JP3520998B2 - Heat-resistant silicon nitride sintered body and method for producing the same - Google Patents

Heat-resistant silicon nitride sintered body and method for producing the same

Info

Publication number
JP3520998B2
JP3520998B2 JP05206293A JP5206293A JP3520998B2 JP 3520998 B2 JP3520998 B2 JP 3520998B2 JP 05206293 A JP05206293 A JP 05206293A JP 5206293 A JP5206293 A JP 5206293A JP 3520998 B2 JP3520998 B2 JP 3520998B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
heat
magnesium oxide
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05206293A
Other languages
Japanese (ja)
Other versions
JPH06263567A (en
Inventor
博久 諏訪部
繁幸 濱吉
俊夫 沖津
昌久 祖父江
勝彦 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP05206293A priority Critical patent/JP3520998B2/en
Publication of JPH06263567A publication Critical patent/JPH06263567A/en
Application granted granted Critical
Publication of JP3520998B2 publication Critical patent/JP3520998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は構造用セラミックス材
料、特に、アルミニウム、亜鉛、銅、鉄、及びこれら各
金属の合金の溶湯に直接浸漬することができる耐熱性窒
化珪素質焼結体及びその製造方法に関する。なお、本発
明の窒化珪素質焼結体とは、窒化珪素及びサイアロンの
両者を合わせた総称を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural ceramic material, in particular, a heat-resistant silicon nitride sintered body which can be directly immersed in a molten metal of aluminum, zinc, copper, iron, and alloys of these metals, and a sintered body thereof. It relates to a manufacturing method. The silicon nitride sintered body of the present invention means a generic name of both silicon nitride and sialon.

【0002】[0002]

【従来の技術】例えば、アルミニウムの溶解、鋳造過程
において、アルミニウム溶湯を鋳型内に供給するための
ストーク、アルミニウム溶湯を加熱保持するためのヒー
タ管、アルミニウム溶湯を測温するための熱電対保護管
等がアルミニウム溶湯に直接浸漬して使用されている。
これらの部材には、従来から耐熱性を有するセラミック
粉末を被覆した鋳鉄が用いられている。
2. Description of the Related Art For example, in the process of melting and casting aluminum, a stalk for supplying the molten aluminum into the mold, a heater tube for heating and holding the molten aluminum, and a thermocouple protection tube for measuring the temperature of the molten aluminum. Etc. are used by being directly immersed in molten aluminum.
For these members, cast iron coated with ceramic powder having heat resistance has been conventionally used.

【0003】耐熱性セラミックの被覆は充分な密着力で
鋳鉄に固着していないので、容易に剥離しやすい。剥離
すると、鋳鉄はアルミニウム溶湯に溶解する傾向がある
ため、アルミニウム溶湯の品質が低下するという問題が
あった。このため、日常の点検において塗布補修しなけ
ればならず、作業効率が悪かった。また、鋳鉄でできて
いるため比較的重く、取扱いが容易でないと言う問題も
あった。最近、このような問題を解決するため、鋳鉄製
部材に代わって、高密度で高強度の窒化珪素又はサイア
ロンを用いる方法が特公平4−44628号公報に提案
されている。
Since the heat-resistant ceramic coating does not adhere to the cast iron with sufficient adhesion, it is easily peeled off. When peeled off, the cast iron tends to dissolve in the molten aluminum, which causes a problem that the quality of the molten aluminum deteriorates. For this reason, the coating must be repaired in daily inspection, resulting in poor work efficiency. Further, since it is made of cast iron, there is a problem that it is relatively heavy and not easy to handle. Recently, in order to solve such a problem, a method of using high-density and high-strength silicon nitride or sialon instead of the cast iron member has been proposed in Japanese Patent Publication No. 4-44628.

【0004】[0004]

【発明が解決しようとする課題】窒化珪素又はサイアロ
ンのような耐熱性窒化珪素質焼結体を用いる場合、確か
にアルミニウム溶湯中への不純物の溶解が殆どないの
で、溶湯の品質は改善される。しかし、窒化珪素又はサ
イアロン等の耐熱性窒化珪素質焼結体をアルミニウム溶
解に用いると、NaF、NaClを主成分とするフラッ
クスに侵食され、アルミニウムやノロが付着する。この
ため、これらの焼結体が本来有する高温強さや耐熱衝撃
特性を損ねたり、更にストークの場合アルミニウム溶湯
の流速が不均一になるという新たな問題が発生した。
When a heat-resistant silicon nitride sintered material such as silicon nitride or sialon is used, the quality of the molten metal is improved because almost no impurities are dissolved in the molten aluminum. . However, when a heat-resistant silicon nitride sintered material such as silicon nitride or sialon is used for melting aluminum, it is eroded by the flux containing NaF and NaCl as the main components, and aluminum and slag adhere. For this reason, there arises a new problem that the high temperature strength and the thermal shock resistance which these sintered bodies originally have are impaired, and in the case of stalk, the flow rate of the molten aluminum becomes uneven.

【0005】従って、本発明の目的は窒化珪素又はサイ
アロン等の耐熱性窒化珪素質焼結体の表層部を改質する
ことにより、フラックスによる侵食が軽減され、アルミ
ニウム等の金属やノロの付着が起こりにくい、金属溶湯
用部材に好適な耐熱性窒化珪素質焼結体を提供すること
にある。
Therefore, the object of the present invention is to modify the surface layer of a heat-resistant silicon nitride sintered material such as silicon nitride or sialon to reduce the erosion due to the flux and to prevent the adhesion of metal such as aluminum or slag. Another object of the present invention is to provide a heat-resistant silicon nitride-based sintered body that is unlikely to occur and is suitable for a member for molten metal.

【0006】[0006]

【課題を解決するための手段】本発明者は、フラックス
を介在させたアルミニウム溶湯中で、アルミニウム溶湯
やノロが付着しない材料の探索を行なった結果、酸化マ
グネシウムを主成分とする材料のアルミニウム付着性が
極めて小さい事を見いだした。即ち、本発明による耐熱
性窒化珪素質焼結体は、窒化珪素粒子又はサイアロン粒
子60重量%以上と、Si、Al、Y、O、N及び不可
避的不純物からなる粒界相とからなる耐熱性焼結体であ
り、下地の焼結体の表面に形成された粒界相成分と酸化
マグネシウムとの混合層により接着されてなる厚さ0.
1μm以上10μm未満の酸化マグネシウムを主成分と
する表面層を形成したことを特徴とする。
DISCLOSURE OF THE INVENTION The inventors of the present invention have searched for a material in which molten aluminum or slag does not adhere in an aluminum molten metal having a flux interposed therebetween, and as a result, the aluminum adhesion of a material containing magnesium oxide as a main component has been found. I found that the sex was extremely small. That is, the heat-resistant silicon nitride-based sintered body according to the present invention has a heat resistance of 60% by weight or more of silicon nitride particles or sialon particles and a grain boundary phase composed of Si, Al, Y, O, N and unavoidable impurities. It is a sintered body, and has a thickness of 0. 1 which is adhered by a mixed layer of a grain boundary phase component and magnesium oxide formed on the surface of a base sintered body.
It is characterized in that a surface layer containing magnesium oxide of 1 μm or more and less than 10 μm as a main component is formed.

【0007】ここで、酸化マグネシウムを主成分とする
のは次の理由による。酸化性雰囲気中でアルミニウム等
の金属溶湯中に窒化珪素質焼結体を浸漬した場合、酸性
酸化物であるSiO2が窒化珪素質焼結体の表面に形成
される。このSiO2と金属溶解用フラックスから生成
される塩基性酸化物であるNaO、NaAlO2等とに
よる酸塩基反応により、アルミニウムを主成分とする付
着物が形成される。
The reason why magnesium oxide is the main component is as follows. When the silicon nitride sintered body is immersed in a molten metal such as aluminum in an oxidizing atmosphere, SiO 2 which is an acidic oxide is formed on the surface of the silicon nitride sintered body. By the acid-base reaction between the SiO 2 and basic oxides such as NaO and NaAlO 2 produced from the metal-dissolving flux, deposits containing aluminum as a main component are formed.

【0008】従って、塩基性酸化物である酸化マグネシ
ウムの層を窒化珪素質焼結体の表面に形成しておけば、
フラックスを介した金属溶湯と窒化珪素質焼結体との反
応が阻止できる。
Therefore, if a layer of magnesium oxide, which is a basic oxide, is formed on the surface of the silicon nitride sintered body,
It is possible to prevent the reaction between the molten metal and the silicon nitride sintered body via the flux.

【0009】酸化マグネシウムを主成分とする表面層
は、大部分がMgOからなり、他の成分として下地の窒
化珪素質焼結体に含まれる元素の酸化物、例えばSiO
2、Al23、Y23等が少量混入している。そして、
下地の窒化珪素焼結体の酸化を防止するため、少なくと
も0.1μmの厚さを必要とする。しかし、10μm以
上の厚さになると、下地の窒化珪素焼結体との熱膨張係
数の差により亀裂や剥離が生じる恐れがある。
Most of the surface layer containing magnesium oxide as a main component is made of MgO, and as another component, an oxide of an element contained in the underlying silicon nitride sintered body, for example, SiO.
A small amount of 2 , Al 2 O 3 , Y 2 O 3, etc. is mixed. And
A thickness of at least 0.1 μm is required to prevent oxidation of the underlying silicon nitride sintered body. However, if the thickness is 10 μm or more, cracks or peeling may occur due to the difference in thermal expansion coefficient with the underlying silicon nitride sintered body.

【0010】下地の窒化珪素質焼結体は、窒化珪素粒子
又はサイアロン粒子を60重量%以上、下地の窒化珪素
質焼結体を構成する元素、例えばSi、Al、Y、O、
N等からなる粒界相を40重量%未満にする必要があ
る。窒化珪素粒子又はサイアロン粒子が60重量%未満
であると、窒化珪素質焼結体が本来有する耐熱性、耐熱
衝撃性を低下し、アルミニウム等の金属溶湯用部材とし
て使用に耐えなくなる。
The underlying silicon nitride sintered body contains 60% by weight or more of silicon nitride particles or sialon particles, and an element constituting the underlying silicon nitride sintered body, such as Si, Al, Y, O,
The grain boundary phase composed of N or the like needs to be less than 40% by weight. When the content of silicon nitride particles or sialon particles is less than 60% by weight, the heat resistance and thermal shock resistance originally possessed by the silicon nitride sintered material are deteriorated, and it becomes unusable as a member for molten metal such as aluminum.

【0011】酸化マグネシウムを主成分とする表面層と
下地の窒化珪素質焼結体とは強固に接着する構造になっ
ている。これは、下地の窒化珪素質焼結体の表面に、粒
界相成分と酸化マグネシウムとが混合した層が加熱処理
(後述)により形成されることによる。このように、単
なる機械的な付着でないので、金属溶湯用部材として用
いても容易に剥離することがなく、十分使用に耐えるも
のとなる。
The surface layer containing magnesium oxide as a main component and the underlying silicon nitride sintered material are firmly bonded to each other. This is because a layer in which the grain boundary phase component and magnesium oxide are mixed is formed on the surface of the underlying silicon nitride sintered body by heat treatment (described later). As described above, since it is not merely mechanical adhesion, it does not easily peel off even when used as a member for molten metal, and it can be sufficiently used.

【0012】更に、金属溶湯と窒化珪素質焼結体の反応
阻止効果を高めるため、金属溶湯と窒化珪素質焼結体と
の濡れ性を低減する目的で窒化硼素(BN)を酸化マグ
ネシウムを主成分とする表面層の上にスプレー塗布する
こともできる。
Further, in order to enhance the reaction inhibiting effect between the molten metal and the silicon nitride sintered body, boron nitride (BN) is mainly used as magnesium oxide for the purpose of reducing the wettability between the molten metal and the silicon nitride sintered body. It can also be spray-coated on the component surface layer.

【0013】以上はアルミニウムを例として述べたが、
他の金属及び合金の溶湯においても、その金属酸化物と
窒化珪素質焼結体の表面に形成されるSiO2との間に
同様の反応が起る。しかし、アルミニウムの場合と同様
に、酸化マグネシウムを主成分とする表面層によりこの
反応が阻止できる。
Although aluminum has been described above as an example,
In molten metals of other metals and alloys, similar reactions occur between the metal oxides and SiO 2 formed on the surface of the silicon nitride sintered body. However, as in the case of aluminum, this reaction can be prevented by the surface layer containing magnesium oxide as the main component.

【0014】次に、本発明の耐熱性窒化珪素質焼結体の
製造方法は、窒化珪素質焼結体の表面にマグネシウム化
合物のスラリー又は溶液を塗布し、乾燥後、酸化雰囲気
中で加熱することにより酸化マグネシウムを主成分とす
る表面層を形成する。
Next, in the method for producing a heat-resistant silicon nitride sintered body of the present invention, a magnesium compound slurry or solution is applied to the surface of the silicon nitride sintered body, dried and then heated in an oxidizing atmosphere. As a result, a surface layer containing magnesium oxide as a main component is formed.

【0015】酸化マグネシウムを主成分とする表面層の
形成方法として、物理蒸着法(PVD)や化学蒸着法
(CVD)のように気相から薄膜状に形成する方法もあ
るが、高価な装置を必要とするためコスト面で不利であ
る。そこで本発明においては、塗布後、加熱する方法を
採用する。ここで、マグネシウム化合物のスラリーまた
は溶液とは、例えば酸化マグネシウムをアルコール中に
分散させたスラリー、硝酸マグネシウムのアルコール溶
液、塩化マグネシウムのアルコール溶液、マグネシウム
アルコキシドのアルコール溶液等である。これらの溶液
のマグネシウム化合物の濃度は5〜30重量%程度であ
る。
As a method for forming a surface layer containing magnesium oxide as a main component, there are methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD) for forming a thin film form from a vapor phase, but an expensive apparatus is used. Since it is necessary, it is disadvantageous in terms of cost. Therefore, in the present invention, a method of heating after coating is adopted. Here, the magnesium compound slurry or solution is, for example, a slurry in which magnesium oxide is dispersed in alcohol, an alcohol solution of magnesium nitrate, an alcohol solution of magnesium chloride, an alcohol solution of magnesium alkoxide, or the like. The concentration of the magnesium compound in these solutions is about 5 to 30% by weight.

【0016】加熱温度は800℃〜1400℃である。
800℃未満の場合は塗布されたマグネシウム化合物が
下地の窒化珪素質焼結体と強固に接着するための強さが
確保されない。1400℃を越えると下地の窒化珪素質
焼結体表面の酸化反応が激しくなり、表面の組成がSi
2主体となり、この酸性酸化物であるSiO2とフラッ
クスの間の酸塩基反応によりアルミニウムの付着が激し
くなる。
The heating temperature is 800 ° C to 1400 ° C.
If the temperature is lower than 800 ° C., the strength for the applied magnesium compound to firmly adhere to the underlying silicon nitride sintered body is not secured. When the temperature exceeds 1400 ° C, the oxidation reaction on the surface of the underlying silicon nitride sintered body becomes intense, and the surface composition becomes Si.
O 2 becomes the main component, and the acid-base reaction between this acidic oxide SiO 2 and the flux causes vigorous aluminum adhesion.

【0017】本発明の耐熱性窒化珪素質焼結体を製造す
る別の方法として、窒化珪素質の成形体の表面にマグネ
シウム化合物のスラリー又は溶液を塗布し、乾燥後、窒
化珪素質成形体を焼結することにより、焼結と同時に酸
化マグネシウムを主成分とする表面層を形成してもよ
い。
As another method for producing the heat-resistant silicon nitride-based sintered body of the present invention, a slurry or solution of a magnesium compound is applied to the surface of a silicon nitride-based molded body, and after drying, a silicon nitride-based molded body is obtained. By sintering, a surface layer containing magnesium oxide as a main component may be formed simultaneously with sintering.

【0018】[0018]

【作用】本発明の耐熱性窒化珪素質焼結体は、その表面
に塩基性酸化物である酸化マグネシウムを主成分とする
層が形成されているため、金属溶解用フラックスから生
成されるNaO、NaAlO2等の塩基性酸化物と殆ん
ど反応しない。このため、フラックス処理されたアルミ
ニウム等の金属溶湯中に長時間浸漬されても、侵食や付
着物の形成が軽減できる。
The heat-resistant silicon nitride-based sintered body of the present invention has a layer containing magnesium oxide, which is a basic oxide, as a main component on the surface thereof. Almost no reaction with basic oxides such as NaAlO 2 . For this reason, even when immersed in a flux-treated metal melt such as aluminum for a long time, erosion and the formation of deposits can be reduced.

【0019】[0019]

【実施例】実施例1 Si34粉末87重量%、Al23粉末5重量%、21
R固溶体粉末3重量%、Y23粉末5重量%を混合し、
1000kgf/cm2の圧力で成形した後、加工によ
り直径12mm、長さ122mmの成形体を得た。得ら
れた成形体を窒化珪素製るつぼに入れ、カーボンヒータ
ーを用い、常圧、N2ガス気流中、1750℃で5時間
焼結し、密度3.24g/cm3のサイアロン焼結体を
得た。この焼結体の表面に20重量%酸化マグネシウム
粉末のアルコールとの混合液体を刷毛で約50μmの厚
さに塗布し、乾燥後熱処理した。熱処理条件は、1時間
当り200℃の昇温速度で980℃まで加熱し、そこで
1時間保持し、その後徐冷した。
EXAMPLES Example 1 Si 3 N 4 powder 87% by weight, Al 2 O 3 powder 5% by weight, 21
3% by weight of R solid solution powder and 5% by weight of Y 2 O 3 powder are mixed,
After molding at a pressure of 1000 kgf / cm 2 , a molded product having a diameter of 12 mm and a length of 122 mm was obtained by processing. The obtained compact was put in a silicon nitride crucible and sintered at 1750 ° C. for 5 hours in a N 2 gas stream at atmospheric pressure using a carbon heater to obtain a sialon sintered body having a density of 3.24 g / cm 3. It was A liquid mixture of 20% by weight magnesium oxide powder and alcohol was applied to the surface of this sintered body with a brush to a thickness of about 50 μm, dried and then heat-treated. The heat treatment conditions were heating to 980 ° C. at a heating rate of 200 ° C. per hour, holding for 1 hour there, and then gradually cooling.

【0020】得られた焼結体表面の未反応の酸化マグネ
シウム粉末は機械的に除去し、サイアロン焼結体と強固
に固着した酸化マグネシウムを主成分とする厚さ2μm
の表面層が得られた。このサイアロン焼結体について、
フラックス処理した800℃のアルミニウム溶湯中に1
0時間浸漬する試験を行なった。試験後、サイアロン焼
結体に付着したアルミニウム及びノロの重量と面積率を
測定した。表1に結果を示す。
The unreacted magnesium oxide powder on the surface of the obtained sintered body was mechanically removed, and the thickness was 2 μm containing magnesium oxide firmly fixed to the sialon sintered body as a main component.
A surface layer of was obtained. About this sialon sintered body,
1 in 800 ° C molten aluminum fluxed
A test of soaking for 0 hour was conducted. After the test, the weight and area ratio of aluminum and slag attached to the sialon sintered body were measured. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 実施例1で得られた酸化マグネシウムを主成分とする表
面層を有するサイアロン焼結体の表面に、市販の窒化硼
素スプレー(昭和電工製 潤滑離型剤L−BN)を塗布
したものを作製した。このサイアロン焼結体について、
実施例1と同様に浸漬試験を行ない、サイアロン焼結体
に付着したアルミニウム及びノロの重量と面積率測定結
果を表1に示す。
Example 2 A commercially available boron nitride spray (a lubricant release agent L-BN manufactured by Showa Denko) was applied to the surface of the sialon sintered body having the surface layer containing magnesium oxide as the main component obtained in Example 1. A coated product was prepared. About this sialon sintered body,
The immersion test was performed in the same manner as in Example 1, and Table 1 shows the weight and area ratio measurement results of aluminum and slag attached to the sialon sintered body.

【0023】実施例3 Si34粉末90重量%、Al23粉末4重量%、Y2
3粉末6重量%を混合した後、1000kgf/cm2
の圧力で成形した後、加工により直径12mm、長さ1
22mmの成形体を得た。得られた成形体を窒化珪素製
のるつぼに入れ、カーボンヒーターを用い、常圧、N2
ガス気流中、1750℃で5時間焼結し、密度3.20
g/cm3の窒化珪素焼結体を得た。この焼結体の表面
に20重量%硝酸マグネシウムのアルコール溶液を塗布
し、乾燥後熱処理した。熱処理条件は実施例1と同様で
ある。この処理により得られた酸化マグネシウム表面層
の厚さは1.5μmであった。実施例1と同様に浸漬試
験を行ない、窒化珪素焼結体に付着したアルミニウム及
びノロの重量と面積率測定結果を表1に示す。
Example 3 90% by weight of Si 3 N 4 powder, 4 % by weight of Al 2 O 3 powder, Y 2
After mixing 6% by weight of O 3 powder, 1000 kgf / cm 2
After molding under pressure, the diameter is 12mm and the length is 1 by processing.
A 22 mm compact was obtained. The obtained molded body was placed in a silicon nitride crucible and a carbon heater was used to perform normal pressure N 2
Sintered in a gas stream at 1750 ° C. for 5 hours to give a density of 3.20.
A g / cm 3 silicon nitride sintered body was obtained. An alcohol solution of 20% by weight magnesium nitrate was applied to the surface of this sintered body, dried and then heat-treated. The heat treatment conditions are the same as in Example 1. The thickness of the magnesium oxide surface layer obtained by this treatment was 1.5 μm. The immersion test was performed in the same manner as in Example 1, and Table 1 shows the weight and area ratio measurement results of aluminum and slag attached to the silicon nitride sintered body.

【0024】実施例4 実施例3で得られた酸化マグネシウムを主成分とする表
面層を有する窒化珪素焼結体の表面に、市販の窒化硼素
スプレー(昭和電工製 潤滑離型剤L−BN)を塗布し
たものを作製した。実施例1と同様に浸漬試験を行な
い、窒化珪素焼結体に付着したアルミニウム及びノロの
重量と面積率測定結果を表1に示す。
Example 4 A commercially available boron nitride spray (a lubricant release agent L-BN manufactured by Showa Denko) was applied to the surface of the silicon nitride sintered body having the surface layer containing magnesium oxide as the main component obtained in Example 3. Was applied. The immersion test was performed in the same manner as in Example 1, and Table 1 shows the weight and area ratio measurement results of aluminum and slag attached to the silicon nitride sintered body.

【0025】比較例1、2 実施例1及び3において、セラミックス焼結体に酸化マ
グネシウム表面層処理を施さずに、実施例1と同様に浸
漬試験を行ない、窒化珪素焼結体に付着したアルミニウ
ム及びノロの重量と面積率測定結果を表1に示す。
Comparative Examples 1, 2 In Examples 1 and 3, the ceramics sintered bodies were not subjected to the magnesium oxide surface layer treatment, the same immersion test as in Example 1 was carried out, and aluminum adhered to the silicon nitride sintered bodies was tested. In addition, Table 1 shows the weight and area ratio measurement results of Noro.

【0026】表1から、本発明による酸化マグネシウム
を主成分とする表面層により、窒化珪素質焼結体へのア
ルミニウム付着が著しく少ないことがわかる。更に、酸
化マグネシウムを主成分とした表面層の上に窒化硼素を
スプレー塗布することにより、アルミニウム付着が更に
減少し改善されることが分かる。
From Table 1, it can be seen that the surface layer containing magnesium oxide as the main component according to the present invention significantly reduces the adhesion of aluminum to the silicon nitride sintered body. Further, it can be seen that spraying boron nitride onto the surface layer containing magnesium oxide as the main component further reduces and improves aluminum adhesion.

【0027】実施例5 実施例1に示すサイアロン焼結体に、実施例1と同じ酸
化マグネシウムのアルコールスラリ−を塗布し乾燥する
処理を4回繰り返した後、1000℃で1時間の加熱を
行なった。その結果、サイアロン焼結体の表面に酸化マ
グネシウムを主成分とする表面層が8μmの厚さで形成
された。この表面層を有するサイアロン焼結体につい
て、実施例1と同様800℃のアルミニウム溶湯中に1
0時間浸漬する試験を行なった結果、アルミニウム付着
量は3.5mg/cm2であり、極めて付着の少ないこ
とが分かった。
Example 5 The same treatment as in Example 1 was carried out by applying the same magnesium oxide alcohol slurry as in Example 1 to the sialon sintered body shown in Example 1, followed by drying, and then heating at 1000 ° C. for 1 hour. It was As a result, a surface layer containing magnesium oxide as a main component was formed in a thickness of 8 μm on the surface of the sialon sintered body. Regarding the sialon sintered body having this surface layer, as in Example 1, 1
As a result of a test of soaking for 0 hour, the amount of aluminum adhered was 3.5 mg / cm 2 , and it was found that the amount of adhered aluminum was extremely small.

【0028】比較例3 実施例5と同じ方法で、酸化マグネシウムのアルコール
スラリー塗布を7回繰り返した後、1000℃で1時間
加熱した。その結果、サイアロン焼結体の表面に酸化マ
グネシウムを主成分とする表面層が13μmの厚さで形
成された。しかし、表面層とサイアロン焼結体との界面
に割れが入ったため、表面層が一部剥離してしまい、下
地のサイアロン焼結体が露出した。この状態のサイアロ
ン焼結体を、実施例1と同様アルミニウム溶湯に浸漬す
る試験を行なった結果、アルミニウム付着量は25.4
mg/cm2であり、著しく付着することが分かった。
Comparative Example 3 In the same manner as in Example 5, the application of the magnesium oxide alcohol slurry was repeated 7 times and then heated at 1000 ° C. for 1 hour. As a result, a surface layer containing magnesium oxide as a main component was formed in a thickness of 13 μm on the surface of the sialon sintered body. However, since the interface between the surface layer and the sialon sintered body was cracked, the surface layer was partly peeled off, and the underlying sialon sintered body was exposed. As a result of performing a test of immersing the sialon sintered body in this state in the molten aluminum as in Example 1, the amount of deposited aluminum was 25.4.
It was mg / cm 2 , and it was found that there was remarkable adhesion.

【0026】実施例6 実施例1に示すサイアロンの成形体に20重量%硝酸マ
グネシウムのアルコール溶液をスプレーで塗布し、乾燥
した後、1700℃、10時間の条件で焼結した。その
結果、酸化マグネシウムを主成分とする表面層が形成さ
れた。実施例1と同様に付着試験の結果は、4.9mg
/cm2の付着があり、実施例1とほぼ同等であった。
Example 6 The sialon compact shown in Example 1 was spray-coated with an alcohol solution of 20% by weight magnesium nitrate, dried, and then sintered at 1700 ° C. for 10 hours. As a result, a surface layer containing magnesium oxide as a main component was formed. As with Example 1, the result of the adhesion test was 4.9 mg.
/ Cm 2 was attached, which was almost the same as in Example 1.

【0027】[0027]

【発明の効果】本発明の酸化マグネシウムを主成分とす
る表面層を形成することにより、窒化珪素又はサイアロ
ン等の窒化珪素質焼結体が本来持つ高温強さや耐熱衝撃
性等の高温特性を損なうことなく、アルミニウム等の金
属溶湯の侵食に基づく付着やノロ付着を軽減することが
可能となった。
EFFECTS OF THE INVENTION By forming the surface layer containing magnesium oxide as a main component of the present invention, the high temperature characteristics such as high temperature strength and thermal shock resistance inherent to a silicon nitride sintered body such as silicon nitride or sialon are impaired. Without this, it is possible to reduce the adhesion and slag adhesion due to the erosion of the molten metal such as aluminum.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古城 勝彦 埼玉県熊谷市三ケ尻5200番地 日立金属 株式会社 磁性材料研究所内 (56)参考文献 特開 平3−106558(JP,A) 特開 昭58−208182(JP,A) 特公 平4−44628(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C04B 41/80 - 41/91 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Furushiro 5200 Mikashiri, Kumagaya-shi, Saitama, Hitachi, Ltd. Magnetic Materials Research Laboratory (56) Reference JP-A-3-106558 (JP, A) JP-A-58- 208182 (JP, A) JP-B 4-44628 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 41/80-41/91

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素粒子又はサイアロン粒子60重
量%以上と、Si、Al、Y、O、N及び不可避的不純
物からなる粒界相とからなる耐熱性焼結体であり、下地
の焼結体の表面に形成された粒界相成分と酸化マグネシ
ウムとの混合層により接着されてなる厚さ0.1μm以
上10μm未満の酸化マグネシウムを主成分とする表面
層を形成したことを特徴とする耐熱性窒化珪素質焼結
体。
1. A heat resistant sintered body comprising silicon nitride particles or sialon particles in an amount of 60% by weight or more and a grain boundary phase composed of Si, Al, Y, O, N and inevitable impurities. Heat resistance characterized by forming a surface layer mainly composed of magnesium oxide having a thickness of 0.1 μm or more and less than 10 μm, which is formed by adhering with a mixed layer of a grain boundary phase component formed on the surface of the body and magnesium oxide Silicon nitride sintered material.
【請求項2】 金属溶湯用部材に用いることを特徴とす
る請求項1に記載の耐熱性窒化珪素質焼結体。
2. The heat-resistant silicon nitride sintered material according to claim 1, which is used for a member for molten metal.
【請求項3】 窒化珪素粒子又はサイアロン粒子60重
量%以上と、Si、Al、Y、O、N及び不可避的不純
物からなる粒界相とからなる耐熱性焼結体であり、該焼
結体の表面にマグネシウム化合物を塗布し、乾燥の後、
800〜1400℃の温度で加熱処理することにより、
酸化マグネシウムを主成分とする表面層を形成すること
を特徴とする耐熱性窒化珪素質焼結体の製造方法。
3. A heat-resistant sintered body comprising 60% by weight or more of silicon nitride particles or sialon particles and a grain boundary phase composed of Si, Al, Y, O, N and inevitable impurities. After applying magnesium compound on the surface of and drying,
By heat treatment at a temperature of 800 to 1400 ° C,
A method for producing a heat-resistant silicon nitride-based sintered body, which comprises forming a surface layer containing magnesium oxide as a main component.
【請求項4】 窒化珪素成形体の表面にマグネシウム化
合物を塗布し、乾燥の後、窒化珪素成形体を焼結すると
き同時に酸化マグネシウムを主成分とする表面層を形成
することを特徴とする耐熱性窒化珪素質焼結体の製造方
法。
4. A heat resisting method, characterized in that a magnesium compound is applied to the surface of a silicon nitride molded body, and after drying, a surface layer containing magnesium oxide as a main component is formed at the same time when the silicon nitride molded body is sintered. For manufacturing a crystalline silicon nitride sintered body.
JP05206293A 1993-03-12 1993-03-12 Heat-resistant silicon nitride sintered body and method for producing the same Expired - Lifetime JP3520998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05206293A JP3520998B2 (en) 1993-03-12 1993-03-12 Heat-resistant silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05206293A JP3520998B2 (en) 1993-03-12 1993-03-12 Heat-resistant silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06263567A JPH06263567A (en) 1994-09-20
JP3520998B2 true JP3520998B2 (en) 2004-04-19

Family

ID=12904333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05206293A Expired - Lifetime JP3520998B2 (en) 1993-03-12 1993-03-12 Heat-resistant silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3520998B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724863B2 (en) * 2007-02-09 2011-07-13 独立行政法人産業技術総合研究所 Cast stalk with little adhesion and method for producing the same
JP5582813B2 (en) * 2010-02-17 2014-09-03 株式会社クボタ Manufacturing method of ceramic member for molten metal

Also Published As

Publication number Publication date
JPH06263567A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
US4594106A (en) Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials
US7507481B2 (en) Heat resistant coated member, making method, and treatment using the same
JP2003073794A (en) Heat-resistant coated member
US8349468B2 (en) Metal material for parts of casting machine, molten aluminum alloy-contact member
US7238390B2 (en) Coating precursor and method for coating a substrate with a refractory layer
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JP3066812B2 (en) Low melting metal casting tool with two or more coatings
JPH0873286A (en) Silicon nitride sintered compact and its production and member for molten metal using the same
JP3129383B2 (en) Oxide-coated silicon carbide material and its manufacturing method
JPS6156313B2 (en)
JP2000064060A (en) Member for nonferrous molten metal
AU2002362826B2 (en) Coating precursor and method for coating a substrate with a refractory layer
JPH06322457A (en) Silicon nitride parts for melting and casting of aluminum and melting and casting equipment using the same
EP1435501A1 (en) Heat-resistant coated member
JP3097536B2 (en) Dice having nitride layer excellent in heat resistance and oxidation resistance and method for manufacturing the same
JPH0657873B2 (en) Roll for heat treatment furnace
JPH08199322A (en) Molten metal member
JP3357701B2 (en) Method for improving molten aluminum resistance of refractory and refractory
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JPH0791625B2 (en) Molten zinc bath immersion member and method for manufacturing the same
JP2626672B2 (en) Immersion tube for non-ferrous molten metal
JP2005131656A (en) Member for molten aluminum
JP2004238215A (en) Silicon carbide sintered member having non-reactive thermally sprayed film and method of manufacturing the same
SU676641A1 (en) Steel article working method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 10

EXPY Cancellation because of completion of term