記作製の本発明被覆のストークを、低圧
鋳造設備の溶湯保持炉の概略750℃のアルミニウム合
金[AC4B]浴湯中に、3週間連続浸漬して使用し
た。ストークを取外して点検の結果、下地素材に溶損が
ないことは勿論、溶湯接触面にも亀裂や剥離の発生がな
く、健全であった。一方、従来から使用の被覆処理をし
ていない塗型のみ施した普通鋳鉄製ストークは、手入れ
と塗型を毎日なされていたが、2週間も使用すると、そ
の外面と内面は片肉1mm程度の溶損が起こっていた。
このことから、本発明被覆のストークは顕著な耐溶損効
果があり、且つ溶損がないのでFe成分の溶湯への溶け
込みがなく、アルミニウム合金低圧鋳造製品の品質を向
上させる。
The stalk of the present invention prepared as described above was continuously immersed for 3 weeks in an aluminum alloy [AC4B] bath water at a temperature of about 750 ° C. in a molten metal holding furnace of a low pressure casting facility. As a result of removing the stalk and inspecting it, it was found that the base material was not melted and that the molten metal contact surface was not cracked or separated, and was sound. On the other hand, conventional cast iron stalks that have only been applied with a coating type that has not been used for coating have been maintained and coated daily, but after two weeks of use, the outer surface and the inner surface have a thickness of about 1 mm on each side. Melting was happening.
From this, the stalk of the coating of the present invention has a remarkable erosion resistance effect, and since there is no erosion loss, the Fe component does not melt into the molten metal and the quality of the aluminum alloy low-pressure cast product is improved.

【発明の効果】本発明の非鉄金属溶湯用部材は、例えば
実施例により、アルミニウム合金、亜鉛合金、銅合金の
溶湯に用いて健全であり、優れた耐溶損性を有している
こと明らかである。また、耐溶損性が良いので基材材質
の成分が溶湯中に溶け込むことがなく、非鉄金属鋳造製
品の品質が向上する。さらに基材が鉄系材料のため、強
靱且つ安価である。これらにより、非鉄金属製品を製造
する溶解又は鋳造設備の保守作業能率の向上及び経費の
節減、並びに非鉄金属製品の品質向上に大きく寄与す
る。
INDUSTRIAL APPLICABILITY It is apparent that the non-ferrous metal melt member of the present invention is sound and has excellent erosion resistance when used in the melt of aluminum alloys, zinc alloys, and copper alloys according to Examples. is there. Further, since the melting resistance is good, the components of the base material do not dissolve in the molten metal, and the quality of the non-ferrous metal casting product is improved. Further, since the base material is an iron-based material, it is tough and inexpensive. These greatly contribute to the improvement of the maintenance work efficiency of the melting or casting equipment for manufacturing the non-ferrous metal products, the cost reduction, and the quality improvement of the non-ferrous metal products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明溶湯用部材の表層部の模式断面図であ
る。
FIG. 1 is a schematic cross-sectional view of a surface layer portion of a molten metal member of the present invention.

【図2】本発明実施例の溶損試験装置の正面説明図であ
る。
FIG. 2 is a front explanatory view of a melting loss test apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1;鉄系材料基材 2;Al−Fe合金層
3;セラミック層 4;試験片 5;非鉄金属溶湯
6;試験片保持板 6a;支持軸 7;溶湯浴槽
1; Iron-based material substrate 2; Al-Fe alloy layer
3; ceramic layer 4; test piece 5; non-ferrous metal melt
6; Test piece holding plate 6a; Support shaft 7; Molten bath

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 鉄系材料からなる基材表面に、基材表面
と金属的に結合したAl−Fe合金層を形成し、さらに
Al−Fe合金層の表面をセラミック層で被覆した構造
にてなり、セラミック層は扁平状セラミック粉末を含
み、溶融ガラスにより結合して、Al−Fe合金層に融
着してなることを特徴とする非鉄金属溶湯用部材。
1. A structure in which an Al—Fe alloy layer that is metallically bonded to the surface of the substrate is formed on the surface of the substrate made of an iron-based material, and the surface of the Al—Fe alloy layer is covered with a ceramic layer. The ceramic layer contains flat ceramic powder, is bonded by molten glass, and is fused and bonded to the Al—Fe alloy layer.
【請求項2】 セラミック層に含まれる扁平状セラミッ
ク粉末は、炭化珪素、扁平状アルミナ、雲母のなかの1
種又は2種以上の粉末を含んでなることを特徴とする請
求項1に記載の非鉄金属溶湯用部材。
2. The flat ceramic powder contained in the ceramic layer is one of silicon carbide, flat alumina, and mica.
The member for molten non-ferrous metal according to claim 1, characterized in that it comprises one kind or two or more kinds of powders.
【請求項3】 セラミック層は扁平状セラミック粉末を
20〜70重量%含んでなることを特徴とする請求項1
又は2の何れかに記載の非鉄金属溶湯用部材。
3. The ceramic layer contains flat ceramic powder in an amount of 20 to 70% by weight.
Or the member for molten non-ferrous metal according to any one of 2 and 3.
【請求項4】 鉄系材料からなる基材表面に、基材表面
と金属的に結合したAl−Fe合金層を形成し、さらに
Al−Fe合金層の表面をセラミック層で被覆した構造
にてなり、セラミック層は扁平状セラミック粉末を含
み、珪酸塩又は燐酸塩を主成分とするセラミック結合材
により結合して、Al−Fe合金層に融着してなること
を特徴とする非鉄金属溶湯用部材。
4. A structure in which an Al—Fe alloy layer metallically bonded to the surface of the substrate is formed on the surface of the substrate made of an iron-based material, and the surface of the Al—Fe alloy layer is covered with a ceramic layer. The non-ferrous metal molten metal is characterized in that the ceramic layer contains flat ceramic powder, and is bonded by a ceramic binder containing silicate or phosphate as a main component and fused to the Al-Fe alloy layer. Element.
【請求項5】 セラミック層に含まれる扁平状セラミッ
ク粉末は、炭化珪素、扁平状アルミナ、雲母のなかの1
種又は2種以上の粉末を含んでなることを特徴とする請
求項4に記載の非鉄金属溶湯用部材。
5. The flat ceramic powder contained in the ceramic layer is one of silicon carbide, flat alumina, and mica.
5. A member for molten non-ferrous metal according to claim 4, characterized in that it comprises one kind or two or more kinds of powders.
【請求項6】 セラミック層は扁平状セラミック粉末を
20〜70重量%含んでなることを特徴とする請求項4
又は5の何れかに記載の非鉄金属溶湯用部材。
6. The ceramic layer contains flat ceramic powder in an amount of 20 to 70% by weight.
Or the member for molten non-ferrous metal according to any one of 5 and 5.
【請求項7】 非鉄金属溶湯がアルミニウム合金溶湯で
あることを特徴とする請求項1乃至6の何れかに記載の
非鉄金属溶湯用部材。
7. The non-ferrous metal melt member according to claim 1, wherein the non-ferrous metal melt is an aluminum alloy melt.
【請求項8】 非鉄金属溶湯が亜鉛合金溶湯であること
を特徴とする請求項1乃至6の何れかに記載の非鉄金属
溶湯用部材。
8. The member for molten non-ferrous metal according to claim 1, wherein the molten non-ferrous metal is a zinc alloy molten metal.
【請求項9】 非鉄金属溶湯が銅合金溶湯であることを
特徴とする請求項1乃至6の何れかに記載の非鉄金属溶
湯用部材。
9. The non-ferrous metal melt member according to claim 1, wherein the non-ferrous metal melt is a copper alloy melt.
JP10263880A 1998-08-12 1998-08-12 Member for nonferrous molten metal Pending JP2000064060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10263880A JP2000064060A (en) 1998-08-12 1998-08-12 Member for nonferrous molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10263880A JP2000064060A (en) 1998-08-12 1998-08-12 Member for nonferrous molten metal

Publications (1)

Publication Number Publication Date
JP2000064060A true JP2000064060A (en) 2000-02-29

Family

ID=17395535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10263880A Pending JP2000064060A (en) 1998-08-12 1998-08-12 Member for nonferrous molten metal

Country Status (1)

Country Link
JP (1) JP2000064060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108044079A (en) * 2017-12-22 2018-05-18 西安交通大学 A kind of high-strength alloy and heat-stable ceramic laminated coating die casting and preparation method thereof
JP2018084433A (en) * 2016-11-21 2018-05-31 助川電気工業株式会社 Iron sheath type thermocouple
CN108115109A (en) * 2017-12-22 2018-06-05 西安交通大学 A kind of plasticmetal-ceramic laminated coating die casting and preparation method thereof
CN108531956A (en) * 2018-06-26 2018-09-14 湖州同光金属材料有限公司 A kind of metal product and preparation method thereof with wearing layer
JP2020049514A (en) * 2018-09-27 2020-04-02 東京窯業株式会社 Member for molten metal and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084433A (en) * 2016-11-21 2018-05-31 助川電気工業株式会社 Iron sheath type thermocouple
CN108044079A (en) * 2017-12-22 2018-05-18 西安交通大学 A kind of high-strength alloy and heat-stable ceramic laminated coating die casting and preparation method thereof
CN108115109A (en) * 2017-12-22 2018-06-05 西安交通大学 A kind of plasticmetal-ceramic laminated coating die casting and preparation method thereof
CN108531956A (en) * 2018-06-26 2018-09-14 湖州同光金属材料有限公司 A kind of metal product and preparation method thereof with wearing layer
JP2020049514A (en) * 2018-09-27 2020-04-02 東京窯業株式会社 Member for molten metal and method for producing the same
JP7232007B2 (en) 2018-09-27 2023-03-02 東京窯業株式会社 Member for molten metal and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW200528213A (en) Continuous casting mold and method of continuous casting for copper alloy
JP6231665B2 (en) Enamel powder, metal component having a surface portion provided with an enamel coating, and method for producing such metal component
JP2002121605A (en) Method for forming coating on refractory structural member and use of the coating
EP0400683B1 (en) Powdered metal spray coating material, process for producing the same and the use thereof
JP2000064060A (en) Member for nonferrous molten metal
KR100190912B1 (en) Casting apparatus for low-melting metals having two or more coating layers
JP3403460B2 (en) Method for producing carbon material having non-oxide ceramic spray coating
JPS60224770A (en) Jig for molten nonferrous metal
US6648207B2 (en) Method for applying self-fluxing coatings to non-cylindrical ferritic objects
JP3524684B2 (en) Casting mold parts and casting equipment
JPH0873286A (en) Silicon nitride sintered compact and its production and member for molten metal using the same
JP2003170262A (en) Method for manufacturing die cast machine member
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JPH1190617A (en) Member for molten non-ferrous metal
JP3023500B2 (en) Molybdenum boride composite thermal spray material and thermal spray coating
JPH08199322A (en) Molten metal member
JP7174949B2 (en) Method for manufacturing titanium instruments
JPH03161162A (en) Coating material
JPS6335762A (en) Manufacture of continuous casting mold
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying
RU2440868C1 (en) Flux for protective coat of brass melt
JPH06218489A (en) Die parts for casting
JPH0517305B2 (en)
JPS593083A (en) Graphite crucible
JP2642661B2 (en) Manufacturing method of high thermal conductive composite mold